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Abstract—Online lecture videos are a valuable resource for
students across the world. The ability to find videos based
on their content could make them even more useful. Methods
for automatic extraction of this content reduce the amount of
manual effort required to make indexing and retrieval of such
videos possible. We adapt a deep learning based method for
scene text detection, for the purpose of detection of handwritten
text, math expressions and sketches in lecture videos. We detect
handwritten elements on the whiteboard to generate a summary
of all content over time in the lecture, while also dealing with
occluded content due to motion of the lecturer. We train, test
on the publicly available AccessMath lecture video dataset and
evaluate our framework on the basis of number of summary
frames, as well as recall and precision of all whiteboard content
in the set of test lecture videos. We found that our method
increases the precision of the state-of-the-art while there is
potential to increase recall as well. We have added to the existing
ground truth in the AccessMath dataset by providing timestamp-
based, semantically meaningful bounding box annotations for the
handwritten whiteboard content, which has been released.

I. INTRODUCTION

Nowadays there exist thousands of hours of lecture videos

online and these have become a useful resource for students

across the world. Despite being so common, lecture videos

are still not properly indexed by most common search engines.

The main reason is that, in many cases, search engines depend

on existing text annotations of the video in order to add

them to their indices. If such annotations are unavailable, then

search engines do not have a principled way to retrieve them.

Manually producing such annotations is a hard task given

the scale of lecture video content available. In this paper, we

provide an important initial step required for automated lecture

indexing, which is the detection and extraction of handwritten

content from the video. We then use the extracted handwritten

content to provide a ‘summary’ of the lecture, in the form of

a small set of binary images of the handwritten content on

the whiteboard which are ready for further recognition and

indexing processes. For this work, we concentrate on videos

where a single lecturer conducts a class while explaining and

producing handwritten content on a whiteboard.

Most existing approaches for lecture video content extrac-

tion use a combination of heuristic rules and image processing

techniques to preprocess and extract the content from the video

[1], [2], [3], [4]. However, in our method we use a deep

learning based approach for initial detection of handwritten

content from a given video frame. We fine-tune TextBoxes [5],

a model designed to detect words in natural scenes, for the task

of detecting handwritten whiteboard content. This approach

removes the need for explicit detection of the speaker during

testing, and simplifies the processing of detected handwritten

content in later stages - e.g. automatic summarization.

The handwritten content is often loosely structured and

exhibits significant variance in content such as sentences,

math expressions, matrices, sketches and plots. This, when

combined with background noise, illumination changes and

occlusions due to the lecturer, presents a significant challenge

for automatic extraction of handwritten content. While our

proposed content extraction method is currently tested only

on lecture videos recorded with a single fixed camera, it can

easily be extended to work on lecture videos using multiple

cameras and/or zooming and panning.

After handwritten content is extracted from all frames of

videos, our next task is to analyze the detected regions and

identify association relationships of text regions across space

and time - including cases where text regions are occluded due

to motion of the lecturer. In prior work, binarized connected

components are used to track the presence and absence of

content on the whiteboard. In our work, we present some

preliminary strategies to perform this task at the level of text

bounding boxes and discuss their merits and demerits.

Lastly, we produce a summary of the lecture video in

terms of ‘keyframes’, which refers to frames that contains all

the handwritten content that was present on the whiteboard

during a certain time interval in the video. We evaluate the

performance of our system on the number of keyframes

produced as well as the recall and precision of keyframe

content with respect to all unique text content in the lecture

video. In this work, we use the conflict minimization approach

described by Davila and Zanibbi [1] to produce summary

keyframes after spatio-temporal content associations. Figure

1 shows an overview of our proposed approach.
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Fig. 1: An overview of the lecture video summarization

pipeline used in our work

In summary, the main research questions being investigated

in our work include:
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• How well does a machine-learning oriented approach

perform for whiteboard content extraction compared to

more traditional heuristic-based approaches?

• Can we adapt a general scene text detection approach to

detect and extract handwritten text from lecture videos?

• How well can we recover occluded handwritten text using

temporal information and our text detection method?

II. BACKGROUND

Most lecture videos can broadly be classified into videos

with pure handwritten content (HC), a lecturer producing

handwritten content on a board or a lecturer referring to a

slide deck during the class. For our work, we concentrate on

lecture videos with handwritten whiteboard content.

A. Dataset and Evaluation

AccessMath is the largest, publicly available, benchmarked

dataset for this purpose. It was created from a collection of

linear algebra lecture videos [1]. These HD videos (1920x1080

pixels) were recorded using a single, still camera covering

the entire whiteboard with no zooming, tilting or panning. It

consists of 12 lecture videos - 5 for training and 7 for testing.

The average length of all videos is about 49 minutes.

AccessMath uses the ‘keyframe’ method of lecture sum-

marization and evaluation is carried out by measuring the

number of keyframes produced by the summarization method-

ology. Apart from this, the average recall and precision of all

‘matching’ binary connected components (CC) are measured

across the entire video (‘global’) as well as per frame. The

AccessMath dataset is annotated at the binary level in order

to facilitate this evaluation scheme and the benchmarking

methodology at the CC level [1].

To determine if one or more ground truth CCs correspond(s)

to one or more predicted CCs, the predicted summary frames

are translated and aligned with the ground truth frames, such

that overall pixel-wise recall is maximized. Then, overlapping

CCs are selected and the pixel-wise recall and precision

is computed. One-to-many, many-to-one and many-to-many

overlaps are handled by grouping CCs appropriately [1].

These measures are designed to compensate for variations in

thickness and focus on readability of extracted summary CCs.

B. Lecture Summarization

We provide an overview of prior work on our main focus,

lecture video with handwritten content on a whiteboard. Most

approaches in the literature follow the general pipeline of

preprocessing, content extraction and summarization. Image

processing and computer vision techniques are used exten-

sively in each stage to obtain better performance.

At first, an off-the-shelf binarization technique such as

Otsu’s [6] algorithm on every frame is used in simple videos

with not too many challenges in illumination and background

[2]. Segmentation of region of interest or some background

subtraction followed by specialized binarization techniques

are employed for preprocessing when the lecture video poses

illumination and background challenges [7], [3], [4], [1].

After preprocessing, handwritten content is extracted or

separated from background content. A common approach is to

divide the video frame into a grid of cells followed by rule-

based or statistical classification of each cell as content, back-

ground and noise [8], [2], [9], [10]. Grouping and refining of

handwritten content using OCR based methods [2] or temporal

analysis [11], [1] to handle noise and occlusion are commonly

used as well. Some work uses contrast enhancement [2],

[8] while others use super-resolution based methods [9] to

improve readability of whiteboard content.

Several methods exploit computer vision techniques to take

advantage of the characteristics of lecture videos. Explicitly

modeling the speaker allows better handling of occluded

content [11], [3], [8], [12], [4], [9], while detecting erasure

events is useful for segmentation and content extraction [3].

The final stage after preprocessing and content extraction is

the summarization of the video. Video summaries in general

could be of the ‘keyframe’ variety (described in Section I) or

a ‘video skim’ which is a shorter version of the input video

containing the highlights of the entire video. We concentrate

on keyframe based summaries for our work. Keyframes are

typically decided by analyzing content peaks in frames over

time and segmenting the video when the content drops from a

maxima, which generally corresponds to erasure events in the

lecture [3], [4]. A recursive algorithm to find the correct frames

to segment based on spatial conflicts of extracted content

is presented in the work [1] which results in state-of-the-

art summarization performance for the AccessMath dataset.

Other forms of summaries of lecture videos include recognized

text lines extracted from the video [9], [2] and production of

composite images that contain all content [3], [4].

In our work, we use a handwritten content detector (HCD)

adapted from a scene text word detector model, and use it

in lieu of the preprocessing and content extraction stages. We

believe this step is necessary to build a generalized pipeline to

handle videos with multiple cameras and production effects.

C. Scene Text Detection

In order to detect handwritten content from video frames

directly, we focus on some relevant prior work carried out

in the domain of scene text detection in images and videos.

A comprehensive survey of methodologies and evaluation

strategies for text detection, tracking and recognition in video

images is presented by Yin et al. [13]. In general, evaluation

of detecting text content in video is done by treating text

regions as objects and using multiple object tracking (MOT)

metrics [14]. Specifically detecting handwritten content as a

specialized case of scene text detection in video is covered in

a survey by Ye and Doermann [15].

Earlier methods extract pixel or component level features

to identify text candidates which are then post-processed

using statistical learning models [16], [17]. A list of prior

methods can be found in the survey by Zhu et al [18]. Of

late, deep learning based methods have been adopted due

to their effectiveness in taking advantage of large annotated
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datasets [19], [20], and most of these treat text detection as a

specialized case of object detection.

Popular strategies in deep object detection use a fixed set

of predefined anchor windows that slide across convolutional

feature maps in a deep neural network. At each location in the

feature map, a detector network makes a prediction of whether

an anchor window contains an object and if so it regresses the

offsets to the anchor window dimensions to fit the object in

a tight bounding box. This is the basic principle in state-of-

the-art object detectors like Faster-RCNN [21], YOLO [22]

and SSD [23]. SSD, in particular, carries out detection on

feature maps at multiple depths and combines the predictions

using non-maximum suppression (NMS). Text detection neural

networks generally adapt object detection networks by making

modifications to size and aspect of ratio of anchor windows

and search locations across feature maps [24], [20], [5] and

then retraining on scene text datasets.

We choose TextBoxes [5] as the base neural network for

adaptation in our methodology because it is recent, and has

implicit multi-scale feature extraction due to its SSD-based

structure. Further, model weights trained on the VGG Syn-

thetic Scene Text Database [20] and ICDAR 2015 competition

dataset [25] along with code are made publicly available. We

feel it is an interesting study to adapt a detector trained under

for object detection into a pixel-based HC retrieval task.

III. LECTURE VIDEO SUMMARIZATION

Our lecture video processing pipeline takes as input a

whiteboard lecture video recorded using a still camera, and

generates as output a small set of binary images of the

extracted handwritten content. It is illustrated in Figure 2.

First, we use our proposed handwritten text content detector

to obtain text regions in frames sampled at 1 fps (frames

per second). Further, we carry out coarse-grained temporal

refinement (CTR) of content bounding boxes to account for

variations in detector output due to occlusions and illumination

changes in the video. We then binarize the detected content

and reconstruct occluded content based on temporal stability

of binarized CCs. This constitutes our fine-grained temporal

refinement (FTR). Finally, we apply an existing lecture sum-

marization approach [1] to further reduce the set of binary

images to a smaller set containing all unique identified text

regions using a set of keyframes.

A. Handwriting Detection on Lecture Videos

TextBoxes is a 28-layer fully convolutional network. The

first 13 layers are taken directly from the SSD architecture

[23]. On top of these, 9 more convolutional layers are stacked

in a feed-forward fashion. TextBox layers [5] are connected

to 6 of the 9 additional convolutional layers. On every map

location, a TextBox layer predicts a 72-dimensional vector,

which are the text presence softmax scores (2-d) and coor-

dinate offsets (x, y, w, h) for 12 default anchor boxes. The

network is used at 3 image input scales - 300, 600 and 900. A

non-maximum suppression is applied to the aggregated outputs

of all text-box layers and scales.

Out of the box, the model trained on detecting English

words in natural scenes [25], [20], did not perform well on

lecture video data. Particularly, we observed that the model

failed to detect the variety of handwritten content and layouts

which are expected in a lecture video. This established the

need to train a specialized HC detector.

We decided to ‘fine-tune’ TextBoxes to a create a dedicated

model for detecting HC. This is a commonly used technique

for domain co-adaptation which has proven to work well for

diverse computer vision applications with limited training data

[26]. Deep learning models are initialized with weights pre-

trained on standard, larger datasets of a similar nature as that

of the target application; then the models are trained on the

dataset at hand. It should be noted that AccessMath does not

contain annotations of the content in terms of bounding boxes

nor the timestamps when it was written/erased, since it was

intended to be evaluated at the binary CC level.

Therefore, we annotated the approximate frames in which a

single unit of handwritten content was just written completely

and when it began to get erased. This lets us quickly and

automatically annotate the content in all frames in between,

instead of manually annotating every frame which is time-

consuming and challenging. To mitigate the effect of occlusion

due to movement of the lecturer, we eliminate all text boxes

which overlap with the bounding box of the lecturer if their

area of intersection is a greater fraction of the text box area

than 25%. Sample frame and its annotations are shown in

Figure 2(a) and (b) respectively.

(a) Input Frame (b) Ground Truth Annotation

(c) Detection with Raw Model (d) Detection after Fine-tuning

(e) Binarized Frame (f) Reconstructed Frame

Fig. 2: Illustration of proposed pipeline. Sample outputs of

out-of-the-box and fine-tuned handwritten content detection

models for input frame 2(a) are shown in Figures 2(c) and

2(d). Figure 2(e) and 2(f) are binarized and reconstructed via

temporal refinement, generated using the fine-tuned model.
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We attempted to annotate the lecturer bounding box in a

similar fashion by marking the beginning and end of major

movement events, and interpolating intermediate frames. How-

ever, due to large number of quick movements, gesticulation

and writing/erasing events this was time-consuming and hard

to verify. Therefore, we used an SSD [23] network (trained

on the VOC dataset 1) on the video sampled at 1 fps to obtain

lecturer bounding boxes, and linearly interpolated bounding

boxes in unsampled frames. In case of multiple detections, we

retain the one with largest Jaccard overlap index, also called

‘Intersection Over Union’ (IOU), above a threshold of 0.25

with respect to the previous frame’s detection. If there are no

overlapping person detections above this threshold, we take

the box with highest confidence.

The TextBoxes model was fine-tuned using the training

procedure described in detail in Section IV. Since the recall

and precision at the level of binary CCs are evaluated in the

final stage of the pipeline, we decided to tune the content

detector to be biased towards slightly larger bounding boxes in

order to maximize handwritten pixel recall later in the pipeline.

Therefore, we double the multiplicative scaling parameter

(also termed variance in some implementations 2) of all

bounding box regression output layers. Qualitative results

comparing the two models are shown in Figure 2(c) and (d) for

a sample lecture frame and quantitative results are provided

in Table I and discussed in detail in Section IV.

B. Temporal Refinement

Our temporal refinements are based on the CC stability

approach from an existing method [1]. We call this method

Temporal Analysis Algorithm (TAA). The input of this method

is a set of individual objects detected for each frame and the

output is a spatio-temporal structure that groups together stable

elements that overlap in space and time. The algorithm runs

in two major passes: first for identifying stable elements, and

second for spatio-temporal grouping.

Temporal Analysis Algorithm: During the first pass, for a

given matching criteria and every sampled frame in sequential

order, each element is tested for a match against every other

element present in all previous frames that are within time

t before the current frame’s timestamp (t = 85s). Matched

elements are treated as instances of unique objects. After

finding all the unique elements from the input frames, only

those that appear in more than n frames (n = 3) are marked

as stable and are kept for further processing.

In the second pass, elements that have an overlap in space

and with duration intervals that overlap or have an intermediate

gap of at most 5 seconds, are grouped into larger ‘temporally

stable’ groups. These can be used as the final units for

content summarization and further temporal processing. Other

elements that only overlap in space but do not belong to the

same temporal group are marked to be in conflict, and this

information is used for summarization in order to produce

1http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html
2https://github.com/MhLiao/TextBoxes

TABLE I: Quantitative evaluation of out-of-the-box TextBoxes

(TB) and fine-tuned (FT) models. The metrics are explained

in Section IV.

Model Avg. No. Avg. per Avg. per Avg. per
per Frame pixel recall pixel precision pixel F-score

TB 17.67 38.66 83.98 48.59
TB + FT 12.25 81.87 76.20 76.48

temporal splits of the video that minimize the number of

conflicts present on each video segment.

Coarse-grained Temporal Refinement: The output of our

HCD is a set of bounding boxes. Due to false positives,

variations in illumination and occlusion by the speaker, these

bounding boxes might change for contiguous frames. We

obtain a coarse-grained temporal refinement for the detected

text bounding boxes based on the application of the temporal

analysis algorithm described above. Two bounding boxes are

accepted as a match if they have an IOU value above 0.5.

Designing content-based matching criteria for bounding boxes

is out of the scope of our current work.

Binarization. Frame binarization is achieved by processing

the text detection bounding boxes and combining the partial

results using pixel-wise OR operations. First, background is

estimated using a median filter [1] and is subtracted from each

bounding box region. Then, Otsu’s binarization is applied over

the resulting edge image.

Fine-grained Temporal Refinement. Since we currently

work under the assumption that only one still camera is used,

without zooming or panning, we also assume that missing

CCs from intermediate frames, between their first and last

known location are caused by occlusion due to the lecturer.

We apply a fine-grained temporal refinement over the detected

CCs from the binary frames using the Temporal Analysis

Algorithm, to recover occluded content and remove any noise

caused by HCD false positives. The expected output is a set of

reconstructed binary video frames as though the lecturer was

never occluding any of the handwritten content. The combined

effect of both stages of temporal refinement on the overall task

of lecture summarization can be seen in Table II.

C. Content Summarization

The binarized, reconstructed video has several redundant

frames which record the text being written gradually until the

whiteboard is filled, erased and rewritten. In our work, we

summarize lecture videos by finding those ‘keyframes’ that

completely contain all unique CCs from the previous erasure

event up to the time new text appears in the same spot. In

their work [1], the authors identify all conflicting CC pairs

during a video segment and deploy conflict minimization. This

greedy algorithm segments a video lecture so as to maximize

the number of conflicts resolved per cut, recursively on the

reconstructed video. We use the same algorithm to produce

lecture summaries. The final results can be found in Table II.
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IV. EXPERIMENTS

We used the AccessMath dataset to train and test our HCD,

which is based on the TextBoxes neural network structure [5].

We annotated the training videos using the procedure described

in III-A. We split the annotated training frames into train

and validation sets in the ratio 4:1. This resulted in about

10,000 training frames and about 2500 validation frames. The

model is then fine-tuned for about 10,000 mini-batch update

iterations with batch-size 32 on the train split. The learning

rate decreased uniformly, so as to effectively decrease the

learning rate by a factor of 0.1 every 5000 iterations. We

used a stochastic gradient descent (SGD) optimizer with a

base learning rate of 0.0001 and weight decay of 0.0005. The

validation performance was measured using 11-point mean

average precision (P11pt) over all validation frames and was

77.67% at the end of training. Further training with lower

learning rates yielded little gain in validation performance.

P̃i(rj) =

{
maxrj≤r≤rj+1

Pi(r) if Pi(r) exists

P̃i(rj+1) otherwise

P11pt =
1

11

10∑
j=0

1

N

N∑
i=1

P̃i(rj); rj = j × 0.1

(1)

Here, P (R = r) indicates precision at recall r and N is

number of training images.

Even though the number of frames seems large, it should

be noted that many training frames will include redundancies

in terms of text boxes with minor changes in illumination and

speaker positions. Therefore, the training frames can be viewed

as a naturally augmented smaller dataset, and along with the

initialization from scene text detection network, could have

caused the earlier convergence.

We evaluate the isolated HCD based on pixel-wise recall,

precision and f-measure with respect to annotated content

bounding boxes. We search for the optimal confidence thresh-

old in the range of 10% - 95% using f-measure obtained on

the training video frames. Quantitative comparison of out-

of-the-box TextBoxes (TB) and fine-tuned (FT) models on

testing videos for these metrics are shown in Table I. We

found that for the optimal confidence threshold for the TB

model was 10% and 65% for the TB + FT model. Although

we expect the fine-tuned model to do better than the out-of-

the-box model, the stark difference in performance and model

confidence assures us that annotating the data and retraining

a specialized model was worthwhile.

For the lecture summarization task, the same evaluation

procedure described for the AccessMath dataset was followed

(see Section II-A). The performance of our pipeline and state-

of-the-art method with respect to all these metrics at various

stages of summarization are presented in Table II. It must be

noted that the average recall and precision mentioned in this

table are different from the ones in Table I. We measure fine-

grained content recall and precision (at the binary CC level)

for summarization as opposed to coarse-grained content recall

and precision (at bounding box level).

We observe in the Binarization section of Table II, that re-

placing the heuristic-based whiteboard segmentation approach

of the current state-of-the-art method [1] with our deep learn-

ing based handwriting detection model, has a considerable

improvement on the pipeline performance. This difference is

amplified by the fact that we use only Otsu’s binarization [6]

in instead of the hybrid binarization used in [1]. We can see

that our HCD consistently has higher f-score than the out-

of-the-box model which can be attributed to higher recall by

recovering a variety of HC on the whiteboard.

The reduction in recall in our method at later stages,

compared to state-of-the-art, arises from the fact that our HCD

model currently does not benefit from temporal information.

The detector produces spurious bounding boxes in a few

frames, due to illumination changes, which adversely affects

performance of the temporal refinement stage, especially at

the coarse-grained level which operates on bounding boxes

themselves. Currently boxes are grouped purely based on area

metrics which might cause many undesirable merges. In the

future, we will investigate content-based temporal refinement

to refine detected bounding boxes to mitigate this effect.

V. CONCLUSION

We set out to investigate the impact of replacing heuristic
and image processing based stages on the state-of-the-art

pipeline with machine learning based methods. The purpose

of the pipeline was to summarize lecture videos by recovering

all unique handwritten whiteboard content. We focused on the

aspect of detecting handwritten content using a vision-based

deep learning model treating the lecture video dataset as a

specialized case of text detection in videos.

A state-of-the-art scene text detection model was adapted
for detecting handwritten whiteboard content in lecture videos.

This was necessary in order to capture diverse handwritten

TABLE II: Comparison of fine-tuned (FT) TextBoxes (TB)

model based lecture video summarization pipeline, including

temporal refinement (TR) by measuring recall (R), precision

(P), f-score (F) and number of frames (Nf ).

AVG AVG GLOBAL AVG PER FRAME

METHOD Nf R P F R P F
Binarized
Baseline [1] 296 98.96 64.01 77.73 98.69 63.30 77.12
TB 296 88.52 81.80 85.02 86.40 84.52 85.44
TB+TR 296 93.96 69.70 80.03 93.93 75.32 83.60
TB+FT 296 97.03 86.05 91.21 95.35 83.95 89.28
TB+FT+TR 296 98.27 62.61 76.48 97.60 66.32 78.97
Reconstructed
Baseline [1] 296 96.95 94.28 95.59 96.49 90.51 93.40
TB 296 83.16 93.13 87.86 82.39 91.59 86.74
TB+TR 296 88.74 96.26 92.34 88.78 93.96 91.29
TB+FT 296 91.44 95.63 93.48 90.28 92.38 91.31
TB+FT+TR 296 92.76 95.46 94.09 92.09 92.37 92.22
Summarized
Baseline [1] 18 96.28 93.56 94.90 95.73 92.21 93.93
TB 22 82.61 92.66 87.34 81.82 91.87 86.55
TB+TR 17 88.29 95.39 91.70 88.41 94.22 91.22
TB+FT 22 90.98 94.77 92.83 89.89 93.93 91.86
TB+FT+TR 20 92.33 94.16 93.23 91.69 93.45 92.56
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content such as phrases, sentences, mathematical expressions,

multi-line sentences and expressions, sketches, labeled plots

and matrices, which are typically expected in lecture videos.

The problem was further challenged by occlusions and illu-

mination changes induced by lecturer movement.

In terms of summarization metrics, we showed that the

predicted bounding boxes were able to recall globally most

of the binarized whiteboard content with high precision. This

shows promise that a specialized handwritten content detector
trained end-to-end along with temporal information could
perform better on the task of lecture video summarization.

Better temporal refinement and binarization techniques will

be required to achieve state-of-the-art, in terms of recall.

AccessMath dataset was enriched by additional handwritten

content ground truth in the form of bounding boxes. The

annotation process was carried out manually for both training

and testing set of videos. The new annotations along with the

tools used to create them, the trained detection models, and the

code for deployment and evaluation have been released. We

believe that the handwriting research community can benefit

from this contribution 3.

In the future, we plan to investigate temporal refinement

using content of bounding boxes, end-to-end detection of

content in video frames with LSTM-based text tracking net-

works. We want to focus on lecturer pose estimation to better

handle occlusions and perform text detection via recognizing

writing and erasing actions. In addition, we want to collect and

annotate lectures, with multiple cameras incorporating pan,

zoom and tilt effects, while generalizing the summarization

stages to extract semantically meaningful information. We also

plan to incorporate material from subjects other than math, to

build a comprehensive video lecture dataset.
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