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Abstract Google+ is a directed online social network where nodes have either reciprocal
(bidirectional) edges or parasocial (one-way) edges. As reciprocal edges play an impor-
tant role in the structural properties, formation and evolution of online social networks, we
study the core structure of the subgraph formed by them, referred to as the reciprocal net-
work of Google+ — in a sense, a reciprocal network can be viewed as the stable “skeleton”
network of a directed online social network that holds it together. We develop an effective
three-step procedure to hierarchically extract and unfold the core structure of a network by
building up and generalizing ideas from the existing k-shell decomposition and clique per-
colation approaches. Our scheme produces higher-level representations of the core structure
of the Google+ reciprocal network and it reveals that there are ten subgraphs (“communi-
ties”) comprising of dense clusters of cliques lying at the center of the core structure of the
Google+ reciprocal network. Together they form the core to which “peripheral” sparse sub-
graphs are attached. Furthermore, our analysis shows that the core structure of the Google+
reciprocal network is very stable as the network evolves. Our results have implications in the
design of algorithms for information flow, and in development of techniques for analyzing
the vulnerability or robustness of online social networks.
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1 Introduction

Many online social networks (OSNs) are fundamentally directed: they consist of both recip-
rocal edges, i.e., edges that have already been linked back, and parasocial edges, i.e., edges
that have not been or is not linked back [14]. Reciprocal edges represent the most stable type
of connections or relations in directed network — they reflect strong ties between nodes or
users [21, 24, 33], such as (mutual) friendships in an online social network or “following”
each other in a social media network like Twitter and Google+.

Reciprocity is defined as the ratio of the number of reciprocal edges to the total number of
edges in the network, and it is believed that it plays an important role in the structural proper-
ties, formation and evolution of online social networks. Hence, this metric has been widely
studied in the literature in various contexts, see, e.g., [13-16, 19, 22]. Many studies have
used reciprocity (a single-valued aggregate metric) to characterize massive directed OSNS,
which we believe is inadequate. Instead, we consider the reciprocal graph (or reciprocal
network) of a directed OSN — namely, the bidirectional subgraph formed by the reciprocal
edges among users in a directed OSN (see Figure 1 for an illustration). In a sense, this recip-
rocal network can be viewed as the stable “skeleton” network of the directed OSN that holds
it together. We are interested in analyzing and uncovering the core structural properties of
the reciprocal network of a directed OSN, as they could reveal the possible organizing prin-
ciples shaping the observed network topology of an OSN [13]. For example, using the core,
we can build network models that can help us to understand the topological features of the
nodes and structural properties of the network, as well as, to predict the topological growth
of the network and provide upper bounds of the distance between the nodes — see the jelly-
fish model of the Internet in [31]. Furthermore, unveiling the core structure (referred to as
the “nucleus”) of a reciprocal network may have implications in the design of algorithms
for information flow, and in development of techniques for analyzing the vulnerability or
robustness of OSNs (more in Section 9).

In this paper, we perform a comprehensive empirical analysis of the “core structure” of
the reciprocal network of Google+. Based on a massive Google+ dataset (see Section 2
for a brief overview of Google+ and a description of the dataset), we find that out of more
than 74 million nodes and = 1.4 billion edges in (a snapshot of) the directed Google+
OSN, more than two-third of the nodes are part of Google+’s reciprocal network and more
than a third of the edges are reciprocal edges (with a reciprocity value of roughly 0.31).
This reciprocal network contains a giant connected subgraph with more than 40 million
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Figure 1 Illustration of the reciprocal network (H) of a directed graph (2). Specifically, (B, C), (C, B),
(B, D), (D, B), (D, E), (E, D), (C, E), (E, C) are reciprocal edges; (A, B), (C, A), (D, F), (F, E) are
parasocial edges. The reciprocity of Q2 is 8§/12 = 0.67
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nodes and close to 200 million edges (see Section 3 for more details). Existence of this
massive (giant connected) reciprocal (sub)graph in Google+ raises many interesting and
challenging questions. How is this reciprocal network formed? Does it contain a “core”
network structure? If yes, what does this structure look like?

In an attempt to address these questions, we develop an effective three-step procedure
to hierarchically extract and unfold the core structure of Google+’s reciprocal network,'
building up and generalizing ideas from the existing k-shell decomposition [4] and clique
percolation approaches [27], extending our work in [8]: i) We first apply (a modified ver-
sion of) the k-shell decomposition method to prune nodes and edges of sparse subgraphs
that are likely to lie at the periphery of the Google+ reciprocal network (see Section 4).
The standard k-shell decomposition method has been proposed to extract the “core” of a
network, e.g., that of the Internet AS graph [4]. However, directly applying this method to
the Google+ reciprocal network yields a final graph — a clique of 290 nodes (the maxi-
mum clique of the Google+ reciprocal network) that consists of a close-knit community of
users in Taiwan — which is unlikely to lie at the “core” of the Google+ reciprocal network
(see discussion in Section 7, where we show this clique in fact lies more at the outer ring
of Google+’s dense core structure). Instead, we introduce a new metric, the “dependence
value” for a node that measures the location importance of a node in a network (see Sec-
tion 5). Then, using this metric we propose a modified version of the k-shell decomposition
method by identifying the kc-index where we should stop pruning the network in order to
preserve its core structure. This process yields a dense “core” subgraph of the Google+
reciprocal network with approximately 48K nodes and 6M edges. ii) Given this dense “core”
subgraph, we first compute the maximal clique that each node is part of (using a simplified
Bron-Kerbosh algorithm), and then form a new directed (hyper)graph — a form of clique
percolation [27], where the vertices are (unique) cliques of various sizes, and there exists a
directed edge from clique C; to clique C; if half of the nodes in C; are contained in C; (see
Section 6). This new (hyper)graph provides a higher-level representation of the dense core
graph of the Google+ reciprocal network: the intuition is that the maximal clique containing
each node v represents the most stable structure that node v is part of, and the directed edge
in a sense reflects the “attraction” (or “gravitational pull”) that one clique (constellation)
has over the other. We find that this (hyper)graph of cliques comprises of 1700+ connected
components (CCs). iii) Finally, considering these CCs as the core “‘community” structures
(a dense cluster of cliques) of the Google+ reciprocal network, we define three metrics to
study the relations among these CCs in the underlying Google+ reciprocal network: the
number of nodes shared by two CCs, the number of nodes that are neighbors in the two
CCs, and the number of edges connecting these neighboring nodes (see Section 7). These
metrics produce a set of new (hyper)graphs that succinctly summarize the (high-level) struc-
tural relations among the core “community” structures and provide a “big picture” view of
the core structure of the Google+ reciprocal network and how it is formed. In particular,
we find that there are ten CCs that lie at the center of this core structure through which the
other CCs are most richly connected. We also find that the core structure of the Google+
reciprocal network is very stable as the network evolves (see Section 8). We discuss impli-
cations and related work in Sections 9 and 10. In Section 11, we conclude the paper with a
brief discussion of the future work.

We summarize the major contributions of our paper as follows. To the best our knowl-
edge, our paper is the first study on the core structure of a “reciprocal network™ extracted

10ur methodology can also be applied to others online social networks
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Table 1 Main characteristics of Google+ snapshots: (start-date, duration) — I'y: (24-08-12, 17 days), I'»:
(10-09-12, 11 days) and I'3: (20-06-13, N/A)

D # nodes # edges max(in) max(out) Reciprocity Density

I 74,419,981 1,396,943,404 2,289,874 9,981 0.31 2.52 x 1077
I 97,150,410 1,849,319,588 3,463,060 9,872 0.27 1.95 x 1077
I3 170,830,352 2,937,087,979 5,089,789 10,840 0.23 1.01 x 1077

from a massive directed social graph. While this paper focuses on Google+, our approach
is also applicable to other directed OSNs.

We propose a new metric, the dependence value, that measures the location importance
of a node in the network. Using this metric, we therefore modify the standard k-shell
decomposition method to stop the process earlier, in order to extract a meaningful
“core” for social networks

We develop an effective three-step procedure to hierarchically extract and unfold the
core structure of a reciprocal network arising from a directed OSN.

We apply our method to the reciprocal network of the massive Google+ social net-
work, and unfold its core structure. In particular, we find that there are ten subgraphs
(“communities”) comprising of dense clusters of cliques that lie at the center of the
core structure of the Google+ reciprocal network, through which other communities
of cliques are richly connected; together they form the core to which other nodes and
edges that are part of sparse subgraphs on the peripherals of the network are attached.
We observe that the core structure of the Google+ reciprocal network is very stable
as the network evolves: the size of the core communities (hyper)graph increases as the
network evolves, as well as, its density. Additionally, the set of nodes that participates
in the core is very stable over time, with few percentage of nodes (e.g: 5% and 9%) that
move away from the core to the periphery as the network evolves.

We observe that the number of communities lying at the center of the core structure
of the Google+ reciprocal network is also very stable: it increases from 10 to 11 core
communities across snapshots H; — H; and from 11 to 13 core communities across
snapshots H, — H3 in the core communities (hyper)graphs.

2 Google+ overview and dataset

In this section, we briefly describe key features of the Google+ service and a summary of
our dataset.

Table 2 Main characteristics of the LWCC of Google+: (start-date, duration) — 21: (24-08-12, 17 days),
©2:(10-09-12, 11 days) and ©23: (20-06-13, N/A)

D # nodes # edges max(in) max(out) Reciprocity Density

Q) 66,237,724 1,291,890,737 1,822,999 9,981 0.34 2.94 x 1077
Q) 84,789,166 1,633,199,823 2,579,551 9,872 0.30 227 x 1077
Q3 145,478,563 2,548,275,802 3,793,031 10,840 0.26 1.20 x 1077
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Platform description On June 2011 Google launched its own social networking ser-
vice called Google+. The platform was announced as a new generation of social network.
Previous works in the literature [15, 16] claim that Google+ cannot be classified as par-
ticularly asymmetric (“Twitter-like”), but it is also not as symmetric (‘“Facebook-like”)
because Google+ features have some similarity to both Facebook and Twitter. Therefore,
they labelled Google+- as a hybrid online social network [15]. Similar to Twitter (and dif-
ferent from Facebook) the relationships in Google+ are unidirectional. In graph-theoretical
terms, if user? x follows user y this relationship can be represented as a directed social edge
(X, y); if user y also has a directed social edge (y,x), the relationship x, y is called symmetric
[29]. Similar to Facebook, each user has a stream, where any activity performed by the user
appears (like the Facebook wall). For more information about the features of Google+ the
reader is referred to [17, 18].

Dataset We obtained our dataset from an earlier study on Google+ [16]. The dataset is a
collection of three massive directed graph (denoted as I';, fori = 1, 2, 3) of the social links
of the users® in Google+, collected from August, 2012 to June, 2013. We use Breadth-First-
Search (BFS) to extract the largest weakly connected component (LWCC) of I';. We label
the extracted LWCC as subgraph €2;. Since the users €2; form the most important component
of the Google+ network [16], we extract the reciprocal network of Google+ from the 2;
subgraph (see Section 3). The main characteristics of I'; and €2; are summarized in Tables 1
and 2, where each snapshot represents a complete graph of the social relations among all
users in Google+ and density is defined as |E|/[|V|(|V| — 1) for a directed graph, and
2|E|/[1VI(IV|—1) for an undirected graph — here | V| is the number of nodes and | E| is the
number of edge. We observe that reciprocity and density decrease for both I'; and €2;. This
is due to the fact that new users joining Google+ tend to be less “social” and they make
fewer connections as the network evolves — findings reported by the authors in [9].

3 Overview of the reciprocal network

In this section, we first describe our methodology to extract the reciprocal network of
Google+.* We then provide a brief overview of some global structural properties of the
reciprocal network. Firstly, to derive the reciprocal network of Google+, we proceed as fol-
lows: from €2, we extract the subgraph composed of nodes with at least one reciprocal edge.
We label this new subgraph as G. However, G is not a connected subgraph. Hence, we use
BFS (breadth-first-search) to extract its largest connected component (LCC); we label this
new subgraph as H. In this paper, we consider this subgraph H as the “reciprocal network™
of Google+.> The main statistics of subgraphs H; are listed in Table 3.

Figure 2 shows the complementary cumulative distribution function (CCDF) of the
degrees of nodes in the subgraphs H; — we note that they represent the mutual degrees or

2In this paper we use the terms “user” and “node” interchangeable

3Google+ assigns each user a 21-digit integer ID, where the highest order digit is always 1 (e.g.,
100000000006155622736)

“For clarity of notation, we sometimes drop the subscript index i from the subgraphs notations, unless we
are referring to a specific snapshot i

31t contains more than 90% of the nodes with at least one reciprocal edge in Google+. Hence, our analysis
of the dataset is eventually approximate
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Table 3 Main characteristics of

the reciprocal network of ID # nodes # edges max(degree) Density
Google+: H
H, 40,403,216 197,838,519 4,294 242 x 1077
H; 49,161,409 226,373,003 4,425 1.87 x 1077
H3 74,539,728 327,204,637 4,743 1.78 x 1077

reciprocal degrees of the same nodes in €2;. For comparison, we also plot the CCDFs of the
in-degrees and out-degrees for these nodes in £2;. We can see that these curves have approxi-
mately the shape of a power law distribution. The CCDF of a power law distribution is given
by Cx™“ and x, @, C > 0. By using the tool in [6, 10], we estimate the exponent « that
best models each of our distributions. We obtain o = 2.72 for mutual degree, « = 2.41 for
out-degree and o = 2.03 for in-degree distributions. We observe that the mutual degree and
out-degree distributions have similar x-axis range and the out-degree curve drops sharply
around 5000. We conjecture that this is because Google+ maintains a policy that allows
only some special users to add more than 5000 friends to their circles [25]. The observed
power-law trend in the distributions implies that a small fraction of users have a dispropor-
tionately large number of connections, while most users have a small number of connections
— this is characteristics of many social networks.

4 Extracting the nucleus of the reciprocal network using K-Shells

K-shell decomposition is a classical graph decomposition technique which has been used
as an analysis and visualization tool to extract and study the “core” structure of complex
networks, such as that of the Internet AS graph [4]. In this method, nodes are assigned a k-
shell index according to their remaining degree, after pruning all nodes with degree smaller
than the k value of the current shell. More specifically, this method works as follow: a)
first, remove all nodes in the network with degree 1 (and their respective edges) — these
nodes are assigned to the 1-shell; b) more generally, at step k = 2, .. ., remove all nodes in
the remaining network with degree k or less (and their respective edges) — these nodes are
assigned to the k-shell; and c) the process stops when all nodes are removed at the last step
— the highest shell index is labelled k4. At the end of the k-shell decomposition process,
each node v is assigned with a unique k-shell index, denoted by shell(v). The network can
be viewed as the union of all k,,,, shells — see Figure 3 (note that this is distinct from k-core
decomposition® defined in the literature [1, 2], more in Section 10). The complexity of this
procedure is O(V + E) for a general graph.

For each k, we define the k-core (Cy) as the union of all shells with indices larger or equal
to k or as the maximal induced subgraph C; C G such thatif v € Ci, then node v must have
at least k + 1 neighbors that belong to Cy_1 and degk(v) > 0 (we use deg(v) to denote the
degree of v in the network and deg® (v) to denote the degree of v in Cy). Similarly, k-shell
(Sx) can be defined as the subgraph induced by the set of nodes with d¥~!(v) < k and if
ve Sy — degk(v) = 0.

Clearly, for a node to belong to the k-core (thus shell(v) > k), it must have at least
degree k, i.e., deg(v) > k. However, deg(v) > k is not sufficient to guarantee it to belong

SWhich simply removes all nodes with degree less than k in a graph
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Figure 2 Log-log plot of a mutual degree, b in-degree and ¢ out-degree complementary cumulative distri-
bution functions (CCDF) for several snapshots of the reciprocal network of Google+ (subgraphs H;,i = 1,2
and 3). All distributions show properties consistent with power-law networks

to the k-core. For example, a node v with only neighbors of degree 1 (i.e., v is the root of
a star structure) belongs to the 2-shell, i.e., shell(v) = 2, no matter how high its degree
is. On the other hand, it is easy to see that if a node v is part of a clique of k nodes, then
shell(v) > k. However, a node v does not need to be part of a k-clique to have shell (v) > k.
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Figure 3 A schematic representation of a network under k-shell decomposition: the network can be viewed
as the union of shell 1 up to k;,qx = 3. The innermost core of the network is highlighted by the blue circle
(the largest shell index: 3)

Consider a tree T of n nodes (the sparsest graph with n nodes). We can in fact provide a
complete characterization of nodes in T to have shell(v) > k in a recursive manner: for v
to have shell(v) > k, it must have at least k-neighbors u’s with shell(u) > k — 1 — this
characterization also applies to a general graph. We see that in the case of a tree, nodes with
higher k-shell indices must lie more at the “core” (i.e., the increasingly “denser” part) of the
tree. For a general graph, however, a node with a high k-shell index may not lie at the “core”
of the graph: it can be part of a large clique that is “isolated” on a periphery of a massive
graph. In such a case, the large clique will break off from the “core” of the network (e.g., as
represented by the largest connected component remaining in the k-core) in the early stage
of the k-shell decomposition process.

We apply the k-shell decomposition method to the Google+ reciprocal network for sub-
graph H; (we analyze the other subgraphs in Section 8). We find that the k,,,, = 308, and
the k;,qx-core is a clique of size 290 nodes (the maximum clique in the Google+ recipro-
cal network). Figure 4 shows the number of nodes belonging to the k-shell as k varies from
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Figure 4 The k-shell decomposition method on the reciprocal network of Google+ (subgraph Hj). For each
k-shell, we plot the number of nodes belonging to the k-shell as k varies from 1 to k4 = 308
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1 to 308: we see that 99% of the nodes in our network fall in the lower k-shells (from k = 1
to 100). This is not surprising, as the majority of the nodes in our network have degree less
than 100. Figure 5a shows the average degree of nodes in the k-shell, whereas in Figure 5b
we zoom in on nodes with deg(v) > 1000, and illustrate how they distribute across various
k-shells. We see that while a large portion of high-degree nodes belong to higher k-shells,
in fact the highest degree nodes belong to lower k-shells, suggesting that they do not lie at
the “core” of the Google+ reciprocal network.

Figure 6 shows the size of the largest as well as those of the 2nd, 3rd and 4th largest
connected components in the k-core, as k varies from 1 to 308. We note that at step k = 121,
a small subgraph containing the maximum clique (of size 290) breaks off from the largest
connected component which dissolves after k = 253, whereas this subgraph containing the
maximum clique persists after k = 252 and becomes the largest component, and at k,,, =
308, we are left with the maximum clique plus 10 additional nodes that are connected to the
maximum clique. Closer inspection of nodes in the maximum clique reveals that its users
belong to a single institution in Taiwan, forming a close-knit community where each user
follows everyone else. We see that directly applying the standard k-shell decomposition to
the Google+ reciprocal network produces a clique of size 290, which we believe is unlikely
to be the “core” of the Google-+ reciprocal network.
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Figure 5 The k-shell decomposition method on the reciprocal network of Google+ (subgraph Hj). We plot
the degree distributions for nodes in the k-shells, as k varies from 1 to k., = 308: a average degree of nodes
in the k-shells, b we zoom in on nodes with deg(v) > 1000, and illustrate how they distribute across various
k-shells
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Figure 6 The k-shell decomposition method on the reciprocal network of Google+ (subgraph Hj). For each
k-core subgraph, we plot the size of the largest as well as those of the 2nd, 3rd and 4th largest connected
components (LCC) in the k-core, as k varies from 1 to ky,qx = 308. At k-core=121, the 2nd LCC contains
the maximum clique of the network and it becomes the Ist LCC in the network after k-core=252. This
component persists up to kyqx = 308 (the network nucleus)

From this result, we see that directly applying the standard k-shell decomposition to
Google+’s reciprocal network produces an “innermost” structure that does not represent the
“core” of this network. This is due to the fact that at a certain k-index, we reach the vicinity
of the core; but going far beyond this index would destroy the core structure of the network.

5 The Dependence value and the network core subgraph

In order to extract a meaningful “core” of the Google+ reciprocal network, we therefore
modify the standard k-shell decomposition method to stop the process earlier. To achieve
this, we propose a new metric that provides important information about the structural
function of each node in the graph (we label it as “dependence” value) at each k-step:

The dependence value of node v at step k is defined as follows: for v € V, dep® (v, B) =
Oandfork =1,...,c(v),

dep* (v, B) := dep ™' (v, B) + 8 () + B x Byewknldep* ™ (u, B)] ()

where f is a control parameter, 0 < 8 < 1; N¥(v) is the set of neighbors of node v that are
removed at step k, and 8% (v) = | N¥(v)|. The dependency of node v is recursively defined by
measuring the number of nodes u (the ~-hop neighbors of v, h = 1, ..., k) that are removed
in earlier steps up to k = c(v) — the coreness of node v (and for k > ¢(v), by convention,
we define dep* (v, B) = dep*™ (v, B)).

Intuitively, dep* (v, B) captures the number of nodes recursively dependent on v that
have been removed in earlier steps up to k. With 8 = 0, we note that dep* (v, 8) captures
the number of v’s neighbors removed at each step up to k, and for k > c(v), depk(v, B) =
deg(v) = Y, 8(v), the degree of node v. With 8 > 0, depk(v, B) captures not simply the
dependence of its neighbors, but that of its neighbors’ neighbors, and so forth. However,
the number of nodes u removed at each step up to k does not influence the dependence
value of the node v uniformly. Their contribution is weighted by the parameter 8 in (1). The
parameter 8 quantifies the contribution of node u to the total dependence value of node v.
More precisely, at the kth-step, we multiply the number of 4-step removed neighbors of v
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by "~ (see the proof in the Appendix). Thus, the further a node u is to node v, the less
it will contribute to the total dependence value of node v. Hence, a node v having more
nodes u with high dependence values in its vicinity will also have a high dependence value,
creating the dependency propagation effect.

Given (1), the dependence values of any v € V grows as k increases (more nodes are
removed as we move from the periphery of the graph to its core). We posit that the network
core should contain only nodes with very high dependence values. Hence, when we reach
the vicinity of the network core, the nodes’ dependence value will grow significantly as we
increase k further, due to the dependency propagation effect. From this intuition, we develop
the following empirical heuristic for terminating the k-shell decomposition process: for any
graph G with a dense core structure, we should stop the k-shell decomposition method at the
k-index (kc ), where we observe a very sharp increase (largest “upward slope” or “gradient
ascent”) in the average dependence values of the nodes in the k-core graphs or k-shells of
G, as k increases from I up to kyqx.

Our approach to calculate the dep(v, B) score for node v is dependent on the k-shell
decomposition method and degree computation which have a complexity of O(V + E).
Then, given that the degree and coreness of each node are known, our procedure has a
complexity of O(E). Therefore, our methodology is highly scalable and can be applied
to massive networks. Figure 7 shows the average dependency value per k-shell index for
our massive Google+ reciprocal network (subgraph Hp). The parameter § is set to 0.25
(see the Appendix for a discussion on the selection of this parameter). Applying the cri-
teria described above, we therefore terminate the k-shell decomposition at k¢ = 120,
which yields the kc-core graph with k¢ = 120: this core graph Gy has 48,229 nodes
and 6,378,596 edges, with an average degree of 132 and a density of approximately
0.00548, which is much greater than that of the reciprocal network H; as a whole. Figure 8
shows the degree distribution of the nodes in the 120-core graph (note that degree here
refers to that of a node in Gy, the 120-core graph after the kcth shell decomposition
process, it is not the (original) degree of the node in the Google+ reciprocal network).
From Figure 5a and b, we see that G is comprised of many nodes with (original)
high degrees in the Google+ reciprocal network, with an average (original) degree of
roughly 500.
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o
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k-shell index
Figure 7 Log-log plot of the average dependency values for the reciprocal network of Google+ (subgraph

Hj). We plot the normalized average dependence value for the nodes in the k-shells, as k varies from 1 to
kmux =308
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Figure 8 Degree distribution for nodes in subgraph Gy extracted from H;. Note that degree here refers to
that of a node in G120, the 120-core graph after the kc-th shell decomposition process, it is not the (original)
degree of the node in the Google+ reciprocal network

6 Constructing the core clique (Hyper)graph

Given the dense “core” subgraph Goo (extracted in the previous section), how can we
uncover its structure? To answer this question, we consider “maximal cliques” as the basic
atomic (sub)structures of the network nucleus. Then, we extract the minimal set of the
largest maximal cliques that cover every node in G1s¢. Using these cliques substructures,
we build a (hyper)graph as a higher-level representation of the nucleus’ of a network. To
achieve this, we proceed as follows:

First, to find the largest maximal clique containing a given vertex in a network, we imple-
ment Algorithm 1. It uses a variation of the popular Bron-Kerbosh algorithm [5] (we denote
it as Simplified Bron-Kerbosh (SBK)) to extract maximal cliques. During the search for the
largest maximal clique containing a given vertex v (thereafter referred to as CV in short),
our heuristic removes the vertices that cannot form cliques larger than the clique stored in
the variable C,,,,. Furthermore, our algorithm considers only the set of neighbors of v that
share at least one edge to another vertex adjacent to v at each step, instead of recursively
considering all neighbors of v, and thus is much faster. This set (denoted by N i(v)) is sorted
in decreasing order based on the number of shared neighbors between v and u € N'(v)
for the following reason: in a relatively fairly connected subgraph, a vertex with the largest
number of shared nodes with v is more likely to be a member of C¥ compared to any other.
Then, in the worst case, Algorithm 1 loops over the complete set N’ (v) at most A (max
degree in the graph), calling the subroutine SBK at most A . Thus, the time complexity of
our heuristic is bounded by O(A?). Using algorithm 1, we develop a procedure to extract
the minimal set of the largest maximal cliques that cover every node in a given graph (Algo-
rithm 2). The resulting set of cliques returned from this method is always guaranteed to
contain at least a unique node per clique. We apply this procedure to subgraph G179 and
obtain 34,501 maximal cliques with an average clique size of 23.03 nodes. Figure 9 shows
the clique size distribution.

7In this paper we use the terms “core” and “nucleus” interchangeable
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Figure 9 Log-log plot of clique size complementary cumulative distribution function (CCDF) for the core
subgraph G190 (extracted from Hj) — we extract these cliques using algorithms 1 and 2

Algorithm 1 Largest maximal clique extraction algorithm (LC)

1: Input: node u

2: Output: largest maximal clique containing u
3: R : currently growing maximal clique

4: P := NJu]: set of neighbors of vertex u

5: procedure LC(u)

6: N () = {w;, wi, ...|wi=i j.. € N@) \d“(w;) > d"(w;)}
7: Chax =0

8: max =0

9: for w € N (u) do

10: R = [u]

11: P = Nlw]

12: C = SBK (R, P, max)
13: k = size(C)

14: if K > max then

15: Chpax =C

16: max =k

17: return C,,

Subroutine: Simplified Bron-Kerbosh (SBK)

18: procedure (SBK)R, P, max
19: if size(R) + size(P) < max then

20: return > it is not possible to find a clique larger than max
21: else if P := 0 then

22: report R as a maximal clique

23: else

24: Let uyeq be the vertex with highest number of neighbors in P

25: Ryew = R U {unew}

26: Ppew := P N Nlupey]

27: SBK(Ryew Prew, max)
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Algorithm 2 Extract minimal set of maximal cliques from a graph

procedure EMC(G(V, E))
: constructaset Wand W :=V

1:

2

3 construct a ordered list S of the nodes in V based on their degree (decreasing order)
4: select the first item in S, vertex i, as the pivot

5: apply the LC algorithm using i as the pivot vertex

6 add the reported maximal clique ¢; containing i to the clique set C;pra1 = [cns Cm» -]
7 remove the nodes in ¢; from W : W; = W; —¢;

8: select the next item in S, vertex j, as the next pivot vertex such that j & Cy,q and
repeat steps(5), (6) and (7) until W = ¢

Second, using the extracted 34,501 maximal cliques, we generate a new directed
(hyper)graph, where the vertices are (unique) cliques of various sizes, and there exists a
directed edge from clique C; to clique C; if more than half of the nodes in C; are con-
tained in Cj, i.e., C; — C; if (G| N |C;])/|ICi] = 6 = 0.5. We vary the parameter ¢
from 0.5 to 0.7, and find that it does not fundamentally alter the connectivity structure of
the (hyper)graph of cliques thus generated. We remark that the maximal clique containing
each node v can be viewed as the most stable structure that node v is part of. The directed
(hyper)graph of cliques captures the relations among these stable structures each node is
part of: intuitively, each directed edge in a sense reflects the “attraction” (or “gravitational
pull”) that one clique (a constellation of nodes) has over the other. Hence, this (hyper)graph
of cliques provides us with a higher-level representation of the dense core graph of the
Google+ reciprocal network — how the most stable structures are related to each other. This
procedure can be viewed as a form of clique percolation [27].

We find that this (hyper)graph of cliques comprises of 1,758 connected components
(CCs). The largest component has 2,618 cliques, 3,295 nodes and 437,867 edges, while
the smallest has 1 clique, 3 nodes and 3 edges respectively. We regard these connected
components (CCs) as forming the core communities of the core graph of the Google+ recip-
rocal graph: each CC is composed of either one single clique (such a CC shares few than
half of its members with other cliques or CCs), or two or more cliques (stable structures)
(where one clique shares at least half of its member with another clique in the same CC,
thus forming a closely knit community). Figure 10a shows the distributions of these com-
ponents in terms of the number of cliques, the number of nodes and the number of edges.
We observe that for CC id’s from 1 to 100 (which contains 30 or more cliques), there is a
strong correlation between the number of cliques, nodes and edges: in general the connected
components with the highest number of cliques also have the highest number of nodes
and edges.

Figure 10b shows the maximum, minimum, average and 75% percentile of clique size
for each CC. We observe that there is not a relationship between the number of cliques and
their respective sizes in the CCs. We observe that most cliques have sizes between 10 and
100 nodes. There are largest CCs composed with a huge number of cliques of small size
(e.g., CC ids from 1 to 10), whereas there are also small CCs composed with few number
of cliques but with very large sizes (e.g. CC ids: 31, 44, and 47). We note also that there are
a number of CCs which contain only one clique, but some of these cliques are of large size
also.
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Figure 10 Statistics of the connected components in the (hyper)graph of cliques constructed from the core
subgraph G0 (extracted from Hp): a distribution of the number of cliques, nodes and edges and b dis-
tribution of the clique size in terms of the maximum, minimum, average and 75% percentile of the clique
size

7 Analysis of the core community (Hyper)graph & its structure

We now investigate the relationship between the connected components (CCs) in our clique
(hyper)graphs constructed in the previous section (Section 6), in particular the 70th largest
CCs. Recall that we regard the CCs in the clique (hyper)graphs as forming the core com-
munities within Google+ reciprocal network nucleus — each CC represents a dense cluster
of cliques. In this section, we define three metrics to study the relations among these CCs
in the underlying Google—+ reciprocal network:

— Shared Nodes: the number of nodes that CC; and CC; have in common:

S(CC;,CCj) = |fu € Viu € CCi,u € CCj}| )

@ Springer



World Wide Web

Figure 11 (Hyper)Graphs for
the core communities (extracted
from G199) of the reciprocal
network of Google+: snapshot -
H;. The color intensity of a CC
is proportional to its degree. The
CC highlighted in “red” is the
core subgraph yielded by directly
applying the standard k-shell
decomposition to Google+’s
reciprocal network. However, our
core communities (hyper)graphs
show that this structure in fact
does not lie at the very “center” —
instead lies more at the outer ring
— of the core graph of the
Google+ reciprocal network.
Structural relation among the
core communities (CCs) based
on the number of a shared nodes:
anode represents a CC and an
undirected edge CC; — CC;
denotes that both components
share at least one node;

b cross-edges: a node represents
a CC and a directed edge

CC; — CC; implies that CC;
has the largest number of cross
edges to nodes in CC; and

¢ neighboring nodes: a node
represents a CC and a directed
edge CC; — CC; implies that
CC; has the largest number of
neighboring nodes with CC;
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— Shared Neighbors: the number of nodes in CC; that have an edge to another node in
CC]‘:
N(CC;i,CCj) ={u € CC;,|Fv € CCj : (u,v) € E}| 3)

—  Cross-Edges: the number of cross edges between two connected components (CC; and
CCj):
B(CC;,CCj) =|{(u,v) € Elv € CCj,u € CCj} @

These metrics produce a set of three new (hyper)graphs that succinctly summarize the
(high-level) structural relations among the core community structures: 1st) a node represents
a CC and an undirected edge CC; — CC; denotes that both components share at least one
node; 2nd) a node represents a CC and a directed edge CC; — CC; denotes that CC;
has the largest number of cross edges to nodes in CCj; 3rd) a node represents a CC and a
directed edge CC; — CC; implies that CC; has the largest number of neighboring nodes
to nodes in CC ;. These (hyper)graphs provide a “big picture” view of the core graph of the
Google+ reciprocal network and yield insights as to how it is formed.

Figure 11a, b, and ¢ show the (hyper)graphs of the relationship between the components
based on the number of shared nodes, cross-edges and shared neighbors. These figures show
that there are ten subgraphs (“core communities”) comprising of dense clusters of cliques
that lie at the center of the nucleus of the Google+ reciprocal network, through which other
communities of cliques are richly connected. Then, the 1,758 connected components (CCs)
in the clique (hyper)graph form the core graph of the Google+ reciprocal network, to which
other nodes and edges that are part of sparse subgraphs on the peripherals of the network
are attached. Table 4 shows a summary of the statistics for the ten CCs, respectively. We
observe that the largest CC has 2,618 cliques, 3,295 nodes and 437,867 edges, while the
smallest has 69 cliques, 297 nodes and 22,629 edges. The set of components in Table 4
contains some of the largest CC in our clique (hyper)graph.

From Figure 11a, b, and c, we observe that in the periphery of our core communities
(hyper)graphs, we find a small CC composed with 36 of the largest cliques in the Google+
reciprocal network. The average, minimum and maximum sizes of the cliques in this CC
are 227, 105 and 290 — the latter is the maximum clique of the Google+ reciprocal network.
This CC is highlighted by a “red circle” in the (hyper)graphs in Figure 11. It shows this

Table 4 Summary of the statistics for the ten components that lie at the center in the core graph of the
reciprocal network of Google+

ID #c # nodes # edges avg |c| max |c| min |c| 75% percentile
1 2,618 3,295 437,867 30.0 47 4 25
2 2,745 3,256 494,867 20.2 46 5 26
3 2,437 3,059 499,356 255 47 5 30
4 2,324 2,877 416,098 20.2 42 7 25
5 2,340 2,737 449,225 24.3 56 6 32
7 1,040 1,362 146,151 29.2 55 5 40
15 513 923 60,191 16.0 33 6 20
22 473 808 32,031 10.0 23 4 11
37 262 396 14,324 9.2 15 4 10
47 69 297 22,629 50.3 139 5 73

Together they form the core to which “peripheral” sparse subgraphs are attached
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Table 5 Main characteristics of

the core subgraph (G¢) for the H; ke # nodes # edges avg(d) Density

reciprocal network of Google+

across several snapshots 1 120 48,229 6,378,596 132 0.00548
120 52,904 6,737,630 127 0.00482
130 94,112 14,260,691 152 0.00322

CC lies more at the outer ring of Google+’s dense core structure. As mentioned earlier in
Section 4, the 290 users in this maximum clique of the Google+- reciprocal network belong
to a single institution in Taiwan where every user follows every other. The users in this
clique also form close relations with many other users, forming 35 other cliques. Together,
these 35 cliques form a close-knit community. However, we see that this community in fact
does not lie at the very “center” — instead lies more at the outer ring — of the core graph of
the Google+ reciprocal network. Hence, we see that simply applying the conventional k-
shell decomposition method to the Google+ reciprocal network would yield the maximum
clique in the Google+ reciprocal network, but not its core structure. In contrast, the ten CCs
mentioned above more likely lie at the “center” of the core graph of the Google+- reciprocal
network.

8 Evolution of the core community (Hyper)graph

We now analyze how the core structure of the Google+ reciprocal network evolves over
time using the remaining snapshots of subgraph H (H,=23). To achieve this, we apply our
methodology to uncover the core communities (hyper)graph for H;. Table 5 shows the kc-
indices where we stop the k-shell decomposition method and provides statistics for the core
subgraph (G ¢) of the reciprocal network of Google+ across three different snapshots. We
observe that the size of the nucleus increases as the network evolves, as well as, its density —
although, we see a slight decrease at H» (this correlates with the release of a new Google+-
feature reported by the authors in [9]). Table 6 provides statistics for the core communities
(hyper)graphs. We observe that the number of cliques in the core subgraph (G¢) increases
as the network evolves. Similarly, the number of core communities (CC) and the size of the
largest CC in the clique (hyper)graph increase as the network evolves. In contrast, the size
of the smallest CC remains the same across all the snapshots.

Analyzing the nodes that are found in the nucleus, we find that the set that participates
is very stable over time. We find changes consisting of a few percentage of nodes that
moved from the nucleus to a lower k-shell as the network evolves: 9% from H; — H»
and 5% from Hy, — H3. We also observe that the main structure of the core communities
(hyper)graph is stable across all the snapshots: it consists of dense clusters of cliques that

Table 6 Main statistics of the

core communities (hyper)graphs ~ Hi #e avg|c| #CC max|CC]| min|CC|
for H;: ¢ — cliques; CC —
connected components 1 34,501 23.03 1,758 2,618 1

38,055 20.68 2,221 2,487 1

65,101 24.96 3,802 6,217 1
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lie at the center of the core graph, through which other communities of cliques are richly
connected. Additionally, we observe that the number of the most central communities in
the core communities (hyper)graphs is also very stable: it increases from 10 to 11 across
snapshots H; — H» and from 11 to 13 across snapshots H> — H3. Lastly, we see that the
community containing the “maximum clique” remains in the periphery of the core subgraph
as the network evolves — see Figures 12 and 13 for illustrations.

9 Implications

So far, we have demonstrated that our method can effectively uncover and extract the
nucleus of the Google+ reciprocal network based on large-scale dataset. In this section, we
discuss the implications of our method and results. While our findings are likely applica-
ble to many different applications, we concentrate on their effect on the identification of
influential spreaders, network formation, design and robustness:

Influential spreaders The “coreness” centrality or k-shell index has been argued to be a
better measure than node degree for identifying influential spreaders in a network [12, 23].
However, our results show that using k-shell indices as a predictor of spreading influence
of a node can be misleading. This is due to the fact that for a node to have a high k-shell
index, it just needs to be a part of a very strong structure (e.g., a clique). This structure,
however, may be isolated and lie at the edge or periphery of the network, instead of its core
(see Section 4). Our analysis shows that the dependency value of a node, dep* (i), provides
important information about the structure function of each node in the graph. Thus, we
believe that by using a node dependency value along with its k-shell index (dep, k), we
can better predict the spreading influence of a node than simply using its k-shell index. We
will investigate this in the future.

Network formation A network core gives a well-defined starting point and a way to
explore the network topology systematically. For example, a network can be reconstructed
layer by layer from the core to its periphery. Then, topological features of the nodes and
structural properties of the network can be measured at each layer. Furthermore, using the
core, we can build macroscopic models of the network that can help us predict the topo-
logical growth of the network and provide good upper bounds of the distance between the
nodes — see the jellyfish model of the Internet in [31]. Therefore, unveiling the core struc-
ture of networks can help us uncover and understand possible organizing principles shaping
the observed network topological structure and network formation.

Network design Observing the evolution patterns of the core structure of social networks
can give insights for the design of future social networks by other social networking service
providers who would like to enter the market. Furthermore, it can also help applications for
social networks to be designed to take advantage of the network core properties.

Network robustness Robustness is often defined as the ability of a network to continue
to function when it is subject to failures. Uncovering the core structure of networks is fun-
damental in the development of techniques for analyzing the vulnerability or robustness of
networks. For example, in Google+- the tight core coupled with high link reciprocity implies
that users in the core appear on large number of the shortest paths in the network. Thus, if
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Figure 12 (Hyper)Graphs for
the core communities (extracted
from G199) of the reciprocal
network of Google+: snapshot -
H,;. The color intensity of a CC
is proportional to its degree. The
CC highlighted in “red” is the
core subgraph yielded by directly
applying the standard k-shell
decomposition to Google+’s
reciprocal network. However, our
core communities (hyper)graphs
show that this structure in fact
does not lie at the very “center” —
instead lies more at the outer ring
— of the core graph of the
Google+ reciprocal network.
Structural relation among the
core communities (CCs) based
on the number of a shared nodes:
anode represents a CC and an
undirected edge CC; — CC;
denotes that both components
share at least one node;

b cross-edges: a node represents
a CC and a directed edge

CC; — CC; implies that CC;
has the largest number of cross
edges to nodes in CC; and

¢ neighboring nodes: a node
represents a CC and a directed
edge CC; — CC; implies that
CC; has the largest number of
neighboring nodes with CC;
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Figure 13 (Hyper)Graphs for
the core communities (extracted
from G130) of the reciprocal
network of Google+: snapshot -
Hj. The color intensity of a CC
is proportional to its degree. The
CC highlighted in “red” is the
core subgraph yielded by directly
applying the standard k-shell
decomposition to Google+’s
reciprocal network. However, our
core communities (hyper)graphs
show that this structure in fact
does not lie at the very “center” —
instead lies more at the outer ring
— of the core graph of the
Google+ reciprocal network.
Structural relation among the
core communities (CCs) based
on the number of a shared nodes:
a node represents a CC and an
undirected edge CC; — CC;
denotes that both components
share at least one node;

b cross-edges: a node represents
a CC and a directed edge

CC; — CC; implies that CC;
has the largest number of cross
edges to nodes in CC}; and

¢ neighboring nodes: a node
represents a CC and a directed
edge CC; — CC; implies that
CC; has the largest number of
neighboring nodes with CC;
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malicious users are able to penetrate the core, they can destroy or remove the hubs of infor-
mation flow (core nodes) in the network. Hence, disrupting the functionally of the network.
Then, by strengthening the defenses in the core subgraph, we can increase the robustness of
the social networks.

10 Related work

One of the most popular quantitative methods to investigate core-periphery structure was
proposed by Borgatti and Everett in 1999 [3]. Based on this study, several methods for iden-
tifying the core-periphery of a network have been proposed [7, 20, 28]. These algorithms
attempt to determine which nodes are part of a densely-connected core and which are part
of a sparsely connected periphery by solving some complex optimization problem. In con-
trast, some studies simply define the network “core” as the maximal clique composed of the
highest degree nodes in a network [31], while other studies focus instead on some notion
of connectivity information (e.g. betweenness, closeness, etc.) to find the core and periph-
ery of a network [7, 20, 26, 30]. Consequently, most of these methods are computationally
expensive and do not scalable to large networks.

O O
O- -0
O O

Figure 14 Example networks of double star and binary tree graphs. These structures cannot be decomposed
using k-core decomposition. However, they are decomposed into k-shells by k-shell decomposition: a 1-
shell: blue nodes and 2-shell: black nodes); b 1-shell: blue nodes; 2-shell: grey and black nodes and 3-shell:
white nodes. a double star graph and b binary tree
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The authors in [32] used the notion of «-8 community to extract the “core” of a graph.
An o-p community is a connected subgraph C with each vertex in C connected to at least
B vertices of C and each vertex outside of C connected to at most « vertices of C (o« < f).
They extract the network core structure by taking the intersection of «-8 communities of
different size k. A core thus corresponds to one or multiple dense regions of the graph.
As a result, the proposed heuristics in [32] may return multiple dense regions (“cores”
for a given network. In addition, this algorithm does not guarantee to terminate within a
reasonable amount of running time.

Closely related to our work, the authors in [1] propose the k-core decomposition to dis-
cover interesting structural properties of networks. A k-core of G is a subgraph G* obtained
by recursively removing all the vertices of degree less than k, until all the vertices in the
remaining graph have degree at least k. This method is very scalable and it has a time
complexity similar to the k-shell decomposition for general graphs: (O(V + E)) . How-
ever, k-core decomposition is not equivalent to k-shell decomposition, where at each step
k, we prune vertices of degree k or less. Different from k-shell decomposition, the k-core
decomposition is unable to uncover the structural properties for certain type of graphs or
substructures. For example, a double star-like graph S formed by two connected vertices
v and u with high degrees that connect many vertices with degree one cannot be decom-
posed beyond 1-shell (or 1-core) , containing all the vertices in graph S, no matter how high
are the degree of the vertices v and u. Similarly, a binary tree graph 7 cannot be decom-
posed beyond the first shell, independently of the depth of the tree T — see Figure 14 for an
illustration.

11 Conclusion

In this paper, we have developed an effective three-step procedure to hierarchically extract
and unfold the core structure of the reciprocal network of Google+. We first applied a
modified version of the k-shell decomposition method to prune nodes and edges of sparse
subgraphs that are likely to lie at the peripherals of the Google+ reciprocal network. We
then performed a form of clique percolation to generate a new directed (hyper)graphs where
vertices are maximal cliques containing the nodes in the dense “core” graph generated in the
previous step, and there exists a directed edge from clique C; to clique C; if half of the nodes
in C; are contained in C;. We found that this (hyper)graph of cliques comprises of 1700+
connected components (CCs), which represent the core “communities” of the Google+
reciprocal network. Finally, we introduced three metrics to study the relations among these
CCs in the underlying Google+ reciprocal network: the number of nodes shared by two
CCs, the number of nodes that are neighbors in the two CCs, and the number of edges
connecting these neighboring nodes. These metrics produce a set of new (hyper)graphs
that succinctly summarize the (high-level) structural relations among the core “community”
structures and provide a “big picture” view of the core structure of the Google+ reciprocal
network and how it is formed. In particular, we found that there are ten CCs that lie at the
center of this core structure through which the other CCs are most richly connected.

Our proposed three-step hierarchical procedure assumes that the core subgraph of a net-
work has a large number of cliques. Hence, it may fail to yield a meaningful structure
for graphs with just a small number of cliques. To address this limitation, we can relax
the notion of clique by constructing substructures which are clique-like. For example, a k-
relaxed clique [11] is a set of nodes that connect to every node in the set except for at
most k nodes (a 1-relaxed clique is a clique) [31]; and k-clique is a maximal subgraph such
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that the distance between each pair of its vertices is not larger than k. As part of ongoing
and future work, we will develop a more rigorous characterization of the core graph of the
Google+ reciprocal network based on the (modified) k-shell decomposition, and provide a
more in-depth analysis of the (hyper)graph structures of the clique core graph and the (high-
level) structural relations among the core “community” structures. We also plan to apply
our method to a massive Twitter dataset (with more than 500 million nodes and & 23 billion
edges) and other OSNSs.
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Appendix

Beta Parameter Selection we now proof that the number of n-step removed neighbors
of i is multiplied by 8"~!. We also present a discussion on how the selection of values
for the B parameter in (1) impacts our criteria to stop the k-shell decomposition method
presented in Section 5:

Given that depo(i) = 0 and depl(i) = 81(i), we can write an expression for depZ(i) as
following:

dep*(i) = dep' (i) + 82()) + B x Zjen2ydep’ (/)

=8' D)+ 82 + B x Zjen2yd () )
Let’s assume that node i has c(i) = 4, then dep4(i ) is computed as following:
dep* (i) = dep® (i) + 8* (i) + BZ jeys iy ldep” ()] (6)

Expanding (6) gives:
dep*(i) = dep’ (i) + 8* (i) + B jeyayldep®(j) + 8 (j)
+ B jrens(jdep® ()]
Substituting (5) gives:
dep*(i) := dep’ (i) + 8% (i) + BE;IM>(j) + B8>(j)p' (™)
+ B IMP() + B8NP (]
where M* (i) = Z¢8%(i) and 8% (i) = pk (i), Vi € V.

Further simplify dep* (i) gives:
dep*(i) := dep’ (D) + 8% () + T [BM° () + B28°())p' ()
+ 2B M) + 287 (e (G
We can rewrite the above expressions as:
dep*(i) := dep’(i) + B°A + (BB + B°C + =, [*D + B’ E]l (7)
Where:

— A =8%@): 1-step neighbors of i removed at k = 4
— B = M3(j): 2-step neighbors of i removed atk = 1,2, 3
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Figure 15 Avg dependency values for Google+ (H;) (8 = 0.25, 0.50, 0.75)

C = 82(j),01(j’*): 3-step neighbors of i removed at k = 1
D = M?(j’): 3-step neighbors of i removed atk = 1,2
E = 82(j")p"(j"): 4-step neighbors of i removed at k = 1

By generalizing (7) (k = 5, ..., n), we observe that at every k-index, the number of n-step

removed neighbors of i is multiplied by 8”~!. This concludes our proof.

Essentially, the parameter 8 quantifies the contribution of node j to the total dependence

value of node i. Thus, varying g in the range ]0, 1[ will not have any impact on the value of
the k-index where we should stop the k-shell decomposition method — by varying g, we
are impacting the contribution of any node j to the total dependence value of node i by the
same proportion. Thus varying the 8”7~! does not have any impact in our criteria to stop the
k-shell decomposition method introduced in Section 5 — see Figure 15 for an illustration.
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