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ABSTRACT 
Classic synchronization problems are often used to introduce 
students to the subtleties of concurrency and synchronization 
mechanisms, such as semaphores, monitors, locks, and condition 
variables. The Dining Philosophers, Producers-Consumers, and 
Readers-Writers are all classic problems in which a correct 
solution requires the actions of multiple processes or threads to 
be synchronized. In this paper, we present visualizations for these 
three problems and describe their use as pedagogical tools to help 
students build accurate mental models of concurrency 
abstractions such as starvation, deadlock, livelock, and correct 
execution. We also present the results of an experiment that 
indicate students find using these visualizations to be significantly 
more engaging than reading a textbook, with no significant 
difference in learning. We do not claim that our visualizations 
should replace a course text; rather we present them as engaging 
pedagogical tools to complement the textbook in courses on 
Operating Systems, Programming Languages, and other courses 
where concurrency and synchronization are covered. 

CCS CONCEPTS 
• Computing methodologies~Shared memory algorithms   • Social 
and professional topics~Computer science education   • Software 
and its engineering~Synchronization 
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1 INTRODUCTION 
Classic synchronization problems, such as the Cigarette Smokers, 
the Dining Philosophers, the Producers-Consumers (also known 
as the Bounded Buffer problem), the Readers-Writers, and the 
Sleeping Barber Problems are commonly used to introduce CS 
students to the subtleties of concurrency. 
 Operating Systems textbooks (e.g., [14-16]) commonly cover 
a subset of these problems and use solutions to these problems to 
illustrate the use of semaphores, locks, condition variables, 
monitors, and related mutual exclusion and synchronization 
mechanisms.  For example, [14] uses the Dining Philosophers, 
Producers-Consumers, and Readers-Writers Problems to illustrate 
the use of semaphores; and revisits the Dining Philosophers 
Problem to illustrate the use of a monitor. 
 Programming Languages textbooks may also use these 
problems to illustrate programming languages’ concurrency 
features. For example, [9] uses the Producers-Consumers Problem 
to illustrate semaphores and monitors; [13] uses the same problem 
to explain Ada’s Task-rendezvous mechanism, Java’s semaphores, 
and Java’s monitor mechanism. 
 Some of these problems involve real-world entities (cigarette 
smokers, philosophers, barbers) and have a concrete, non-abstract 
scenario that may be relatively easy for students to understand.  
Other problems deal with more abstract entities (producers, 
consumers, readers, writers) that may make it more challenging 
for students to build accurate mental models. To help students 
understand these problems, traditional textbooks often include 
figures, but static figures and diagrams are necessarily limited in 
their abilities to depict the dynamic interactions of the entities. 
These limitations stem from publisher economics and the static 
nature of the paper on which such books are printed. By contrast, 
software is a more flexible medium that can be used to create 
dynamic, interactive visualizations of these problems.  
 In this paper, we present software visualizations of the 
Dining Philosophers, Producers-Consumers, and Readers-Writers 
problems and explore their use. We also present the results of an 
assessment activity whose results indicate (i) that students learn 
as much from interacting with these visualizations as they do 
from reading a textbook, and (ii) that students find the 
visualizations to be significantly more engaging than a textbook. 
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2 RELATED WORK 
Our project adds to an extensive literature on visualization. In this 
section, we present a very brief overview of that literature. 
 In recognition of the limitations of paper-technology 
textbooks at communicating how an algorithm solves its problem, 
computer science (CS) educators have created a wide variety of 
algorithmic visualizations over the years.  For example, [4, 7, 11, 
12] present dynamic visualizations of various sequential 
algorithms and report that such visualizations help students 
understand those algorithms. [16] reports that students who 
explore a visualization interactively learn significantly more than 
those who view it passively. Our project differs from these in its 
focus on concurrent algorithms. 
 CS educators also have a long history of looking for ways to 
help students visualize concurrent and/or parallel algorithms. For 
example, [17] presents a visualization of the Readers-Writers 
Problem, using specialized hardware and a vintage-1988 Modula-
like language called Portal. [8] provides an overview of efforts in 
this area, circa 1993. [6] presents a visualization of the Dining 
Philosophers Problem using a 1994 sequential animation library 
called XTANGO and the SR programming language, with each 
philosopher represented as an SR process. Likewise, [10] presents 
three parallel algorithm visualizations using a 1999 parallel 
simulator called MultiPascal and a visualization tool called 
JSAMBA. These projects generally use a “post-mortem” approach: 
a concurrent program’s behavior is traced during its execution 
(e.g. saved to a file), that trace is then used to drive the 
visualization after the program has terminated. Our project differs 
from these in (i) providing a visualization of the concurrent 
program’s behavior in real-time, during program execution; (ii) 
using multithreading instead of multiprocessing; and (iii) using an 
object-oriented language (C++) and approach. 
 A project whose aims align with ours is ThreadMentor [2, 3], 
which provides a C++/GTK class library of GUI widgets for real-
time visualization of specific multithreading synchronization 
constructs—threads, semaphores, monitors, locks, etc.—and 
demonstrates their use using the Cigarette Smokers, Dining 
Philosophers, and Readers-Writers Problems. However, the 
current version of GTK is not thread-safe [5]; neither [2] nor [3] 
describes the architecture in sufficient detail to indicate how 
ThreadMentor resolves this issue. Our project differs from 
ThreadMentor by (i) using the Thread Safe Graphics Library 
(TSGL) [1] instead of GTK; (ii) using TSGL to create real-time 
graphical visualizations of the actual concurrent entities—
philosophers, producers, consumers, readers, writers, etc. (vs. 
ThreadMentor’s lower-level synchronization primitives)—and 
how they interact to solve a given problem; and (iii) including the 
results of an assessment exercise that indicates students find 
interacting with these visualizations to be more engaging than 
reading a textbook. We chose TSGL because it is a native C++ (in 
which parallel applications are commonly written), thread-safe, 
general library for real-time graphical drawing. It also provides 
platform independence by being built atop OpenGL. [1] presents 
results of an experiment in which the use of a TSGL visualization 
improved student understanding of the parallel loop construct. 

3 THE VISUALIZATIONS 
The Dining Philosophers, Producers-Consumers, and Readers-
Writers Problems seem to be the “classic” problems that are most 
commonly-used by textbook authors.  In this section, we present 
our visualizations for these three problems. 

3.1 The Dining Philosophers Problem 
In the Dining Philosophers Problem, N > 1 philosophers sit around 
a circular table. Each philosopher goes through an endless cycle 
of thinking, getting hungry, eating, thinking, getting hungry, 
eating, and so on. Between each pair of philosophers is a single 
fork, and a philosopher must acquire both forks in order to eat.  
Since each philosopher is a perfect logician, the problem is to 
devise a single protocol for each philosopher to follow in sharing 
the forks, that will ensure no one starves.  
 Our visualization of this problem can be run from the 
command-line as follows: 

 $ ./DiningPhilosophers [N] [speed] [protocol] 

If no command-line arguments are specified, parameter N defaults 
to 5 philosophers, the speed defaults to 5 (on a scale of 1-60), and 
the protocol defaults to odd-even check (see Section 3.1.3 below). 
Figure 1 shows our visualization at the outset: 

 

Figure 1: The Dining Philosophers, Initial State 

As can be seen, our visualization draws a circular gray table with 
N equidistant forks around it. A philosopher, represented by a 
circle that is color-coded to indicate her current state, sits between 
each pair of forks.  A separate legend-window indicates the state 
corresponding to each color; each philosopher begins in the blue 
‘thinking’ state.  

3.1.1 Deadlock.  A deadlock occurs if each process or thread in a 
group is holding a resource that is needed by another member of 
the group, in a circular-waiting pattern. Operating Systems 
textbooks frequently use the Dining Philosophers problem to 
illustrate the topic of deadlock.  For example, [14-16] all illustrate 
deadlock by presenting a “first attempt” Dining Philosophers 
protocol like the following for each philosopher to follow: 
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Semaphore fork[N]; 
right = getID(); 
left = (right+1) % N; 
while (true) { 
 /* think for a while */ 
 fork[right].acquire(); 
 fork[left].acquire(); 
 /* eat for a while */ 
 fork[right].release(); 
 fork[left].release(); 
} 

This protocol has a philosopher pick up her right fork when it is 
available and then pick up her left fork when it becomes available. 
If all philosophers happen to get hungry at the same time, a 
deadlock ensues. Our visualization uses this protocol if ‘w’ (for 
wait-when-blocked) is given as the command-line protocol:  

 $ ./DiningPhilosophers 5 5 w 

Since each philosopher starts out by thinking for a random length 
of time, the protocol will seem to work correctly for a while, but 
eventually the philosophers deadlock, as shown in Figure 2: 

 

Figure 2: The Dining Philosophers, Deadlocked 

Each brown dot “behind” a philosopher represents a meal she has 
eaten. The number of these dots varies because a philosopher 
thinks and eats for random lengths of time. When these dots stop 
appearing behind a hungry philosopher, she begins to starve. 

3.1.2 Livelock. In an attempt to fix the deadlock problem, a protocol 
like the one below might be presented to students: 

/* same variables as before */ 
while (true) { 
 /* think for a while */ 
 fork[right].acquire(); 
 do { 
    if (fork[left] is in use) fork[right].release(); 
    else fork[left].acquire(); 
  } while (I have less then 2 forks); 
 /* eat for a while */ 
 fork[right].release(); 
 fork[left].release(); 
} 

Seeking to avoid a deadlock, this protocol has a philosopher pick 
up her right fork when it is available, but if her left fork is not 
available, put down her right fork.  While this does avoid a 
deadlock, it can unfortunately lead to livelock: if all of the 
philosophers become hungry at the same time, they will all pick 
up their left forks, all put down their left forks, all pick up their 
left forks, all put down their left forks, … forever. Since no 
philosopher gets to eat, a livelock also leads to starvation.  Our 
visualization uses this protocol if ‘f’ (for forfeit when blocked) is 
given as the command-line protocol:  

 $ ./DiningPhilosophers 5 5 f 

Using this protocol, our philosophers will endlessly oscillate 
between the “hungry” and “has right fork” states.  Figure 3 shows 
the two views this protocol will alternately produce: 

  

Figure 3: The Dining Philosophers, Livelocked 

In Figure 3, the philosophers following this protocol endlessly 
cycle between the two states. Our visualization thus lets students 
see and experience the difference between livelock and deadlock. 

3.1.3 A Correct Solution. One way to solve the Dining Philosophers 
Problem is to use a protocol like the one below: 

/* same as before */ 
id = getID(); 
while (true) { 
 /* think for a while */ 
 if ( odd(id) ) { 
  fork[right].acquire(); 
  fork[left].acquire(); 
 } else { 
  fork[left].acquire(); 
  fork[right].acquire(); 
 } 
 /* eat for a while */ 
 fork[right].release(); 
 fork[left].release(); 
} 

By having odd-numbered philosophers pick up their forks in a 
right-then-left ordering and even-numbered philosophers pick 
them up in a left-then-right ordering, this protocol prevents any 
circular-wait from developing, and thus avoids the deadlock issue. 
Since a philosopher only releases her fork after she is finished 
eating, it also avoids the livelock issue. Our visualization uses this 
protocol by default, if no command-line protocol is given:  

 $ ./DiningPhilosophers 7 

Figure 4 shows our visualization using 7 philosophers after it has 
run for a few minutes:  
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Figure 4: The Dining Philosophers, Working Correctly  

At the moment captured in Figure 4, philosopher 0 is at the “one 
o-clock position”, is even-numbered, is hungry, and has acquired 
her left fork but cannot yet acquire her right fork; her left 
neighbor (1) is odd-numbered, hungry, and cannot yet acquire her 
right fork because 0 has it; 1’s left neighbor (2) is thinking; 2’s left 
neighbor (3) has acquired both forks and is eating; 3’s left 
neighbor (4) is thinking; 4’s left neighbor (5) is odd-numbered, has 
acquired her right fork, but cannot yet acquire her left fork 
because it is in use; 5’s left-neighbor (6) is even-numbered, has 
acquired both forks, and is eating. The brown “meals eaten” dots 
behind each philosopher provide a visual indicator that no one is 
starving. As before, different philosophers have eaten different 
numbers of meals because each thinks and eats for slightly 
different random lengths of time.  
 Our Dining Philosophers visualization thus allows a student 
to specify the number of philosophers, the speed of execution, the 
philosophers’ protocol, and to view the resulting behavior. 
Students can also view/modify the program’s source code, letting 
them explore the protocol-code that produces a given behavior. 

3.2 The Producers-Consumers Problem 
In the Producers-Consumers Problem, M > 0 producer entities 
produce items and N > 0 consumer entities consume the items 
produced by the producers, ideally in the order they were 
produced. The problem is to come up with a scheme ensuring that: 
• Each item produced by a producer is consumed by some 

consumer (i.e., no item gets lost). 
• No item produced by a producer is consumed by more than 

one consumer (i.e., no item gets duplicated). 
• No producer or consumer waits forever (i.e., no starvation). 

The usual approach to solving this problem is to introduce an 
intermediate FIFO data structure called a buffer, into which the 
producers deposit their items, and from which the consumers 
retrieve the items. When this buffer has a fixed capacity, the 
problem is often called the Bounded Buffer Problem.  
 Textbooks often use this problem to introduce the topic of 
monitors, since building the buffer as a monitor provides the 

conditions needed to solve the problem. (A monitor has self-
synchronizing methods that use a lock to ensure mutually 
exclusive access and condition variables for synchronization.)  
Given a shared buffer implemented as a monitor, the producer and 
consumer entities can be easily coded as follows: 

 

Our visualization can be run from the command-line as follows: 

 $ ./ProducerConsumer [M] [N] 

where M and N are the numbers of producers and consumers, 
respectively. M and N both default to 5, as shown in Figure 5: 

 

Figure 5: Producers-Consumers, Initial View 

On the left is a column of producers, represented by circles; on the 
right, a column of consumers, shown as squares. The numbers 
inside a producer or consumer indicates the number of items it 
has produced and deposited, or has retrieved and consumed, 
respectively. In the middle is a circular buffer with room for 8 
items.  An item is represented by a star that appears next to its 
producer. In Figure 5, the topmost producer (0) has produced an 
item, has acquired the buffer’s lock, and is depositing its item into 
the buffer; producers 1, 3, and 4 are in the process of producing 
items, producer 2 has produced an item and is waiting to acquire 
the buffer’s lock. Since the buffer is empty, all of the consumers 
are also waiting to acquire the buffer’s lock. 
 Note this visualization’s color-coding: an entity waiting for 
the lock is colored black, one that has acquired the lock is colored 
white, and an item is colored with the color of its producer. 
 Figure 6 shows the same visualization later in the run: 

void consumer() { 
  while (true) { 
    it = buffer.get(); 
    /* consume it */ 
  } 
} 

void producer() { 
  while (true) { 
    /* produce item it */ 
    buffer.put(it); 
  } 
} 

/* declaration of shared buffer */ 
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Figure 6: Producers-Consumers, Later View 

In Figure 6, producers 0, 1, and 4 have all produced items and are 
awaiting their chance to deposit them into the buffer; producers 2 
and 3 are in the process of producing items. Consumer 1 is 
retrieving an item from the buffer, which contains two other 
items; consumers 0, 2, 3, and 4 are all waiting to get items from 
the buffer but must wait (along with the producers) until 
consumer 1 releases the buffer’s lock. Note that the production of 
items is balanced among the producers and the consumption of 
items is balanced among the consumers. As before, students can 
access the source to see the code that is driving the visualization. 
 By seeing that only one entity can ever access the buffer at a 
time, a visualization can help students build accurate mental 
models of a monitor and its mutually exclusive behavior. 

3.3 The Readers-Writers Problem 
In the Readers-Writers Problem, M > 0 writer entities write items 
to a shared database, and N > 0 reader entities read items from 
that database. While writers must write in a mutually exclusive 
fashion, all readers can read simultaneously because reading does 
not alter the database. The problem is to devise such a system and 
ensure that no reader or writer starves. The Producers-Consumers 
Problem would be similar to this problem, if multiple consumers 
could retrieve items from the buffer simultaneously. 
 Since a write must be performed mutually exclusively but a 
read need not, a key question is: When a writer is finished writing 
and both readers and writers are waiting, who gets to proceed? 
There are at least two ways to answer this question: 
• In the writer-priority protocol, a waiting writer gets to 

proceed before any waiting readers. 
• In the reader-priority protocol, waiting readers get to proceed 

before any waiting writers. 
Textbooks [14, 16] present solutions using the reader-priority 
protocol; [15] presents solutions using both protocols. 

 Our visualization for this problem supports both protocols; it 
can be invoked as follows: 

 $ ./ReadersWriters [M] [N] [protocol] 

where M is the number of writers, N is the number of readers, and 
protocol can be ‘r’ for reader-priority, or ‘w’ for writer-priority 
(which is the default). If omitted, both M and N default to 6. Figure 
7 shows this visualization using all default values: 

 

Figure 7: Readers-Writers, Early View 

Readers and writers may be in any of three states: “thinking” 
about their next action, “waiting” to perform their next action, or 
performing their action.  Our visualization provides six columns—
one for each kind of entity’s three states—plus a seventh central 
column for the database. This visualization thus uses spatial-
positioning to show an entity’s state, rather than color-coding. 
 When it writes, a writer may either create a new database 
entry or update an existing entry. In Figure 7, the writers have 
filled roughly a third of the database with new entries. Writer 2 
has entered the database and is updating an entry; writers 0, 1, 3, 
and 5 are all “thinking” about their next write; writer 4 is ready 
and waiting to write; readers 0-3 and reader 5 are all waiting to 
read; and reader 4 is “thinking” about the last item it read.  Since 
this is the writer-priority version, writer 4 will get to go next. 
 Figure 8 shows this same run a bit later in the execution: 
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Figure 8: Readers-Writers, Later View 

Unlike a writer, all of the readers can access the database and read 
different items simultaneously, as Figure 8 shows. By seeing the 
behaviors and the source code (which they may modify), students 
can see how these behaviors are produced. Space limitations 
prevent us from showing the reader-priority protocol, but it lets 
students see and experience how that protocol’s behavior differs. 

4 ASSESSMENT 
To evaluate this work, we identified two research questions: 

RQ1: Does interacting with our visualizations improve long-
term recall of these problems, compared to reading a textbook? 

RQ2: Do students find our visualizations to be a more engaging 
way to explore these problems, compared to reading a textbook? 

To answer these questions, we devised the following experiment: 

1. 34 volunteer subjects were recruited from our CS2 course 
(Data Structures, to ensure students had not seen these topics 
before), using extra course-credit as an incentive. 

2. The subjects were randomly divided between a control group 
and a treatment group. 

3. Simultaneously, and in identical computer labs: 
a. Both groups watched a short (~15 minute) video that 

introduced multithreading, concurrency, synchronization, 
and the Dining Philosophers Problem. 

b. For 10 minutes, the control group studied a textbook’s 
discussion of that problem and its solutions, while the 
treatment group interacted with our visualization for it. 

c. Both groups watched a short (~10 minute) video that 
introduced the Producers-Consumers Problem. 

d. For 10 minutes, the control group studied a textbook’s 
discussion of that problem and its solutions, while the 
treatment group interacted with our visualization for it. 

e. Both groups watched a short (~10 minute) video that 
introduced the Readers-Writers Problem. 

f. For 10 minutes, the control group studied a textbook’s 
discussion of that problem and its solutions, while the 
treatment group interacted with our visualization for it. 

4. Two weeks later, all subjects were emailed a link to a 14-
question online quiz. Twelve questions covered details of the 
three classic problems; one question covered race conditions; 
the final question had subjects rate how engaging they found 
the post-video activities on a 1-5 scale. 

22 of our volunteers showed up for the experiment and completed 
the quiz, so our sample size was limited. Our null hypothesis for 
RQ1 was that there would be no significant difference in quiz 
performance between the control and treatment groups. The 
treatment group’s mean score was 9.9 compared to 10.5 for the 
control group; this difference was not significant (p=0.3387), so we 
were unable to reject the null hypothesis for RQ1. The control 
group outperforming the treatment group stems from our use of 
randomized groups: our control group’s median CS2 final exam 
score was 84.5 compared to 80.5 for our treatment group. 
 For RQ2, our null hypothesis was that there would be no 
significant difference in the two groups’ engagement-ratings of 
the post-video activities. The treatment group’s mean rating was 
4.2 compared to 2.8 for the control group; this difference was 
significant (p=0.0090), so we reject the null hypothesis for RQ2. 
 Thus, we found no significant difference in learning between 
our textbook-readers and our visualization-users, but the latter 
group measured their experience as significantly more engaging, 
despite our small sample size. The similarity of the two groups in 
learning is interesting, given that the students in our treatment 
group were measurably weaker than those in our control group.  
 Our experimental materials (videos, quizzes, visualizations, 
etc.) are all available upon request. 

5 CONCLUSIONS 
We have presented interactive visualizations for three “classic” 
synchronization problems: The Dining Philosophers, Producers-
Consumers, and Readers-Writers Problems. By controlling the 
number of concurrent entities and the protocol, students can see 
abstractions like deadlock, livelock, and starvation in real-time, as 
well as the behaviors of correct solutions to these problems. 
 We have also presented experimental results that indicate: (i) 
students using our visualizations achieved levels of learning that 
were statistically similar to students reading textbook materials, 
and (ii) students found our visualizations to be significantly more 
engaging than traditional textbook treatments of the same topics. 
By letting students see and dynamically experience concurrent 
protocols in action, our visualization tools can supplement a 
course textbook by “bringing to life” the text’s static figures and 
descriptions, and thus help students build more accurate mental 
models of concurrency abstractions. 
 Our thanks to NSF (DUE#1225739) and to the Calvin College 
Science Division, whose support made this work possible. 
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