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Abstract—The proliferation of smart mobile devices has
spurred an explosive growth of mobile crowd-learning services,
where service providers rely on the user community to vol-
untarily collect, report, and share real-time information for
a collection of scattered points of interest (Pol). A critical
factor affecting the future large-scale adoption of such mobile
crowd-learning applications is the freshness of the crowd-learned
information, which can be measured by a metric termed ‘age-
of-information” (Aol). However, we show that the Aol of mobile
crowd-learning could be arbitrarily bad under selfish users’
behaviors if the system is poorly designed. This motivates us to
design efficient reward mechanisms to incentivize mobile users
to report information in time, with the goal of keeping the
Aol and congestion level of each Pol low. Toward this end,
we consider a simple linear Aol-based reward mechanism and
analyze its Aol and congestion performances in terms of price
of anarchy (PoA), which characterizes the degradation of the
system efficiency due to selfish behavior of users. Remarkably,
we show that the proposed mechanism achieves the optimal Aol
performance asymptotically in a deterministic scenario. Further,
we prove that the proposed mechanism achieves a bounded PoA
in general stochastic cases, and the bound only depends on
system parameters. Particularly, when the service rates of Pols
are symmetric in stochastic cases, the achieved PoA is upper-
bounded by 1/2 asymptotically. Collectively, this work advances
our understanding of information freshness in mobile crowd-
learning systems.

I. INTRODUCTION

Fueled by the proliferation of smart mobile devices (e.g.,
smartphones, tablets, etc.), recent years have witnessed a rapid
growth of information services and data analytics based on
large-scale crowd-learning. A key defining feature of these
crowd-learning applications is that they rely on the user
community to voluntarily collect, report, and share real-time
information for a set of distributed points of interest (Pol).
Such crowd-learned information will in turn benefit the users
themselves and attract more users to join the community
(by reputation, word of mouth, etc.), which further enhances
the accuracy, value, and significance of the crowd-learning
applications. For example, the real-time traffic congestion and
accident information on Google Waze [1] (a community-based
GPS system) relies on the reports from mobile devices and
the tracking of their locations, densities, and trajectories. As
another example, by offering a variety of incentives, many
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data analytics services leverage their user communities to share
real-time information of scattered commodities and resources,
such as cheap gasoline stations (e.g., GasBuddy [2]), parking
space availability (e.g., Pavemint [3]), free WiFi hotspots (e.g.,
WiFi Finder [4]), popular grocery deals information (e.g.,
Basket [5]), to name just a few. It can be foreseen that new
crowd-learning applications will continue to emerge.

Although mobile crowd-learning holds a great potential to
fundamentally change our modern society, a critical factor
affecting its future large-scale adoption is the freshness of
the crowd-learned information, which can be measured by a
fundamental metric termed “Age-of-Information” (Aol). Guar-
anteeing information freshness in crowd-learning is critical
because stale information discourages existing and new users
from participating, which in turn degrades the information
freshness and creates a vicious circle. Unfortunately, due to
the special dynamics between the service provider and the
users, there is an inherent lack of information freshness guar-
antee in mobile crowd-learning: First, to maintain information
freshness, the service provider needs to incentivize the users to
update the states of the Pols. Second, the crowd-learning users
are “selfish” in the sense that their best interest is to maximize
their own benefit from participating in crowd-learning, rather
than minimizing the Aol for the service provider. Hence,
a poorly designed incentive mechanism could result in two
undesirable consequences: (i) too many users flock to an
attractive Pol, which leads to redundant sampling and severe
queueing congestion; and (ii) all other Pols suffer from large
Aol because of under-sampling. In light of these unique
characteristics of mobile crowd-learning, several fundamental
open questions naturally arise:

1) Is it possible to guarantee information freshness by incen-
tivizing selfish users in mobile crowd-learning?

2) If the answer to 1) is “yes,” what is the fundamental
relationship between reward and Aol in crowd-learning?

3) How to design reward mechanisms to avoid large queueing
congestion while guaranteeing Aol in crowd-learning?

However, answering the above questions are non-trivial
because the Aol and congestion analysis in mobile crowd-
learning face the following challenges: First, there is a lack
of analytical model that characterizes the essential features of
mobile crowd-learning in the literature. Most of the existing
work on crowd-sensing are based on static models that hardly
capture the dynamic and stochastic nature of participating
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users in mobile crowd-learning. Second, as shown by recent
studies (see, e.g., [6]-[9]), Aol dynamics are fundamentally
different from the traditional queueing evolution, which ne-
cessitates new theoretical tools. Third, as will be shown later,
there is a strong coupling between the Aol and queue-length
processes in crowd-learning, where changing the design of
either one would significantly affect that of the other.

In this paper, we overcome the above challenges and
propose a new analytical model coupled with the Price of
Anarchy (PoA) metric, which characterizes the degradation
of a system due to selfish behavior of users'. This enables
us to analyze and understand the relationships between Aol,
queueing congestion, and rewards under users’ selfishness. The
main results and contributions of this paper are as follows:

« First, we develop a new analytical model for mobile crowd-
learning, which takes into account the strong couplings
between the stochastic arrivals of participating users, Pols’
information evolutions, and reward mechanisms. As will
be discussed next, this new analytical model enables us to
reveal the fundamental scaling law between Aol, queueing
congestion, and the reward rate set by the service provider.

o Next, as a starting point, we analyze the Aol performance
under a linear Aol-based reward mechanism in a determin-
istic setting, where there is exactly one arriving user in each
time slot, and each Pol serves exactly one user (if any) in
each time slot (and hence no queueing effect in this setting).
We show that given an Aol reward rate 3, the PoA is upper-
bounded by O(1/3), which implies that the system achieves
the optimal Aol as 3 increases asymptotically.

o Finally, based on our results for the deterministic case,
we characterize the joint Aol-congestion performance of
mobile crowd-learning for stochastic settings. Although the
reward policy design for joint Aol and queueing congestion
optimization remains an open problem in stochastic settings,
surprisingly, we show that the above linear Aol-based re-
ward mechanism yields a bounded PoA, which only depends
on the arrival and service parameters of the system. In the
case of symmetric services, the PoA is upper-bounded by
1/2 as the reward rate 3 increases asymptotically.

Collectively, our results in this paper advance the under-
standing of achieving information freshness in mobile crowd-
learning with selfish users. The remainder of this paper
is organized as follows: Section II reviews related work.
Section III introduces system model and problem statement.
Section IV introduces a linear reward mechanism, and Sec-
tions V-VI study its PoAs in the deterministic and stochastic
cases, respectively. Section VII presents numerical results and
Section VIII concludes this paper.

II. RELATED WORK

To put our work in comparative perspectives, in this section,
we provide an overview on the related work in the areas of
crowd-sensing and age-of-information, respectively.

IThe value of PoA is always between 0 and 1, and the larger the PoA, the
less efficient the system. See Sections IV-VI for more in-depth discussions.

a) Crowd-Sensing: In the literature, crowd-sensing refers
to the sensing model where a group of individuals collec-
tively measure some common phenomena, e.g., environmental
quality monitoring [10], noise pollution assessment [11], [12],
and traffic monitoring [13], etc. Although crowd-sensing bears
some similarity to mobile crowd-learning, the main focuses
of the crowd-sensing research community are on network
resource management, system infrastructure, incentive mech-
anism designs, etc. (see [14] for a comprehensive survey). In
contrast, the overarching theme of this paper is to guaran-
tee information freshness in learning scattered objects by a
selfish crowd. Moreover, most of the existing crowd-sensing
research adopts either a static model, where the set of sensing
individuals is fixed (see, e.g., [15] and references therein);
or based on a static game-theoretic model, where a fixed
set of sensing individuals are incentivized/contracted by a
fixed set of employers (see, e.g., [16] and references therein).
These are fundamentally different from our dynamic model
described in Section III. Hence, our work fills a critical gap
in understanding large-scale mobile crowd-learning.

b) Age-of-Information (Aol): Originated from sensing
systems, Aol has attracted increasing attention from the
information theory, signal processing, and communications
communities in recent years. Besides being a useful per-
formance metric, Aol also possesses several key features
that distinguish itself from the traditional notion of queueing
delay. Most notably, in many sensing systems, it has been
found that while queueing delay benefits from lower sampling
rates (implying less data traffic), Aol is non-monotone with
respect to sampling rates. This key difference has sparked Aol
research in several aspects, e.g., real-time sampling and remote
estimation trade-off [17], [18], joint source-channel coding
exploitation [19], [20], caching [21], optimization algorithms
for Aol minimization [22], [23], age-based scheduling [24],
just to name a few. We note that the key differences between
our research and the existing Aol research are: i) the tight
coupling and dependence between multi-user arrival dynamics
and multi-source information time series on a network level,
and ii) the complex interactions between Aol, fresh/outdated
information, and queueing, all of which are governed by the
service provider’s reward mechanism designs. These key dif-
ferences introduce new challenges in guaranteeing stochastic
network information freshness unseen in existing Aol research.

ITI. NETWORK MODEL AND PROBLEM STATEMENT

As shown in Fig. 1, we consider a mobile crowd-learning
system consisting of N nodes that represent N points of
interest (Pol), e.g., road intersections, parking garages, po-
tential WiFi hotspots, gas stations, etc. We consider a time-
slotted system. In each time slot ¢, each Pol n has some
state information p,,[t] (e.g., congestion level, parking rate and
space, gas price, etc.) that is time-varying and to be sampled
by their users. Note that the dynamics of p,[t] is arbitrary.
We only assume that p,[t] € [Pmin,Pmax], Vt, for some
positive constants pyin, and pmax. A service provider (i.e.,
a crowd-learning-based information/data analytics platform)
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Fig. 1: A system model for mobile crowd-learning.

relies on randomly arriving users to sample and report the
states of the Pols. The service provider maintains a record
for each Pol, whose value in time slot ¢ is denoted as 7,t],
n =1,...,N. For ease of exposition, we will refer to p,,[t]
and r,[t] as “price” and “recorded price” in the rest of
this paper, respectively. Let w,,[t] be the most recent update
time up to time slot ¢ for Pol n’s record. Hence, the age
(freshness) of record r,[t] in time slot ¢ can be represented as
Aplt] =t — uglt].

Let A[t] be the number of users arriving at the system in
time slot t. We assume that A[t],t > 0, are independently
and identically distributed (i.i.d.) across time with mean \ £
E[A[t]] > 0 and bounded second moment E[A%[t]] < co. The
arrivals model the scenario that users at different locations
use their mobile apps in each time slot to acquire information
of the Pols before making decisions. Each arriving user will
first observe the current records of all Pols and choose a
favorable one (e.g., choosing the least congested route, the
lowest gas price, or the cheapest and nearest parking space,
etc.). However, due to the random updating time in crowd-
learning, the information of some Pol n’s record could be old
and hence 7, [t] may be outdated and inaccurate.

On the other hand, upon the arrival at his/her chosen Pol,
say n in time slot t, the user will report the Pol’s real-time
state (e.g., real-time price, congestion level, etc.), i.e., p,[t].
Let R,[t] denote the number of users that can be served by
Pol n in time slot ¢. We assume that R, [t], ¢ > 0, are i.i.d.
across time and independently distributed across Pols with
mean /i, = E[R,[t]] > 0,Yn, and R,[t] < Rumax, Vn,t, for
some Rpax < 00. We use Q,[t] to denote the number of users
awaiting for service in Pol n in time slot ¢.

The service provider’s goal is to achieve minimum time-
average Aol while keeping queueing congestion at each Pol
low. The rationale behind this goal is that low Aol (i.e., fresh
information) implies multiple benefits, e.g., high information
accuracy, which attracts more users; hence more advertising
revenues due to large user volume, etc. However, the following
toy example shows that the natural greedy behavior of selfish
users could yield Aol instability in mobile crowd-learning:

A Motivating Example (Aol Instability due to Selfishness):
Consider a two-Pol example as shown in Fig. 2. Consider the
most “natural” price-greedy decision made by selfish users:
In time slot ¢, each arriving user compares the recorded prices
r1[t] and ro[t] and chooses the cheaper Pol, i.e., choosing
n*[t] € argming ey 23 {7n[t]}. Suppose that p,[t] € [0, Pmax],
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Fig. 3: Large and unstable
Aol of Pol 1 in Fig. 2.

Fig. 2: A two-Pol motivating example
with p1[0] = 0.999 and p[0] = 0.1.

n = 1,2. Assume that the probability Pr{p,[t] = Pmax} = €,
n = 1,2, where ¢ > 0 is some small value. Suppose also
that in the initial state, p1[0] = pmax and p2[0] = 0 < Pmax.
Thus, at ¢ = 0, all users choose Pol 2 and the record ra[t]
will be updated, in which case the age of Pol 2 in time slot
1 becomes zero, i.e., As[l] = 0. However, due to the high
initial price p1[0], no user chooses Pol 1. Also, due to the
low probability of ps[t] reaching ppax, it would take a long
time (could be unbounded if € is arbitrarily small) for Pol
1 to receive any user to update 71[-], although p;[t] may be
lower than ps[t]. For example, in Fig. 3, pi[t] and ps[t] are
uniformly distributed in [0,1]. We let p1[0] = 0.999 (large
initial value) and p»[0] = 0.1. Clearly, we can see that Pol
I’s Aol is large and grows linearly with respect to time. [

The above observation of Aol instability due to users’ self-
ishness motivates us to design crowd-learning reward mecha-
nisms to ensure information freshness in crowd-learning.

IV. A LINEAR AOI-BASED REWARD MECHANISM

To keep the Aol being bounded, the service provider would
like users to go to and sample a Pol with the most outdated
information. However, unlike traditional scheduling problems,
the crowd-learning service provider cannot enforce each ar-
riving selfish user to go to a certain Pol. Rather, the service
provider can only offer incentives/rewards to influence the
users to choose certain Pols. So far, however, the problem of
optimal reward mechanism design for mobile crowd-learning
with selfish users has not been addressed in the literature.
Therefore, in this paper, we start from considering a simple
linear reward mechanism for mobile crowd-learning.

Specifically, we let 5 > 0 represent the “reward per unit
of age” offered by the service provider. Note that each user
prefers to select a Pol with both low price and congestion
level. We use a parameter v > 0 to denote users’ sensitivity
to queueing congestion, which depends on specific mobile
crowd-learning application?. Hence, in each time slot £, an
arriving user’s presumed benefit for choosing Pol n and
reporting its state is: SA,[t] — YQn[t] — r»[t]. In this work,
we assume that all arriving users are selfish and rational, so
that they would select a Pol n*[t] to maximize their presumed
benefit, i.e.,

n*[t] € argmax (BA,[t]
ne{l,2,....N}

_’YQN[LL] _rn[t])7 vt. (D

2Here, we assume that all users are homogeneous and have the same ~y-
value. The impact of users’ heterogeneity in congestion sensitivity will be
studied in our future work.
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Note that for any fixed 7, when the reward rate diminishes,
i.e., 51 0, each user essentially follows the “greedy” scheme
to select a Pol with the smallest value of yQ,[t] + 7,]t].
By contrast, when the reward rate approaches infinity, i.e.,
B 1 oo, the effects of Q,[t] and 7,[t] become negligible in
users’ presumed benefit and thus it encourages users to help
the service provider maintain information freshness.

To facilitate our subsequent analysis, we use Sy, [t] to denote
whether there is at least one user selecting Pol n in time slot
t. In particular, S, [t] = 1 if at least one user selects Pol n in
time slot ¢, and S, [t] = 0 otherwise. Under the assumption of
users’ selfishness and rationality, the dynamics of queue-length
and age of Pol n can be described as follows:

Qult + 1] = max{Qu[] + A[)S:[] — Ru[t],0},¥n. (2)

At +1, if SE[1 =0,
and At +1] = { [t] + if S*[t] {Alt]>0} = 3)
, otherwise,
where S’[t] = 1 if n = n*[t] and S;[t ] = 0 otherwise, and

1.y is an indicator function. Let S*[t] £ (S;[t])3_;.

To understand the impact of users’ selfishness on Aol and
queueing congestion, in this paper, we adopt the so-called
Price of Anarchy (PoA) metric from the game theory literature,
which characterizes the degradation of the system efficiency
due to the selfish behavior of users compared to the optimum.
Roughly speaking, the notion of PoA p is defined as:

Minimum cost

=1- . 4
P Cost under selfish behavior @

Note that p € [0, 1] and the smaller the PoA, the more efficient
the system under selfish user behavior. In what follows, we will
analyze the PoA of the linear reward scheme (1), where the
definition of cost in (4) depends on specific system scenarios
that will be clarified in subsequent sections.

V. PRICE OF ANARCHY: A DETERMINISTIC CASE

In this section, we first consider a simple deterministic case,
where, in each time slot, there is exactly one arriving user
and each Pol serves exactly one user if there is any. This
deterministic case not only provides interesting insights, its
results and proof strategies will also serve as a foundation for
analyzing general cases with stochastic arrivals and services.
Note that due to the special arrival and service patterns in this
deterministic case, there is no queueing effect at each Pol.
Hence, user’s selfish selection (cf. (1)) becomes:

n*[t] € argmax (BAL[t] —rut]). )

ne{1,2,...,.N}

In addition, the evolution of age of Pol n in (3) becomes:
(An[t] +1)(1 = SH[E]). (6)

Next, we study the information freshness performance under
the selfish behavior of users (cf. (5)) based on the notion of
PoA. Since queueing does not play a role and the system is
symmetric, we define the cost function with selfish users under

and hence the PoA is p(3) £

Anlt+1] =

some reward rate [ as Zf )

ax

1—- EI?:XT )/ Aff;x, where Al(:ax nd Affzx are the average
maximum age under an optimal policy (with unselfish users)
and under the user’s selfishness, respectively. The first main

result of this paper is stated as follows:

Theorem 1 (Aol-Based PoA for the Deterministic Case). If

there is exactly one user arriving in each time slot and each

Pol serves exactly one user per time-slot if there is any, the

users’ selfishness yields the following PoA performance:
pmax

p(B) < S . 0(1/B). 7)

Proof. The proof consists of two main steps: (i) Finding an

upper bound on the average maximum age A, due to users’

selfishness; and (ii) derving a lower bound on the average
max) achieved by an optimal policy.

Step 1): To find an upper bound on the average maximum

age due to users’ selfish behavior, we perform Lyapunov drift

analysis through an age-based Lyapunov function as follows:

N
= Z Aplt]. ®)

Let M[t] = ( {A [, {rn[ J}N_.) and con51der an un-
selfish policy S[t]2 (S, [t]))_, € arg maxg Zn 1 AR[tS, ],
i.e., users select the Pol with the largest age. Then, the one-
step conditional expected drift of V[t] can be computed as:

AVt 2B [Vt + 1] — V]£]|M[t]]

. —(OPT
maximum age A

@znv_— 1- im [A[1)S; 1) M) ©)
<N-1- nZN;E [(An[t] ;rn[t]) s;;[t}‘M[ﬂ
N1 nZN;E [(An[t] — ;Tn[t]) Sn[ﬂ‘M[t]} :

(d)

SN - ]- - Amax[ﬂ + %pmaxa (10)

where (a) uses dynamics of A, [t] in (6); (b) follows from the
fact that each user joins one of the Pols in each time slot, i.e.,
25:1 Sk[t] = 1; (c) follows from the definition of S [t]; and
(d) uses the fact that 7,[t] < pmax, Vn,t > 0, the definition
of S[t], and the fact that exactly one S, [t] is non-zero. It then
follows from (10) that:

EV[t+1]— V] <N~ 1 — E[Amalt] + %pm. (11

Summing (11) for ¢t =0,1,2,...,7 — 1, we obtain:

- i E[Amax[t” +(

E[V[T] - N — 1)T+%pmaxa
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which implies that

T-1
Zinzx £ hmsup— ZE Apax[t]] < N -1+

T—o0 =0

1
—Pmax- (12)
g

Step 2): Next, we derive a fundamental lower bound on
the average maximum age that can be achieved by the op-
timal policy. By using the same Lyapunov function in (8)
to compute the conditional expected one-step drift under the
optimal policy {S (OFT) []} and following similar steps, we
have AV = N — 1= 10 BIAL™ (517 [ M[1]),
where AFD [t] is the age of Pol n in time slot ¢ under the
optimal policy. In Step 1, we have already shown that the
average maximum age is finite under the selfish policy. This
readily implies that the average maximum age is also finite
under the optimal policy. Therefore, IE[AV[t]] will be equal
to zero in steady-state and thus we have

Z]E

where ESLO PT) and §7(LO PT) are random variables with the same
distribution as AT [t] and SLOPD) [t] in steady-state under
the optimal policy, respectively. Hence, we have

OPT)S(OPT)] N _ 1’ (13)

Zfr?;:) (@) E[ﬁ OPT)] () E[max ﬁgopT)]
@S d
> Y BRSO YN 1, a4

n=1

where step (a) follows from the boundedness of the aver-
age maximum age under the optimal policy; (b) is true for
ALPD 2 max, AL () follows from the fact that each
arriving user joins exactly one of the Pols, i.e., 22;1 §,(LOPT) =
1; and (d) uses (13). Lastly, by combining the upper bound
in Step 1 and lower bound in Step 2, the desired PoA result

in Theorem 1 follows and the proof is complete. O

Remark 1. Two insightful remarks for Theorem 1 are in
order: i) In Step 2, the lower bound of AOFD is fight and
can be achieved by the Round-Robin policy, i.e., the system
guides each arriving user to the Pols in a Round-Robin fashion.

Indeed, under Round-Robin, the ages of Pols are a permutation

of {0,1, ., N — 1} in each time slot, and hence the max-
imum age under Round R0b1n is ARRH = N —1,Vt >0,
which implies that Amax = N-1= K(S:I); ii) From

Theorem 1, we can observe that if 3 increases asymptotically
(i.e., B T 00), we have p(3) J 0. This implies that the system
is optimal and mimicking Round-Robin when the service
provider increases the incentive asymptotically. On the other
hand, if 8 reduces to zero (i.e., 5 | 0), we can see from (5)
that each user just follows a price-greedy strategy. In this case,
Theorem 1 suggests that the upper bound of p(3) approaches
1, which is consistent with our observation (cf. motivating
example in Section III) that the system suffers a poor Aol

performance and potentially Aol instability (i.e., Afn jx T 00).

VI. PRICE OF ANARCHY: STOCHASTIC CASES

Based on the results for the deterministic case, we are now
in a position to analyze the Aol and congestion performances
under users’ selfishness in cases with stochastic arrivals and
services. To facilitate analysis, we define a parameter ¢ £
Pr{A[t] > 0} for the arrivals, which is strictly positive for
A £ E[A[t]] > 0. Let ug = Z _1 M. Here, we adopt the
cost function J(3,7) £ > 1Q +8 Zn 1 Z”A where
e > 0 satisfies /A > tn/ps + €/N,¥n = 1,2,....N
due to the fact that A < ux (necessary for guaranteelng
the system’s queueing stability?), and @, and A, are the
average queue-length and average age of Pol n under the
user’s selfishness, respectively. We note that in J(3,7), € is
used as a scaling parameter to reduce the cost’s sensitivity to
average queue-length % Zgil Q,, under different arrival rates
A. Also, 7y and (3 are used to emphasize the relative importance
between queueing and Aol costs, as in the presumed benefit
for users’ selfish decisions (cf. (1)). Also, note that J(S,~)
is based on weighted average age, where the weight Z—; is
used to “equalize” the different Aol scales caused by the
heterogenelty of the Pols*. As a result, the PoA is specialized
to p(B,7) &1 — % Our second key result is for the
stochastic cases and stated as follows:

Theorem 2 (Joint Aol-Congestion PoA of Stochastic Cases).
If A\ < px, then there exists an € > 0 satisfying p,/\ >
tn/ps + €¢/N,¥n = 1,2,...,N. In such a case, the users’
selfishness yields the following PoA performance:

B(y) = YM + pmax
B() + 5 (& = 1) + Prna

N 1 N 1
B (? ~ Sy 2on=1 Mn — 5)

p(B,7) <

+ , (15)

( )+B(*_1> + Pmax
where B(y) = g5 (E[A H] + Yol BR2L]), M2
N (Var(A H) + o0 Var(Ro[t]) + (us — N)?) —

1
§€Rmax, and fmax = 2 max,, [T

Proof. Similar to the proof of Theorem 1, we first find an up-
per bound on J(/3,~) by using the Lyapunov drift analysis and

then determine a fundamental lower bound on J©PD (3, 7).
Step 1): Con51der the following Lyapunov function:

Llt) = e Yoo QA + L300 ALl Let Z[] £
(( [ ])n 1 ( [ szv_la (’I"n [t])nzl) Then’ the one-step con-
d1t10nal expected drift can be computed as:

=[5 2 it

Al

AL[t] 2 E[L[t + 1] — L[t]|Z[t]] =E

nlt+1]—

_Qnt] + Z

3In this paper, we say that a queue n is stable if its average queue-length
is finite, i.e., limsupy_, o LS T E[Qnt]] < co. A system is stable if
all its queues are stable.

4This is also motivated by the fact that the service provider prefers a better
Aol for the Pol with a faster service rate.
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(a)

INe

B(v) R .
P B[ S Qs — o)

;z (1— (Anl] + 1)S; [tu{mm)]zrt]] (16)

where (a) is true for B(y) = % (E[A?[t]] + NR2,,,) < oo,
and uses dynamics of @Q,[t] (cf. (2)) and A,[t] (cf. (3)), and
the fact that (max{z,0})? < 22, Va.

Next, we let Z'[t] £ (Z[t],1{ay>0y). Then, for any

function f(Z[t]), the following sequence of equalities holds:

E{f(Z[t]) A[t]|Z[t]} =qB{f (Z[t]) A[t]|Z'[t]}
=qE{A[t]|Alt] > O}E{f(Z[t])|Z'[t]}
=TE{ A[t]}E{f (Z[t])|Z[¢]}- (17
Note that each arriving user joins one of the Pols in each time

slot, i.e., 2521 S*[t] = 1. Also, the users’ decisions S*[t]
only depend on Z[t]. Hence, we have that:

@B N _,_
(16) <=5~ + -1 w;unQn[t]
N N
Hﬁ”}j@ [1]S7 [t Auwm]zm}
ﬁ n=1 n=1
Bo) N _ | oy
S /\ﬁ;unQn[]
al 1
E[Z ( Qn[t] - 57‘n[t]> S,*l[t]‘z’[t]} ,(18)
where (a) follows from (17) and the fact that ¢ € (0,1).

Next, consider an unselfish stationary randomrzed polic cy with

E[Su[t] = pn/ps, Yo, if Alt] > 0, and ps 2 S0 .
Clearly, from the definition of S*[t], we have:

By N

Lin
(18) < -1- TQ nlt]

b
B -
- E[i (a1~ J0ule - ﬁrn[t]) Sl

n=1

_ HMZ

Z’[t]} (19)

Noting that g, /A > pn/ps + €/N,Vn, we have

ZQn

<
iv: Hr ol — i\’: np {(An[t} = :;er[ﬂ) Z/[ﬂ]

pmax
—1+—
ux B q B

where (a) follows from 7, [t] < pmax, ¥n, t, and the definition
of the stationary randomized policy {S[¢]};>o. This implies

,)/N
SN—E

pmax

E[L[t+1] —

o B(y) , N Pmax
- N+—+——-1+ . (20
Z 5 T 5
Summing (20) for t =0,1,2,...,T — 1, we obtain
e T—1 N
ELIT] - LI < =375 > E[Q.[1]
t=0 n=1
T—1 N
3O ErEAL) + (B(V) PR pm“) T,
—0 1 MT B q B

which further implies the following upper bound on J(8,~):

1Tfl ve N N [
J(8,7) #lim sup TZ[N g E[Qn[t]Hﬁ; o ElA[1]
( )+ﬂ < - 1> + Pmax-

2y

Step 2): Next, we derive a fundamental lower bound on
JOPD(3 ~). Since we have shown that J(3,7v) is upper-
bounded under the selfish policy in Step 1, JOPD(3,~) is
also bounded under the optimal policy. Therefore we have
JOPD(B y) = 3¢ [Q(OPT)] _1_/62” ) uz [A(OPT)]
where Q(OPT) and A(OPT) are random variables with the
same distribution as Qn[] and A,[t] in steady-state un-
der the optimal policy, respectlvely Next, we lower-bound
SN U E[QEP] and YN 4, E[ACPD] individually. In the
rest of the proof, we omit the signifier “(OPT)” for notational
convenience and better readability

We first consider Zn  fn [ n). By choosing the Lya-
punov function V4[t] £ >, 11, A, [t] and following similar
steps as in the derivation of (9), we have
AV [t} 2E

Wit + 1] =Wt Z'[t] = ps—

¢ Y LS| Z' [t} —a ) pnEAAL[1]Sa[8)|Z[1]}.

Since J(OFT)(5,~) is bounded under the optimal policy, the
weighted sum of average age must also be finite under the
optimal policy. Therefore, one can conclude that E[AV;[t]] =
0 in steady-state. It then follows that:

N N
Z i IE [ﬁné\n} = —pux — Z HTL]E[S\WLL (22)
n=1 n=1

where gﬂ is the random variable with the same distribution as
Sp[t] in the steady-state under the optimal policy.

Similarly, using Lyapunov function V5[t] ézgzl,unA% [t]
and setting its drift to zero in steady-state yields:

N
2> i E[A, qZun [A235,] +q2un E[A,S,].(23)
n=1
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For any sample path, by Cauchy-Schwarz’s Inequality, we have
N 2 N 2
<Z U'rLAnSn) = < Z \V HnSp - \V ,unSnAn>
n=1 n=1
N R N R
< < Z ,unSn> < Z UnA?LSn) , (24
n=1 n=1

Ce N 2 a N nlnSn)?
which implies > ", UnA2S, > (Z"E:N“A—g), and hence
- ) n=1 HnOn

o~ o~

2
N (Zhs 1nBnSh)
WAZS, - . (25
> vl

Since f(X,Y) = X?/Y is convex for all X > 0 and Y >

2
0, by using Jensen’s Inequalit/y\, v/v\e have IE[X72] > (]?E[[);]l)\ .
Thus, setting X = ZnN:1 nAp Sy and Y = ij:l L Sns
inequality (25) becomes:

E >E

N N2
N ~o o (anl Mn]E[AnSn])
> mE|A28,] = A (26)
n=1 Zn:l /j‘nE[Sn]

By combining (22), (23) and (26), we have:
Al N 14 14
B[R, >4 [EA - 1}
ngl 2 q 27]7\,]:1 /LnE[Sn}
2 [ gimax

where the last step is true for fimax Aé maxy, fly.

In order to lower-bound 25:1 E[Q.], we construct a hypo-
thetical single-server queue {®[t]} with the same arrival pro-
cess {A[t]}:1>0 and an aggregated service process { Rx[t] }1>0,
where Rs[t] = 25:1 R,[t]. The queue-length evolution
of this single-server queue can be written as: @[t + 1] =
max{®[t]+A[t] - Rx|[t], 0}. Due to resource pooling, the con-
structed hypothetical single-server’s queue-length {®[t]}>0
is stochastically smaller than {22;1 Qn[t]}1>0 under any
feasible policy. Hence, by [25, Lemma 5], we immediately
have the following lower bound:

N MN
2 ElQu 2 =,

(28)

€ N
where M £ NGis—N (Var(A[t]) + >, Var(Ry,[t]) + (s —
A)?) — 2€Rmax. Lastly, combining (27), (28), and (21) yields
the desired result in Theorem 2 and the proof is complete. [

Remark 2. From Theorem 2, we can see that for any fixed

L N n_l
~ value, we have limg_,o p(5,7) < 1— %%,

whose upper bound is equal to 1/2 in the case withqsymrnetric
services, i.e., 41 = g = --- = un. However, we shall see
from the numerical results presented in Section VII that for
any fixed ~ value, as J increases, the PoA actually converges
to zero in the case with symmetric services. The looseness
of the upper bound analysis is due to the intrinsic nature of

the Lyapunov analysis methodology, which only captures the
drift among neighboring slots in temporal domain and does
not characterize the Round-Robin behavior in spatial domain.

VII. NUMERICAL RESULTS

In this section, we conduct simulations to study the PoA
performance under users’ selfishness (cf. (1)) in a mobile
crowed-learning system. We use a 10-Pol system and assume
that each Pol n’s state information p,[t] belongs to the finite
set {0.25,0.5,0.75,1}, and p,[t] changes to a different value
uniformly at random every 100 time slots. We consider both
deterministic and stochastic cases. For the deterministic case,
we assume that there is exactly one arriving user in each time
slot and each Pol can serve one user in one time slot if any. For
the stochastic case, we assume that users arrive at the system
according to the Bernoulli distribution with mean A = 0.9
and service provided by each Pol n follows an i.i.d. Bernoulli
distribution with mean p,, n = 1,2, ...,10. We consider both
symmetric and asymmetric services: For symmetric services,
we let p,, = 0.1,Vn; For asymmetric services, we let u, =
0.11,vn=1,2,...,5 and y, = 0.09,Vn =6,7,...,10.

1) Deterministic Scenario: Fig. 4 illustrates the PoA per-
formance in the deterministic case. In this case, there is
no queueing effect and the PoA performance reflects the
information freshness due to users’ selfish behavior compared
to the optimal Aol performance. We can observe from Fig. 4
that PoA decreases as the reward rate [ increases and roughly
follows the O(1/3) law, meaning that the Aol performance
improves. Moreover, PoA decreases to zero for 8 > 0.5. This
means that the Aol performance is optimal even with selfish
users. Both observations corroborate the result in Theorem 1.

2) Stochastic Scenario: Next, we study the PoA perfor-
mance in stochastic cases. We consider both symmetric and
asymmetric services. Here, PoA reflects the gap between
joint Aol-congestion performance under users’ selfishness
compared to the optimal performance. We note that, even
without incorporating Aol, it remains an open problem to
find an optimal policy to minimize the total mean queue-
length. In deriving the upper bound on PoA, we use the
fundamental lower bound on total mean queue-length (cf. [25,
Lemma 5]), which may not be tight. In this simulation, we
adopt the Join-the-Shortest-Queue (JSQ) policy (e.g., [25]) and
use its mean queue-length to serve as a lower bound for the
queueing component in PoA. This is because JSQ minimizes
the total mean queue-length (see [26, Proposition 3]) in the
case with Bernoulli arrival and symmetric Bernoulli services,
and it is optimal (see [25]) in the case with general arrival and
service processes in the heavy-traffic regime (i.e., arrival rate
approaches the total service rate asymptotically).

Fig. 5 shows the PoA performance of the case with asym-
metric services under different values of . We can see that,
for any fixed « value, PoA converges to 0.1 instead of 0 as [
increases. The main reason is that we adopt the weighted sum
of mean age as the metric for information freshness, and the
policy that achieves optimal information freshness is unknown.
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[ in the deterministic case.

Thus, we use our derived fundamental lower bound on the
weighted mean sum-age to replace the optimal value for the
information freshness, which may render a loose bound on
PoA. However, we point out that our derived lower bound
is tight in the symmetric service case as the reward rate 3
increases asymptotically, even though the derived upper bound
of PoA is 1/2 (cf. Remark 2). Indeed, we can observe from
Fig. 6 that PoA actually converges to zero as 3 increases in
the case with symmetric services.

VIII. CONCLUSION

In this paper, we have strived to understand whether or not
we can achieve information freshness guarantee with selfish
users in mobile crowd-learning. To answer this question, we
first developed a new analytical model that takes into account
the essential features of mobile crowd-learning. Then, based
on this model, we showed that the natural greedy behavior
of selfish users could lead to Aol instability, which necessi-
tates the design of reward mechanisms to induce information
freshness guarantee. Toward this end, we proposed a linear
Aol-based reward mechanism, under which we analyzed the
impacts of users’ selfishness on Aol based on the notion
of Price of Anarchy (PoA). We showed that the proposed
reward mechanism achieves bounded Aol and congestion
performances in terms of PoA, and can even achieves optimal
Aol asymptotically in a deterministic scenario. Collectively,
these results serve as an exciting first step toward optimizing
information freshness in mobile crowd-learning systems.
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