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ABSTRACT

Classic synchronization problems are often used to introduce
students to the subtleties of concurrency and synchronization
mechanisms, such as semaphores, monitors, locks, and condition
variables. The Dining Philosophers, Producers-Consumers, and
Readers-Writers are all classic problems in which a correct
solution requires the actions of multiple processes or threads to
be synchronized. In this paper, we present visualizations for these
three problems and describe their use as pedagogical tools to help
students build accurate mental models of concurrency
abstractions such as starvation, deadlock, livelock, and correct
execution. We also present the results of an experiment that
indicate students find using these visualizations to be significantly
more engaging than reading a textbook, with no significant
difference in learning. We do not claim that our visualizations
should replace a course text; rather we present them as engaging
pedagogical tools to complement the textbook in courses on
Operating Systems, Programming Languages, and other courses
where concurrency and synchronization are covered.
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1 INTRODUCTION

Classic synchronization problems, such as the Cigarette Smokers,
the Dining Philosophers, the Producers-Consumers (also known
as the Bounded Buffer problem), the Readers-Writers, and the
Sleeping Barber Problems are commonly used to introduce CS
students to the subtleties of concurrency.

Operating Systems textbooks (e.g., [14-16]) commonly cover
a subset of these problems and use solutions to these problems to
illustrate the use of semaphores, locks, condition variables,
monitors, and related mutual exclusion and synchronization
mechanisms. For example, [14] uses the Dining Philosophers,
Producers-Consumers, and Readers-Writers Problems to illustrate
the use of semaphores; and revisits the Dining Philosophers
Problem to illustrate the use of a monitor.

Programming Languages textbooks may also use these
problems to illustrate programming languages’ concurrency
features. For example, [9] uses the Producers-Consumers Problem
to illustrate semaphores and monitors; [13] uses the same problem
to explain Ada’s Task-rendezvous mechanism, Java’s semaphores,
and Java’s monitor mechanism.

Some of these problems involve real-world entities (cigarette
smokers, philosophers, barbers) and have a concrete, non-abstract
scenario that may be relatively easy for students to understand.
Other problems deal with more abstract entities (producers,
consumers, readers, writers) that may make it more challenging
for students to build accurate mental models. To help students
understand these problems, traditional textbooks often include
figures, but static figures and diagrams are necessarily limited in
their abilities to depict the dynamic interactions of the entities.
These limitations stem from publisher economics and the static
nature of the paper on which such books are printed. By contrast,
software is a more flexible medium that can be used to create
dynamic, interactive visualizations of these problems.

In this paper, we present software visualizations of the
Dining Philosophers, Producers-Consumers, and Readers-Writers
problems and explore their use. We also present the results of an
assessment activity whose results indicate (i) that students learn
as much from interacting with these visualizations as they do
from reading a textbook, and (ii) that students find the
visualizations to be significantly more engaging than a textbook.
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2 RELATED WORK

Our project adds to an extensive literature on visualization. In this
section, we present a very brief overview of that literature.

In recognition of the limitations of paper-technology
textbooks at communicating how an algorithm solves its problem,
computer science (CS) educators have created a wide variety of
algorithmic visualizations over the years. For example, [4, 7, 11,
12] present dynamic visualizations of wvarious sequential
algorithms and report that such visualizations help students
understand those algorithms. [16] reports that students who
explore a visualization interactively learn significantly more than
those who view it passively. Our project differs from these in its
focus on concurrent algorithms.

CS educators also have a long history of looking for ways to
help students visualize concurrent and/or parallel algorithms. For
example, [17] presents a visualization of the Readers-Writers
Problem, using specialized hardware and a vintage-1988 Modula-
like language called Portal. [8] provides an overview of efforts in
this area, circa 1993. [6] presents a visualization of the Dining
Philosophers Problem using a 1994 sequential animation library
called XTANGO and the SR programming language, with each
philosopher represented as an SR process. Likewise, [10] presents
three parallel algorithm visualizations using a 1999 parallel
simulator called MultiPascal and a visualization tool called
JSAMBA. These projects generally use a “post-mortem” approach:
a concurrent program’s behavior is traced during its execution
(e.g. saved to a file), that trace is then used to drive the
visualization after the program has terminated. Our project differs
from these in (i) providing a visualization of the concurrent
program’s behavior in real-time, during program execution; (ii)
using multithreading instead of multiprocessing; and (iii) using an
object-oriented language (C++) and approach.

A project whose aims align with ours is ThreadMentor [2, 3],
which provides a C++/GTK class library of GUI widgets for real-
time visualization of specific multithreading synchronization
constructs—threads, semaphores, monitors, locks, etc.—and
demonstrates their use using the Cigarette Smokers, Dining
Philosophers, and Readers-Writers Problems. However, the
current version of GTK is not thread-safe [5]; neither [2] nor [3]
describes the architecture in sufficient detail to indicate how
ThreadMentor resolves this issue. Our project differs from
ThreadMentor by (i) using the Thread Safe Graphics Library
(TSGL) [1] instead of GTK; (ii) using TSGL to create real-time
graphical visualizations of the actual concurrent entities—
philosophers, producers, consumers, readers, writers, etc. (vs.
ThreadMentor’s lower-level synchronization primitives)—and
how they interact to solve a given problem; and (iii) including the
results of an assessment exercise that indicates students find
interacting with these visualizations to be more engaging than
reading a textbook. We chose TSGL because it is a native C++ (in
which parallel applications are commonly written), thread-safe,
general library for real-time graphical drawing. It also provides
platform independence by being built atop OpenGL. [1] presents
results of an experiment in which the use of a TSGL visualization
improved student understanding of the parallel loop construct.
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3 THE VISUALIZATIONS

The Dining Philosophers, Producers-Consumers, and Readers-
Writers Problems seem to be the “classic” problems that are most
commonly-used by textbook authors. In this section, we present
our visualizations for these three problems.

3.1 The Dining Philosophers Problem

In the Dining Philosophers Problem, N > 1 philosophers sit around
a circular table. Each philosopher goes through an endless cycle
of thinking, getting hungry, eating, thinking, getting hungry,
eating, and so on. Between each pair of philosophers is a single
fork, and a philosopher must acquire both forks in order to eat.
Since each philosopher is a perfect logician, the problem is to
devise a single protocol for each philosopher to follow in sharing
the forks, that will ensure no one starves.

Our visualization of this problem can be run from the
command-line as follows:

$ ./DiningPhilosophers [N] [speed] [protocol]

If no command-line arguments are specified, parameter N defaults
to 5 philosophers, the speed defaults to 5 (on a scale of 1-60), and
the protocol defaults to odd-even check (see Section 3.1.3 below).
Figure 1 shows our visualization at the outset:

Method:
odd-even check
Legend:
Red: Hungry

. Purple: HasLeftFork

Green: Eating
Blue: Thinking
* Meals eaten

Figure 1: The Dining Philosophers, Initial State

As can be seen, our visualization draws a circular gray table with
N equidistant forks around it. A philosopher, represented by a
circle that is color-coded to indicate her current state, sits between
each pair of forks. A separate legend-window indicates the state
corresponding to each color; each philosopher begins in the blue
‘thinking’ state.

3.1.1 Deadlock. A deadlock occurs if each process or thread in a
group is holding a resource that is needed by another member of
the group, in a circular-waiting pattern. Operating Systems
textbooks frequently use the Dining Philosophers problem to
illustrate the topic of deadlock. For example, [14-16] all illustrate
deadlock by presenting a “first attempt” Dining Philosophers
protocol like the following for each philosopher to follow:
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Semaphore fork[N];

right = getID(Q);

left = (right+1l) ¥ N;

while (true) {
/* think for a while */
fork[right].acquireQ);
fork[left].acquire();
/* eat for a while */
fork[right].releaseQ);
fork[left].release();

}

This protocol has a philosopher pick up her right fork when it is
available and then pick up her left fork when it becomes available.
If all philosophers happen to get hungry at the same time, a
deadlock ensues. Our visualization uses this protocol if ‘w’ (for
wait-when-blocked) is given as the command-line protocol:

$ ./DiningPhilosophers 5 5 w

Since each philosopher starts out by thinking for a random length
of time, the protocol will seem to work correctly for a while, but
eventually the philosophers deadlock, as shown in Figure 2:

L] Legend
Method:

wait when blocked
Legend:

Red: Hungry

Purple: Has Left Fork
Green: Eating
Blue: Thinking
* Meals eaten

O

Figure 2: The Dining Philosophers, Deadlocked

Each brown dot “behind” a philosopher represents a meal she has
eaten. The number of these dots varies because a philosopher
thinks and eats for random lengths of time. When these dots stop
appearing behind a hungry philosopher, she begins to starve.

3.1.2 Livelock. In an attempt to fix the deadlock problem, a protocol
like the one below might be presented to students:

/* same variables as before */
while (true) {
/* think for a while */
fork[right].acquireQ);
do {
if (fork[left] is in use) fork[right].release();
else fork[left].acquireQ);
} while (I have less then 2 forks);
/* eat for a while */
fork[right].releaseQ);
fork[left].release();
}
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Seeking to avoid a deadlock, this protocol has a philosopher pick
up her right fork when it is available, but if her left fork is not
available, put down her right fork. While this does avoid a
deadlock, it can unfortunately lead to livelock: if all of the
philosophers become hungry at the same time, they will all pick
up their left forks, all put down their left forks, all pick up their
left forks, all put down their left forks, ... forever. Since no
philosopher gets to eat, a livelock also leads to starvation. Our
visualization uses this protocol if ‘f" (for forfeit when blocked) is
given as the command-line protocol:

$ ./DiningPhilosophers 5 5 £

Using this protocol, our philosophers will endlessly oscillate
between the “hungry” and “has right fork” states. Figure 3 shows
the two views this protocol will alternately produce:

Figure 3: The Dining Philosophers, Livelocked

In Figure 3, the philosophers following this protocol endlessly
cycle between the two states. Our visualization thus lets students
see and experience the difference between livelock and deadlock.

3.1.3 A Correct Solution. One way to solve the Dining Philosophers
Problem is to use a protocol like the one below:

/* same as before */
id = getIDQ);
while (true) {
/* think for a while */
if ( odd(id) ) {
fork[right].acquire(Q);
fork[left].acquireQ);
} else {
fork[left].acquireQ);
fork[right].acquire(Q);
}
/* eat for a while */
fork[right].releaseQ);
fork[left].release();
}

By having odd-numbered philosophers pick up their forks in a
right-then-left ordering and even-numbered philosophers pick
them up in a left-then-right ordering, this protocol prevents any
circular-wait from developing, and thus avoids the deadlock issue.
Since a philosopher only releases her fork after she is finished
eating, it also avoids the livelock issue. Our visualization uses this
protocol by default, if no command-line protocol is given:

$ ./DiningPhilosophers 7

Figure 4 shows our visualization using 7 philosophers after it has
run for a few minutes:
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Figure 4: The Dining Philosophers, Working Correctly

At the moment captured in Figure 4, philosopher 0 is at the “one
o-clock position”, is even-numbered, is hungry, and has acquired
her left fork but cannot yet acquire her right fork; her left
neighbor (1) is odd-numbered, hungry, and cannot yet acquire her
right fork because 0 has it; 1’s left neighbor (2) is thinking; 2’s left
neighbor (3) has acquired both forks and is eating; 3’s left
neighbor (4) is thinking; 4’s left neighbor (5) is odd-numbered, has
acquired her right fork, but cannot yet acquire her left fork
because it is in use; 5’s left-neighbor (6) is even-numbered, has
acquired both forks, and is eating. The brown “meals eaten” dots
behind each philosopher provide a visual indicator that no one is
starving. As before, different philosophers have eaten different
numbers of meals because each thinks and eats for slightly
different random lengths of time.

Our Dining Philosophers visualization thus allows a student
to specify the number of philosophers, the speed of execution, the
philosophers’ protocol, and to view the resulting behavior.
Students can also view/modify the program’s source code, letting
them explore the protocol-code that produces a given behavior.

3.2 The Producers-Consumers Problem

In the Producers-Consumers Problem, M > 0 producer entities
produce items and N > 0 consumer entities consume the items
produced by the producers, ideally in the order they were
produced. The problem is to come up with a scheme ensuring that:

e Each item produced by a producer is consumed by some

consumer (i.e., no item gets lost).

e No item produced by a producer is consumed by more than

one consumer (i.e., no item gets duplicated).

e No producer or consumer waits forever (i.e., no starvation).
The usual approach to solving this problem is to introduce an
intermediate FIFO data structure called a buffer, into which the
producers deposit their items, and from which the consumers
retrieve the items. When this buffer has a fixed capacity, the
problem is often called the Bounded Buffer Problem.

Textbooks often use this problem to introduce the topic of
monitors, since building the buffer as a monitor provides the
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conditions needed to solve the problem. (A monitor has self-
synchronizing methods that use a lock to ensure mutually
exclusive access and condition variables for synchronization.)
Given a shared buffer implemented as a monitor, the producer and
consumer entities can be easily coded as follows:

/* declaration of shared buffer */

void consumer() {
while (true) {
it = buffer.get(Q);
/* consume it */

void producer() {
while (true) {
/* produce item it */
buffer.put(it);
1 1
} }

Our visualization can be run from the command-line as follows:
$ ./ProducerConsumer [M] [N]

where M and N are the numbers of producers and consumers,
respectively. M and N both default to 5, as shown in Figure 5:

[ Producer-Consumer

Producers

)

Consumers

¥ BRaRRR

O producing

‘ waiting for lock

() holdinglock

consuming
waiting for lock -

hodinglock |

*Numbers indicate counts of items produced and consumed

Figure 5: Producers-Consumers, Initial View

On the left is a column of producers, represented by circles; on the
right, a column of consumers, shown as squares. The numbers
inside a producer or consumer indicates the number of items it
has produced and deposited, or has retrieved and consumed,
respectively. In the middle is a circular buffer with room for 8
items. An item is represented by a star that appears next to its
producer. In Figure 5, the topmost producer (0) has produced an
item, has acquired the buffer’s lock, and is depositing its item into
the buffer; producers 1, 3, and 4 are in the process of producing
items, producer 2 has produced an item and is waiting to acquire
the buffer’s lock. Since the buffer is empty, all of the consumers
are also waiting to acquire the buffer’s lock.

Note this visualization’s color-coding: an entity waiting for
the lock is colored black, one that has acquired the lock is colored
white, and an item is colored with the color of its producer.

Figure 6 shows the same visualization later in the run:
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Figure 6: Producers-Consumers, Later View

In Figure 6, producers 0, 1, and 4 have all produced items and are
awaiting their chance to deposit them into the buffer; producers 2
and 3 are in the process of producing items. Consumer 1 is
retrieving an item from the buffer, which contains two other
items; consumers 0, 2, 3, and 4 are all waiting to get items from
the buffer but must wait (along with the producers) until
consumer 1 releases the buffer’s lock. Note that the production of
items is balanced among the producers and the consumption of
items is balanced among the consumers. As before, students can
access the source to see the code that is driving the visualization.

By seeing that only one entity can ever access the buffer at a
time, a visualization can help students build accurate mental
models of a monitor and its mutually exclusive behavior.

3.3 The Readers-Writers Problem

In the Readers-Writers Problem, M > 0 writer entities write items
to a shared database, and N > 0 reader entities read items from
that database. While writers must write in a mutually exclusive
fashion, all readers can read simultaneously because reading does
not alter the database. The problem is to devise such a system and
ensure that no reader or writer starves. The Producers-Consumers
Problem would be similar to this problem, if multiple consumers
could retrieve items from the buffer simultaneously.

Since a write must be performed mutually exclusively but a
read need not, a key question is: When a writer is finished writing
and both readers and writers are waiting, who gets to proceed?
There are at least two ways to answer this question:

e In the writer-priority protocol, a waiting writer gets to
proceed before any waiting readers.
e In the reader-priority protocol, waiting readers get to proceed
before any waiting writers.
Textbooks [14, 16] present solutions using the reader-priority
protocol; [15] presents solutions using both protocols.
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Our visualization for this problem supports both protocols; it
can be invoked as follows:

$ ./ReadersWriters [M] [N] [protocol]

where M is the number of writers, Nis the number of readers, and
protocol can be ‘r’ for reader-priority, or ‘w’ for writer-priority
(which is the default). If omitted, both M and N default to 6. Figure
7 shows this visualization using all default values:

[ J Reader-Writer

Writers Readers

97/300

Shared Data Store

Numbers indicate
counts of reads/writes

Writer priority

Figure 7: Readers-Writers, Early View

Readers and writers may be in any of three states: “thinking”
about their next action, “waiting” to perform their next action, or
performing their action. Our visualization provides six columns—
one for each kind of entity’s three states—plus a seventh central
column for the database. This visualization thus uses spatial-
positioning to show an entity’s state, rather than color-coding.
When it writes, a writer may either create a new database
entry or update an existing entry. In Figure 7, the writers have
filled roughly a third of the database with new entries. Writer 2
has entered the database and is updating an entry; writers 0, 1, 3,
and 5 are all “thinking” about their next write; writer 4 is ready
and waiting to write; readers 0-3 and reader 5 are all waiting to
read; and reader 4 is “thinking” about the last item it read. Since
this is the writer-priority version, writer 4 will get to go next.
Figure 8 shows this same run a bit later in the execution:
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Figure 8: Readers-Writers, Later View

Unlike a writer, all of the readers can access the database and read
different items simultaneously, as Figure 8 shows. By seeing the
behaviors and the source code (which they may modify), students
can see how these behaviors are produced. Space limitations
prevent us from showing the reader-priority protocol, but it lets
students see and experience how that protocol’s behavior differs.

4 ASSESSMENT

To evaluate this work, we identified two research questions:

RQ1: Does interacting with our visualizations improve long-
term recall of these problems, compared to reading a textbook?

RQ2: Do students find our visualizations to be a more engaging
way to explore these problems, compared to reading a textbook?

To answer these questions, we devised the following experiment:

1. 34 volunteer subjects were recruited from our CS2 course
(Data Structures, to ensure students had not seen these topics
before), using extra course-credit as an incentive.

2. The subjects were randomly divided between a control group
and a treatment group.

3. Simultaneously, and in identical computer labs:

a. Both groups watched a short (~15 minute) video that
introduced multithreading, concurrency, synchronization,
and the Dining Philosophers Problem.

b. For 10 minutes, the control group studied a textbook’s
discussion of that problem and its solutions, while the
treatment group interacted with our visualization for it.

c. Both groups watched a short (~10 minute) video that
introduced the Producers-Consumers Problem.
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d. For 10 minutes, the control group studied a textbook’s
discussion of that problem and its solutions, while the
treatment group interacted with our visualization for it.

e. Both groups watched a short (~10 minute) video that
introduced the Readers-Writers Problem.

f. For 10 minutes, the control group studied a textbook’s
discussion of that problem and its solutions, while the
treatment group interacted with our visualization for it.

4. Two weeks later, all subjects were emailed a link to a 14-
question online quiz. Twelve questions covered details of the
three classic problems; one question covered race conditions;
the final question had subjects rate how engaging they found
the post-video activities on a 1-5 scale.

22 of our volunteers showed up for the experiment and completed
the quiz, so our sample size was limited. Our null hypothesis for
RQ1 was that there would be no significant difference in quiz
performance between the control and treatment groups. The
treatment group’s mean score was 9.9 compared to 10.5 for the
control group; this difference was not significant (p=0.3387), so we
were unable to reject the null hypothesis for RQ1. The control
group outperforming the treatment group stems from our use of
randomized groups: our control group’s median CS2 final exam
score was 84.5 compared to 80.5 for our treatment group.

For RQ2, our null hypothesis was that there would be no
significant difference in the two groups’ engagement-ratings of
the post-video activities. The treatment group’s mean rating was
4.2 compared to 2.8 for the control group; this difference was
significant (p=0.0090), so we reject the null hypothesis for RQ2.

Thus, we found no significant difference in learning between
our textbook-readers and our visualization-users, but the latter
group measured their experience as significantly more engaging,
despite our small sample size. The similarity of the two groups in
learning is interesting, given that the students in our treatment
group were measurably weaker than those in our control group.

Our experimental materials (videos, quizzes, visualizations,
etc.) are all available upon request.

5 CONCLUSIONS

We have presented interactive visualizations for three “classic”
synchronization problems: The Dining Philosophers, Producers-
Consumers, and Readers-Writers Problems. By controlling the
number of concurrent entities and the protocol, students can see
abstractions like deadlock, livelock, and starvation in real-time, as
well as the behaviors of correct solutions to these problems.

We have also presented experimental results that indicate: (i)
students using our visualizations achieved levels of learning that
were statistically similar to students reading textbook materials,
and (ii) students found our visualizations to be significantly more
engaging than traditional textbook treatments of the same topics.
By letting students see and dynamically experience concurrent
protocols in action, our visualization tools can supplement a
course textbook by “bringing to life” the text’s static figures and
descriptions, and thus help students build more accurate mental
models of concurrency abstractions.

Our thanks to NSF (DUE#1225739) and to the Calvin College
Science Division, whose support made this work possible.
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