
Near-Data Acceleration of Privacy-Preserving
Biomarker Search with 3D-Stacked Memory

Alvin Oliver Glova, Itir Akgun, Shuangchen Li, Xing Hu, Yuan Xie
University of California, Santa Barbara, CA, 93106 USA

{aomglova, iakgun, shuangchenli, huxing, yuanxie}@ece.ucsb.edu

Abstract—Homomorphic encryption is a promising technology
for enabling various privacy-preserving applications such as
secure biomarker search. However, current implementations are
not practical due to large performance overheads. A homo-
morphic encryption scheme has recently been proposed that
allows bitwise comparison without the computationally-intensive
multiplication and bootstrapping operations. Even so, this scheme
still suffers from memory-bound performance bottleneck due to
large ciphertext expansion. In this work, we propose HEGA, a
near-data processing architecture that leverages this scheme with
3D-stacked memory to accelerate privacy-preserving biomarker
search. We observe that homomorphic encryption-based search,
like other emerging applications, can greatly benefit from the
large throughput, capacity, and energy savings of 3D-stacked
memory-based near-data processing architectures. Our near-data
acceleration solution can speed up biomarker search by 6.3× with
5.7× energy savings compared to an 8-core Intel Xeon processor.

I. INTRODUCTION

Technological advances in genomic data sequencing has

fueled the increased availability of genetic data information

and rise of genetic analysis services. Although the abundance

of digitized personal genomic information enables advances

in bioinformatics and medical domains, it also brings security

and privacy concerns. For the analysis of genetic data, there

is a growing drive to use privacy-preserving computation

techniques to process sensitive genetic information securely

[1]–[4].
One of the emerging bioinformatics applications is

biomarker search. Biomarker search applications are used in

medical centers to check for genetic diseases and involve

searching a biomarker within a reference database. A match

within a reference database indicates high probability of

having a certain disease. This type of application was recently

explored in the recent iDASH (Integrating Data for Analysis,

Anonymization and Sharing) National Center secure genome

analysis workshop challenge [5]–[7].
Homomorphic encryption (HE) supports operations on en-

crypted data thus making it possible for data to remain

confidential while it is processed in untrusted environments

[8], [9]. This property allows for the protection of private

data especially in cloud services. HE can be used for secure

outsourcing of biomarker search as shown in Figure 1. An

encrypted biomarker query is sent to a server where it is

matched with a database that is also encrypted. The encrypted

result (match or no match) is sent back to user where it is

decrypted. None of the query, the database entries, and the

result is revealed to the server during the entire processing.

User
Untrusted

Cloud
Service

Encrypt
biomarker query

Decrypt result

Search on
encrypted
biomarker
database

1

2

3

Fig. 1. Privacy-preserving Biomarker Search Overview

However, homomorphic encryption has large computational

and storage overheads due to large ciphertext explosion [9],

thus limiting its practical usage.

State-of-the-art HE-based privacy-preserving search solu-

tions typically require computationally-expensive homomor-

phic multiplication and bootstrapping operations [10]. For

example, homomorphic multiplication typically runs 10-100×
slower compared to homomorphic addition, depending on

parameters [11]. Bian et al. recently proposed an additive

homomorphic encryption scheme for exact match search that

removes the computational overhead of multiplication and

bootstrapping operations [12].

However, a realistic implementation of this scheme still

suffers from the large ciphertext explosion of HE which results

in heavy data movement during search operation of moving

data from memory to the processing unit to perform the

comparison. For example, ciphertext expansion for a 32-bit

integer for medium security results in 44,000× explosion in

size [12]. Therefore, the performance of this scheme is still

limited and also not scalable, especially for growing data

sizes that require stronger encryption schemes and even larger

resulting ciphertexts.

In this paper, we build on top of this additive HE-based

search scheme to propose HEGA, a near-data processing

(NDP) architecture to accelerate privacy-preserving biomarker

search. We adopt a 3D-stacked DRAM to reduce data move-

ment and accelerate basic additive homomorphic operation for

this application. 1

Our contributions in this work are the following:

• We analyze the performance bottleneck of a practical

implementation of this homomorphic encryption search

scheme

• We propose a 3D-stacked memory-based near-data pro-

cessing architecture to accelerate search operation based

on this homomorphic encryption search scheme

1Note that although the specific application we explored here is biomarker search,
this architecture can also be used in other privacy-preserving exact search applications.

800978-3-9819263-2-3/DATE19/ c©2019 EDAA

• Using this architecture, we propose the first hardware

accelerator for privacy-preserving biomarker search and

compare to CPU-based implementation

II. BACKGROUND

A. Privacy-Preserving Biomarker Search

Biomarker search is one of the key emerging applications

in bioinformatics domain [2], as it allows for detection of

possible diseases. A specific set of biomarkers are queried

from a server that houses a database of these biomarkers.

The presence or absence of a specific biomarker or a set of

biomarkers indicates a probability of genetic diseases and thus

helps medical practitioners to make informed decisions. In

dealing with this type of application, however, data is stored

in the database and the queries must be encrypted in order to

protect privacy.

The biomarkers are stored in Variant Call Format (VCF).

These VCF files contain information on biomarkers (genotype

information) such as chromosome number and the position

of the genome. Furthermore, it contains information for each

position such as reference and alternate sequences.

A typical processing flow for HE-based biomarker search

is shown in Figure 2. The figure shows two general phases: a

preprocessing phase and the query phase. In the preprocessing

phase, each entry in the VCF file is first encoded and hashed

before performing the actual homomorphic encryption using

a generated key. This is to reduce the size of the encrypted

entries since the size of the unencrypted entries will affect the

size of the data after encryption. In the query phase, the client

similarly needs to preprocess the query before it is sent to

the cloud service for the exact search operation. An encrypted

result of the search is sent back to client where it can be

decrypted using the secret key. In this work, we focus on the

homomorphic evaluation stage of the search which takes up

the majority of the execution time, especially for large number

of queries. For this work, we assume a size of 32 bits for the

post-hashed unencrypted database entries and queries. Note

that this size is realizable as demonstrated by Cetin et al. using

a cuckoo-based hashing scheme that enables size reduction of

the entries to 29 bits [5].

Preprocessing Phase

Query Phase

Cloud ServiceClient Client

VCF File
Encoding Hashing Key

Generation
Encryption

Query
Hashing Encryption

Client

DecryptionEvaluation

Fig. 2. HE-based Privacy-Preserving Biomarker Search Flow

B. Additive Homomorphic Encryption Scheme for Search

Cryptographic solutions such as homomorphic encryption

allow for computations on encrypted data. This makes ho-

momorphic encryption a very promising solution for privacy-

preserving applications. Fully homomorphic encryption has

received wide attention as it allows computations on arbitrarily

deep circuits using an operation called bootstrapping [13].

Bootstrapping is a method to refresh a ciphertext by decrypting

and re-encrypting to reduce noise, which is a result of per-

forming many HE computations on encrypted data. However,

bootstrapping is a computationally expensive operation and

thus most recent work on homomorphic encryption also focus

on partial (eg. additive) homomorphic encryption schemes.

Although there have been many studies which contributed

to the rapid progress of HE, performance bottlenecks continue

to hinder its practical realization. Two of the biggest contrib-

utors are data size explosion and slow primitive operations.

Encryption results in ciphertext explosion which translates to

computation, storage, and communication overheads. Primi-

tive operations such as polynomial multiplication have slow

execution times (often millisecond range) and often requires

complex specialized hardware [14]. For privacy-preserving

search, these problems become even more prominent since

aside from the large computational and storage requirements

initially demanded by HE. Furthermore, larger HE parameters

are needed to support more entries while maintaining the

same security level, which exacerbates the data size explosion

problem even more.

Ducas et al. proposed the FHEW scheme that can perform

NAND operation with only additive homomorphism which

greatly reduces the computational requirements [15]. However,

it still needs bootstrapping after each homomorphic gate

operation which dominates the runtime. More recently, Bian et
al. [12] proposed SCAM by modifying the plaintext space of

FHEW and introducing an encryption constant to implement

a two-stage complex homomorphic Boolean gate which can

be used for multi-bit word matching. It is also based on

additive homomorphism but does not require bootstrapping or

multiplication operations which makes it efficient for use in

hardware implementations. Equation 1 shows a bitwise exact

search operation using XNOR-AND gates. SCAM scheme

achieves exact search in homomorphic encryption domain

using only additive homomorphism in homomorphic XOR-OR

gate as shown in Equation 2, where cxi
and cyi

are ciphertexts

for each bit [12]. In this scheme, each 1-bit plaintext expands

to a (n+1) (lg q)-bit ciphertext where q and n are encryption

parameters that determined according to the security level. To

perform a homomorphic w-bit word matching, w · (n + 1)
(lg q)-bit integers are added and if the final result decrypts to

zero, it means the two words being compared are the same. A

non-zero result means the two words do not provide a match.

f (x, y) =
w∏

i=1

xi ⊕ yi (1)

̂HomXOR-OR(x, y) =
w∑

i=0

(cxi
− cyi

) (2)

Implementing SCAM for the privacy-preserving search

within a database requires performing this search operation

in the homomorphic domain through all encrypted database

entries and returning the encrypted results of match or no

Design, Automation And Test in Europe (DATE 2019) 801

match, with respect to encrypted query bitstream. The client

can later decrypt the matching results that evaluate to zero for

match and non-zero for no match in the database search. We

also adopt the secure two-round communication protocol of

SCAM in this work.

This scheme was proposed with an ASIC design [12] in

which all encrypted database entries are stored on-chip to

provide large bandwidth. However, due to the data explosion of

more than 44k× larger data size after encryption, such design

results in unacceptable chip area, making it impractical and

also not scalable. For example, even for a database of 100K

32-bit entries using their provided encryption paramaters,

their ASIC design would already need more than 21 billion

transistors, even without including the large on-chip memory

(SRAM) required.

We discuss 3D-stacked memories next and in Section III,

we discuss why a 3D-stacked memory NDP-based solution

is suited for use with this HE scheme and privacy-preserving

biomarker search.

C. 3D-Stacked Memories

Hybrid Memory Cube (HMC) is a type of 3D-stacked

memory technology which can be used for near-data acceler-

ator architectures. HMC consists of 4/8 DRAM dies on top

of a logic base die, resulting 4/8 GB capacity per device

[16]. Each DRAM die is divided into 32 partitions, with

each partition consisting of multiple banks. Partitions across

dies vertically form a vault. Each vault has an independent

vault memory controller within the logic die that manages

all memory operations for that vault. The logic base die also

includes a crossbar switch that connects the vault memory

controllers to the I/O ports. HMC uses SerDes I/O links of

up to a total of 320 GB/s peak bandwidth. HMC can also

be chained together to increase total memory capacity, which

can provide a scalable expansion for applications such as

privacy-preserving biomarker search which has large memory

requirement.

III. MOTIVATION

In this section, we discuss our motivation for using a near-

data processing approach to accelerate the additive homo-

morphic encryption scheme and its application in privacy-

preserving biomarker search. Performing search using the

SCAM scheme is very challenging even though the computing

is transformed from complex multiplication into a series of

simpler homomorphic additions on the encrypted data, as

described in Section II-B. For example, by searching a 10k-

entry database that is encrypted with SCAM using encryption

parameters in [12], we end up with a slowdown of 60k×
on CPU compared to unencrypted operation, which becomes

worse for larger databases (75k× for a 20k-entry database),

shown in Figure 3.

Next, we observe that the application is memory-bound and

the challenge lies in performing operations on large data sizes

after encryption. Using the same parameters, encrypting the

data grows 44k× larger for medium security (80-bit) and 55k×

for high security (128-bit) [12]. As a result, a database with

100k entries becomes 16.5GB, which cannot fit on an on-

chip cache. At the same time, computation is composed of

simple addition operations, making it a memory bandwidth-

bound application on all of the available hardware platforms.

Using an x86 simulator, we obtain the cycle stack of this

application as shown in Figure 4. It shows that 72% of the

cycles are DRAM-bound stall cycles, which mainly causes

the large slowdown of the application.

60265x

75085x

0.00001 0.0001 0.001 0.01 0.1 1 10

10k
entries

20k
entries

search time (s)

SCAM non-encryted

Fig. 3. Slowdown of database search from homomorphic encryption (SCAM)

Core: 16.12%
DRAM: 71.67%

Others: 11.09%

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%
Execution time stack

Fig. 4. Cycle breakdown of SCAM running on CPU+HMC

To further understand this application, we build a roofline

model. A roofline model is widely used for high performance

computing [17]. The y-axis is the performance (in INT32

ADD), thus the peak computation rate forms the flat part of

the roofline. The x-axis is the operational intensity, also called

operation/byte ratio, which is a measure of operations per

DRAM byte accessed. Applications with higher operational

intensity would more likely to be compute-bound, i.e., fall to

the flat part of the roofline. Applications with lower operational

intensity is likely to be memory-bound (the slanted part

of the roofline) and cannot achieve the peak performance

of the hardware. We model a SCAM-based database query

application where we assume the query data (173KB) is stored

on-chip while the database (16.5GB) is off-chip. For each

operation (INT32 ADD), we need to fetch 4 bytes of data

from off-chip memory, making the operation/byte ratio of this

application to be 0.25. We draw the roofline model for various

hardware in Figure 5, and project the effective performance

(indicated by markers) according to the 0.25 operation/byte

ratio.

0.001

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000 10000

To
ps

 (I
N

T3
2

ad
di
tio

n)

op/byte

CPU-DDR4 (Xeon E5-2620v4)
CPU-HMC (Xeon E5-2620v4)
GPU (Tesla V100)
FPGA (VCU1525)

searching performance

Fig. 5. A roofline model analysis for SCAM on various platforms (FPGA
performance estimation with adder in [18])

We observe that this application is memory-bound for all

CPU, GPU, and FPGA platforms, since the small opera-

tion/byte ratio falls in the slanted part of these rooflines. We

conclude that existing hardware solutions are not suitable or

802 Design, Automation And Test in Europe (DATE 2019)

. . .

Crossbar (Inter-Vault Link)

Vault PU

DRAM
Stack

.Vault PU

DRAM
Stack

. . .

. . . Vault PU

DRAM
Stack

. . .

Vault

Adder Tree

Query Buffer

Vault PU
Entry Buffer. . . Vault Ctrl.Vault Ctrl . . . Vault Ctrl

Links

Fig. 6. HEGA Architecture Overview

lg(q)g(q)256B

Entry Buffer

Query Buffer

+ + ++... Adders

...

...

+ Accumulator

Result Buffer
lg(q)l ()

Fig. 7. HEGA Vault PU Architecture (for lg q = 42)

efficient for such application. Specifically, if compared to the

CPU-DDR4 with FPGA, although the peak performance is

improved from 0.4 TOPs to 221 TOPs, the effective perfor-

mance only improves 1.5× because the memory bandwidth

is not significantly improved (68 GB/s vs. 102 GB/s). On

the contrary, the effective performance improves 4.7× with

the same CPU but changing from DDR4 (68 GB/s) to HMC

(320 GB/s). The simple operations required coupled with the

associated large data movement overhead makes it an ideal

application to accelerate using 3D-stacked memory where a

logic die can be used to implement simple operations. Such

architecture can provide massive intra-memory bandwidth and

hence solve the memory-bound performance bottleneck. Fur-

thermore, since only simple operations are performed on the

logic die using this scheme, it is more suited for 3D-stacked

memory integration considering its thermal limitations [19]

as compared to typical HE schemes that need complex hard-

ware to speedup the computationally-intensive FFT operation

needed in large-integer multiplication.

IV. HEGA ARCHITECTURE

A. HEGA Overview

We base the design of our near-memory architecture on

Micron's Hybrid Memory Cube [16]. Figure 6 illustrates the

high-level architecture of our design. The DRAM layers are

composed of multiple independent vertical slices called vaults.

Each of the vaults can be accessed in parallel, and thus have

independent accelerators and memory controllers associated

with them. The accelerators can operate on data residing in

their local vault and have direct high-bandwidth access to

the DRAM layers via the TSVs. The vault controllers handle

requests from accelerators co-located within the vault logic, as

well as read and write requests that come from the processor.

B. Architectural Details

Vault logic within the logic die consists of vault memory

controller along with the vault processing unit (PU). Each

vault PU includes the following components for implementing

homomorphic addition, as shown in Figure 7. Entry buffer

stores the units of a fetched entry from the database. Query

buffer stores units of the biomarker query to be searched within

the database. Entry and query buffers are 256B in size to match

the HMC row buffer size [19]. The adder tree is made of up

of adders needed to perform the homomorphic matching as

described in Section II-B.

To perform a search operation, a block is first requested to

the vault controller and is stored in the entry buffer of the

vault PU. Note that the data bus (transfer size) in an HMC

vault is 32B and the internal vault bandwidth is defined as

32B/4tCK/vault (10GB/s for tCK = 0.8ns). Once the entry

buffers are loaded, the arithmetic units are used to perform

(lg q)-bit additions with the partial query data stored in the

query buffer. These results are then accumulated and stored in

a result buffer. This process continues until all the entry blocks

have been processed. The query ciphertext is sent to all vaults

to improve efficiency by parallel search. Finally, the search

result of size (lg q) bits per entry saved in a result buffer is

sent to the user.

E0-BLK1

E0-BLK0

E1-BLK1

E1-BLK0 E31-BLK0

E31-BLK1

E0-BLK31 E1-BLK31 E31-BLK31

.

Vault 0 Vault 1 Vault 31

. . .

. .
. . .

. .
. . .

Fig. 8. HEGA Data Mapping

Next, we discuss mapping of database entries to the 3D-

stacked DRAM. To map database entries to the HMC, we use

the mapping shown in Figure 8. This mapping scheme lever-

ages the vault-level parallelism of the HMC. Each encrypted

entry bit composed of (n + 1) (lg q)-bit integers is stored in

a vault for the w vaults (w = 32). The vault PUs perform the

corresponding additions for the entry and query units. Finally,

the results from all the vault PUs are accumulated as shown

in Figure 9. For each entry, w · (n+ 1) additions of lg(q)-bit

entry and query data are computed.

Entry-i, Unit-1, Bit-1
Query (lg q)-bit INT

Entry-i, Unit-1, Bit-2
Query (lg q)-bit INT

Entry-i, Unit-(n+1), Bit-w
Query (lg q)-bit INT

…

w
*(

n+
1)

 a
dd

iti
on

s

(lg q)-width adder

Fig. 9. SCAM Search Operation

Design, Automation And Test in Europe (DATE 2019) 803

Following the data mapping decribed above, Figure 10

shows a sample address mapping from logical binary array

address to the HMC physical address using the HE parameters

defined in [12].

Entry-ID Adr Unit’s bit-index
(6-bit)

Bit-ID
(5-bit)

16B FlitBa
nk

-ID
3-

bi
t

Bl
oc

k
Ad

r
4-

bi
tCol Adr

7-bit
Vault ID

5-bit

Ro
w

 A
dr

M

SB
 HMC

Adr:

Array
Adr:

Address of binary[N][n+1][w][lg q]

Unit-ID (11-bit)

(n = 1052, w = 32, lg q = 42)

Fig. 10. HEGA HMC Address Mapping

V. EVALUATION

A. Methodology

We use Sniper x86 simulator with custom HMC memory

model for our baseline CPU+HMC performance evaluation.

The power estimates of the x86 cores were obtained from

McPAT integrated in Sniper. We used an in-house simulator

to perform HEGA performance evaluation. The logic compo-

nents of our design were synthesized with Design Compiler

using NanGate 15nm library. To estimate DRAM energy, we

assume a DRAM read energy of 3.76 pJ/bit and a logic layer

transfer energy of 6.78 pJ/bit from [20], [21]. Table I lists the

simulation parameters used.

We analyze the following schemes in our experiments:

• SCAM: This baseline scheme performs the SCAM

scheme on CPU + HMC

• HEGA: Our proposed near-data acceleration architecture

which performs SCAM scheme within the logic die of

the HMC

Note that to ensure fair comparison, we evaluate SCAM

on a CPU + HMC platform and compare to our proposed

NDP + HMC platform. We use 32-bit post-hashed unencrypted

database entries and queries (w = 32) and use parameters

n = 1052 and (lg q) = 42 as in the instantiation in Table

III of [12]. We use a workload consisting of single query on

a database of 1k to 16k entries. Note that this small sample

range has the advantage of being able to accurately represent

the performance of much larger datasets because of the regular

workload and at the same time having a feasible simulation

speed. Furthermore, this number of entries is big enough to

ensure that the size of the encrypted dataset cannot fit into the

cache.

TABLE I. SIMULATION PARAMETERS

Processor x86, 8-issue width , out-of-order, 64-entry instruction

queue, 2.1GHz, 22nm, 8 cores

Cache L1D/L1I: 32KB, L2: 256KB, shared L3: 20MB, LRU

HMC 4 links, full-lane, 8GB, 32 Vaults, tCK = 0.8ns,

tRCD-tCL-tRP = 17-17-17, tCCDS=4, tCCDL=6

HEGA-Logic (NDP) 32 Vault PUs, 1GHz, 15nm node

B. Experimental Results

1) Performance Comparison: Figure 11 shows HEGA can

already provide up to 6× speedup compared to an 8-core

10

100

1000

10000

0 5000 10000 15000

Ex
ec

ut
io

n
Ti

m
e

(μ
s)

Entries

HEGA

SCAM

6.29x

6.38x

Fig. 11. Execution Time of SCAM and HEGA

1

10

100

1000 2000 4000 8000 16000

N
or

m
al

ize
d

En
er

gy

Entries

SCAM

HEGA-BL
5.66x

Fig. 12. Normalized Energy of SCAM and HEGA

Intel Xeon CPU. This shows the limitation of the CPU in

utilizing the large bandwidth available in HMC because of its

complex cache hierarchy while in HEGA, the NDP units can

more efficiently use the internal vault bandwidth. Furthermore,

even for the small database sizes explored, we observe that

CPU performance becomes worse as the size of the database

increases, consistent with our observation from Section III.

Furthermore, HEGA performs a single word search in

0.61μs at 1 GHz. For multi-word comparison, HEGA lever-

ages vault-level parallelism and pipelining. Although SCAM

leverages the parallel structure for fast multi-word search, the

ASIC implementation is not realizable for realistic database

sizes, as discussed in Section II-B.

2) Energy Comparison: The normalized energy results are

shown in Figure 12. Compared to the CPU-based scheme,

HEGA can reduce the energy by as much as 5.6×. Lower

energy for HEGA is achieved due to the proximity of data

and computation of NDP compared to the CPU, which further

allows excluding energy contributions of power-hungry HMC

links and crossbar.

3) Area Overhead: We obtain the area overhead of HEGA
in the logic die from synthesis results. Since the vault PUs

only include a few simple components such as the buffers

and an arithmetic unit, the total area across 32 vaults was

calculated to be 0.29 mm2 (15nm node), which represents just

0.4% area of the HMC logic die [21]. Figure 13 shows the

area breakdown of main vault PU components implemented

in the logic die, namely 256B query and entry buffers, 42-bit

adders and accumulator. This evaluation shows that buffers

result majority (57%) of area overhead.

VI. RELATED WORK

A. Accelerators on 3D-Stacked Memory

Multiple work have proposed near-data architectures using

3D-stacked DRAM to accelerate data intensive operations

804 Design, Automation And Test in Europe (DATE 2019)

0 2000 4000 6000 8000 10000
Area [μm2]

Buffers Adders Accumulator

Fig. 13. Area Breakdown of HEGA

[22], [23]. Alves et al. proposed HIVE [24], an HMC-based ar-

chitecture which allows performing common vector operations

directly inside the HMC. Kim et al. proposed GRIM-Filter

[25], a near-data processing architecture within the logic layer

of a 3D-stacked memory to accelerate read mapping phase of

DNA sequencing application.

Even though these work also propose accelerator architec-

tures on 3D-stacked memories, none of these have focused

on accelerating homomorphic encryption and its applications

such as privacy-preserving biomarker search.

B. Hardware Acceleration of Privacy-Preserving Search

Few works have presented hardware acceleration schemes

for homomorphic encryption-based privacy-preserving search.

Bian et al. proposed SCAM and an ASIC implementation [12]

but has large overheads. Khedr et al. introduce a GPU-

based approach to homomorphic word searching in their

work SHIELD [10]. Martins et al. accelerate homomorphic

word searching using Intel Xeon Phi [26]. These two imple-

mentations still require computationally-expensive homomor-

phic multiplication. CAMSure [27] allows secure approximate

search but biomarker search requires exact search.

Different from prior work on hardware-based secure search,

HEGA leverages NDP in 3D-stacked memory to handle the

large data explosion and the massive data movement due to the

streaming search operation. Furthermore, HEGA’s use of HMC

allows for a scalable solution considering the increasing data

expansion rates required for larger databases while maintaining

security.

VII. CONCLUSION

In this work, we propose HEGA, a near-data processing

architecture that uses 3D-stacked DRAM to accelerate homo-

morphic encryption-based biomarker search. We observe that

emerging applications like homomorphic encryption-based

privacy-preserving search can greatly benefit from the through-

put, capacity, and energy savings of 3D-stacked DRAM-based

NDP architectures. Our NDP-based solution can speed up

search by 6.3× with 5.7× energy savings compared to an

8-core Intel Xeon processor. This work represents a step

towards achieving practical homomorphic encryption applica-

tions through near-data processing.

ACKNOWLEDGMENT

The authors would like to thank Tim Sherwood for insight-

ful discussions. This paper was supported in part by NSF

1730309, 1500848, 1719160, CRISP, one of six centers in

JUMP, a SRC program sponsored by DARPA, and NSF grant

CCF 1740352 and SRC nCORE NC-2766-A.

REFERENCES

[1] J.-P. Hubaux et al., “Genomic Data Privacy and Security: Where We
Stand and Where We Are Heading,” IEEE Security & Privacy, vol. 15,
no. 5, pp. 10–12, 2017.

[2] M. M. A. Aziz et al., “Privacy-preserving techniques of genomic dataa
survey,” Briefings in Bioinformatics, no. April, pp. 1–9, 2017.

[3] K. Lauter et al., “Private Computation on Encrypted Genomic Data,”
in Progress in Cryptology - LATINCRYPT 2014, vol. 8895. Springer
International Publishing, 2015, pp. 3–27.

[4] A. Khedr et al., “SecureMed: Secure Medical Computation using
GPU-Accelerated Homomorphic Encryption Scheme,” IEEE Journal of
Biomedical and Health Informatics, pp. 1–1, 2017.

[5] G. S. Çetin et al., “Private queries on encrypted genomic data,” BMC
Medical Genomics, vol. 10, no. S2, p. 45, jul 2017.

[6] M. Kim et al., “Secure searching of biomarkers through hybrid ho-
momorphic encryption scheme,” BMC Medical Genomics, vol. 10, no.
Suppl 2, 2017.

[7] J. S. Sousa et al., “Efficient and secure outsourcing of genomic data
storage,” BMC Medical Genomics, vol. 10, no. S2, p. 46, jul 2017.

[8] C. Gentry, “Computing arbitrary functions of encrypted data,” Commu-
nications of the ACM, vol. 53, no. 3, p. 97, 2010.

[9] P. Martins et al., “A Survey on Fully Homomorphic Encryption,” ACM
Computing Surveys, vol. 50, no. 6, pp. 1–33, Dec 2017.

[10] A. Khedr et al., “SHIELD: Scalable Homomorphic Implementation of
Encrypted Data-Classifiers,” IEEE Transactions on Computers, vol. 65,
no. 9, pp. 2848–2858, 2016.

[11] S. Angel et al., “Pir with compressed queries and amortized query
processing,” in IEEE SP, May 2018, pp. 962–979.

[12] S. Bian et al., “SCAM: Secured content addressable memory based on
homomorphic encryption,” in DATE, 2017, pp. 984–989.

[13] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in
STOC, 2009, pp. 169–178.

[14] W. Wang et al., “Vlsi design of a large-number multiplier for fully
homomorphic encryption,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 22, no. 9, pp. 1879–1887, Sept 2014.

[15] L. Ducas et al., “FHEW: Bootstrapping homomorphic encryption in less
than a second,” in Advances in Cryptology – EUROCRYPT 2015, vol.
9056, 2015, pp. 617–640.

[16] Hybrid Memory Cube Consortium, “Hybrid Memory Cube Specification
2.1,” 2014. [Online]. Available: http://hybridmemorycube.org/

[17] S. Williams et al., “Roofline: An insightful visual performance model for
multicore architectures,” Commun. ACM, vol. 52, no. 4, pp. 65–76, Apr.
2009. [Online]. Available: http://doi.acm.org/10.1145/1498765.1498785

[18] P. Zicari et al., “A fast carry chain adder for virtex-5 fpgas,” in IEEE
Mediterranean Electrotechnical Conference, April 2010, pp. 304–308.

[19] R. Hadidi et al., “Demystifying the characteristics of 3d-stacked memo-
ries: A case study for hybrid memory cube,” in IEEE IISWC, Oct 2017,
pp. 66–75.

[20] S. H. Pugsley et al., “Ndc: Analyzing the impact of 3d-stacked mem-
ory+logic devices on mapreduce workloads,” in ISPASS, March 2014,
pp. 190–200.

[21] J. Jeddeloh et al., “Hybrid memory cube new dram architecture increases
density and performance,” in VLSI, June 2012, pp. 87–88.

[22] S. F. Yitbarek et al., “Exploring specialized near-memory processing for
data intensive operations,” DATE, pp. 1449–1452, 2016.

[23] M. Drumond et al., “The Mondrian Data Engine,” in ISCA, 2017, pp.
639–651.

[24] M. A. Z. Alves et al., “Large Vector Extensions Inside the HMC,” in
DATE, 2016, pp. 1249–1254.

[25] J. S. Kim et al., “GRIM-Filter: Fast seed location filtering in DNA read
mapping using processing-in-memory technologies,” BMC Genomics,
vol. 19, no. S2, p. 89, May 2018.

[26] P. Martins et al., “HPC on the Intel Xeon Phi: Homomorphic Word
Searching,” in High Performance Computing for Computational Science
– VECPAR 2016, 2017, pp. 75–88.

[27] M. Sadegh Riazi et al., “CAMsure: Secure Content-Addressable Mem-
ory for Approximate Search,” ACM Trans. Embed. Comput. Syst. Article,
vol. 16, no. 20, pp. 1–20, 2017.

Design, Automation And Test in Europe (DATE 2019) 805

