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ABSTRACT Certain agronomic crop traits are complex and thus 

governed by many small-effect loci. Statistical models typically 

used in a genome-wide association study (GWAS) and genomic 

selection (GS) quantify these signals by assessing genomic marker 

contributions in linkage disequilibrium (LD) with these loci to trait 

variation. These models have been used in separate quantitative 

genetics contexts until recently, when, in published studies, the 

predictive ability of GS models that include  peak associated 

markers from a GWAS as fixed-effect covariates was assessed. 

Previous work suggests that such models could be useful for 

predicting traits controlled by several large-effect and many small- 

effect genes. We expand this work by evaluating simulated traits 

from diversity panels in maize (Zea mays L.) and sorghum [Sorghum 

bicolor (L.) Moench] using ridge-regression best linear unbiased 

prediction (RR-BLUP) models that include fixed-effect covariates 

tagging peak GWAS signals. The ability of such covariates  to 

increase GS prediction accuracy in the RR-BLUP  model under a 

wide variety of genetic architectures and genomic  backgrounds 

was quantified. Of the 216 genetic architectures that we simulated, 

we identified 60 where the addition of fixed-effect covariates 

boosted prediction accuracy. However, for the majority of the 

simulated data, no increase or a decrease in prediction accuracy 

was observed. We also noted several instances  where  the 

inclusion of fixed-effect covariates increased both the variability 
of prediction accuracies and the bias of the genomic estimated 
breeding values. We therefore recommend that the performance 

of such a GS model be explored on a trait-by-trait basis prior to its 

implementation into a breeding program. 

Abbreviations: GBS, genotyping-by-sequencing; GEBV, genomic estimated 

breeding values; GS, genomic selection; GWAS, genome-wide association 

study; LD, linkage disequilibrium; MAS, marker-assisted selection; MLM, 

mixed linear model; QTL, quantitative trait loci; QTN, quantitative trait 

nucleotide; RR-BLUP, ridge-regression best linear unbiased prediction; RR, 

ridge regression; SNP, single nucleotide polymorphism. 

core ideas 
 

 

• Augmenting RR-BLUP models with peak GWAS 
markers can hypothetically boost prediction 
accuracy 

• We conducted a simulation study in maize 
and sorghum to test the performance of such 
models 

• For most of the simulated traits, we 
observed a decrease in prediction accuracy 

• These augmented models tended to yield 
greater variability in prediction accuracy 

• An increase of bias in predicted breeding values 
from these models was noted 

here are two prominent strategies for prediction of 
agronomically important crop traits from 
genotypes: 

marker-assisted selection (MAS) and GS. Both rely 
on the statistical analysis of genetic markers to 
quantify the contribution of each marker to 
phenotypic variability (Bernardo, 2010). Typically, 
MAS predicts trait values using only a small number 
of markers linked to large- effect quantitative trait 
loci (QTL) (Collard and Mackill, 2008), while GS uses 
all available markers across the genome to generate 
the predicted breeding value (Meu- wissen et al., 
2001).  Phenotypic traits controlled by a  few genes 
of large effect, referred to as Mendelian traits, are 
ideal candidates for MAS, where molecular markers 
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linked to such genes can be used to supplement 
pheno- typic selection (Lynch and Walsh, 1998). A 
method of obtaining linked markers, known as 
association map- ping, uses historical recombination 
to quantify statistical associations between a trait of 
interest and genetic mark- ers (Lipka et al., 2015). The 
rapidly decreasing genotyping cost and increase in 
available genetic data have resulted in the 
widespread use of the GWAS (Guo et al., 2018; Jardim 
et al., 2018). Given that a Google scholar search 
(conducted on 18 Oct. 2018) for papers published in 
2018 containing the key word GWAS  yielded ?11,000 
results, it is apparent that association studies 
continue to be widely used in many research 
endeavors. 

While MAS is useful for phenotypic prediction 
of Mendelian traits, many agronomic traits of 
interest 
are complex, meaning that they are governed by 
many genetic components of various effect sizes 
(often small) (Barton et al., 2017). When the 
underlying genomic sources contributing to a given 
trait consists of up to thousands of small-effect 
genes, then selection based on one or a few genetic 
markers will theoretically be inef- fective (Xu and 
Crouch, 2008). To observe substantial selection 
gains, a more complex method than MAS is required. 
One such approach is GS, which is based on the 
infinitesimal model conferring that a trait value is 
a result of the linear combination of additive 
genetic and nongenetic sources (Fisher, 1919). First 
suggested by Meuwissen et al. (2001), GS takes into 
account the effect of all available genetic markers 
for prediction of breeding values instead of only 
those passing a signifi- cance threshold, which, 
according to the infinitesimal model, approximates 
the genomic underpinnings of a 
complex trait. Conducting GS therefore requires 
estima- tion of the each marker’s effect, treated 
predominantly  in practice as additive, although 
methods for including dominance (Technow et al., 
2012), epistatic (Jiang and Reif, 2015), and genotype-
by-environment (Cuevas et al., 2016) effects are 
becoming available to the research com- munity. 
Because of the high dimensionality of genetic data, 
fitting GS models requires consolidation with the fact 
that the number of markers (p) available in a typi- cal 
study exceeds the number of individuals (n) (de los 
Campos et al., 2013). Consequently, when a GS model 
that considers the additive effects of each of these 
mark- ers is fitted to such large p–small n data, there 
will be 
an infinite number of maximum likelihood estimates 
of 
these effects (Gianola, 2013). One of the most 
common approaches to overcome this issue is to use 
the RR-BLUP GS model (Meuwissen et al., 2001), 
which incorporates all marker information to predict 
a line’s genomic esti- mated breeding values (GEBV) 
while simultaneously implementing a penalization 
function to restrict the val- ues that each marker’s 
predicted additive contributions can equal. Although 
other approaches including Bayes- ian methods 
(reviewed in Gianola, 2013) and the least absolute 
shrinkage and selection operator (Tibshirani, 1996) 
are also widely used in GS to address the large p– 
small n issue, it has been shown that RR-BLUP is 

capable 
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of equal or superior prediction accuracies and 
requires lower computational time (Heslot et al., 
2012; Resende et al., 2012; Riedelsheimer et al., 
2012). 

Both MAS and GS have historically been 
used sepa- rately with the optimal approach 
depending on the genetic architecture of the 
trait and number of markers available (Spindel 
et al., 2015). While some traits are simply inher- 
ited (controlled by few large-effect components) 
and oth- ers complex (many small-effect 
components), the reality 
is often that a mixture of large- and small-effect 
genomic components contribute to the 
phenotype (Mackay, 2001). Thus when 
penalized approaches such as RR-BLUP are used 
in GS models, the penalty is applied equally to 
all markers tagging both small- and large-effect 
genomic components. Therefore, it becomes 
possible for the con- tributions of the large-
effect components to not be com- pletely 
accounted for in the GS model, potentially 
resulting in lower prediction accuracies 
(Bernardo, 2014). When this is taken into 
consideration the question becomes are ridge 
regression and similar penalties grossly 
underesti- mating the contribution of large 
effect QTL to the overall phenotype? Bernardo 
(2014) showed in a simulation study that when 
major genes are known, including them in 
the model as fixed-effect covariates can 
increase predic- tion accuracy especially when 
they explain a substantial amount of 
phenotypic variance. The author suggested that 
when a gene explains >10% of genetic variance, 
it should be included as a fixed-effect covariate 
in RR-BLUP. 
The practicality of this and any GS approach 
depends on knowledge of the genetic 
architecture of the traits of 
interest, including heritability, the number of 
underlying causative mutations, and their effect 
sizes (Huang and Mackay, 2016). Given the wide 
variety of complexity of genetic architectures 
reported in recent studies (Campbell et al., 2017; 
Divilov et al., 2018; Muqaddasi et al., 2017; da 
Silva Romero et al., 2018), an RR-BLUP model 
augmented with unpenalized fixed-effect 
marker covariates could theoretically accelerate 
the breeding cycles of many crop and livestock 
species. 

When the approach described in 
Bernardo (2014)  is applied to real data the 
exact location and sizes of large-effect genes 
are often unknown. In the absence of such 
information, GWAS results (in particular 
markers exhibiting peak associations with a 
trait of interest) can instead be used as fixed-
effect covariates in a GS model. One of the first 
studies to explore such an approach  was 
Zhang et al. (2014), where it was 
demonstrated that incorporating fixed-effect 
covariates identified as peak GWAS signals 
(available in public databases) into a GS 
model outperformed BayesB and genomic 
best linear 
unbiased prediction for nine of 11 traits in a rice 

(Oryza sativa L.) diversity panel as well as two of three 
traits 
in cattle (Bos taurus). However, this improvement 
was marginal, with 0.1 to 1% higher prediction 
accuracies over competing models. One possible 
explanation of these findings is that the peak-
associated GWAS mark- ers used in this study were 
from public data. This could be an issue, since GWAS 
results can be population 
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specific because of differences in LD (Caldwell et al., 
2006). Building off these previous studies, Spindel et 
al. (2016) suggested a method where GWAS is 
conducted on a training set and markers passing a 
threshold are set as fixed effects in the RR-BLUP 
models. This approach, named GS + de novo GWAS, 
outperformed six alternate GS and MAS approaches 
when used to analyze four traits in rice. Excitingly, 
GS + de novo GWAS yielded at least an ?10% increase 
in prediction accuracy over the other tested 
approaches for two of these traits. Arruda  et al. 
(2016) conducted a similar procedure in wheat 
(Triticum aestivum L.) for six traits related to 
Fusarium head blight, where the standard RR-BLUP 
model was augmented with fixed-effect QTL. When a 
single fixed- effect covariate corresponding to major 
QTL Fhb-1 prediction was included in the GS model, 
an increase in prediction accuracy of 3 to 14% was 
observed over an RR-BLUP model with no fixed 
effects. Similar results were seen when other 
independently published QTL were used as fixed-
effect covariates. Finally, Raymond 
et al. (2018) investigated the incorporation meta–
GWAS 
results into a GS model that is equivalent to RR-BLUP. 
Although higher prediction accuracies for bull stature 
were observed, such gains were also accompanied by 
increases in the bias in the GEBV. To our knowledge, 
the previous five studies are the extent to which 
incorporat- ing such covariates into RR-BLUP or 
similar models has been conducted. None indicated 
any significant penalty to incorporating fixed-effect 
covariates in GS (beyond a potential increase in bias 
of GEBV) and suggest that this approach should be 
tested in other species and traits that cover a variety 
of genomic and trait architectures. 

Although these previous studies have 
indicated the potential of including fixed-effect 
marker covari- ates in GS models, none have done 
so using RR-BLUP 
in a maize or sorghum diversity panel. Evaluation of 
an RR-BLUP model that incorporates fixed-effect 
markers 

MAteriAls And Methods 

Simulation of Phenotypic Data 

Phenotypes were simulated using publicly available 
sin- gle nucleotide polymorphism (SNP) data for 281 
inbred lines in maize (Flint-Garcia et al., 2005) and 
320 inbred lines in sorghum (Morris et al., 2013). 
Maize genotypes were collected using the Illumina 
MaizeSNP50 Bead- Chip resulting in 51,742 SNPs as 
described in Cook et al. (2012) (available at 
panzea.org/genotypes). Sorghum genotypes were 
collected using genotyping-by-sequenc- ing (GBS) 
techniques (Elshire et al., 2011) as described in 
Bouchet et al. (2017) resulting in 90,441 SNPs (sor- 
ghum marker data available at 
datadryad.org//resource/ 
doi:10.5061/dryad.gm073). Within each species, the 
respective marker data were used to simulate traits 
that represented a wide range of genetic 
architectures. The specific genomic contributions of 
each simulated trait varied accordingly by the 
narrow-sense heritability (h2), 
the number of underlying QTNs, and additive effect 
sizes 
of each QTN. The first step in the procedure for 
simulat- ing these traits was to randomly select a set 
of markers to be QTNs. After phenotypic values were 
simulated, such markers were not considered for 
inclusion as fixed-effect covariates to reflect the 
reality that true casual mutations underlying 
phenotypic variation are often not genotyped (i.e., 
these markers were not considered as fixed effect 
regardless if they were identified as a peak GWAS 
signal). Next, the additive effect size of each QTN were 
assigned in two different configurations, which are 
described below. Genetic components of the 
phenoty

s
pic values 

were thus determined by the function å j=1 
xijQ j 

where 
s is the number of simulated QTN, xij is the genotypic 
state of the jth QTN at the ith individual (coded 
numeri- cally as −1, 0, 1), and Qj is the assigned 
additive effect. 
Lastly, environmental effects were randomly drawn 
from 
a normal distribution with a mean m = 0 and variance 

in diversity panels from these two species is needed to s2 = s2 h2 -s2 , where s2 is the additive effect variance e a a a s 
2

 

quantify its ability to predict diverse lines and 
recom- 

(calculated as the variance of å j=1 
xijQ j  ) and h is 

mend its use as a tool for introgression of new 
genetic variation into breeding populations. While 
this model is hypothesized to increase prediction 
accuracy over 
RR-BLUP with no fixed effects (referred to hereon as 
RR- BLUP) for complex traits with a few large-effect 
genomic components, it still requires evaluation 
across traits with genetic architectures ranging from 
simple to complex for a complete analysis. Therefore, 
the purpose of this work was to explore the 
performance of GS + de novo GWAS over a wide 
variety of genetic architectures underlying simulated 
traits in maize and sorghum diversity panels. Trait 
architecture in this study is determined by the fol- 
lowing three aspects: (i) narrow sense heritability 
(h2), 
(ii) number of quantitative trait nucleotides (QTNs), 

and 
(iii) additive effect size of each QTN. We 
hypothesized that the success of this model, defined 
as increase in mean prediction accuracies for 50 
replications of five- fold cross-validation compared 
with RR-BLUP, would be dependent on the genetic 
architecture of a given trait. 
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the narrow-sense heritability. For each distinct genetic 
architecture simulated in each species, a total of 50 phe- 
notypic replications were simulated. A summary of the 
spectrum of the simulated genetic architectures can be 
found in Table 1. 

Type 1 and 2 Traits 
To accommodate a wide range of biologically relevant 
genetic architectures, our simulated traits were 
subdi- vided into two categories that we named Type 
1 and Type 2 traits. The former represents a 
biological trait, where s number of mutations 
affecting the trait have occurred. As time from when 
the mutation occurs increases, the effect size of the 
mutation diminishes, driving the population 
phenotypic standard deviation to zero (Fisher, 1930; 
Orr, 1998). To model this for Type 1 traits, the largest 
QTN effect size (Q) is first selected from the 
boundaries of zero to one (not including zero 
and one). The remaining simulated QTN effect sizes 
were 
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å 

k=
1 

b 

i = 

k 

Table 1. The parameter settings for the number (s) of simulated quantitative trait nucleotides (QTNs), the additive effect size of the largest 

QTN (Q), and narrow-sense heritability (h2) that were considered in the simulation studies. (Sorghum and maize traits were simulated with   
the same parameters) 

No. of QTNs (s) Additive effect size of largest QTN (Q) Heritability (h2) 

1†, 2‡, 3, 5, 10, 25, 100 0.1†, 0.3‡, 0.5, 0.9 0.1, 0.5, 0.9 

† Parameter only present in Type 1 traits. 

‡ Parameter only present in Type 2 traits. 

  

 

then assigned in a geometric series where the effect 
size of the ith QTN was Qi. For example, if three QTN 
(i.e., s = 3) were selected and Q = 0.9, then the effect 
sizes are 0.9, 0.92, and 0.93. Using this model, a total 
of 54 Type 1 traits in maize and 54 in sorghum were 
simulated. 

The second category of traits, called Type 2 
traits, is one  in which a  relatively new mutation is 
present and thus its effect size is large relative to 
the others.   An example of this is the maize Sos1 
mutant, which is  a major effect dominant mutation 
controlling inflores- cence; evidence suggests that 
this mutation arose after the domestication of maize 
from teosinte [Zea mays L. subsp. mexicana (Schrad.) 
H. H. Iltis] (Doebley et al., 1995). To simulate Type 2 
traits, one QTN with a large additive effect size Q is 
selected, while the remaining simulated effect sizes 
follow the same geometric series previously 
described for the Type  1  traits, starting with an 
effect size of 0.1. Thus if s =  3 and Q = 0.9,  then the 
effect sizes would be 0.9, 0.1, and 0.12, respec- tively. 
Collectively, a total of 54 Type 2 traits were 
simulated in both maize and sorghum. It has been 
hypothesized that RR-BLUP models with fixed-effect 
covariates will outperform the standard RR-BLUP 
model for traits with genetic architectures similar to 
these Type 2 traits (Bernardo, 2014). Together, Type 
1 and 2 simulated traits provide a wider range of 
repre- sentative phenotypes to evaluate GS + de 
novo GWAS than either could provide alone. 

Genomic Selection 
The RR-BLUP model (Meuwissen et al., 2001) was 
used to conduct GS as a baseline model for 
comparison to 
a model with fixed-effect covariates included. The 
RR- BLUP model (Model 1) is described as follows: 

 
values the BLUP of each bk can take on. The model was 
implemented for analysis in R using the package 
rrBLUP (Endelman, 2011). 

GWAS and Criteria for Markers Treated 

as Fixed Effects 
The approach to conduct GWAS on the simulated 

data has been previously described (Lipka et al., 2013). 
Briefly, the unified mixed linear model (MLM; Yu et al., 
2006) was fitted at each marker for each simulated 
trait. In both spe- cies, this model included the first 
three principal compo- nents from a principal 
component analysis of the markers to account for 
spurious associations arising from popula- tion 
structure; the scree plots used to determine that three 
principal components sufficiently account for 
subpopula- tion structure in both the maize and 
sorghum diversity panels are presented in 
Supplemental Fig. S1 and S2. In addition, kinship (i.e., 
additive genetic relatedness) matri- ces obtained from 
the method of Loiselle et al. (1995) were used to 
account for spurious associations arising from familial 
relatedness. All analyses were conducted using 
the genome association and prediction integrated tool 
R package (Lipka et al., 2012). The Benjamini and 
Hochberg (1995) procedure was used to control the 
false discovery rate at 5%. Because the purpose of the 
GWAS conducted in this research was to identify 
markers that could accu- rately predict the values of a 
given simulated trait, all of the evaluated markers 
were ordered by the degree of statis- tical association 
with the trait (i.e., from smallest to largest P-value). The 
top m associated markers (Table 2) from each analyses 
with the strongest associations with the traits were 
then carried on to the next phase of the analysis. 

Genomic Selection plus De Novo Genome-Wide 

y  = m + 
p
 
k 1 

xik bk + ei [1] Association Study 
After the GWAS was conducted on a given trait, the top 

where yi is the observed phenotypic value of the ith 
indi- vidual, m is the grand mean, xik  is the genotype 
at the kth marker of the ith individual, p is the total 
number 
of markers, bk is the estimated random additive 
marker 
effect of the kth marker ?N(0, s2 ), and e is the residual 

m associated markers (Table 2) were included as fixed 
effects in the following model (Model 2): 

Table 2. Number of peak-associated markers (m) included as fixed-

effect covariates in the ridge-regression best linear unbiased 

error term ?N(0, 
s2 

g i received the 
prediction (RR-BLUP) model, which depended on the number (s) of 

e ). The BLUP of each bk 

following ridge regression (RR) penalty (Hoerl and 
Ken- nard, 1970): 

simulated underlying quantitative trait nucleotides (QTNs). Sorghum 
and maize traits were evaluated with the same values of m. 

 
 

J (b) = å
p  2

 [2] 
    No. of QTN (s) No. of fixed effects evaluated (m)  

1, 2, 3 1, 2, 3, 5, 10, 25 
5 1, 2, 3, 5, 10, 25, 50 

where all terms are the same as those described 
for Eq. [1]. Intuitively, this penalty restricts the 

possible 
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10 1, 2, 3, 5, 10, 25, 50, 100 

25, 100 1, 2, 3, 5, 10, 25, 100  
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e 

g i 

y  = m + å
m

 x a   + å
p
 
 

x b + e 
 

[3] Data Analysis 
i j=1 ij j k=1 ik    k i Simulations and all data analysis was conducted 

using the R software package (R Development Core 
Team, 

where xij is the genotype at the jth marker of the ith 
individual, m is the number of top associated markers 
considered for inclusion as fixed-effect covariates, aj 

is the fixed additive effect of the jth marker, xik is the 
geno- type at the kth marker of the ith individual, p is 
the total number of markers, bk is the estimated 
random additive marker effect of the kth marker 
?N(0, s2 ), and e is the residual error term ?N(0, s2 ). 
Because the RR penalty is not used for the estimation 
of these fixed additive effects, no restrictions are 
placed on the numerical value of these estimates. 
Thus, peak markers tagging sufficiently large- effect 
QTN that are incorporated into Model 2 could 
hypothetically boost trait prediction accuracies over 
those from the standard RR-BLUP model. 

Cross-Validation Scheme 
A five-fold cross-validation scheme (described in 
Owens et al., 2014) was implemented to assess the 
prediction accuracies of the tested statistical 
models. Within each species, this procedure 
randomly subdi- vided the individuals into five 
subsets (i.e., folds), each with approximately the 
same number of individuals. All of the GS and GWAS 
models previously described were fitted in the four 
of five folds (i.e., the training set), and then the 
predictive ability of Models 1 and 
2 was evaluated in the fifth fold (the validation set). 
This scheme was repeated five times so the GEBVs 
of the individuals within each fold was predicted 
once using each statistical model. Accuracy was 
reported as the Pearson correlation coefficient r 
between the simulated phenotypes in the validation 
set and the GEBVs predicted from models fitted in 
the corre- sponding training set. To enable a direct 
comparison of prediction accuracy across all models 
and genetic 
architectures, the same folds were used for all 
analyses conducted within each species. 

To adequately compare prediction accuracies 
between Models 1 and 2, 50 replications of simulated 
phenotypic values for each of the 108 genetic archi- 
tectures considered in each species were analyzed. 
For this study the values considered for m (i.e., the 
number of peak-associated SNPs to be included as 
fixed-effect covariates in Model 2) increased 
depending on the num- ber of simulated QTN 
described in Table 1. For every replication and value 
of m, the mean and standard devia- tion of the 
prediction accuracy across the five folds was 
calculated. Subsequently, the mean and standard 
devia- tion of all replications for each model and level 
of m were calculated. Dunnett’s mean comparison test 
(Dudewicz et al., 1975; Dunnett, 1955)  was conducted 
to determine if any particular number of fixed 
covariates m yielded significantly higher prediction 
accuracies than the stan- dard RR-BLUP Model 1 at an 
experimentwise type I error rate of a = 0.05. All 
analysis conducted were identi- cal for maize and 
sorghum. 

2018). All materials used in these analyses are 
publicly available 
(https://github.com/ricebrian/RR-BLUP-with- 
fixed-effects). 

results 
Genomic Selection plus De Novo Genome- 

Wide Association Studies Tended to Yield Lower 

Prediction Accuracies 
A total of 50 replications of phenotypic data for 108 
genetic architectures were simulated using 281 maize 
inbred genotypes and again in 320 sorghum inbred 
geno- types. Using these simulated traits, the 
predictive ability of GS + de novo GWAS (Model 2) 
using various num- bers of fixed-effect covariates was 
compared with that of Model 1 (i.e., a standard RR-
BLUP model). For each rep- licate phenotype and 
number of fixed-effect covariates, the Pearson 
correlation coefficient r between predicted GEBVs and 
simulated trait values in a five-fold cross- validation 
scheme was calculated, and the mean value of  r 
across the five folds was subsequently used to 
quantify the prediction accuracy. 

We observed that the inclusion of fixed-effect 
covari- 

ates in an RR-BLUP model had a tendency to 
decrease instead of increase prediction accuracies 
(Fig. 1). Of the 216  different genetic architectures 
that were explored in this simulation study (i.e., 108 
in maize and 108 in sorghum), the inclusion of at 
least m = 1 fixed-effect covariates increased 
prediction accuracy relative to the 
standard RR-BLUP Model 1 for only 60 of these 
genetic architectures (summarized in Table 3). Even 
in these instances where prediction accuracy did 
increase, the variability of mean prediction 
accuracies (across 50 phe- notypic replications) also 
tended to drastically increase compared with Model 
1, as illustrated in Fig. 2 through 5 and the online 
supplemental material (https://github. 
com/ricebrian/RR-BLUP-with-fixed-effects). Our 
results also suggest that the inclusion of at least one 
fixed-effect covariate in an RR-BLUP model can 
increase the bias of the predicted GEBVs (Table 4). 
The narrow-sense herita- bility (h2), number of 
underlying QTN (s), additive effect size of the largest 
QTN (Q), and prediction accuracy 
for the tested number of fixed-effect covariates m are 
reported in Supplemental Table S1. 

Instances where Prediction Accuracy Increased 
Interestingly, 39 of the 60 genetic architectures where 
the prediction accuracy increased were in sorghum. 
Further- 
more, 35 of these 60 genetic architectures were Type 
2, meaning that these traits were simulated with one 
large- effect QTN in addition to a series of small-effect 
QTN. Finally, the greatest increases in prediction 
accuracy of Model 2 over Model 1 was observed in 
Type 2 traits sim- ulated in sorghum with s = 100 
QTNs, h2 = 0.9, and up to m = 3 fixed-effect covariates 

https://github.com/ricebrian/RR-BLUP-with-fixed-effects
https://github.com/ricebrian/RR-BLUP-with-fixed-effects
https://github.com/ricebrian/RR-BLUP-with-fixed-effects
https://github.com/ricebrian/RR-BLUP-with-fixed-effects
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included in Model 2 (Fig. 1). 
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Fig. 1. Mean increase in prediction accuracy (y-axis) after including peak markers from a genome-wide association study as a fixed-effect 

covariate in the ridge-regression best linear unbiased prediction model (x-axis). For each type of simulated trait and species, this mean increase 

in prediction accuracy across all 50 replications is plotted as box and whisker plots at varying levels of m, the number of fixed effects. 

(A) Maize Type 1; (B) Maize Type 2; (C) Sorghum Type 1; (D) Sorghum Type 2. Each point in the mean change from model (1) where color 

denotes the trait’s narrow sense heritability (h2) and symbol indicates the number of simulated quantitative trait nucleotides (s). 

Maize Type 1 

An increase in prediction accuracy after including at  
least m = 1 fixed-effect covariate in Model 2 was 
observed for 15 of the 54 Type 1 traits simulated in 
maize (Supple- mental Table S1). Seven of these traits 
had low heritability (h2 = 0.1)  and all 15 had 
moderate- to large-effect QTN (Q = 0.5 or 0.9). The 
total number of QTN in each of these 15 traits were 
both small and large, suggesting that the number of 
QTN underlying these traits did not have  a 
substantial impact on the predictive ability of Model 
2. Finally, a statistically significant increase in 
prediction of accuracy of Model 2 over Model 1 was 
observed in six of these 15 traits. The results for the 
maize Type 1 traits are summarized in Supplemental 
Table S1 and Fig. 2. 

Maize Type 2 

A total of six of the 54 Type 2 traits simulated in 
maize yielded higher prediction accuracies when at 
least one fixed-effect covariate was included in Model 
2 (Supple- mental Table S1). The genetic architectures 
of these six traits were similar to the 15 previously 
mentioned Type 1 maize traits presented in 
Supplemental Table S1. That is, all but one of these six 
Type 2 traits had a low heritability of h2 = 0.1, and the 
effect size of the large-effect QTN was either Q = 0.5 
or Q = 0.9. Although the total number of QTN 
simulated in these six traits ranged from 2 to 100, the 
two Type 2 maize traits where statistically significant 
increases in prediction accuracy was observed for 
Model 2 both had s = 10 QTN (Supplemental Table S1; 
Fig. 3C,D). 
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Table 3. Summary of the simulated genetic architectures where the 

inclusion of at least one peak-associated marker from a genome-  

wide association study (conducted in a training set) as a fixed-effect 

covariate in a ridge-regression best linear unbiased prediction (RR- 

BLUP) model resulted in higher prediction accuracies than a standard 

RR-BLUP model. The count and percentage for each parameter setting, 

held constant at all other parameters, are presented. 
 

 
Parameter 

 
Level 

Count 
successful 

Percentage 
successful 

Species† Maize 21 19.4 
 Sorghum 39 36.1 

Trait† Type 1 25 23.1 
 Type 2 35 32.4 

No. of simulated quantitative trait 1§ 2 11.1 

nucleotides (QTNs) (s)‡ 2¶ 4 22.2 
 3 11 30.5 
 5 6 16.6 
 10 16 44.4 
 25 10 27.8 
 100 11 30.5 

Additive effect of the largest QTN (Q)# 0.1§ 6 8.3 
 0.3¶ 10 31.3 
 0.5 21 29.1 
 0.9 23 31.9 

Narrow-sense heritability (h2)†† 0.1 21 29.2 
 0.5 13 18.1 

  0.9 26 36.1  

† Percentages are out of 108. 

‡ Percentages are out of 36 except for bold italicized values where percentages are out of 18. 

§ Parameter only present in Type 1 traits 

¶ Parameter only present in Type 2 traits 

# Percentages are out of 72 except for bold italicized values where percentages are out of 36. 

†† Percentages are out of 72. 
 

Sorghum Type 1 

Similar to the Type 1 maize traits, the inclusion of 
at least m = 1 fixed-effect covariates in Model 2 
resulted in higher prediction accuracies for 10 of 
the 54 Type 1 
traits simulated in sorghum (Supplemental Table S1). 
Six of these traits had statistically significant 
increases for 
at least one setting of m. However, in contrast to 
maize, seven of these 10 Type 1 sorghum traits had 
high heri- tability (i.e., h2 = 0.9). The number of QTN 
simulated among these 10 traits ranged s = 3 to 100, 
suggesting that like the simulated maize Type 1 traits, 
the number of underlying QTN in the Type 1 sorghum 
traits does not appear to contribute to the predictive 
ability of Model 
2. Finally, the QTN effect sizes of these 10 traits 
ranged from small (Q = 0.1) to large (Q = 0.9), which 
indicates that the QTN effect sizes do not 
substantially impact the predictive ability of Model 2. 
The results of six Type 1 sorghum traits are 
presented in Fig. 4. 

Sorghum Type 2 

An increase in prediction accuracy with the inclu- 
sion of at least m = 1 fixed-effect covariate in Model 
2 was observed in 29 of the 54 Type 2 traits 

simulated in 
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sorghum (Supplemental Table S1). The genetic architec- 
tures of these 29 traits varied greatly with respect to 
heri- tability, effect size of the largest QTN, and the 
number 
of simulated QTN. The trait with the greatest increase 
of prediction accuracy after including at least one 
fixed- effect covariate to Model 2 had high heritability 
(h2 = 0.9), large number of QTN (s = 100), and a 
moderately large-effect QTN (Q = 0.5) (Fig. 5C). Of the 
29 Type 2 sorghum traits where increased prediction 
accuracies were observed, statistically significant 
increases in pre- 
diction accuracy after including at least m = 1 fixed 
effect were observed in 17 traits (Supplemental Table 
S1). The traits with the smallest significantly significant 
increase in prediction accuracy are also presented in 
Fig. 5B. 

 
discussion 
Genomic prediction is a powerful tool for predicting 
phenotypic performance in maize and sorghum. Recent 
studies have suggested the inclusion of markers 
assumed to contribute greater to phenotypic variance 
as fixed- effect explanatory variables in an RR-BLUP 
model could increase prediction accuracy (Arruda et 
al., 2016; Ber- nardo, 2014; Spindel et al., 2016). To 
evaluate the poten- tial of such a GS + de novo GWAS 
approach in maize and sorghum, 108 traits were 
simulated using marker data from maize and sorghum 
diversity panels (Table 1). Although we did observe 
several instances where includ- ing fixed-effect 
covariates into the RR-BLUP model did improve 
prediction accuracy, we more often noted that the 
inclusion of such fixed-effect covariates decreased 
prediction accuracy (Fig. 1; Supplemental Table S1). 
Moreover, we also observed increases in the variance of 
prediction accuracies (Fig. 2–5) and the bias of GEBVs 
(Table 4) after including these fixed-effect covariates. 

Observed Advantages and Disadvantages of 
Including Fixed-Effect Covariates 
The core aim of this simulation study was to 
adequately evaluate Model 2 to give recommendations 
on its usage. A grid search of genetic architectures 
using the Type 1 and Type 2 trait definitions were 
simulated using maize and sorghum genotypes. Type 2 
traits were simulated to represent phenotypes that had 
a relatively larger QTN contributing to variance 
compared with the remaining QTN. Given the 
percentage variance explained of larg- est-effect QTN of 
most of the simulated traits was >0.1 (Supplemental 
Table S2), the majority of the traits simu- lated in this 
work had genetic architectures that loosely adhered to 
recommended ideal genetic architectures mentioned 
Bernardo (2014) where including fixed-effect 
covariates has greatest potential to increase prediction 
accuracy. Consistent with the conclusions from Ber- 
nardo (2014), the most frequent observation of 
increased prediction accuracies using Model 2 
occurred in Type 2 traits with one large-effect QTN 
(Table 3; Fig. 1). Thus, our results suggest that using a 
GS + de novo GWAS model would be best suited for 
certain traits that have 
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Fig. 2. Distribution of mean prediction accuracy for various genetic architectures in six maize Type 1 traits. The simulated genetic architecture is 

listed in the individual titles (A–F) where: QTN, number of simulated quantitative trait nucleotides; size, additive effect size of the largest QTN;  

h2, narrow-sense heritability. The x-axis is the number of fixed effects included in model (2). The y-axis is the mean Pearson correlation from the 

five-fold cross validation. In each graph, the mean five-fold cross-validation prediction accuracies of all 50 replications are used to generate 

these box plots. The orange line on each graph depicts the median prediction accuracy of the 50 replications when no markers are included       

in the model as fixed-effect covariates. 

 

genetic architectures similar to the Type 2 traits that 
were simulated. One example of such a class of traits 
is disease resistance, which often have both large-
effect resistant genes and a complex background of 
small-effect polymorphisms (Poland and Rutkoski, 
2016). 

The number of occurrences where low heritable 
traits had increased prediction accuracy could 
potentially be promising. Increasing prediction 
accuracy when herita- bility is low often requires 
models that include genotype- by-environment 
interactions to explain more variation (Brachi et al., 
2011; Sukumaran et al., 2018). Modeling such 
interactions can be resource intensive because it 
requires multiple years and locations for planting. A 
GS + de novo GWAS approach offers an alternative or 
complement to this for germplasm screening of 
traits with low heritability where, for example, a 1% 
increase in accuracy could accelerate genetic gains. 
Given that the maximum increase in prediction 
accuracy with the inclusion of at least one fixed-
effect covariate among the simulated traits with h2 = 
0.1 was 1.2%, the use of Model 2 in breeding 
programs could be beneficial. 

Even though we observed very specific cases 
where the inclusion of at least one fixed-effect 
covariate resulted in an increased prediction accuracy 
relative to a stan- dard RR-BLUP model, for the 
majority of the simulated genetic architectures, we 
found that such a GS + de novo GWAS approach 
actually led to a decrease in predic- 
tion accuracy. Given the promising results 
presented in previous studies where similar 
approaches were tested (Arruda et al., 2016; 
Bernardo, 2014; Spindel et 
al., 2016; Zhang et al., 2014), the frequency of how 
often we observed these negative results was 
surprising. One potentially important contributing 
factor underlying these results is differential LD 
patterns between the markers included as fixed-effect 
covariates and the QTN 
(s) that they are tagging. To approximate the realistic 
sit- uation that causal mutations are unlikely to be 
included in marker data sets for GWAS and GS, we 
removed all markers selected to be QTN from 
consideration for GS 
+ de novo GWAS. Thus all markers included as fixed- 
effect covariates were, at best, in high LD with the 
QTNs underlying the simulated traits. It is plausible 



the plant genome vol. 12, no. 1 ◼ march 2019 14 of 14 ◼ 
 

that the 



15 of 14 rice and lipka  

 
 

Fig. 3. Distribution of mean prediction accuracy for various genetic architectures in six maize Type 2 traits. The simulated genetic architecture is 

listed in the individual titles (A–F) where: QTN, number of simulated quantitative trait nucleotides; size, additive effect size of the largest QTN;  

h2, narrow-sense heritability. The x-axis is the number of fixed effects included in model (2). The y-axis is the mean Pearson correlation from the 

five-fold cross validation. In each graph, the mean five-fold cross-validation prediction accuracies of all 50 replications are used to generate 

these box plots. The orange line on each graph depicts the median prediction accuracy of the 50 replications when no markers are included       

in the model as fixed-effect covariates. 
 

strength of LD between such markers and QTNs differ 
between the training and validation sets. This 
differential LD could result in the strength of the 
marker–trait asso- ciations to differ between these 
two sets. Interestingly, when a subset of the analysis 
was reran with the QTNs considered for inclusion as a 
fixed-effect covariate, the median prediction 
accuracies either decreased or did not change 
(depending on the number of fixed-effect covari- ates 
considered), while for low-heritable traits the vari- 
ability of prediction accuracies increased 
(Supplemental Fig. 3E–9E). Collectively, these 
findings suggest that a marker strongly associated 
with a trait in the training 
set may have a substantially weaker association in the 
validation set; inclusion of such a marker as a fixed-
effect covariate may offer either no advantage or even 
a disad- vantage over a standard RR-BLUP model with 
respect to prediction accuracy. 

Four of the traits analyzed by Spindel et al. 
(2016) reported to have increases in prediction 
accuracy when fixed effects were included in the RR-
BLUP model were compared with our simulation 
study (Supplemental Table S3). There were also 
increases in prediction accu- racy for simulation 
settings we evaluated that were simi- lar to the 
genetic architecture of the traits from Spindel 

et al. (2016), although our observed increases were 
not as large. Given this comparison, it is important 
to note that Spindel et al. (2016) performed their 
analysis using 
a structured rice breeding population and the peak 
SNPs considered for inclusion as fixed effects were 
the result of a binning procedure. In contrast, the 
analysis presented in this study considered all 
markers (except for the simu- lated QTN) as possible 
candidates for fixed-effect covari- ates regardless of 
their physical proximity to each other. 

Our results also highlight two other potential 
disadvantages of undertaking a GS + de novo GWAS 
approach. First, we observed that including fixed-
effect covariates in an RR-BLUP model typically 
resulted in  an increased variability in mean 
prediction accuracy, as visualized in Fig. 2 through 5. 
This finding suggests that, when applied to data 
similar to the ones that we studied, a standard RR-
BLUP model is more likely to produce stable and 
consistent prediction accuracies across minor 
perturbations of the data. A second disadvantage we 
noted was that the inclusion of at least one fixed-
effect 
covariate could potentially introduce a bias in the 
GEBVs (Table 4). This result is consistent with those 
from a study that assessed the predictive ability of an 
a priori 
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Fig. 4. Distribution of mean prediction accuracy for various genetic architectures in six sorghum Type 1 traits. The simulated genetic architecture 

is listed in the individual titles (A–F) where: QTN, number of simulated quantitative trait nucleotides; size, additive effect size of the largest QTN; 

h2, narrow-sense heritability. The x-axis is the number of fixed effects included in model (2). The y-axis is the mean Pearson correlation from the 

five-fold cross-validation. In each graph, the mean five-fold cross-validation prediction accuracies of all 50 replications are used to generate   

these box plots. The orange line on each graph depicts the median prediction accuracy of the 50 replications when no markers are included        

in the model as fixed-effect covariates. 
 

(Raymond et al., 2018) and suggest that 
incorporating fixed-effect covariates into an RR-BLUP 
model may yield GEBVs that are substantially larger 
or smaller than a corresponding observed breeding 
value. We therefore conclude that any potential of a 
GS + de novo GWAS approach to increase prediction 
accuracies needs to be weighed against possible 
increases in the variability of prediction accuracies 
and bias of GEBVs. 

Performance in Maize versus Sorghum 
Although the scope of the work presented here is not 
extensive enough to extrapolate far beyond the two 
diver- sity panels that we studied, we did note that 
Model 2 out- performed Model 1 more often in 
sorghum than maize (Table 3). Perhaps the most 
notable difference between these species is their 
breeding patterns. Maize is a natural outcrossing 
species resulting in a LD pattern that decays on 
average at 2 kb (Remington et al., 2001). This results 
in relatively smaller LD blocks than sorghum, a 
natural inbreeding species, which decays around 150 
kb (Morris et al., 2013). It is expected that inbreeding 
species present larger LD patterns than outcrossing 
ones (Flint-Garcia et 

al., 2003). Higher LD means a stronger chance of 
detecting a marker closely associated with the casual 
mutation. A second major difference between the two 
data sets used for simulation is the genotyping method 
used to obtain the markers. Genotyping arrays, like 
the one used to collect the 55k maize genotypes, only 
include a fraction of SNPs present in a restricted set of 
lines (Brachi et al., 2011). For sorghum, GBS data were 
used; in contrast to a SNP array, GBS has the potential 
to capture near complete genomic data in any species 
(Andolfatto et al., 2011; Elshire et al., 2011). Recent 
evidence in wheat suggests GBS may have 
an advantage because of ascertainment bias 
associated with SNP arrays (Elbasyoni et al., 2018). 
Arguably though, the most notable difference between 
genotypic data sets was the number of markers 
available (sorghum = 90,441; maize = 51,741) and the 
number of individuals in the panel (sorghum = 320; 
maize = 281). Given the approximate size of the 
sorghum and maize genomes (respectively 800 mil- 
lion and 2.3 billion bp) (McCormick et al., 2018, 
Schnable et al., 2009), this translates to an average 
marker density 
of ?8846 bp per marker in sorghum and 44,452 bp per 
marker in maize. A denser marker coverage of the 
genome 
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Fig. 5. Distribution of mean prediction accuracy for various genetic architectures in six sorghum Type 2 traits. The simulated genetic architecture 

is listed in the individual titles (A–F) where: QTN, number of simulated quantitative trait nucleotides; size, additive effect size of the largest QTN; 

h2, narrow-sense heritability. The x-axis is the number of fixed effects included in model (2). The y-axis is the mean Pearson correlation from the 

five-fold cross-validation. In each graph, the mean five-fold cross-validation prediction accuracies of all 50 replications are used to generate   

these box plots. The orange line on each graph depicts the median prediction accuracy of the 50 replications when no markers are included        

in the model as fixed-effect covariates. 
 

raises the chance of a detecting associations as 
there is a relationship between LD and physical 
distance, albeit 
dependent on the population under study. This 
relation- ship has been demonstrated for the complex 
trait of height 

 
Table 4. Intercept and slope estimates from a fitted simple linear 

regression model with observed breeding values as the response 

variable and the  genomic  estimated  breeding  values  (GEBVs)  as 

the explanatory variable. The predicted GEBVs were obtained from 

ridge-regression best linear unbiased prediction (RR-BLUP) models 

with the number of fixed-effect covariates (presented in the leftmost 

column) from a genome-wide association study (GWAS) conducted  

in a corresponding training set. The results presented here are from   

a sorghum Type 2 trait with and a total of 100 quantitative trait 

nucleotides (QTNs), effect size  of  the  largest  QTN  equal  to  0.3, 

and a narrow-sense heritability of 0.9. The standard errors of the 

intercept and slope estimates are provided in parentheses. 
 

  No. of fixed-effect covariates Intercept estimate Slope estimate  
0 0.29 (0.01) 0.98 (0.07) 

1 0.28 (0.01) 1.69 (0.25) 
5 0.29 (0.01) 1.40 (0.15) 

10 0.29 (0.01) 1.18 (0.09) 
25 0.29 (0.01) 1.13 (0.09) 

100 0.29 (0.01) 0.98 (0.07)  

in maize (Peiffer et al., 2014). In addition, an increase 
in the number of individuals in a data set boosts the 
power to detect significant associations and improves 
the estima- tion of marker effect sizes in the training 
set (Zhong et al., 2009). Thus it would be interesting to 
see if the observed performance of Model 2 in 
sorghum could be achieved in 
maize if a data set with a larger sample size, greater 
marker density, and GBS data were used. 

Recommendations for Future Research 
Even though our results suggest that adding peak-asso- 
ciated markers as fixed-effect covariates to an RR-BLUP 
model is more likely to decrease rather than increase 
pre- diction accuracy, it could also serve as a 
foundation for future research. For example, instead of 
using predeter- mined numbers of peak-associated 
markers from GWAS (conducted in the training 
populations) as fixed-effect covariates, future studies 
could only consider GWAS markers that are statistically 
significantly associated 
with the target traits as fixed-effect covariates. 
Although an exploratory analysis of the use of such 
an approach on a subset of our simulated traits 
yielded similar  results to the work presented 
already in this manuscript 
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(Supplemental Fig. S3–S9), further research into 
meth- odologies for determining which markers to 
include as fixed-effect covariates is warranted. 

Another result that deserves attention was the 
scenarios where, as new fixed effects were added to 
Model 2, predic- tion accuracies first decreased sizably 
and then recovered 
to levels of Model 1 and in a few instances out 
performed it (e.g., Fig. 2E). We put forth two hypotheses 
to explain this finding. The first is that a smaller 
number of fixed-effect covariates insufficiently tagged 
the additive effects of the masked QTN alleles. Thus, a 
greater number of markers 
in LD with a large-effect QTN needed to be included in 
the model to sufficiently capture the signal. The 
second hypothesis is that the effects of certain 
markers that were not included as fixed-effect 
covariates were being underes- timated as a result of 
the RR penalty. This hypothesis could be tested by 
setting markers as fixed effects not by order of 
significance but in a model building process that 
searches for the subset of fixed effects obtaining the 
highest predic- tion accuracy. Indeed, the purpose of 
genomic selection 
is to allow for all markers to predict trait values 
regardless of significance or effect size. Therefore, it is 
possible that when small-effect, nonsignificant makers 
are included as fixed effects, prediction accuracies 
could increase. These two hypotheses suggest that 
criteria other than statistical significance of marker–
trait associations from a GWAS in a training set be 
explored to identify potential markers to include as 
fixed-effect covariates in Model 2. Given that the use of 
peak-associated markers from a rudimentary step- 
wise model selection-based GWAS as fixed-effect 
covariates yielded prediction accuracies that were either 
equivalent 
or slightly higher than fixed-effect covariates identified 
through unified MLM-based GWAS (Supplemental Fig. 
S7–S9), future study of stepwise model selection or 
other marker-selection criteria (e.g., associations with 
RNA levels or protein expression levels) is justified. 

Considering both the positive and negative find- 
ings presented in this work, it will be essential for 
future research on this topic to go beyond the 
limited range of 
data and simulation settings that we explored. That is, 
the largest number of QTN simulated was 100, which 
may or may not represent traits with highly 
polymorphic genetic backgrounds. All effects we 
considered were additive, and thus this study did not 
include the simulation of epistatic or dominance 
effects. Given that maize and sorghum are both diploid 
grass species with well-annotated genomes (Paterson 
et al., 2009; Schnable et al., 2009), species with- out as 
many available genetic markers may not be suitable 
for this approach if an insufficient amount of them are 
in LD with casual mutations. However, this could pos- 
sibly become a nonissue in the near future because of 
the increasing availability of extensive sequence data 
(Good- win et al., 2016; Poland and Rife, 2012). 

 

conclusions 
With the current wealth of available genomic data 
in maize and sorghum, it is theoretically possible to 
tailor 

GS models with specific markers as fixed-effect 
covari- ates so that they reflect the genomic sources 
of a target trait as accurately as possible. Although 
we observed a maximum of 7.9% increase in 
prediction accuracy with such a model, we more 
frequently noted that the GS + de novo GWAS 
approach yielded lower prediction accura- cies than 
the standard RR-BLUP model. We therefore do not 
recommend the universal implementation of GS + de 
novo GWAS for predicting the breeding values of all 
pos- sible traits. Instead, we suggest that the merits 
of such an approach be investigated on a trait-by-trait 
basis, in par- ticular through a k-fold cross validation 
scheme similar to what we used here. If, for a given 
trait, it turns out that the highest prediction 
accuracies are obtained with m = 0 fixed-effect 
covariates, then GS should be performed through a 
standard RR-BLUP model, for example. We ultimately 
feel that this research highlights the disadvan- tages 
as well as the advantages of GS + de novo GWAS, and 
we encourage trait-specific consideration of this 
approach before it is implemented into breeding programs. 
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