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Abstract— This paper focuses on the development and use of
a nonlinear observer for tracking of vehicle motion trajectories
on highways while using a radar or laser sensor. Previous
results on vehicle tracking have typically used an interacting
multiple model filter that needs different models for different
modes of vehicle motion. This paper uses a single nonlinear
vehicle model that can be used for all modes of vehicle motion. A
corresponding exponentially stable nonlinear observer is
needed. Previous nonlinear observer design results do not work
for the nonlinear system under consideration. Hence, a new
nonlinear observer that utilizes better bounds on the coupled
nonlinear functions in the dynamics is developed. The observer
design with the developed technique is implemented in both
simulations and experiments. Experimental results show that
the observer can simultaneously estimate longitudinal position,
lateral position, velocity and orientation variables for the vehicle
from radar measurements during highway driving.

I. INTRODUCTION

Vehicle motion tracking is an important problem that is
frequently encountered in autonomous driving, as well as in
collision avoidance and adaptive cruise control (ACC)
applications [1-6]. Collision avoidance and ACC systems
typically use radar or laser sensors for measuring distances
and azimuth angles [1-6] to vehicles.

In the case of vehicles in urban traffic, the raw
radar-measured variables are inadequate in order to predict the
trajectories of vehicles. Both lateral and longitudinal distances
and orientation of the vehicles are needed in order to
accurately predict vehicle motion and provide appropriate
warnings or automated driving actuation. Previous work in
vehicle tracking has typically utilized interacting multiple
model (IMM) filters for estimation of vehicle trajectories
[6-10]. The models used in the IMM filter typically include a
“straight line driving” model and a “constant turn rate” model.
Each model can be used for its respective driving scenario and
is not applicable for the other scenario.

This paper develops a vehicle tracking algorithm that uses
a single model to represent all possible vehicle motions
involving both longitudinal and lateral maneuvers. This
reduces the computational effort in estimating trajectories of
multiple vehicles on the road and also makes tracking a wider
range of vehicle motions possible in the future.

Since the proposed vehicle model is nonlinear, an effective
nonlinear observer design technique is required to ensure an
exponentially stable observer. Two nonlinear observer design
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techniques from literature that are designed for bounded
Jacobian systems are first used in an attempt to obtain a stable
observer. However, their design procedures fail to yield stable
observer gains for this application, due to feasibility of the
associated Linear Matrix Inequities (LMIs). A new nonlinear
observer design technique suitable for this application is
therefore developed. The stability of the observer is proved
and an observer gain for the vehicle model application is
obtained.

The developed observer is used to track the lateral and
longitudinal positions and orientation of a vehicle in both
simulations and experiments. A radar sensor that measures
polar distance and azimuth angle is used as the measurement
unit. Vehicles maneuvers that include straight driving cars, a
lane change maneuver and a double lane change maneuver are
considered in this conference paper.

The outline of the rest of the paper is as follows: In the next
section, the proposed nonlinear observer design technique is
presented. In Section III, we propose a single vehicle model
that can represent both longitudinal and lateral maneuvers, and
discuss vehicle motion tracking using the vehicle model and
developed observer. Then in Section IV and V, the proposed
vehicle motion tracking algorithm is validated in both
simulations and experiments. Conclusions are presented in
Section VI.

II. NONLINEAR OBSERVER DESIGN

A. Problem Statement
We consider the class of nonlinear systems described by

x=f(x,u)

y=Cx M

where x € R" is the state vector,u € R” is the input vector and
y e R”is the output vector. C € R”" is a matrix of appropriate
dimensions.  f(x,u) R"xR" —-R" is a vector of
differentiable nonlinear function.

The following Luenberger observer will be studied:

x=f(Eu)+L(y-CR) )

where L is the observer gain matrix to be designed such that
exponential convergence of the estimation error X =x-—x
towards zero is obtained.

B. Existing Methods for Bounded Jacobian Systems

Previous researchers have developed nonlinear observer
design techniques suitable for bounded Jacobian systems
using the mean value theorem [11, 12]. These studies define
and use Jacobian bounds based on element-wise minimum and
maximum values of the Jacobian. By considering the
nonlinear system and observer described in (1) and (2), the
following results can be summarized from the existing
methods in literature.



Lemma 1: Differential Mean Value Theorem using
Canonical Basis [11, 12].

Let f(x): R" — R"be a function continuous on [a,b] € R"
and differentiable on convex hull of the set (a,b) with
Lipschitz continuous gradient. For s,,s, €[a,b], there exists
z € (a,b) such that

n,n

f(sz)_f(sl):[Ze,,(i)e:(j)%(zf)}(sz -5)  (3)

ij=l

where e, (i) =(0,...,0,1,0,...0)" € R" is a vector of the canonical
basis of R"with 1 at i, component.

Theorem 1 [11]: If an observer gain matrix L can be
chosen such that

P(H™)+(H™)" P-C"L'P—PLC <0
P(H™)+(H™) P-C"L'P-PLC <0 (4)
P>0

Vi=1,...,n,and Vj =1,...,n, where

1) ™ >max(@f,/ex,) and A™ <min(@f, /ox,);

2) Hp™=e, (e, (Hh™ and H™ =e, (e, (Hh™;

3) Z,=nxn 1is the state scaling factor, n being

dimension of the state vector;

4) H™=Z,H!™ and H" =Z,H™ ;
then this choice of L leads to asymptotically stable estimates
by the observer for the system.

Theorem 2 [12]: The observer estimation error converges
exponentially towards zero if there exist matrices P =P’ >0
and R of appropriate dimensions such that the following LMIs
are feasible:

AT (9P +PAS)-C'R-R'C <0

V4e Vi ®)
where
n,n a )
m$=zqw40@§@) ©

and the domain v, is defined by

Vi, =19=0 09,08, 8, € {Qij,iz.j}} 7

h,; =min(df, / ox ;) and h; = max(df, /ox;) ®)

When these LMIs are feasible, the observer gain L is given by
L=P'R".

However, these methods do not work for the application of
vehicle motion tracking, which is the subject of this paper.
Specifically, the LMI toolbox in MATLAB fails to provide a
feasible solution for the multiple LMIs that need to be
simultaneously satisfied in both Theorems 1 and 2. It should
be noted that an observer gain (and an associated P matrix)
that satisfy multiple LMIs need to be obtained in both
methods.

Hence, a new nonlinear observer design method suitable
for the vehicle tracking application is presented herein.

C. Nonlinear Observer

In this section, we present a modified nonlinear observer
design method for the nonlinear system described in the
previous two sub-sections.

Theorem 3: Consider the nonlinear system (1) and

observer form (2). If there exist matrices P>/ and R of
appropriate dimensions such that the following problem is
solvable:

min y
subject to ®)
P>1 (10)
T
PR >0 (11)
R v
A, u)" P+ PA(L,u)-C"R—-R"C+2aP <0,
vu € ugrid’ vg € Cgrid
(12)
where A(Ca0) =L (¢,
ox
S eR"
Then, the observer gain L is given by
L=P'R" (13)

With this value of the observer gain, the estimation error of the
observer (2) converges exponentially towards zero.

Proof: To show this, let the Lyapunov function candidate
for observer design be defined as V' =x"Px where P=P" >0
and P e R™. We will require the derivative of V satisfies the
following differential inequality:

V< 2aV (14)

where « is a positive constant. The inequality (14) implies the
exponential stability condition [13]:

[x(6) = 3] < k|}x(0) 3O} ™ (15)

where k is a positive constant. From the Lyapunov function
candidate, the differential inequality (14) can be represented
as

XTPR+XTPY +2a(XPR) <0

(16)
Based on (1) and (2), the estimation error dynamics are given
by

¥ = f(x,u) = f (Gu) - LCX (17)

For x,x e[a,b], the difference of the functions f(x,u)— f(x,u)
can be presented by using the differential mean value theorem
for vector functions:

S~ £ = (%(g,u)](x - (18)
where ¢ € (a,b) . Using the notation
A =L, (19)
ox
the dynamics of the estimation error becomes
¥ =(A(L.u)-LCKF (20)

Since ¢ varies with the value of x and x, A is an unknown
and continuously time varying matrix. According to the

dynamics of the estimation error, (16) becomes
5T{AC,u)— LC) P+ P(A(C,u) - LC)+2aP}X <0 (21)

(21) is satisfied when following condition is satisfied:



(A(C,u)—LC) P+ P(A(C,u)—LC)+2aP <0 (22)

By introducing a new variable R = L" P, (22) can be expressed
as

A, u)" P+ PA(L,u)-C"R—R"C+2aP <0 (23)

Since ¢ and u vary infinitely in a given set, (23) gives us
infinitely many LMIs. This can be reduced to a finite number
of LMIs using gridding techniques. We fix a finite subset of
the ¢ and » within its bounds such that

Ugia € {ul""’uN}
Coa €11 oCu )

It is noted that the dimension of the grid is proportional to the
number of varying variables in ¢ and u . Also, the points of
the finite subset need to be chosen sufficiently dense so that
solving LMIs for the finite subset is equivalent to satisfying
the original stability condition. Therefore, the observer design
condition (12) can be obtained.

Unfortunately, the observer gain L can be arbitrarily large,
if only the design condition (23) is utilized. Hence, we use the
following additional specification [14] for L. If (12) with
P=P" >0 has a solution for P and R, the following condition
must be satisfied for y sufficiently large:

<y (25)

This means that \/; is an upper bound on the norm of the gain
L. Without loss of generality, we can assume that P>/ . Since
L=P'R" and y is sufficiently large, the condition (25)
becomes

(24)

L'L<I'PL=RP'R" <y (26)

From this, we obtain

A—-RP'R” >0 (27)

Using the Schur complement, (27) can be represented as (11).
QED.

III. VEHICLE MOTION TRACKING PROBLEM

A. Proposed Vehicle Motion Model

Previous models used for tracking of vehicle motion in
active safety or autonomous driving applications have
primarily involved longitudinal motion variables (and
sometimes additional lateral position variables) of the vehicle.
For instance, a popular approach for radar based vehicle
tracking consists of an interacting multiple model filter with
two models — a “constant velocity” model and a “nearly
coordinated turn” model [17].

It should be noted that the constant velocity model is only
applicable to straight line motion and the coordinated turn
model only applies while turning. Neither model can be used
for both scenarios and the coordinated turn model, in fact,
becomes singular when the rotation rate becomes zero.

Another disadvantage of the above approach is that all the
three degrees of freedom have independent unknown inputs —
lateral, longitudinal and orientation variables are all driven by
unknown terms.

This paper proposes the use of a single nonlinear model
that encompasses both straight line and turning motions.
Considering only planar motion for the vehicle, the motion of

Fig. 1. Vehicle motion model.

the vehicle can be described by X, Yand w as shown in Fig. 1.
X and Y are coordinates of longitudinal and lateral locations of
the vehicle with respect to the sensor (radar or LIDAR)
location, and y is orientation angle of the vehicle with respect
to the X axis. Assuming that the slip angles at the tires are zero
(but the slip angle of the vehicle itself is not zero), the model
equations can be described by

X =V cos(y + )

i (28)
Y =Vsin(y + f) (29)
. Vecos(B)
= —lf n Z’_ tan(é‘f) (30)
L [ tan(é'f)
B = tan [—l‘/ 1 ] 31
and
V=a (32)

where V is the speed of the vehicle, g is the slip angle of the
vehicle. 7, and /, are the distances from the center of gravity
of the vehicle to the front and rear wheelbases of the vehicle,
o, is steering angle of front wheel and « is the acceleration
of the vehicle. §, and « are unknown inputs. More
understanding of the nonlinear vehicle model can be found by
reading [15].

The location of the vehicle is assumed to be measured by
using a radar or LIDAR sensor. Therefore, the output
equations can be written as

y={X}=CX (33)
Y
where
c:{l 00 0:|,andx=[X Y Voy] 34
01 00

Then, the form of the system and output equations above is the
same as the form of (1) used for the nonlinear observer
development.

It should be noted that the “zero slip angle at the tires”
assumption could be avoided, and a model that assumes the
tire force as a function of the slip angle could be utilized.
However, such a model becomes a function of a large number
of tire and vehicle parameters. Since the vehicle that is
encountered and is being tracked is unknown, the values of
these parameters cannot be known. Hence, the above model is
more appropriate, in spite of the zero-slip-at-tire assumption.



It should be noted that this model has two unknown inputs
(steering angle 5, and longitudinal acceleration « ). Both of
these unknown inputs can be assumed to be constants (or
slowly changing) and equations with their derivates as zero
can be appended to the dynamic model used for tracking.

B. Observer Design for Vehicle Motion Tracking

The nonlinear observer is designed by the proposed
method in section II. C with the nonlinear vehicle motion
model (28) — (32). First, A({,u) in (12) can be computed
from the Jacobian of the vehicle motion model:

00 costw+p) —Vsin(y+p)
0 0 sin(y+p) V cos(y + )
A(G,u)=|0 0 0 0 (3%5)
0 0 <SP sy 0
I +1 ’

f r

The Jacobian has 3 varying variables: ¥, 6, and y which
gridding is required. We aim to track the vehicle motion under
the following conditions: 1) Sm/s<V<15m/s , 2)
7/9<6,<7/9 and 3) z/3<y<x/3 . Based on these
conditions, a finite subset (3-dimensional grid) is found. Then,
we solve (9) — (13) for the observer gain using the LMI
toolbox in MATLAB. The example of an observer gain
without the exponential stability condition (i.e., « =0) is

342214 -1.571le-14
-5.1932e-14  30.5531
L= (36)
2.3666e-05 -4.9153¢-19
2.1132¢-14  14.7771

and with the exponential stability condition using « =0.5 is
317.7892  2.2971e-10

-1.2979¢-10  561.7626
L= (37
2685.1585  2.2204e-09

-1.023e-10  518.4968

Despite the fact that the observer gain is obtained by using
the vehicle motion model, the observer (2) cannot be directly
used with the vehicle motion model since the inputs are
unknown and not measurable. In order to handle this, we
simply assume that the inputs in the vehicle motion model are
zero and utilize the vehicle motion model with zero inputs to
the observer. In other words, the actual vehicle has unknown
non-zero inputs, but the observer is assumed to have zero
inputs.

IV. SIMULATION RESULTS

The nonlinear observer for vehicle motion tracking
described in the previous section has first been evaluated
using simulations. The simulation environment is built using
MATLAB.

The three scenarios as shown in Fig. 2 are simulated. The
trajectories of the vehicle are generated by using the nonlinear
vehicle motion model. Each trajectory and the inputs for the
trajectory are shown in Fig. 3, 4 and 5. The initial conditions
of the observer are set as zero except the values of the outputs
X, and Y,.

The estimation results using the nonlinear observer are

Fig. 2. Three types of vehicle maneuver scenarios. (a) Straight driving, (b)
Lane change, (c) Double lane change maneuvers.
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Fig. 3. Simulation results of straight driving maneuver.

also shown in Fig. 3, 4 and 5. Only small estimation errors are
present during transient periods. Overall, the proposed
nonlinear observer provides good performance for vehicle
motion tracking. The estimates of the vehicle motion
converge to the true vehicle motion, even with unknown
steering and acceleration inputs.

V. EXPERIMENTAL RESULTS

Experiments are conducted to validate the proposed
nonlinear observer design in situations corresponding to all the
three scenarios of Fig. 2, of i) Straight Driving, ii) Lane
Change and iii) Double Lane Change maneuvers. The Delphi
Electronically Scanning Radar (ESR) shown in Fig. 6 is used
for the experimental evaluation. The radar provides vehicle
radial position information within 174 meters of maximum
range and +45 degrees of maximum field of view [16]. Also,
the velocity of the target can be obtained from the radar.
However, we only use the velocity information as a reference
to compare with the velocity estimate, for the validation of the
proposed nonlinear observer. A low pass filter is implemented
to smoothen the vehicle position data obtained from the radar,
before supplying it to the observer. The radar is installed on a



Vehicle Trajectory

1
0 ‘ Pos.
-
—_ =emem Fst.Pos.
T, \\ st.Pos
~ 3 N\
-4 \\
5
0 10 20 30 40 50 60 70
X[m]
10 10
= 7 g o
—~ N =
s 5 S
—. -10 —
- 3| | > L/ T4
——Fs Iy
0 -20
0 2 4 6 8 0 2 4 6 8
1 5
— o
5 o
20 S o0
= =
~ <
- -5
0 2 4 6 8 0 2 4 6 8
Time|sec] Timelsec]
Fig. 4. Simulation results of lane change maneuver.
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Fig. 5. Simulation results of double lane change maneuver.

tripod and initially located behind the stopped vehicle. Then,
the vehicle starts moving to execute the scenarios as shown in
Fig. 2.

Fig. 7, 8 and 9 show the experimental results for the three
scenarios. It is shown that the proposed nonlinear observer can
estimate the vehicle motion based on radar measurements,
without knowing the steering and acceleration of the vehicle.
The velocity estimates have good match with reference values
from the radar system. Also, the estimates from the
experimental data provides very reasonable evolutions of the
orientation of the vehicle which are quite similar as the
orientation results from the simulations.

—o— Raw data
= Estimate

0 20 40 60 80 100

20

O  Ref. velocity

-
=
g
~
0 2 4 6 8 10 12
Timel[sec]
10
- T4
5]
S o N TN\ PN
2 A4 N~ N——_ N—"
=
10
0 2 4 6 8 10 12
Timelsec]

Fig. 7. Experimental results of straight driving maneuver.

VI. CONCLUSION

A vehicle tracking algorithm that uses a single model to
represent all possible vehicle motions is presented in this
paper. By using a single vehicle model, nonlinear observer
design techniques can be utilized. The developed nonlinear
observer guarantees exponential stability of the estimates and
requires less computational effort in estimating trajectories of
multiple vehicles on the road.

The developed observer is used to track vehicle motion
including the lateral and longitudinal positions, velocity and
orientation of a vehicle. Simulation results were presented to
show the performance of the developed observer in the
application of vehicle motion tracking. Experimental results
were also presented using a radar sensor that measures polar
distance and azimuth angle as the measurement unit. Both
simulations and experiments show excellent results in vehicle
motion tracking on vehicle maneuvers including straight
driving cars, a lane change maneuver and a double lane change
maneuver.
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