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ABSTRACT Certain agronomic crop traits are complex and thus
governed by many small-effect loci. Statistical models typically
used in a genome-wide association study (GWAS) and genomic
selection (GS) quantify these signals by assessing genomic marker
contributions in linkage disequilibrium (LD) with these loci to trait
variation. These models have been used in separate quantitative
genetics contexts until recently, when, in published studies, the
predictive ability of GS models that include peak associated
markers from a GWAS as fixed-effect covariates was assessed.
Previous work suggests that such models could be useful for
predicting traits controlled by several large-effect and many small-
effect genes. We expand this work by evaluating simulated traits
from diversity panels in maize (Zea mays L.) and sorghum [Sorghum
bicolor (L.) Moench] using ridge-regression best linear unbiased
prediction (RR-BLUP) models that include fixed-effect covariates
tagging peak GWAS signals. The ability of such covariates to
increase GS prediction accuracy in the RR-BLUP model under a
wide variety of genetic architectures and genomic backgrounds
was quantified. Of the 216 genetic architectures that we simulated,
we identified 60 where the addition of fixed-effect covariates
boosted prediction accuracy. However, for the majority of the
simulated data, no increase or a decrease in prediction accuracy
was observed. We also noted several instances where the
inclusion of fixed-effect covariates increased both the variability
of prediction accuracies and the bias of the genomic estimated
breeding values. We therefore recommend that the performance
of such a GS model be explored on a trait-by-trait basis prior to its
implementation into a breeding program.

Abbreviations: GBS, genotyping-by-sequencing; GEBV, genomic estimated
breeding values; GS, genomic selection; GWAS, genome-wide association
study; LD, linkage disequilibrium; MAS, marker-assisted selection; MLM,
mixed linear model; QTL, quantitative trait loci; QTN, quantitative trait
nucleotide; RR-BLUP, ridge-regression best linear unbiased prediction; RR,
ridge regression; SNP, single nucleotide polymorphism.

core ideas

¢ Augmenting RR-BLUP models with peak GWAS
markers can hypothetically boost prediction
accuracy

¢ We conducted a simulation study in maize
and sorghum to test the performance of such
models

e  For most of the simulated traits, we
observed a decrease in prediction accuracy

¢ These augmented models tended to yield
greater variability in prediction accuracy

e Anincrease of bias in predicted breeding values
from these models was noted

here are two prominent strategies for prediction of
Tagronomically important crop traits from
genotypes:
marker-assisted selection (MAS) and GS. Both rely
on the statistical analysis of genetic markers to
quantify the contribution of each marker to
phenotypic variability (Bernardo, 2010). Typically,
MAS predicts trait values using only a small number
of markers linked to large- effect quantitative trait
loci (QTL) (Collard and Mackill, 2008), while GS uses
all available markers across the genome to generate
the predicted breeding value (Meu- wissen et al.,
2001). Phenotypic traits controlled by a few genes
of large effect, referred to as Mendelian traits, are
ideal candidates for MAS, where molecular markers
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linked to such genes can be used to supplement capable

pheno- typic selection (Lynch and Walsh, 1998). A
method of obtaining linked markers, known as
association map- ping, uses historical recombination
to quantify statistical associations between a trait of
interest and genetic mark- ers (Lipka et al., 2015). The
rapidly decreasing genotyping cost and increase in
available genetic data have resulted in the
widespread use of the GWAS (Guo et al., 2018; Jardim
etal, 2018). Given that a Google scholar search
(conducted on 18 Oct. 2018) for papers published in
2018 containing the key word GWAS yielded 711,000
results, it is apparent that association studies
continue to be widely used in many research
endeavors.

While MAS is useful for phenotypic prediction
of Mendelian traits, many agronomic traits of
interest
are complex, meaning that they are governed by
many genetic components of various effect sizes
(often small) (Barton et al., 2017). When the
underlying genomic sources contributing to a given
trait consists of up to thousands of small-effect
genes, then selection based on one or a few genetic
markers will theoretically be inef- fective (Xu and
Crouch, 2008). To observe substantial selection
gains, a more complex method than MAS is required.
One such approach is GS, which is based on the
infinitesimal model conferring that a trait value is
aresult of the linear combination of additive
genetic and nongenetic sources (Fisher, 1919). First
suggested by Meuwissen et al. (2001), GS takes into
account the effect of all available genetic markers
for prediction of breeding values instead of only
those passing a signifi- cance threshold, which,
according to the infinitesimal model, approximates
the genomic underpinnings of a
complex trait. Conducting GS therefore requires
estima- tion of the each marker’s effect, treated
predominantly in practice as additive, although
methods for including dominance (Technow et al.,
2012), epistatic (Jiang and Reif, 2015), and genotype-
by-environment (Cuevas et al., 2016) effects are
becoming available to the research com- munity.
Because of the high dimensionality of genetic data,
fitting GS models requires consolidation with the fact
that the number of markers (p) available in a typi- cal
study exceeds the number of individuals (n) (de los
Campos et al., 2013). Consequently, when a GS model
that considers the additive effects of each of these
mark- ers is fitted to such large p-small n data, there
will be
an infinite number of maximum likelihood estimates
of
these effects (Gianola, 2013). One of the most
common approaches to overcome this issue is to use
the RR-BLUP GS model (Meuwissen et al., 2001),
which incorporates all marker information to predict
a line’s genomic esti- mated breeding values (GEBV)
while simultaneously implementing a penalization
function to restrict the val- ues that each marker’s
predicted additive contributions can equal. Although
other approaches including Bayes- ian methods
(reviewed in Gianola, 2013) and the least absolute
shrinkage and selection operator (Tibshirani, 1996)
are also widely used in GS to address the large p-
small n issue, it has been shown that RR-BLUP is
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of equal or superior prediction accuracies and
requires lower computational time (Heslot et al.,
2012; Resende et al., 2012; Riedelsheimer et al,,
2012).

Both MAS and GS have historically been
used sepa- rately with the optimal approach
depending on the genetic architecture of the
trait and number of markers available (Spindel
etal, 2015). While some traits are simply inher-
ited (controlled by few large-effect components)
and oth- ers complex (many small-effect
components), the reality
is often that a mixture of large- and small-effect
genomic components contribute to the
phenotype (Mackay, 2001). Thus when
penalized approaches such as RR-BLUP are used
in GS models, the penalty is applied equally to
all markers tagging both small- and large-effect
genomic components. Therefore, it becomes
possible for the con- tributions of the large-
effect components to not be com- pletely
accounted forin the GS model, potentially
resulting in lower prediction accuracies
(Bernardo, 2014). When this is taken into
consideration the question becomes are ridge
regression and similar penalties grossly
underesti- mating the contribution of large
effect QTL to the overall phenotype? Bernardo
(2014) showed in a simulation study that when
major genes are known, including them in
the model as fixed-effect covariates can
increase predic- tion accuracy especially when
they explain a substantial amount of
phenotypic variance. The author suggested that
when a gene explains >10% of genetic variance,
it should be included as a fixed-effect covariate
in RR-BLUP.

The practicality of this and any GS approach
depends on knowledge of the genetic
architecture of the traits of

interest, including heritability, the number of
underlying causative mutations, and their effect
sizes (Huang and Mackay, 2016). Given the wide
variety of complexity of genetic architectures
reported in recent studies (Campbell et al., 2017;
Divilov et al., 2018; Mugaddasi et al., 2017; da
Silva Romero et al., 2018), an RR-BLUP model
augmented with unpenalized fixed-effect
marker covariates could theoretically accelerate
the breeding cycles of many crop and livestock
species.

When the approach described in
Bernardo (2014) is applied to real data the
exact location and sizes of large-effect genes
are often unknown. In the absence of such
information, GWAS results (in particular
markers exhibiting peak associations with a
trait of interest) can instead be used as fixed-
effect covariates in a GS model. One of the first
studies to explore such an approach was
Zhang et al. (2014), where it was
demonstrated that incorporating fixed-effect
covariates identified as peak GWAS signals
(available in public databases) into a GS
model outperformed BayesB and genomic
best linear
unbiased prediction for nine of 11 traits in a rice

(Oryza sativa L.) diversity panel as well as two of three
traits

in cattle (Bos taurus). However, this improvement

was marginal, with 0.1 to 1% higher prediction
accuracies over competing models. One possible
explanation of these findings is that the peak-
associated GWAS mark- ers used in this study were
from public data. This could be an issue, since GWAS
results can be population
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specific because of differences in LD (Caldwell et al.,
2006). Building off these previous studies, Spindel et
al. (2016) suggested a method where GWAS is
conducted on a training set and markers passing a
threshold are set as fixed effects in the RR-BLUP
models. This approach, named GS + de novo GWAS,
outperformed six alternate GS and MAS approaches
when used to analyze four traits in rice. Excitingly,
GS + de novo GWAS yielded at least an ?10% increase
in prediction accuracy over the other tested
approaches for two of these traits. Arruda et al.
(2016) conducted a similar procedure in wheat
(Triticum aestivum L.) for six traits related to
Fusarium head blight, where the standard RR-BLUP
model was augmented with fixed-effect QTL. When a
single fixed- effect covariate corresponding to major
QTL Fhb-1 prediction was included in the GS model,
an increase in prediction accuracy of 3 to 14% was
observed over an RR-BLUP model with no fixed
effects. Similar results were seen when other
independently published QTL were used as fixed-
effect covariates. Finally, Raymond
etal. (2018) investigated the incorporation meta-
GWAS
results into a GS model that is equivalent to RR-BLUP.
Although higher prediction accuracies for bull stature
were observed, such gains were also accompanied by
increases in the bias in the GEBV. To our knowledge,
the previous five studies are the extent to which
incorporat- ing such covariates into RR-BLUP or
similar models has been conducted. None indicated
any significant penalty to incorporating fixed-effect
covariates in GS (beyond a potential increase in bias
of GEBV) and suggest that this approach should be
tested in other species and traits that cover a variety
of genomic and trait architectures.

Although these previous studies have
indicated the potential of including fixed-effect
marker covari- ates in GS models, none have done
so using RR-BLUP
in a maize or sorghum diversity panel. Evaluation of
an RR-BLUP model that incorporates fixed-effect
markers

H%gélve%f%ty panels from these two species is

quantify its ability to predict diverse lines and
recom-

mend its use as a tool for introgression of new
genetic variation into breeding populations. While
this model is hypothesized to increase prediction
accuracy over

RR-BLUP with no fixed effects (referred to hereon as
RR- BLUP) for complex traits with a few large-effect
genomic components, it still requires evaluation
across traits with genetic architectures ranging from
simple to complex for a complete analysis. Therefore,
the purpose of this work was to explore the
performance of GS + de novo GWAS over a wide
variety of genetic architectures underlying simulated
traits in maize and sorghum diversity panels. Trait
architecture in this study is determined by the fol-
lowing three aspects: (i) narrow sense heritability

(h?),

MAteriAls And Methods

Simulation of Phenotypic Data

Phenotypes were simulated using publicly available
sin- gle nucleotide polymorphism (SNP) data for 281
inbred lines in maize (Flint-Garcia et al., 2005) and
320 inbred lines in sorghum (Morris et al., 2013).
Maize genotypes were collected using the Illumina
MaizeSNP50 Bead- Chip resulting in 51,742 SNPs as
described in Cook et al. (2012) (available at
panzea.org/genotypes). Sorghum genotypes were
collected using genotyping-by-sequenc- ing (GBS)
techniques (Elshire et al., 2011) as described in
Bouchet et al. (2017) resulting in 90,441 SNPs (sor-
ghum marker data available at
datadryad.org//resource/
doi:10.5061/dryad.gm073). Within each species, the
respective marker data were used to simulate traits
that represented a wide range of genetic
architectures. The specific genomic contributions of
each simulated trait varied accordingly by the
narrow-sense heritability (h?),
the number of underlying QTNs, and additive effect
sizes
of each QTN. The first step in the procedure for
simulat- ing these traits was to randomly select a set
of markers to be QTNs. After phenotypic values were
simulated, such markers were not considered for
inclusion as fixed-effect covariates to reflect the
reality that true casual mutations underlying
phenotypic variation are often not genotyped (i.e.,
these markers were not considered as fixed effect
regardless if they were identified as a peak GWAS
signal). Next, the additive effect size of each QTN were
assigned in two different configurations, which are
described below. Genetic components of the
phenoty pic values
were thus determined by the function _%Q,
where a
sis the number of simulated QTN, x, is the genotypic
state of the jth QTN at the ith individual (coded
numeri- cally as -1, 0, 1), and @, is the assigned
additive effect.
%astly, environmental effects were randomly drawn
rom
o disribgtion W ARG apegriance
a a s
(calculated as the variance of 1 x;Q ;) and h is

and
(iii) additive effect size of each QTN. We
hypothesized that the success of this model, defined
as increase in mean prediction accuracies for 50
replications of five- fold cross-validation compared
with RR-BLUP, would be dependent on the genetic
architecture of a given trait.

(ii) number of gquantitative trait nucleatides (QTNQ)’
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the narrow-sense heritability. For each distinct genetic
architecture simulated in each species, a total of 50 phe-
notypic replications were simulated. A summary of the
spectrum of the simulated genetic architectures can be
found in Table 1.

Type 1 and 2 Traits

Toaccommodate a wide range of biologically relevant
genetic architectures, our simulated traits were
subdi- vided into two categories that we named Type
1 and Type 2 traits. The former represents a
biological trait, where s number of mutations
affecting the trait have occurred. As time from when
the mutation occurs increases, the effect size of the
mutation diminishes, driving the population
phenotypic standard deviation to zero (Fisher, 1930;
Orr, 1998). Tomodel this for Type 1 traits, the largest
QTN effect size (Q) is first selected from the
boundaries of zero to one (not including zero

and one). The remaining simulated QTN effect sizes
were
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Table 1. The parameter settings for the number (s) of simulated quantitative trait nucleotides (QTNs), the additive effect size of the largest
QTN (Q), and narrow-sense heritability (h?) that were considered in the simulation studies. (Sorghum and maize traits were simulated with

the same parameters)

No. of QTNs (s)

Additive effect size of largest QTN (Q)

Heritability (h?)

1t, 2%, 3, 5, 10, 25, 100

0.17,0.3%,0.5, 0.9

0.1, 0.5, 0.9

T Parameter only presentin Type 1 traits.
¥ Parameter only presentin Type 2 traits.

then assigned in a geometric series where the effect
size of the ith QTN was Q. For example, if three QTN
(i.e., s = 3) were selected and Q = 0.9, then the effect
sizes are 0.9, 0.92, and 0.93. Using this model, a total
of 54 Type 1 traits in maize and 54 in sorghum were
simulated.

The second category of traits, called Type 2
traits, is one in which a relatively new mutation is
present and thus its effect size is large relative to
the others. An example of this is the maize Sos1
mutant, which is a major effect dominant mutation
controlling inflores- cence; evidence suggests that
this mutation arose after the domestication of maize
from teosinte [Zea mays L. subsp. mexicana (Schrad.)
H. H. Iltis] (Doebley etal., 1995). Tosimulate Type 2
traits, one QTN with a large additive effect size Q is
selected, while the remaining simulated effect sizes
follow the same geometric series previously
described for the Type 1 traits, starting with an
effect size of 0.1. Thus if s= 3 and Q = 0.9, then the
effect sizes would be 0.9, 0.1, and 0.12, respec- tively.
Collectively, a total of 54 Type 2 traits were
simulated in both maize and sorghum. It has been
hypothesized that RR-BLUP models with fixed-effect
covariates will outperform the standard RR-BLUP
model for traits with genetic architectures similar to
these Type 2 traits (Bernardo, 2014). Together, Type
1 and 2 simulated traits provide a wider range of
repre- sentative phenotypes to evaluate GS + de
novo GWAS than either could provide alone.

Genomic Selection

The RR-BLUP model (Meuwissen et al., 2001) was
used to conduct GS as a baseline model for
comparison to

a model with fixed-effect covariates included. The
RR- BLUP model (Model 1) is described as follows:

_ o F
}/i—m+a Hxikbk+ei [1]

where y,is the observed phenotypic value of the ith

indi- vidual, m is the grand mean, x,, is the genotype
at the kth marker of the ith individual, p is the total

number

of markers, b, is the estimated random additive

:e%@%éﬁcg{ the kth marker ?N(0, s2), and e is the
error term ?N(0, & i fReeived

2
> ). The BLUP of each b,
following ridge regression (RR) penalty (Hoerl and
Ken- nard, 1970):

J(b)=Q b 2]

where all terms are the same as those described
for Eq. [1]. Intuitively, this penalty restricts the

values the BLUP of each b, can take on. The model was

implemented for analysis in R using the package
rrBLUP (Endelman, 2011).

GWAS and Criteria for Markers Treated

as Fixed Effects

The approach to conduct GWAS on the simulated
data has been previously described (Lipka et al., 2013).
Briefly, the unified mixed linear model (MLM; Yuet al.,
2006) was fitted at each marker for each simulated
trait. In both spe- cies, this model included the first
three principal compo- nents from a principal
component analysis of the markers to account for
spurious associations arising from popula- tion
structure; the scree plots used to determine that three
principal components sufficiently account for
subpopula- tion structure in both the maize and
sorghum diversity panels are presented in
Supplemental Fig. S1 and S2. In addition, kinship (i.e,
additive genetic relatedness) matri- ces obtained from
the method of Loiselle et al. (1995) were used to
account for spurious associations arising from familial
relatedness. All analyses were conducted using
the genome association and prediction integrated tool
R package (Lipka et al,, 2012). The Benjamini and
Hochberg (1995) procedure was used to control the
false discovery rate at 5%. Because the purpose of the
GWAS conducted in this research was to identify
markers that could accu- rately predict the values of a
given simulated trait, all of the evaluated markers
were ordered by the degree of statis- tical association
with the trait (i.e., from smallest to largest P-value). The
top m associated markers (Table 2) from each analyses
with the strongest associations with the traits were
then carried on to the next phase of the analysis.

Genomic Selection plus De Novo Genome-Wide

Association Study
After the GWAS was conducted on a given trait, the top

m associated markers (Table 2) were included as fixed
effects in the following model (Model 2):

Table 2. Number of peak-associated markers (m) included as fixed-
effect covariates in the ridge-regression best linear unbiased

prediction (RR-BLUP) model, which depended on the number (s) of

simulated underlying quantitative trait nucleotides (QTNs). Sorghum
and maize traits were evaluated with the same values of m.

No.of QTN (s) No. of fixed effects evaluated (m)

1,2,3 1,2,3,5,10,25
5 1,2,3,5,10,25,50
possible
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10 1,2,3, 5,10, 25, 50, 100
25,100 1,2,3,5,10,25,100
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y_=m+ém x a +éﬁ xb+e [3]

1 i k=1 ik k i

where x; is the genotype at the jth marker of the ith
individual, m is the number of top associated markers
considered for inclusion as fixed-effect covariates, a
is the fixed additive effect of the jth marker, x, is the
geno- type at the kth marker of the ith individual, p is
the total number of markers, b, is the estimated
random additive marker effect of the kth marker
?N(0, s2), and e is the residual error teem ?N(0; s2).
Because the RR penalty is not used for the estimation
of these fixed additive effects, no restrictions are
placed on the numerical value of these estimates.
Thus, peak markers tagging sufficiently large- effect
QTN that are incorporated into Model 2 could
hypothetically boost trait prediction accuracies over
those from the standard RR-BLUP model.

Cross-Validation Scheme

A five-fold cross-validation scheme (described in
Owens et al., 2014) was implemented to assess the
prediction accuracies of the tested statistical
models. Within each species, this procedure
randomly subdi- vided the individuals into five
subsets (i.e., folds), each with approximately the
same number of individuals. All of the GS and GWAS
models previously described were fitted in the four
of five folds (i.e., the training set), and then the
predictive ability of Models 1 and
2 was evaluated in the fifth fold (the validation set).
This scheme was repeated five times so the GEBVs
of the individuals within each fold was predicted
once using each statistical model. Accuracy was
reported as the Pearson correlation coefficient r
between the simulated phenotypes in the validation
set and the GEBVs predicted from models fitted in
the corre- sponding training set. To enable a direct
comparison of prediction accuracy across all models
and genetic
architectures, the same folds were used for all
analyses conducted within each species.
Toadequately compare prediction accuracies
between Models 1 and 2, 50 replications of simulated
phenotypic values for each of the 108 genetic archi-
tectures considered in each species were analyzed.
For this study the values considered for m (i.e., the
number of peak-associated SNPs to be included as
fixed-effect covariates in Model 2) increased
depending on the num- ber of simulated QTN
described in Table 1. For every replication and value
of m, the mean and standard devia- tion of the
prediction accuracy across the five folds was
calculated. Subsequently, the mean and standard
devia- tion of all replications for each model and level
of m were calculated. Dunnett’'s mean comparison test
(Dudewicz et al., 1975; Dunnett, 1955) was conducted
to determine if any particular number of fixed
covariates m yielded significantly higher prediction
accuracies than the stan- dard RR-BLUP Model 1 at an
experimentwise type I error rate of a = 0.05. All
analysis conducted were identi- cal for maize and
sorghum.

Data Analysis

Simulations and all data analysis was conducted
using the R software package (R Development Core
Team,

2018). All materials used in these analyses are
publicly available
(https://github.com/ricebrian/RR-BLUP-with-
fixed-effects).

results

Genomic Selection plus De Novo Genome-
Wide Association Studies Tended to Yield Lower
Prediction Accuracies

A total of 50 replications of phenotypic data for 108
genetic architectures were simulated using 281 maize
inbred genotypes and again in 320 sorghum inbred
geno- types. Using these simulated traits, the
predictive ability of GS + de novo GWAS (Model 2)
using various num- bers of fixed-effect covariates was
compared with that of Model 1 (i.e., a standard RR-
BLUP model). For each rep- licate phenotype and
number of fixed-effect covariates, the Pearson
correlation coefficient r between predicted GEBVs and
simulated trait values in a five-fold cross- validation
scheme was calculated, and the mean value of r
across the five folds was subsequently used to
quantify the prediction accuracy.

We observed that the inclusion of fixed-effect

covari-
ates in an RR-BLUP model had a tendency to
decrease instead of increase prediction accuracies
(Fig. 1).Of the 216 different genetic architectures
that were explored in this simulation study (i.e., 108
in maize and 108 in sorghum), the inclusion of at
least m = 1 fixed-effect covariates increased
prediction accuracy relative to the
standard RR-BLUP Model 1 for only 60 of these
genetic architectures (summarized in Table 3). Even
in these instances where prediction accuracy did
increase, the variability of mean prediction
accuracies (across 50 phe- notypic replications) also
tended to drastically increase compared with Model
1, as illustrated in Fig. 2 through 5 and the online
supplemental material (https://github.
com/ricebrian/RR-BLUP-with-fixed-effects). Our
results also suggest that the inclusion of at least one
fixed-effect covariate in an RR-BLUP model can
increase the bias of the predicted GEBVs (Table 4).
The narrow-sense herita- bility (h?), number of
underlying QTN (s), additive effect size of the largest
QTN (Q), and prediction accuracy
for the tested number of fixed-effect covariates m are

reported in Supplemental Table S1.

Instances where Prediction Accuracy Increased
Interestingly, 39 of the 60 genetic architectures where
the prediction accuracy increased were in sorghum.
Further-

more, 35 of these 60 genetic architectures were Type
2, meaning that these traits were simulated with one
large- effect QTN in addition to a series of small-effect
QTN. Finally, the greatest increases in prediction
accuracy of Model 2 over Model 1 was observed in
Type 2 traits sim- ulated in sorghum with s =100
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Fig. 1. Mean increase in prediction accuracy (y-axis) after including peak markers from a genome-wide association study as a fixed-effect
covariate in the ridge-regression best linear unbiased prediction model (x-axis). For each type of simulated trait and species, this mean increase
in prediction accuracy across all 50 replications is plotted as box and whisker plots at varying levels of m, the number of fixed effects.

(A) Maize Type 1; (B) Maize Type 2; (C) Sorghum Type 1; (D) Sorghum Type 2. Each point in the mean change from model (1) where color
denotes the trait’s narrow sense heritability (h?) and symbol indicates the number of simulated quantitative trait nucleotides (s).

Maize Type 1

An increase in prediction accuracy after including at
least m = 1 fixed-effect covariate in Model 2 was
observed for 15 of the 54 Type 1 traits simulated in
maize (Supple- mental Table S1).Seven of these traits
had low heritability (h?=0.1) and all 15 had
moderate- to large-effect QTN (Q = 0.5 or 0.9). The
total number of QTN in each of these 15 traits were
both small and large, suggesting that the number of
QTN underlying these traits did not have a
substantial impact on the predictive ability of Model
2. Finally, a statistically significant increase in
prediction of accuracy of Model 2 over Model 1 was
observed in six of these 15 traits. The results for the
maize Type 1 traits are summarized in Supplemental
Table S1 and Fig. 2.

Maize Type 2

A total of six of the 54 Type 2 traits simulated in
maize yielded higher prediction accuracies when at
least one fixed-effect covariate was included in Model
2 (Supple- mental Table S1). The genetic architectures
of these six traits were similar to the 15 previously
mentioned Type 1 maize traits presented in
Supplemental Table S1. That is, all but one of these six
Type 2 traits had a low heritability of h?= 0.1, and the
effect size of the large-effect QTN was either Q = 0.5
or Q = 0.9. Although the total number of QTN
simulated in these six traits ranged from 2 to 100, the
two Type 2 maize traits where statistically significant
increases in prediction accuracy was observed for
Model 2 both had s = 10 QTN (Supplemental Table S1;
Fig.3C,D).
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Table 3. Summary of the simulated genetic architectures where the
inclusion of at least one peak-associated marker from a genome-
wide association study (conducted in a training set) as a fixed-effect
covariate in a ridge-regression best linear unbiased prediction (RR-
BLUP) model resulted in higher prediction accuracies than a standard
RR-BLUP model. The count and percentage for each parameter setting,
held constant at all other parameters, are presented.

Count Percentage

Parameter Level successful successful
Speciest Maize 21 19.4
Sorghum 39 36.1
Traitt Type 1 25 23.1
Type 2 35 324
No. of simulated quantitative trait 18 2 1.1
nucleotides (QTNs) (s)¥ 29 4 22.2
3 11 30.5
5 6 16.6
10 16 44.4
25 10 27.8
100 11 30.5
Additive effect of the largest QTN (Q)# 0.18 6 8.3
0.39 10 313
0.5 21 29.1
0.9 23 31.9
Narrow-sense heritability (h?)tt 0.1 21 29.2
0.5 13 18.1
0.9 26 36.1

T Percentages are out of 108.

+Percentagesare out of 36 except for bold talicized values where percentages are out of 18.
§ Parameter only presentin Type 1 traits

{ Parameter only presentin Type 2 traits

# Percentages are out of 72 except for bolditalicized values where percentagesare out of 36.
11 Percentages are out of 72.

Sorghum Type 1

Similar to the Type 1 maize traits, the inclusion of
at least m = 1 fixed-effect covariates in Model 2
resulted in higher prediction accuracies for 10 of
the 54 Type 1

traits simulated in sorghum (Supplemental Table S1).
Six of these traits had statistically significant
increases for

at least one setting of m. However, in contrast to
maize, seven of these 10 Type 1 sorghum traits had
high heri- tability (i.e., h?= 0.9). The number of QTN
simulated among these 10 traits ranged s = 3 to 100,
suggesting that like the simulated maize Type 1 traits,
the number of underlying QTN in the Type 1 sorghum
traits does not appear to contribute to the predictive
ability of Model

2. Finally, the QTN effect sizes of these 10 traits
ranged from small (Q = 0.1) to large (Q = 0.9), which
indicates that the QTN effect sizes do not
substantially impact the predictive ability of Model 2.
The results of six Type 1 sorghum traits are
presented in Fig. 4.

Sorghum Type 2

An increase in prediction accuracy with the inclu-
sion of at least m = 1 fixed-effect covariate in Model
2 was observed in 29 of the 54 Type 2 traits

simulated in
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sorghum (Supplemental Table S1). The genetic architec-
tures of these 29 traits varied greatly with respect to
heri- tability, effect size of the largest QTN, and the
number

of simulated QTN. The trait with the greatest increase
of prediction accuracy after including at least one
fixed- effect covariate to Model 2 had high heritability
(h?=0.9), large number of QTN (s = 100), and a
moderately large-effect QTN (Q = 0.5) (Fig. 5C). Of the
29 Type 2 sorghum traits where increased prediction
accuracies were observed, statistically significant
increases in pre-

diction accuracy after including at least m = 1 fixed
effect were observed in 17 traits (Supplemental Table
S1). The traits with the smallest significantly significant
increase in prediction accuracy are also presented in
Fig. 5B.

discussion

Genomic prediction is a powerful tool for predicting
phenotypic performance in maize and sorghum. Recent
studies have suggested the inclusion of markers
assumed to contribute greater to phenotypic variance
as fixed- effect explanatory variables in an RR-BLUP
model could increase prediction accuracy (Arruda et
al,, 2016; Ber- nardo, 2014; Spindel et al., 2016). To
evaluate the poten- tial of such a GS + de novo GWAS
approach in maize and sorghum, 108 traits were
simulated using marker data from maize and sorghum
diversity panels (Table 1). Although we did observe
several instances where includ- ing fixed-effect
covariates into the RR-BLUP model did improve
prediction accuracy, we more often noted that the
inclusion of such fixed-effect covariates decreased
prediction accuracy (Fig. 1; Supplemental Table S1).
Moreover, we also observed increases in the variance of
prediction accuracies (Fig. 2-5) and the bias of GEBVs
(Table 4) after including these fixed-effect covariates.

Observed Advantages and Disadvantages of

Including Fixed-Effect Covariates

The core aim of this simulation study was to
adequately evaluate Model 2 to give recommendations
on its usage. A grid search of genetic architectures
using the Type 1 and Type 2 trait definitions were
simulated using maize and sorghum genotypes. Type 2
traits were simulated to represent phenotypes that had
arelatively larger QTN contributing to variance
compared with the remaining QTN. Given the
percentage variance explained of larg- est-effect QTN of
most of the simulated traits was >0.1 (Supplemental
Table S2), the majority of the traits simu- lated in this
work had genetic architectures that loosely adhered to
recommended ideal genetic architectures mentioned
Bernardo (2014) where including fixed-effect
covariates has greatest potential to increase prediction
accuracy. Consistent with the conclusions from Ber-
nardo (2014), the most frequent observation of
increased prediction accuracies using Model 2
occurred in Type 2 traits with one large-effect QTN
(Table 3; Fig. 1). Thus, our results suggest that using a
GS + de novo GWAS model would be best suited for
certain traits that have
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Fig. 2. Distribution of mean prediction accuracy for various genetic architectures in six maize Type 1 traits. The simulated genetic architecture is
listed in the individual titles (A—F) where: QTN, number of simulated quantitative trait nucleotides; size, additive effect size of the largest QTN;
h?, narrow-sense heritability. The x-axis is the number of fixed effects included in model (2). The y-axis is the mean Pearson correlation from the
five-fold cross validation. In each graph, the mean five-fold cross-validation prediction accuracies of all 50 replications are used to generate
these box plots. The orange line on each graph depicts the median prediction accuracy of the 50 replications when no markers are included

in the model as fixed-effect covariates.

genetic architectures similar to the Type 2 traits that Even though we observed very specific cases
were simulated. One example of such a class of traits where the inclusion of at least one fixed-effect
is disease resistance, which often have both large- covariate resulted in an increased prediction accuracy
effect resistant genes and a complex background of relative to a stan- dard RR-BLUP model, for the
small-effect polymorphisms (Poland and Rutkoski, majority of the simulated genetic architectures, we
2016). found that such a GS + de novo GWAS approach

The number of occurrences where low heritable actually led to a decrease in predic-
traits had increased prediction accuracy could tion accuracy. Given the promising results
potentially be promising. Increasing prediction presented in previous studies where similar
accuracy when herita- bility is low often requires approaches were tested (Arruda et al., 2016;
models that include genotype- by-environment Bernardo, 2014; Spindel et
interactions to explain more variation (Brachi et al,, al,, 2016; Zhang et al,, 2014), the frequency of how
2011; Sukumaran et al., 2018). Modeling such often we observed these negative results was
interactions can be resource intensive because it surprising. One potentially important contributing
requires multiple years and locations for planting. A factor underlying these results is differential LD
GS + de novo GWAS approach offers an alternative or patterns between the markers included as fixed-effect
complement to this for germplasm screening of covariates and the QTN
traits with low heritability where, for example, a 1% (s) that they are tagging. To approximate the realistic
increase in accuracy could accelerate genetic gains. sit- uation that causal mutations are unlikely to be
Given that the maximum increase in prediction included in marker data sets for GWAS and GS, we
accuracy with the inclusion of at least one fixed- removed all markers selected to be QTN from
effect covariate among the simulated traits with h?= consideration for GS
0.1 was 1.2%, the use of Model 2 in breeding + de novo GWAS. Thus all markers included as fixed-
programs could be beneficial. effect covariates were, at best, in high LD with the

QTNs underlving the simulated traits. It is plausible

rice and lipka 13 s 14



that the

14 of14 the plant genome ® vol. 12, no. 1 mmarch 2019



QTN =2, Size = 0.3, 2= 0.1

QTN =3, Size=0.9, h*=0.5

QTN = 10, Size = 0.9, h2=0.1

. T T e B3 g T T | ' :
S : T s H oy - H : I I > 34 .
) I P A S (S (S g B g i EI 8 . ) ¢
s CIEOEOHECEE 5 [ = 3 3 & = W3
8 A g W § . < C T g i
2 & P 4 o4 4 3 e = P ok € E- Fld it 11477
g = i o ] ° Q 7 - H " i g 2 E : " ' H i H
"4 ° 0 =] H
A O = | I s | 2
3 3 5 - E — o | | | Lo R
= o o i H a o« A I T
* o . Ly - b # didi= Wi
; i L L T4 2 I R : 4
M Ty 2 T i d R EEEEE)
A Number of Fixed Effects B Number of Fixed Effects C Number of Fixed Effects
QTN =10, Size = 0.9, h?= 0.9 QTN = 25, Size = 0.3, h*= 0.5 QTN =100, Size = 0.9, h* = 0.9
LN = z )
Hag - 5 .
5. T x
= a7 i i T — 5
3 Bl B ol g sl
< L1 H 5 2 = ;
5 - : Qo T L
B E i % .: 5 2 o - 1
Tl ~H g ® Ji L
Anl L [
s i —— —— —— —— — — —
" ] = ) o i TRE
i 4 3 4 A s @ aw LR IR T R A T8 1 2 3 s m o= s ow
D Number of Fixed Effects E Number of Fixed Effects F Number of Fixed Effects

Fig. 3. Distribution of mean prediction accuracy for various genetic architectures in six maize Type 2 traits. The simulated genetic architecture is
listed in the individual titles (A—F) where: QTN, number of simulated quantitative trait nucleotides; size, additive effect size of the largest QTN;
h?, narrow-sense heritability. The x-axis is the number of fixed effects included in model (2). The y-axis is the mean Pearson correlation from the
five-fold cross validation. In each graph, the mean five-fold cross-validation prediction accuracies of all 50 replications are used to generate
these box plots. The orange line on each graph depicts the median prediction accuracy of the 50 replications when no markers are included

in the model as fixed-effect covariates.

strength of LD between such markers and QTNs differ
between the training and validation sets. This
differential LD could result in the strength of the
marker-trait asso- ciations to differ between these
two sets. Interestingly, when a subset of the analysis
was reran with the QTNs considered for inclusion as a
fixed-effect covariate, the median prediction
accuracies either decreased or did not change
(depending on the number of fixed-effect covari- ates
considered), while for low-heritable traits the vari-
ability of prediction accuracies increased
(Supplemental Fig. 3E-9E). Collectively, these
findings suggest that a marker strongly associated
with a trait in the training
set may have a substantially weaker association in the
validation set; inclusion of such a marker as a fixed-
effect covariate may offer either no advantage or even
a disad- vantage over a standard RR-BLUP model with
respect to prediction accuracy.

Four of the traits analyzed by Spindel et al.
(2016) reported to have increases in prediction
accuracy when fixed effects were included in the RR-
BLUP model were compared with our simulation
study (Supplemental Table S3). There were also
increases in prediction accu- racy for simulation
settings we evaluated that were simi- lar to the
genetic architecture of the traits from Spindel

et al. (2016), although our observed increases were
not as large. Given this comparison, it is important
to note that Spindel et al. (2016) performed their
analysis using

a structured rice breeding population and the peak
SNPs considered for inclusion as fixed effects were
the result of a binning procedure. In contrast, the
analysis presented in this study considered all
markers (except for the simu- lated QTN) as possible
candidates for fixed-effect covari- ates regardless of
their physical proximity to each other.

Our results also highlight two other potential
disadvantages of undertaking a GS + de novo GWAS
approach. First, we observed that including fixed-
effect covariates in an RR-BLUP model typically
resulted in an increased variability in mean
prediction accuracy, as visualized in Fig. 2 through 5.
This finding suggests that, when applied to data
similar to the ones that we studied, a standard RR-
BLUP model is more likely to produce stable and
consistent prediction accuracies across minor
perturbations of the data. A second disadvantage we
noted was that the inclusion of at least one fixed-
effect
covariate could potentially introduce a bias in the
GEBVs (Table 4). This result is consistent with those
from a study that assessed the predictive ability of an
a priori
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set of markers for stature in Jersey and Holstein bulls
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in the model as fixed-effect covariates.

(Raymond et al., 2018) and suggest that
incorporating fixed-effect covariates into an RR-BLUP
model may yield GEBVs that are substantially larger
or smaller than a corresponding observed breeding
value. We therefore conclude that any potential of a
GS + de novo GWAS approach to increase prediction
accuracies needs to be weighed against possible
increases in the variability of prediction accuracies
and bias of GEBVs.

Performance in Maize versus Sorghum

Although the scope of the work presented here is not
extensive enough to extrapolate far beyond the two
diver- sity panels that we studied, we did note that
Model 2 out- performed Model 1 more often in
sorghum than maize (Table 3). Perhaps the most
notable difference between these species is their
breeding patterns. Maize is a natural outcrossing
species resulting in a LD pattern that decays on
average at 2 kb (Remington et al., 2001). This results
in relatively smaller LD blocks than sorghum, a
natural inbreeding species, which decays around 150
kb (Morris et al,, 2013). Itis expected that inbreeding
species present larger LD patterns than outcrossing
ones (Flint-Garcia et

al,, 2003). Higher LD means a stronger chance of
detecting a marker closely associated with the casual
mutation. A second major difference between the two
data sets used for simulation is the genotyping method
used to obtain the markers. Genotyping arrays, like
the one used to collect the 55k maize genotypes, only
include a fraction of SNPs present in a restricted set of
lines (Brachi et al,, 2011). For sorghum, GBS data were
used; in contrast to a SNP array, GBS has the potential
to capture near complete genomic data in any species
(Andolfatto et al., 2011; Elshire et al., 2011). Recent
evidence in wheat suggests GBS may have

an advantage because of ascertainment bias
associated with SNP arrays (Elbasyoni et al., 2018).
Arguably though, the most notable difference between
genotypic data sets was the number of markers
available (sorghum = 90,441; maize = 51,741) and the
number of individuals in the panel (sorghum = 320;
maize = 281). Given the approximate size of the
sorghum and maize genomes (respectively 800 mil-
lion and 2.3 billion bp) (McCormick et al., 2018,
Schnable et al., 2009), this translates to an average
marker density

of 78846 bp per marker in sorghum and 44,452 bp per
marker in maize. A denser marker coverage of the
genome
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in the model as fixed-effect covariates.

raises the chance of a detecting associations as
there is a relationship between LD and physical
distance, albeit

dependent on the population under study. This
relation- ship has been demonstrated for the complex
trait of height

Table 4. Intercept and slope estimates from a fitted simple linear
regression model with observed breeding values as the response
variable and the genomic estimated breeding values (GEBVs) as
the explanatory variable. The predicted GEBVs were obtained from
ridge-regression best linear unbiased prediction (RR-BLUP) models
with the number of fixed-effect covariates (presented in the leftmost
column) from a genome-wide association study (GWAS) conducted
in a corresponding training set. The results presented here are from
a sorghum Type 2 trait with and a total of 100 quantitative trait
nucleotides (QTNs), effect size of the largest QTN equal to 0.3,
and a narrow-sense heritability of 0.9. The standard errors of the
intercept and slope estimates are provided in parentheses.

No. offixed-effect covariates Interceptestimate Slope estimate
0 0.29 (0.01) 0.98 (0.07)
1 0.28 (0.01) 1.69 (0.25)
5 0.29 (0.01) 1.40 (0.15)
10 0.29 (0.01) 1.18 (0.09)
25 0.29 (0.01) 1.13(0.09)
100 029001 0080007

in maize (Peiffer et al., 2014). In addition, an increase
in the number of individuals in a data set boosts the
power to detect significant associations and improves
the estima- tion of marker effect sizes in the training
set (Zhong et al., 2009). Thus it would be interesting to
see if the observed performance of Model 2 in
sorghum could be achieved in

maize if a data set with a larger sample size, greater
marker density, and GBS data were used.

Recommendations for Future Research

Even though our results suggest that adding peak-asso-
ciated markers as fixed-effect covariates to an RR-BLUP
model is more likely to decrease rather than increase
pre- diction accuracy, it could also serve as a
foundation for future research. For example, instead of
using predeter- mined numbers of peak-associated
markers from GWAS (conducted in the training
populations) as fixed-effect covariates, future studies
could only consider GWAS markers that are statistically
significantly associated

with the target traits as fixed-effect covariates.
Although an exploratory analysis of the use of such

an approach on a subset of our simulated traits

yielded similar results to the work presented

already in this manuscript
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(Supplemental Fig. S3-S9), further research into
meth- odologies for determining which markers to
include as fixed-effect covariates is warranted.
Another result that deserves attention was the
scenarios where, as new fixed effects were added to
Model 2, predic- tion accuracies first decreased sizably
and then recovered
to levels of Model 1 and in a few instances out
performed it (e.g., Fig. 2E). We put forth two hypotheses
to explain this finding. The first is that a smaller
number of fixed-effect covariates insufficiently tagged
the additive effects of the masked QTN alleles. Thus, a
greater number of markers
in LD with a large-effect QTN needed to be included in
the model to sufficiently capture the signal. The
second hypothesis is that the effects of certain
markers that were not included as fixed-effect
covariates were being underes- timated as a result of
the RR penalty. This hypothesis could be tested by
setting markers as fixed effects not by order of
significance but in a model building process that
searches for the subset of fixed effects obtaining the
highest predic- tion accuracy. Indeed, the purpose of
genomic selection
is to allow for all markers to predict trait values
regardless of significance or effect size. Therefore, itis
possible that when small-effect, nonsignificant makers
are included as fixed effects, prediction accuracies
could increase. These two hypotheses suggest that
criteria other than statistical significance of marker-
trait associations from a GWASin a training set be
explored to identify potential markers to include as
fixed-effect covariates in Model 2. Given that the use of
peak-associated markers from arudimentary step-
wise model selection-based GWAS as fixed-effect
covariates yielded prediction accuracies that were either
equivalent
or slightly higher than fixed-effect covariates identified
through unified MLM-based GWAS (Supplemental Fig.
S$7-59), future study of stepwise model selection or
other marker-selection criteria (e.g.,, associations with
RNA levels or protein expression levels) is justified.
Considering both the positive and negative find-
ings presented in this work, it will be essential for
future research on this topic to go beyond the
limited range of
data and simulation settings that we explored. That is,
the largest number of QTN simulated was 100, which
may or may not represent traits with highly
polymorphic genetic backgrounds. All effects we
considered were additive, and thus this study did not
include the simulation of epistatic or dominance
effects. Given that maize and sorghum are both diploid
grass species with well-annotated genomes (Paterson
etal, 2009; Schnable et al., 2009), species with- out as
many available genetic markers may not be suitable
for this approach if an insufficient amount of them are
in LD with casual mutations. However, this could pos-
sibly become a nonissue in the near future because of
the increasing availability of extensive sequence data
(Good- win et al., 2016; Poland and Rife, 2012).

conclusions

With the current wealth of available genomic data
in maize and sorghum, it is theoretically possible to
tailor

GS models with specific markers as fixed-effect
covari- ates so that they reflect the genomic sources
of a target trait as accurately as possible. Although
we observed a maximum of 7.9% increase in
prediction accuracy with such a model, we more
frequently noted that the GS + de novo GWAS
approach yielded lower prediction accura- cies than
the standard RR-BLUP model. We therefore do not
recommend the universal implementation of GS + de
novo GWAS for predicting the breeding values of all
pos- sible traits. Instead, we suggest that the merits
of such an approach be investigated on a trait-by-trait
basis, in par- ticular through a k-fold cross validation
scheme similar to what we used here. If, for a given
trait, it turns out that the highest prediction
accuracies are obtained with m = 0 fixed-effect
covariates, then GS should be performed through a
standard RR-BLUP mode], for example. We ultimately
feel that this research highlights the disadvan- tages
as well as the advantages of GS + de novo GWAS, and
we encourage trait-specific consideration ofthis

approach before it is implemented into breeding programs.
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