Near-Data Acceleration of Privacy-Preserving
Biomarker Search with 3D-Stacked Memory

Alvin Oliver Glova, Itir Akgun, Shuangchen Li, Xing Hu, Yuan Xie
University of California, Santa Barbara, CA, 93106 USA
{aomglova, iakgun, shuangchenli, huxing, yuanxie}@ece.ucsb.edu

Abstract—Homomorphic encryption is a promising technology
for enabling various privacy-preserving applications such as
secure biomarker search. However, current implementations are
not practical due to large performance overheads. A homo-
morphic encryption scheme has recently been proposed that
allows bitwise comparison without the computationally-intensive
multiplication and bootstrapping operations. Even so, this scheme
still suffers from memory-bound performance bottleneck due to
large ciphertext expansion. In this work, we propose HEGA, a
near-data processing architecture that leverages this scheme with
3D-stacked memory to accelerate privacy-preserving biomarker
search. We observe that homomorphic encryption-based search,
like other emerging applications, can greatly benefit from the
large throughput, capacity, and energy savings of 3D-stacked
memory-based near-data processing architectures. Our near-data
acceleration solution can speed up biomarker search by 6.3 x with
5.7x energy savings compared to an 8-core Intel Xeon processor.

[. INTRODUCTION

Technological advances in genomic data sequencing has
fueled the increased availability of genetic data information
and rise of genetic analysis services. Although the abundance
of digitized personal genomic information enables advances
in bioinformatics and medical domains, it also brings security
and privacy concerns. For the analysis of genetic data, there
is a growing drive to use privacy-preserving computation
techniques to process sensitive genetic information securely
[1]-{4].

One of the emerging bioinformatics applications is
biomarker search. Biomarker search applications are used in
medical centers to check for genetic diseases and involve
searching a biomarker within a reference database. A match
within a reference database indicates high probability of
having a certain disease. This type of application was recently
explored in the recent iDASH (Integrating Data for Analysis,
Anonymization and Sharing) National Center secure genome
analysis workshop challenge [S]-[7].

Homomorphic encryption (HE) supports operations on en-
crypted data thus making it possible for data to remain
confidential while it is processed in untrusted environments
[8], [9]. This property allows for the protection of private
data especially in cloud services. HE can be used for secure
outsourcing of biomarker search as shown in Figure 1. An
encrypted biomarker query is sent to a server where it is
matched with a database that is also encrypted. The encrypted
result (match or no match) is sent back to user where it is
decrypted. None of the query, the database entries, and the
result is revealed to the server during the entire processing.

978-3-9819263-2-3/DATE19/©)2019 EDAA

N
2! search on
encrypted
biomarker
database

3
HI
o)

It

(
Encrypt
. biomarker query
- @:‘
Decrypt result Untrusted

User Cloud
Service

(U

Fig. 1. Privacy-preserving Biomarker Search Overview

However, homomorphic encryption has large computational
and storage overheads due to large ciphertext explosion [9],
thus limiting its practical usage.

State-of-the-art HE-based privacy-preserving search solu-
tions typically require computationally-expensive homomor-
phic multiplication and bootstrapping operations [10]. For
example, homomorphic multiplication typically runs 10-100x
slower compared to homomorphic addition, depending on
parameters [11]. Bian et al. recently proposed an additive
homomorphic encryption scheme for exact match search that
removes the computational overhead of multiplication and
bootstrapping operations [12].

However, a realistic implementation of this scheme still
suffers from the large ciphertext explosion of HE which results
in heavy data movement during search operation of moving
data from memory to the processing unit to perform the
comparison. For example, ciphertext expansion for a 32-bit
integer for medium security results in 44,000x explosion in
size [12]. Therefore, the performance of this scheme is still
limited and also not scalable, especially for growing data
sizes that require stronger encryption schemes and even larger
resulting ciphertexts.

In this paper, we build on top of this additive HE-based
search scheme to propose HEGA, a near-data processing
(NDP) architecture to accelerate privacy-preserving biomarker
search. We adopt a 3D-stacked DRAM to reduce data move-
ment and accelerate basic additive homomorphic operation for
this application. !

Our contributions in this work are the following:

« We analyze the performance bottleneck of a practical
implementation of this homomorphic encryption search
scheme

« We propose a 3D-stacked memory-based near-data pro-
cessing architecture to accelerate search operation based
on this homomorphic encryption search scheme

'Note that although the specific application we explored here is biomarker search,
this architecture can also be used in other privacy-preserving exact search applications.

800

o Using this architecture, we propose the first hardware
accelerator for privacy-preserving biomarker search and
compare to CPU-based implementation

II. BACKGROUND
A. Privacy-Preserving Biomarker Search

Biomarker search is one of the key emerging applications
in bioinformatics domain [2], as it allows for detection of
possible diseases. A specific set of biomarkers are queried
from a server that houses a database of these biomarkers.
The presence or absence of a specific biomarker or a set of
biomarkers indicates a probability of genetic diseases and thus
helps medical practitioners to make informed decisions. In
dealing with this type of application, however, data is stored
in the database and the queries must be encrypted in order to
protect privacy.

The biomarkers are stored in Variant Call Format (VCF).
These VCF files contain information on biomarkers (genotype
information) such as chromosome number and the position
of the genome. Furthermore, it contains information for each
position such as reference and alternate sequences.

A typical processing flow for HE-based biomarker search
is shown in Figure 2. The figure shows two general phases: a
preprocessing phase and the query phase. In the preprocessing
phase, each entry in the VCF file is first encoded and hashed
before performing the actual homomorphic encryption using
a generated key. This is to reduce the size of the encrypted
entries since the size of the unencrypted entries will affect the
size of the data after encryption. In the query phase, the client
similarly needs to preprocess the query before it is sent to
the cloud service for the exact search operation. An encrypted
result of the search is sent back to client where it can be
decrypted using the secret key. In this work, we focus on the
homomorphic evaluation stage of the search which takes up
the majority of the execution time, especially for large number
of queries. For this work, we assume a size of 32 bits for the
post-hashed unencrypted database entries and queries. Note
that this size is realizable as demonstrated by Cetin et al. using
a cuckoo-based hashing scheme that enables size reduction of
the entries to 29 bits [5].

Preprocessing Phase

VCF File _ Key -
[Encoding J- [HashlngJ- [Generation J- [Encryption J

Query Phase

Query .] |)
[Hashinggq [Encryption - [Evaluation - Decryption
Client - Client - Cloud Service Wy Client -

Fig. 2. HE-based Privacy-Preserving Biomarker Search Flow

B. Additive Homomorphic Encryption Scheme for Search

Cryptographic solutions such as homomorphic encryption
allow for computations on encrypted data. This makes ho-
momorphic encryption a very promising solution for privacy-
preserving applications. Fully homomorphic encryption has
received wide attention as it allows computations on arbitrarily

Design, Automation And Test in Europe (DATE 2019)

deep circuits using an operation called bootstrapping [13].
Bootstrapping is a method to refresh a ciphertext by decrypting
and re-encrypting to reduce noise, which is a result of per-
forming many HE computations on encrypted data. However,
bootstrapping is a computationally expensive operation and
thus most recent work on homomorphic encryption also focus
on partial (eg. additive) homomorphic encryption schemes.

Although there have been many studies which contributed
to the rapid progress of HE, performance bottlenecks continue
to hinder its practical realization. Two of the biggest contrib-
utors are data size explosion and slow primitive operations.
Encryption results in ciphertext explosion which translates to
computation, storage, and communication overheads. Primi-
tive operations such as polynomial multiplication have slow
execution times (often millisecond range) and often requires
complex specialized hardware [14]. For privacy-preserving
search, these problems become even more prominent since
aside from the large computational and storage requirements
initially demanded by HE. Furthermore, larger HE parameters
are needed to support more entries while maintaining the
same security level, which exacerbates the data size explosion
problem even more.

Ducas et al. proposed the FHEW scheme that can perform
NAND operation with only additive homomorphism which
greatly reduces the computational requirements [15]. However,
it still needs bootstrapping after each homomorphic gate
operation which dominates the runtime. More recently, Bian et
al. [12] proposed SCAM by modifying the plaintext space of
FHEW and introducing an encryption constant to implement
a two-stage complex homomorphic Boolean gate which can
be used for multi-bit word matching. It is also based on
additive homomorphism but does not require bootstrapping or
multiplication operations which makes it efficient for use in
hardware implementations. Equation 1 shows a bitwise exact
search operation using XNOR-AND gates. SCAM scheme
achieves exact search in homomorphic encryption domain
using only additive homomorphism in homomorphic XOR-OR
gate as shown in Equation 2, where c;, and c,, are ciphertexts
for each bit [12]. In this scheme, each 1-bit plaintext expands
to a (n+1) (Ig ¢)-bit ciphertext where ¢ and n are encryption
parameters that determined according to the security level. To
perform a homomorphic w-bit word matching, w - (n + 1)
(Ig g)-bit integers are added and if the final result decrypts to
zero, it means the two words being compared are the same. A
non-zero result means the two words do not provide a match.

fay) =]lzow)
i=1

w
Homﬁ-OR(x,y) = (g —cy;) 2)

i=0
Implementing SCAM for the privacy-preserving search
within a database requires performing this search operation
in the homomorphic domain through all encrypted database
entries and returning the encrypted results of match or no

801

match, with respect to encrypted query bitstream. The client
can later decrypt the matching results that evaluate to zero for
match and non-zero for no match in the database search. We
also adopt the secure two-round communication protocol of
SCAM in this work.

This scheme was proposed with an ASIC design [12] in
which all encrypted database entries are stored on-chip to
provide large bandwidth. However, due to the data explosion of
more than 44k x larger data size after encryption, such design
results in unacceptable chip area, making it impractical and
also not scalable. For example, even for a database of 100K
32-bit entries using their provided encryption paramaters,
their ASIC design would already need more than 21 billion
transistors, even without including the large on-chip memory
(SRAM) required.

We discuss 3D-stacked memories next and in Section III,
we discuss why a 3D-stacked memory NDP-based solution
is suited for use with this HE scheme and privacy-preserving
biomarker search.

C. 3D-Stacked Memories

Hybrid Memory Cube (HMC) is a type of 3D-stacked
memory technology which can be used for near-data acceler-
ator architectures. HMC consists of 4/8§ DRAM dies on top
of a logic base die, resulting 4/8 GB capacity per device
[16]. Each DRAM die is divided into 32 partitions, with
each partition consisting of multiple banks. Partitions across
dies vertically form a vault. Each vault has an independent
vault memory controller within the logic die that manages
all memory operations for that vault. The logic base die also
includes a crossbar switch that connects the vault memory
controllers to the I/O ports. HMC uses SerDes I/O links of
up to a total of 320 GB/s peak bandwidth. HMC can also
be chained together to increase total memory capacity, which
can provide a scalable expansion for applications such as
privacy-preserving biomarker search which has large memory
requirement.

III. MOTIVATION

In this section, we discuss our motivation for using a near-
data processing approach to accelerate the additive homo-
morphic encryption scheme and its application in privacy-
preserving biomarker search. Performing search using the
SCAM scheme is very challenging even though the computing
is transformed from complex multiplication into a series of
simpler homomorphic additions on the encrypted data, as
described in Section II-B. For example, by searching a 10k-
entry database that is encrypted with SCAM using encryption
parameters in [12], we end up with a slowdown of 60kx
on CPU compared to unencrypted operation, which becomes
worse for larger databases (75kx for a 20k-entry database),
shown in Figure 3.

Next, we observe that the application is memory-bound and
the challenge lies in performing operations on large data sizes
after encryption. Using the same parameters, encrypting the
data grows 44k x larger for medium security (80-bit) and 55kx

802

for high security (128-bit) [12]. As a result, a database with
100k entries becomes 16.5GB, which cannot fit on an on-
chip cache. At the same time, computation is composed of
simple addition operations, making it a memory bandwidth-
bound application on all of the available hardware platforms.
Using an x86 simulator, we obtain the cycle stack of this
application as shown in Figure 4. It shows that 72% of the
cycles are DRAM-bound stall cycles, which mainly causes
the large slowdown of the application.

[
20k 75085x

entries

10k
entries

0.00001

60265x

1 10

0.0001 0.001 0.01 0.1
search time (s)

Fig. 3. Slowdown of database search from homomorphic encryption (SCAM)

Core: 16.12% Others: 11.09%

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%
Execution time stack

Fig. 4. Cycle breakdown of SCAM running on CPU+HMC

To further understand this application, we build a roofline
model. A roofline model is widely used for high performance
computing [17]. The y-axis is the performance (in INT32
ADD), thus the peak computation rate forms the flat part of
the roofline. The x-axis is the operational intensity, also called
operation/byte ratio, which is a measure of operations per
DRAM byte accessed. Applications with higher operational
intensity would more likely to be compute-bound, i.e., fall to
the flat part of the roofline. Applications with lower operational
intensity is likely to be memory-bound (the slanted part
of the roofline) and cannot achieve the peak performance
of the hardware. We model a SCAM-based database query
application where we assume the query data (173KB) is stored
on-chip while the database (16.5GB) is off-chip. For each
operation (INT32 ADD), we need to fetch 4 bytes of data
from off-chip memory, making the operation/byte ratio of this
application to be 0.25. We draw the roofline model for various
hardware in Figure 5, and project the effective performance
(indicated by markers) according to the 0.25 operation/byte
ratio.

1000

100 searching performance

—==CPU-DDR4 (Xeon E5-2620v4)
——CPU-HMC (Xeon E5-2620v4)
-==GPU (Tesla V100)

FPGA (VCU1525)

Tops (INT32 addition)

0.001

0.01 0.1 1 100 1000 10000

op/l?yte
Fig. 5. A roofline model analysis for SCAM on various platforms (FPGA
performance estimation with adder in [18])

We observe that this application is memory-bound for all
CPU, GPU, and FPGA platforms, since the small opera-
tion/byte ratio falls in the slanted part of these rooflines. We
conclude that existing hardware solutions are not suitable or

Design, Automation And Test in Europe (DATE 2019)

Vault

DRAM | [DRAM | [DRAM
Stack Stack Stack
Vault PU
A
[vaultCtrl]+ [VaultCtrl |-+ [VaultCtrl | ,# || EntryBuffer
I,
4
[VauIiPU | <[vaultPu]...[VaultPu |\ Adder Tree
; f N
| Crossbar (Inter-Vault Link) | \\ Query Buffer

SEEE

Fig. 6. HEGA Architecture Overview
256B

~—lgla)—>

| Entry Buffer

| |QueryBuffer

Accumulator

Result Buffer

< lg(a)—>

Fig. 7. HEGA Vault PU Architecture (for Ig q = 42)

efficient for such application. Specifically, if compared to the
CPU-DDR4 with FPGA, although the peak performance is
improved from 0.4 TOPs to 221 TOPs, the effective perfor-
mance only improves 1.5x because the memory bandwidth
is not significantly improved (68 GB/s vs. 102 GB/s). On
the contrary, the effective performance improves 4.7x with
the same CPU but changing from DDR4 (68 GB/s) to HMC
(320 GB/s). The simple operations required coupled with the
associated large data movement overhead makes it an ideal
application to accelerate using 3D-stacked memory where a
logic die can be used to implement simple operations. Such
architecture can provide massive intra-memory bandwidth and
hence solve the memory-bound performance bottleneck. Fur-
thermore, since only simple operations are performed on the
logic die using this scheme, it is more suited for 3D-stacked
memory integration considering its thermal limitations [19]
as compared to typical HE schemes that need complex hard-
ware to speedup the computationally-intensive FFT operation
needed in large-integer multiplication.

IV. HEGA ARCHITECTURE
A. HEGA Overview

We base the design of our near-memory architecture on
Micron's Hybrid Memory Cube [16]. Figure 6 illustrates the
high-level architecture of our design. The DRAM layers are
composed of multiple independent vertical slices called vaults.
Each of the vaults can be accessed in parallel, and thus have
independent accelerators and memory controllers associated
with them. The accelerators can operate on data residing in
their local vault and have direct high-bandwidth access to
the DRAM layers via the TSVs. The vault controllers handle
requests from accelerators co-located within the vault logic, as
well as read and write requests that come from the processor.

Design, Automation And Test in Europe (DATE 2019)

B. Architectural Details

Vault logic within the logic die consists of vault memory
controller along with the vault processing unit (PU). Each
vault PU includes the following components for implementing
homomorphic addition, as shown in Figure 7. Entry buffer
stores the units of a fetched entry from the database. Query
buffer stores units of the biomarker query to be searched within
the database. Entry and query buffers are 256B in size to match
the HMC row buffer size [19]. The adder tree is made of up
of adders needed to perform the homomorphic matching as
described in Section II-B.

To perform a search operation, a block is first requested to
the vault controller and is stored in the entry buffer of the
vault PU. Note that the data bus (transfer size) in an HMC
vault is 32B and the internal vault bandwidth is defined as
32B/4tCK/vault (10GB/s for tCK = 0.8ns). Once the entry
buffers are loaded, the arithmetic units are used to perform
(Ig g)-bit additions with the partial query data stored in the
query buffer. These results are then accumulated and stored in
a result buffer. This process continues until all the entry blocks
have been processed. The query ciphertext is sent to all vaults
to improve efficiency by parallel search. Finally, the search
result of size (Ig ¢) bits per entry saved in a result buffer is
sent to the user.

Vault 0
EO-BLKO
EO-BLK1

Vault 1
E1-BLKO

Vault 31
E31-BLKO

E1-BLK1 E31-BLK1

EO-BLK31 E1-BLK31 E31-BLK31

Fig. 8. HEGA Data Mapping

Next, we discuss mapping of database entries to the 3D-
stacked DRAM. To map database entries to the HMC, we use
the mapping shown in Figure 8. This mapping scheme lever-
ages the vault-level parallelism of the HMC. Each encrypted
entry bit composed of (n + 1) (lg ¢)-bit integers is stored in
a vault for the w vaults (w = 32). The vault PUs perform the
corresponding additions for the entry and query units. Finally,
the results from all the vault PUs are accumulated as shown
in Figure 9. For each entry, w - (n + 1) additions of Ig(q)-bit
entry and query data are computed.

(lg q)-width adder

w*(n+1) additions

Fig. 9. SCAM Search Operation

803

Following the data mapping decribed above, Figure 10
shows a sample address mapping from logical binary array
address to the HMC physical address using the HE parameters
defined in [12].

. = I Q |

= ; 5 o o
HME 2 o Vaultip ol Adr %_,: I 3%<\v~6x>-\x L«
Adr 35 sbit 7Ht 52 §E Y 8
= ;HHHHH;H"QI‘D_‘”B‘F!“.‘\?H
Arra it _bi it Unit’s bit-index

Adr:y Entry-ID Adr Unit-ID (11-bit) 5o oo

Address of binary[N][n+1][w][lg q]
Fig. 10. HEGA HMC Address Mapping

(n=1052,w=32,lgq=42)

V. EVALUATION
A. Methodology

We use Sniper x86 simulator with custom HMC memory
model for our baseline CPU+HMC performance evaluation.
The power estimates of the x86 cores were obtained from
MCcPAT integrated in Sniper. We used an in-house simulator
to perform HEGA performance evaluation. The logic compo-
nents of our design were synthesized with Design Compiler
using NanGate 15nm library. To estimate DRAM energy, we
assume a DRAM read energy of 3.76 pJ/bit and a logic layer
transfer energy of 6.78 pl/bit from [20], [21]. Table I lists the
simulation parameters used.

We analyze the following schemes in our experiments:

e SCAM: This baseline scheme performs the SCAM

scheme on CPU + HMC

o HEGA: Our proposed near-data acceleration architecture

which performs SCAM scheme within the logic die of
the HMC

Note that to ensure fair comparison, we evaluate SCAM
on a CPU + HMC platform and compare to our proposed
NDP + HMC platform. We use 32-bit post-hashed unencrypted
database entries and queries (w = 32) and use parameters
n = 1052 and (Ig ¢) = 42 as in the instantiation in Table
IIT of [12]. We use a workload consisting of single query on
a database of 1k to 16k entries. Note that this small sample
range has the advantage of being able to accurately represent
the performance of much larger datasets because of the regular
workload and at the same time having a feasible simulation
speed. Furthermore, this number of entries is big enough to
ensure that the size of the encrypted dataset cannot fit into the
cache.

TABLE I. SIMULATION PARAMETERS

Processor x86, 8-issue width , out-of-order, 64-entry instruction
queue, 2.1GHz, 22nm, 8 cores

Cache L1D/LII: 32KB, L2: 256KB, shared L3: 20MB, LRU

HMC 4 links, full-lane, 8GB, 32 Vaults, tCK = 0.8ns,

tRCD-tCL-tRP = 17-17-17, tCCDS=4, tCCDL=6

HEGA-Logic (NDP)|32 Vault PUs, 1GHz, 15nm node

B. Experimental Results

1) Performance Comparison: Figure 11 shows HEGA can
already provide up to 6x speedup compared to an 8-core

804

10000

=
S 6.38x
g 1000
E
S 6.29x
S 100 -=-HEGA
[T}
b —-SCAM
10
0 5000 10000 15000
Entries

Fig. 11. Execution Time of SCAM and HEGA

=
[=]
(=]

<

NN
SR
[S.GGX l

1000

SCAM
B HEGA-BL

Normalized Energy
=
o

8000

4000

Entries
Fig. 12. Normalized Energy of SCAM and HEGA

[

2000 16000

Intel Xeon CPU. This shows the limitation of the CPU in
utilizing the large bandwidth available in HMC because of its
complex cache hierarchy while in HEGA, the NDP units can
more efficiently use the internal vault bandwidth. Furthermore,
even for the small database sizes explored, we observe that
CPU performance becomes worse as the size of the database
increases, consistent with our observation from Section III.

Furthermore, HEGA performs a single word search in
0.61ps at 1 GHz. For multi-word comparison, HEGA lever-
ages vault-level parallelism and pipelining. Although SCAM
leverages the parallel structure for fast multi-word search, the
ASIC implementation is not realizable for realistic database
sizes, as discussed in Section II-B.

2) Energy Comparison: The normalized energy results are
shown in Figure 12. Compared to the CPU-based scheme,
HEGA can reduce the energy by as much as 5.6x. Lower
energy for HEGA is achieved due to the proximity of data
and computation of NDP compared to the CPU, which further
allows excluding energy contributions of power-hungry HMC
links and crossbar.

3) Area Overhead: We obtain the area overhead of HEGA
in the logic die from synthesis results. Since the vault PUs
only include a few simple components such as the buffers
and an arithmetic unit, the total area across 32 vaults was
calculated to be 0.29 mm? (15nm node), which represents just
0.4% area of the HMC logic die [21]. Figure 13 shows the
area breakdown of main vault PU components implemented
in the logic die, namely 256B query and entry buffers, 42-bit
adders and accumulator. This evaluation shows that buffers
result majority (57%) of area overhead.

VI. RELATED WORK

A. Accelerators on 3D-Stacked Memory

Multiple work have proposed near-data architectures using
3D-stacked DRAM to accelerate data intensive operations

Design, Automation And Test in Europe (DATE 2019)

@Buffers OAdders @Accumulator

T T T T

Z

0 2000 4000 6000

Area [um2]
Fig. 13. Area Breakdown of HEGA

[22], [23]. Alves et al. proposed HIVE [24], an HMC-based ar-
chitecture which allows performing common vector operations
directly inside the HMC. Kim et al. proposed GRIM-Filter
[25], a near-data processing architecture within the logic layer
of a 3D-stacked memory to accelerate read mapping phase of
DNA sequencing application.

Even though these work also propose accelerator architec-
tures on 3D-stacked memories, none of these have focused
on accelerating homomorphic encryption and its applications
such as privacy-preserving biomarker search.

8000 10000

B. Hardware Acceleration of Privacy-Preserving Search

Few works have presented hardware acceleration schemes
for homomorphic encryption-based privacy-preserving search.
Bian et al. proposed SCAM and an ASIC implementation [12]
but has large overheads. Khedr et al. introduce a GPU-
based approach to homomorphic word searching in their
work SHIELD [10]. Martins et al. accelerate homomorphic
word searching using Intel Xeon Phi [26]. These two imple-
mentations still require computationally-expensive homomor-
phic multiplication. CAMSure [27] allows secure approximate
search but biomarker search requires exact search.

Different from prior work on hardware-based secure search,
HEGA leverages NDP in 3D-stacked memory to handle the
large data explosion and the massive data movement due to the
streaming search operation. Furthermore, HEGA’s use of HMC
allows for a scalable solution considering the increasing data
expansion rates required for larger databases while maintaining
security.

VII. CONCLUSION

In this work, we propose HEGA, a near-data processing
architecture that uses 3D-stacked DRAM to accelerate homo-
morphic encryption-based biomarker search. We observe that
emerging applications like homomorphic encryption-based
privacy-preserving search can greatly benefit from the through-
put, capacity, and energy savings of 3D-stacked DRAM-based
NDP architectures. Our NDP-based solution can speed up
search by 6.3x with 5.7x energy savings compared to an
8-core Intel Xeon processor. This work represents a step
towards achieving practical homomorphic encryption applica-
tions through near-data processing.

ACKNOWLEDGMENT

The authors would like to thank Tim Sherwood for insight-
ful discussions. This paper was supported in part by NSF
1730309, 1500848, 1719160, CRISP, one of six centers in
JUMP, a SRC program sponsored by DARPA, and NSF grant
CCF 1740352 and SRC nCORE NC-2766-A.

Design, Automation And Test in Europe (DATE 2019)

(1]

(2]
(31

(4]

(]
(]

[8]
[9]
[10]

(1]
[12]
(13]

(14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]
[22]
(23]
(24]

(25]

[26]

(27]

REFERENCES

J.-P. Hubaux et al., “Genomic Data Privacy and Security: Where We
Stand and Where We Are Heading,” IEEE Security & Privacy, vol. 15,
no. 5, pp. 10-12, 2017.

M. M. A. Aziz et al., “Privacy-preserving techniques of genomic dataa
survey,” Briefings in Bioinformatics, no. April, pp. 1-9, 2017.

K. Lauter et al., “Private Computation on Encrypted Genomic Data,”
in Progress in Cryptology - LATINCRYPT 2014, vol. 8895. Springer
International Publishing, 2015, pp. 3-27.

A. Khedr et al., “SecureMed: Secure Medical Computation using
GPU-Accelerated Homomorphic Encryption Scheme,” IEEE Journal of
Biomedical and Health Informatics, pp. 1-1, 2017.

G. S. Cetin et al., “Private queries on encrypted genomic data,” BMC
Medical Genomics, vol. 10, no. S2, p. 45, jul 2017.

M. Kim et al., “Secure searching of biomarkers through hybrid ho-
momorphic encryption scheme,” BMC Medical Genomics, vol. 10, no.
Suppl 2, 2017.

J. S. Sousa et al., “Efficient and secure outsourcing of genomic data
storage,” BMC Medical Genomics, vol. 10, no. S2, p. 46, jul 2017.

C. Gentry, “Computing arbitrary functions of encrypted data,” Commu-
nications of the ACM, vol. 53, no. 3, p. 97, 2010.

P. Martins et al., “A Survey on Fully Homomorphic Encryption,” ACM
Computing Surveys, vol. 50, no. 6, pp. 1-33, Dec 2017.

A. Khedr et al., “SHIELD: Scalable Homomorphic Implementation of
Encrypted Data-Classifiers,” IEEE Transactions on Computers, vol. 65,
no. 9, pp. 2848-2858, 2016.

S. Angel et al., “Pir with compressed queries and amortized query
processing,” in IEEE SP, May 2018, pp. 962-979.

S. Bian et al., “SCAM: Secured content addressable memory based on
homomorphic encryption,” in DATE, 2017, pp. 984-989.

C. Gentry, “Fully homomorphic encryption using ideal lattices,” in
STOC, 2009, pp. 169-178.

W. Wang et al., “VIsi design of a large-number multiplier for fully
homomorphic encryption,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 22, no. 9, pp. 18791887, Sept 2014.
L. Ducas et al., “FHEW: Bootstrapping homomorphic encryption in less
than a second,” in Advances in Cryptology — EUROCRYPT 2015, vol.
9056, 2015, pp. 617-640.

Hybrid Memory Cube Consortium, “Hybrid Memory Cube Specification
2.1, 2014. [Online]. Available: http://hybridmemorycube.org/

S. Williams et al., “Roofline: An insightful visual performance model for
multicore architectures,” Commun. ACM, vol. 52, no. 4, pp. 65-76, Apr.
2009. [Online]. Available: http://doi.acm.org/10.1145/1498765.1498785
P. Zicari et al., “A fast carry chain adder for virtex-5 fpgas,” in IEEE
Mediterranean Electrotechnical Conference, April 2010, pp. 304-308.
R. Hadidi et al., “Demystifying the characteristics of 3d-stacked memo-
ries: A case study for hybrid memory cube,” in JEEE IISWC, Oct 2017,
pp. 66-75.

S. H. Pugsley et al., “Ndc: Analyzing the impact of 3d-stacked mem-
ory+logic devices on mapreduce workloads,” in ISPASS, March 2014,
pp. 190-200.

J. Jeddeloh et al., “Hybrid memory cube new dram architecture increases
density and performance,” in VLSI, June 2012, pp. 87-88.

S. F. Yitbarek et al., “Exploring specialized near-memory processing for
data intensive operations,” DATE, pp. 1449-1452, 2016.

M. Drumond et al., “The Mondrian Data Engine,” in ISCA, 2017, pp.
639-651.

M. A. Z. Alves et al., “Large Vector Extensions Inside the HMC,” in
DATE, 2016, pp. 1249-1254.

J. S. Kim et al., “GRIM-Filter: Fast seed location filtering in DNA read
mapping using processing-in-memory technologies,” BMC Genomics,
vol. 19, no. S2, p. 89, May 2018.

P. Martins et al., “HPC on the Intel Xeon Phi: Homomorphic Word
Searching,” in High Performance Computing for Computational Science
— VECPAR 2016, 2017, pp. 75-88.

M. Sadegh Riazi et al., “CAMsure: Secure Content-Addressable Mem-
ory for Approximate Search,” ACM Trans. Embed. Comput. Syst. Article,
vol. 16, no. 20, pp. 1-20, 2017.

805

