
  

  

Abstract— This paper focuses on the development and use of 
a nonlinear observer for tracking of vehicle motion trajectories 
on highways while using a radar or laser sensor. Previous 
results on vehicle tracking have typically used an interacting 
multiple model filter that needs different models for different 
modes of vehicle motion. This paper uses a single nonlinear 
vehicle model that can be used for all modes of vehicle motion. A 
corresponding exponentially stable nonlinear observer is 
needed. Previous nonlinear observer design results do not work 
for the nonlinear system under consideration. Hence, a new 
nonlinear observer that utilizes better bounds on the coupled 
nonlinear functions in the dynamics is developed. The observer 
design with the developed technique is implemented in both 
simulations and experiments. Experimental results show that 
the observer can simultaneously estimate longitudinal position, 
lateral position, velocity and orientation variables for the vehicle 
from radar measurements during highway driving. 

I. INTRODUCTION 

Vehicle motion tracking is an important problem that is 
frequently encountered in autonomous driving, as well as in 
collision avoidance and adaptive cruise control (ACC) 
applications [1-6]. Collision avoidance and ACC systems 
typically use radar or laser sensors for measuring distances 
and azimuth angles [1-6] to vehicles. 

In the case of vehicles in urban traffic, the raw 
radar-measured variables are inadequate in order to predict the 
trajectories of vehicles. Both lateral and longitudinal distances 
and orientation of the vehicles are needed in order to 
accurately predict vehicle motion and provide appropriate 
warnings or automated driving actuation. Previous work in 
vehicle tracking has typically utilized interacting multiple 
model (IMM) filters for estimation of vehicle trajectories 
[6-10]. The models used in the IMM filter typically include a 
“straight line driving” model and a “constant turn rate” model. 
Each model can be used for its respective driving scenario and 
is not applicable for the other scenario. 

This paper develops a vehicle tracking algorithm that uses 
a single model to represent all possible vehicle motions 
involving both longitudinal and lateral maneuvers. This 
reduces the computational effort in estimating trajectories of 
multiple vehicles on the road and also makes tracking a wider 
range of vehicle motions possible in the future. 

Since the proposed vehicle model is nonlinear, an effective 
nonlinear observer design technique is required to ensure an 
exponentially stable observer. Two nonlinear observer design 
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techniques from literature that are designed for bounded 
Jacobian systems are first used in an attempt to obtain a stable 
observer. However, their design procedures fail to yield stable 
observer gains for this application, due to feasibility of the 
associated Linear Matrix Inequities (LMIs). A new nonlinear 
observer design technique suitable for this application is 
therefore developed. The stability of the observer is proved 
and an observer gain for the vehicle model application is 
obtained. 

The developed observer is used to track the lateral and 
longitudinal positions and orientation of a vehicle in both 
simulations and experiments. A radar sensor that measures 
polar distance and azimuth angle is used as the measurement 
unit. Vehicles maneuvers that include straight driving cars, a 
lane change maneuver and a double lane change maneuver are 
considered in this conference paper. 

The outline of the rest of the paper is as follows: In the next 
section, the proposed nonlinear observer design technique is 
presented. In Section III, we propose a single vehicle model 
that can represent both longitudinal and lateral maneuvers, and 
discuss vehicle motion tracking using the vehicle model and 
developed observer. Then in Section IV and V, the proposed 
vehicle motion tracking algorithm is validated in both 
simulations and experiments. Conclusions are presented in 
Section VI. 

II. NONLINEAR OBSERVER DESIGN  

A. Problem Statement 
We consider the class of nonlinear systems described by 
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where nRx ∈ is the state vector, mRu ∈ is the input vector and 
pRy ∈ is the output vector. npRC ×∈ is a matrix of appropriate 

dimensions. ),( uxf : nmn RRR →×  is a vector of 
differentiable nonlinear function. 

The following Luenberger observer will be studied: 

 )ˆ(),ˆ(ˆ xCyLuxfx −+=  (2) 

where L is the observer gain matrix to be designed such that 
exponential convergence of the estimation error xxx ˆ~ −=  
towards zero is obtained.  

B. Existing Methods for Bounded Jacobian Systems 
Previous researchers have developed nonlinear observer 

design techniques suitable for bounded Jacobian systems 
using the mean value theorem [11, 12]. These studies define 
and use Jacobian bounds based on element-wise minimum and 
maximum values of the Jacobian. By considering the 
nonlinear system and observer described in (1) and (2), the 
following results can be summarized from the existing 
methods in literature.  
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Lemma 1: Differential Mean Value Theorem using 
Canonical Basis [11, 12].  

Let )(xf : nn RR → be a function continuous on nRba ∈],[  
and differentiable on convex hull of the set ),( ba  with 
Lipschitz continuous gradient. For ],[, 21 bass ∈ , there exists 

),( baz ∈  such that  
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where nT
n Rie ∈= )0,0,1,0,,0()(  is a vector of the canonical 

basis of nR with 1 at ith component. 
Theorem 1 [11]: If an observer gain matrix L can be 

chosen such that 
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,,,1 ni =∀ and ,,,1 nj =∀ where 
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T
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T
nnij hjeieH = ; 

3) nnZ H ×=  is the state scaling factor, n being 
dimension of the state vector; 

4) maxmax
ijHij HZH =  and minmin

ijHij HZH = ; 
then this choice of L leads to asymptotically stable estimates 
by the observer for the system. 

Theorem 2 [12]: The observer estimation error converges 
exponentially towards zero if there exist matrices 0>= TPP  
and R of appropriate dimensions such that the following LMIs 
are feasible: 
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and the domain 
nnHv

,
is defined by 
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When these LMIs are feasible, the observer gain L is given by 
TRPL 1−= . 

However, these methods do not work for the application of 
vehicle motion tracking, which is the subject of this paper. 
Specifically, the LMI toolbox in MATLAB fails to provide a 
feasible solution for the multiple LMIs that need to be 
simultaneously satisfied in both Theorems 1 and 2. It should 
be noted that an observer gain (and an associated P matrix) 
that satisfy multiple LMIs need to be obtained in both 
methods.  

Hence, a new nonlinear observer design method suitable 
for the vehicle tracking application is presented herein. 

C. Nonlinear Observer 
In this section, we present a modified nonlinear observer 

design method for the nonlinear system described in the 
previous two sub-sections. 

Theorem 3: Consider the nonlinear system (1) and 

observer form (2). If there exist matrices IP ≥ and R of 
appropriate dimensions such that the following problem is 
solvable: 
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Then, the observer gain L is given by 

 TRPL 1−=  (13) 

With this value of the observer gain, the estimation error of the 
observer (2) converges exponentially towards zero. 

Proof: To show this, let the Lyapunov function candidate 
for observer design be defined as xPxV T ~~=  where 0>= TPP  
and nnRP ×∈ . We will require the derivative of V satisfies the 
following differential inequality: 

 VV α2−≤  (14) 

where α is a positive constant. The inequality (14) implies the 
exponential stability condition [13]:  

 texxktxtx α−−≤− )0(ˆ)0()(ˆ)(  (15) 

where k  is a positive constant. From the Lyapunov function 
candidate, the differential inequality (14) can be represented 
as 

 0)~~(2~~~~ ≤++ xPxxPxxPx TTT α  (16) 

Based on (1) and (2), the estimation error dynamics are given 
by 

 xLCuxfuxfx ~),ˆ(),(~ −−=  (17) 

For ],,[ˆ, baxx ∈ the difference of the functions ),ˆ(),( uxfuxf −  
can be presented by using the differential mean value theorem 
for vector functions: 
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where ),( ba∈ζ . Using the notation 
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the dynamics of the estimation error becomes 

 ( )xLCux ~),(~ −Α= ζ  (20) 

Since ζ varies with the value of x and x̂ , Α is an unknown 
and continuously time varying matrix. According to the 
dynamics of the estimation error, (16) becomes 

 0~}2)),(()),({(~ ≤+−Α+−Α xPLCuPPLCux TT αζζ  (21) 

(21) is satisfied when following condition is satisfied: 



  

 02)),(()),(( ≤+−Α+−Α PLCuPPLCu T αζζ  (22) 

By introducing a new variable PLR T= , (22) can be expressed 
as 

 02),(),( ≤+−−Α+Α PCRRCuPPu TTT αζζ  (23) 

Since ζ and u vary infinitely in a given set, (23) gives us 
infinitely many LMIs. This can be reduced to a finite number 
of LMIs using gridding techniques. We fix a finite subset of 
the ζ and u  within its bounds such that 

 
{ }Ngrid uuu ,,1 ∈  
{ }Ngrid ζζζ ,,1 ∈  (24) 

It is noted that the dimension of the grid is proportional to the 
number of varying variables in ζ and u . Also, the points of 
the finite subset need to be chosen sufficiently dense so that 
solving LMIs for the finite subset is equivalent to satisfying 
the original stability condition. Therefore, the observer design 
condition (12) can be obtained. 

Unfortunately, the observer gain L can be arbitrarily large, 
if only the design condition (23) is utilized. Hence, we use the 
following additional specification [14] for L. If (12) with 

0>= TPP  has a solution for P and R, the following condition 
must be satisfied for γ  sufficiently large: 

 γ≤L  (25) 

This means that γ is an upper bound on the norm of the gain 
L. Without loss of generality, we can assume that IP ≥ . Since 

TRPL 1−=  and γ  is sufficiently large, the condition (25) 
becomes 

 IRRPPLLLL TTT γ≤=≤ −1  (26) 

From this, we obtain 

 01 ≥− − TRRPIγ  (27) 

Using the Schur complement, (27) can be represented as (11). 
QED. 

III. VEHICLE MOTION TRACKING PROBLEM 

A. Proposed Vehicle Motion Model 
Previous models used for tracking of vehicle motion in 

active safety or autonomous driving applications have 
primarily involved longitudinal motion variables (and 
sometimes additional lateral position variables) of the vehicle. 
For instance, a popular approach for radar based vehicle 
tracking consists of an interacting multiple model filter with 
two models – a “constant velocity” model and a “nearly 
coordinated turn” model [17]. 

It should be noted that the constant velocity model is only 
applicable to straight line motion and the coordinated turn 
model only applies while turning. Neither model can be used 
for both scenarios and the coordinated turn model, in fact, 
becomes singular when the rotation rate becomes zero. 

Another disadvantage of the above approach is that all the 
three degrees of freedom have independent unknown inputs – 
lateral, longitudinal and orientation variables are all driven by 
unknown terms. 

This paper proposes the use of a single nonlinear model 
that encompasses both straight line and turning motions. 
Considering only planar motion for the vehicle, the motion of 

the vehicle can be described by X, Y and ψ  as shown in Fig. 1. 
X and Y are coordinates of longitudinal and lateral locations of 
the vehicle with respect to the sensor (radar or LIDAR) 
location, and ψ  is orientation angle of the vehicle with respect 
to the X axis. Assuming that the slip angles at the tires are zero 
(but the slip angle of the vehicle itself is not zero), the model 
equations can be described by 
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and  

 aV =  (32) 

where V is the speed of the vehicle, β  is the slip angle of the 
vehicle. fl and rl are the distances from the center of gravity 
of the vehicle to the front and rear wheelbases of the vehicle, 

fδ  is steering angle of front wheel and a  is the acceleration 
of the vehicle. fδ  and a  are unknown inputs. More 
understanding of the nonlinear vehicle model can be found by 
reading [15]. 

The location of the vehicle is assumed to be measured by 
using a radar or LIDAR sensor. Therefore, the output 
equations can be written as 
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Then, the form of the system and output equations above is the 
same as the form of (1) used for the nonlinear observer 
development. 

It should be noted that the “zero slip angle at the tires” 
assumption could be avoided, and a model that assumes the 
tire force as a function of the slip angle could be utilized.  
However, such a model becomes a function of a large number 
of tire and vehicle parameters. Since the vehicle that is 
encountered and is being tracked is unknown, the values of 
these parameters cannot be known. Hence, the above model is 
more appropriate, in spite of the zero-slip-at-tire assumption. 

 
Fig. 1. Vehicle motion model. 



  

It should be noted that this model has two unknown inputs 
(steering angle fδ  and longitudinal acceleration a ). Both of 
these unknown inputs can be assumed to be constants (or 
slowly changing) and equations with their derivates as zero 
can be appended to the dynamic model used for tracking. 

B. Observer Design for Vehicle Motion Tracking 
The nonlinear observer is designed by the proposed 

method in section II. C with the nonlinear vehicle motion 
model (28) – (32). First, ),( uζΑ  in (12) can be computed 
from the Jacobian of the vehicle motion model: 
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The Jacobian has 3 varying variables: V , fδ  and ψ  which 
gridding is required. We aim to track the vehicle motion under 
the following conditions: 1) smVsm / 15/ 5 ≤≤ , 2) 

9/9/ πδπ ≤≤ f and 3) 3/3/ πψπ ≤≤ . Based on these 
conditions, a finite subset (3-dimensional grid) is found. Then, 
we solve (9) – (13) for the observer gain using the LMI 
toolbox in MATLAB. The example of an observer gain 
without the exponential stability condition (i.e., 0=α ) is 
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and with the exponential stability condition using 5.0=α  is 
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Despite the fact that the observer gain is obtained by using 
the vehicle motion model, the observer (2) cannot be directly 
used with the vehicle motion model since the inputs are 
unknown and not measurable. In order to handle this, we 
simply assume that the inputs in the vehicle motion model are 
zero and utilize the vehicle motion model with zero inputs to 
the observer. In other words, the actual vehicle has unknown 
non-zero inputs, but the observer is assumed to have zero 
inputs. 

IV. SIMULATION RESULTS 
The nonlinear observer for vehicle motion tracking 

described in the previous section has first been evaluated 
using simulations. The simulation environment is built using 
MATLAB. 

The three scenarios as shown in Fig. 2 are simulated. The 
trajectories of the vehicle are generated by using the nonlinear 
vehicle motion model. Each trajectory and the inputs for the 
trajectory are shown in Fig. 3, 4 and 5. The initial conditions 
of the observer are set as zero except the values of the outputs 

0X̂  and 0̂Y .  
The estimation results using the nonlinear observer are 

also shown in Fig. 3, 4 and 5. Only small estimation errors are 
present during transient periods. Overall, the proposed 
nonlinear observer provides good performance for vehicle 
motion tracking. The estimates of the vehicle motion 
converge to the true vehicle motion, even with unknown 
steering and acceleration inputs. 

V. EXPERIMENTAL RESULTS 
Experiments are conducted to validate the proposed 

nonlinear observer design in situations corresponding to all the 
three scenarios of Fig. 2, of i) Straight Driving, ii) Lane 
Change and iii) Double Lane Change maneuvers. The Delphi 
Electronically Scanning Radar (ESR) shown in Fig. 6 is used 
for the experimental evaluation. The radar provides vehicle 
radial position information within 174 meters of maximum 
range and ± 45 degrees of maximum field of view [16]. Also, 
the velocity of the target can be obtained from the radar. 
However, we only use the velocity information as a reference 
to compare with the velocity estimate, for the validation of the 
proposed nonlinear observer. A low pass filter is implemented 
to smoothen the vehicle position data obtained from the radar, 
before supplying it to the observer. The radar is installed on a 

 
 

Fig. 2. Three types of vehicle maneuver scenarios. (a) Straight driving, (b) 
Lane change, (c) Double lane change maneuvers. 
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Fig. 3. Simulation results of straight driving maneuver. 



  

tripod and initially located behind the stopped vehicle. Then, 
the vehicle starts moving to execute the scenarios as shown in 
Fig. 2. 

Fig. 7, 8 and 9 show the experimental results for the three 
scenarios. It is shown that the proposed nonlinear observer can 
estimate the vehicle motion based on radar measurements, 
without knowing the steering and acceleration of the vehicle. 
The velocity estimates have good match with reference values 
from the radar system. Also, the estimates from the 
experimental data provides very reasonable evolutions of the 
orientation of the vehicle which are quite similar as the 
orientation results from the simulations.  

VI. CONCLUSION 
A vehicle tracking algorithm that uses a single model to 

represent all possible vehicle motions is presented in this 
paper. By using a single vehicle model, nonlinear observer 
design techniques can be utilized. The developed nonlinear 
observer guarantees exponential stability of the estimates and 
requires less computational effort in estimating trajectories of 
multiple vehicles on the road.  

The developed observer is used to track vehicle motion 
including the lateral and longitudinal positions, velocity and 
orientation of a vehicle. Simulation results were presented to 
show the performance of the developed observer in the 
application of vehicle motion tracking. Experimental results 
were also presented using a radar sensor that measures polar 
distance and azimuth angle as the measurement unit. Both 
simulations and experiments show excellent results in vehicle 
motion tracking on vehicle maneuvers including straight 
driving cars, a lane change maneuver and a double lane change 
maneuver. 
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Fig. 4. Simulation results of lane change maneuver. 
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Fig. 6. Delphi ESR [16]. 
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Fig. 8. Experimental results of lane change maneuver. 
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Fig. 9. Experimental results of double lane change maneuver. 
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