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Abstract—Online lecture videos are a valuable resource for
students across the world. The ability to find videos based
on their content could make them even more useful. Methods
for automatic extraction of this content reduce the amount of
manual effort required to make indexing and retrieval of such
videos possible. We adapt a deep learning based method for
scene text detection, for the purpose of detection of handwritten
text, math expressions and sketches in lecture videos. We detect
handwritten elements on the whiteboard to generate a summary
of all content over time in the lecture, while also dealing with
occluded content due to motion of the lecturer. We train, test
on the publicly available AccessMath lecture video dataset and
evaluate our framework on the basis of number of summary
frames, as well as recall and precision of all whiteboard content
in the set of test lecture videos. We found that our method
increases the precision of the state-of-the-art while there is
potential to increase recall as well. We have added to the existing
ground truth in the AccessMath dataset by providing timestamp-
based, semantically meaningful bounding box annotations for the
handwritten whiteboard content, which has been released.

[. INTRODUCTION

Nowadays there exist thousands of hours of lecture videos
online and these have become a useful resource for students
across the world. Despite being so common, lecture videos
are still not properly indexed by most common search engines.
The main reason is that, in many cases, search engines depend
on existing text annotations of the video in order to add
them to their indices. If such annotations are unavailable, then
search engines do not have a principled way to retrieve them.
Manually producing such annotations is a hard task given
the scale of lecture video content available. In this paper, we
provide an important initial step required for automated lecture
indexing, which is the detection and extraction of handwritten
content from the video. We then use the extracted handwritten
content to provide a ‘summary’ of the lecture, in the form of
a small set of binary images of the handwritten content on
the whiteboard which are ready for further recognition and
indexing processes. For this work, we concentrate on videos
where a single lecturer conducts a class while explaining and
producing handwritten content on a whiteboard.

Most existing approaches for lecture video content extrac-
tion use a combination of heuristic rules and image processing
techniques to preprocess and extract the content from the video
[1], [2], [3], [4]. However, in our method we use a deep
learning based approach for initial detection of handwritten
content from a given video frame. We fine-tune TextBoxes [5],
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a model designed to detect words in natural scenes, for the task
of detecting handwritten whiteboard content. This approach
removes the need for explicit detection of the speaker during
testing, and simplifies the processing of detected handwritten
content in later stages - e.g. automatic summarization.

The handwritten content is often loosely structured and
exhibits significant variance in content such as sentences,
math expressions, matrices, sketches and plots. This, when
combined with background noise, illumination changes and
occlusions due to the lecturer, presents a significant challenge
for automatic extraction of handwritten content. While our
proposed content extraction method is currently tested only
on lecture videos recorded with a single fixed camera, it can
easily be extended to work on lecture videos using multiple
cameras and/or zooming and panning.

After handwritten content is extracted from all frames of
videos, our next task is to analyze the detected regions and
identify association relationships of text regions across space
and time - including cases where text regions are occluded due
to motion of the lecturer. In prior work, binarized connected
components are used to track the presence and absence of
content on the whiteboard. In our work, we present some
preliminary strategies to perform this task at the level of text
bounding boxes and discuss their merits and demerits.

Lastly, we produce a summary of the lecture video in
terms of ‘keyframes’, which refers to frames that contains all
the handwritten content that was present on the whiteboard
during a certain time interval in the video. We evaluate the
performance of our system on the number of keyframes
produced as well as the recall and precision of keyframe
content with respect to all unique text content in the lecture
video. In this work, we use the conflict minimization approach
described by Davila and Zanibbi [1] to produce summary
keyframes after spatio-temporal content associations. Figure
1 shows an overview of our proposed approach.

Lecture Handwritten Temporal Conflict Lecture
Video Content Refinement Minimization Video
Detection Summary

Fig. 1: An overview of the lecture video summarization
pipeline used in our work

In summary, the main research questions being investigated
in our work include:



« How well does a machine-learning oriented approach
perform for whiteboard content extraction compared to
more traditional heuristic-based approaches?

« Can we adapt a general scene text detection approach to
detect and extract handwritten text from lecture videos?

« How well can we recover occluded handwritten text using
temporal information and our text detection method?

II. BACKGROUND

Most lecture videos can broadly be classified into videos
with pure handwritten content (HC), a lecturer producing
handwritten content on a board or a lecturer referring to a
slide deck during the class. For our work, we concentrate on
lecture videos with handwritten whiteboard content.

A. Dataset and Evaluation

AccessMath is the largest, publicly available, benchmarked
dataset for this purpose. It was created from a collection of
linear algebra lecture videos [1]. These HD videos (1920x1080
pixels) were recorded using a single, still camera covering
the entire whiteboard with no zooming, tilting or panning. It
consists of 12 lecture videos - 5 for training and 7 for testing.
The average length of all videos is about 49 minutes.

AccessMath uses the ‘keyframe’ method of lecture sum-
marization and evaluation is carried out by measuring the
number of keyframes produced by the summarization method-
ology. Apart from this, the average recall and precision of all
‘matching’ binary connected components (CC) are measured
across the entire video (‘global’) as well as per frame. The
AccessMath dataset is annotated at the binary level in order
to facilitate this evaluation scheme and the benchmarking
methodology at the CC level [1].

To determine if one or more ground truth CCs correspond(s)
to one or more predicted CCs, the predicted summary frames
are translated and aligned with the ground truth frames, such
that overall pixel-wise recall is maximized. Then, overlapping
CCs are selected and the pixel-wise recall and precision
is computed. One-to-many, many-to-one and many-to-many
overlaps are handled by grouping CCs appropriately [1].
These measures are designed to compensate for variations in
thickness and focus on readability of extracted summary CCs.

B. Lecture Summarization

We provide an overview of prior work on our main focus,
lecture video with handwritten content on a whiteboard. Most
approaches in the literature follow the general pipeline of
preprocessing, content extraction and summarization. Image
processing and computer vision techniques are used exten-
sively in each stage to obtain better performance.

At first, an off-the-shelf binarization technique such as
Otsu’s [6] algorithm on every frame is used in simple videos
with not too many challenges in illumination and background
[2]. Segmentation of region of interest or some background
subtraction followed by specialized binarization techniques
are employed for preprocessing when the lecture video poses
illumination and background challenges [7], [3], [4], [1].
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After preprocessing, handwritten content is extracted or
separated from background content. A common approach is to
divide the video frame into a grid of cells followed by rule-
based or statistical classification of each cell as content, back-
ground and noise [8], [2], [9], [10]. Grouping and refining of
handwritten content using OCR based methods [2] or temporal
analysis [11], [1] to handle noise and occlusion are commonly
used as well. Some work uses contrast enhancement [2],
[8] while others use super-resolution based methods [9] to
improve readability of whiteboard content.

Several methods exploit computer vision techniques to take
advantage of the characteristics of lecture videos. Explicitly
modeling the speaker allows better handling of occluded
content [11], [3], [8], [12], [4], [9], while detecting erasure
events is useful for segmentation and content extraction [3].

The final stage after preprocessing and content extraction is
the summarization of the video. Video summaries in general
could be of the ‘keyframe’ variety (described in Section I) or
a ‘video skim’ which is a shorter version of the input video
containing the highlights of the entire video. We concentrate
on keyframe based summaries for our work. Keyframes are
typically decided by analyzing content peaks in frames over
time and segmenting the video when the content drops from a
maxima, which generally corresponds to erasure events in the
lecture [3], [4]. A recursive algorithm to find the correct frames
to segment based on spatial conflicts of extracted content
is presented in the work [1] which results in state-of-the-
art summarization performance for the AccessMath dataset.
Other forms of summaries of lecture videos include recognized
text lines extracted from the video [9], [2] and production of
composite images that contain all content [3], [4].

In our work, we use a handwritten content detector (HCD)
adapted from a scene text word detector model, and use it
in lieu of the preprocessing and content extraction stages. We
believe this step is necessary to build a generalized pipeline to
handle videos with multiple cameras and production effects.

C. Scene Text Detection

In order to detect handwritten content from video frames
directly, we focus on some relevant prior work carried out
in the domain of scene text detection in images and videos.
A comprehensive survey of methodologies and evaluation
strategies for text detection, tracking and recognition in video
images is presented by Yin et al. [13]. In general, evaluation
of detecting text content in video is done by treating text
regions as objects and using multiple object tracking (MOT)
metrics [14]. Specifically detecting handwritten content as a
specialized case of scene text detection in video is covered in
a survey by Ye and Doermann [15].

Earlier methods extract pixel or component level features
to identify text candidates which are then post-processed
using statistical learning models [16], [17]. A list of prior
methods can be found in the survey by Zhu et al [18]. Of
late, deep learning based methods have been adopted due
to their effectiveness in taking advantage of large annotated



datasets [19], [20], and most of these treat text detection as a
specialized case of object detection.

Popular strategies in deep object detection use a fixed set
of predefined anchor windows that slide across convolutional
feature maps in a deep neural network. At each location in the
feature map, a detector network makes a prediction of whether
an anchor window contains an object and if so it regresses the
offsets to the anchor window dimensions to fit the object in
a tight bounding box. This is the basic principle in state-of-
the-art object detectors like Faster-RCNN [21], YOLO [22]
and SSD [23]. SSD, in particular, carries out detection on
feature maps at multiple depths and combines the predictions
using non-maximum suppression (NMS). Text detection neural
networks generally adapt object detection networks by making
modifications to size and aspect of ratio of anchor windows
and search locations across feature maps [24], [20], [5] and
then retraining on scene text datasets.

We choose TextBoxes [5] as the base neural network for
adaptation in our methodology because it is recent, and has
implicit multi-scale feature extraction due to its SSD-based
structure. Further, model weights trained on the VGG Syn-
thetic Scene Text Database [20] and ICDAR 2015 competition
dataset [25] along with code are made publicly available. We
feel it is an interesting study to adapt a detector trained under
for object detection into a pixel-based HC retrieval task.

III. LECTURE VIDEO SUMMARIZATION

Our lecture video processing pipeline takes as input a
whiteboard lecture video recorded using a still camera, and
generates as output a small set of binary images of the
extracted handwritten content. It is illustrated in Figure 2.
First, we use our proposed handwritten text content detector
to obtain text regions in frames sampled at 1 fps (frames
per second). Further, we carry out coarse-grained temporal
refinement (CTR) of content bounding boxes to account for
variations in detector output due to occlusions and illumination
changes in the video. We then binarize the detected content
and reconstruct occluded content based on temporal stability
of binarized CCs. This constitutes our fine-grained temporal
refinement (FTR). Finally, we apply an existing lecture sum-
marization approach [1] to further reduce the set of binary
images to a smaller set containing all unique identified text
regions using a set of keyframes.

A. Handwriting Detection on Lecture Videos

TextBoxes is a 28-layer fully convolutional network. The
first 13 layers are taken directly from the SSD architecture
[23]. On top of these, 9 more convolutional layers are stacked
in a feed-forward fashion. TextBox layers [5] are connected
to 6 of the 9 additional convolutional layers. On every map
location, a TextBox layer predicts a 72-dimensional vector,
which are the text presence softmax scores (2-d) and coor-
dinate offsets (z,y,w,h) for 12 default anchor boxes. The
network is used at 3 image input scales - 300, 600 and 900. A
non-maximum suppression is applied to the aggregated outputs
of all text-box layers and scales.
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Out of the box, the model trained on detecting English
words in natural scenes [25], [20], did not perform well on
lecture video data. Particularly, we observed that the model
failed to detect the variety of handwritten content and layouts
which are expected in a lecture video. This established the
need to train a specialized HC detector.

We decided to ‘fine-tune’ TextBoxes to a create a dedicated
model for detecting HC. This is a commonly used technique
for domain co-adaptation which has proven to work well for
diverse computer vision applications with limited training data
[26]. Deep learning models are initialized with weights pre-
trained on standard, larger datasets of a similar nature as that
of the target application; then the models are trained on the
dataset at hand. It should be noted that AccessMath does not
contain annotations of the content in terms of bounding boxes
nor the timestamps when it was written/erased, since it was
intended to be evaluated at the binary CC level.

Therefore, we annotated the approximate frames in which a
single unit of handwritten content was just written completely
and when it began to get erased. This lets us quickly and
automatically annotate the content in all frames in between,
instead of manually annotating every frame which is time-
consuming and challenging. To mitigate the effect of occlusion
due to movement of the lecturer, we eliminate all text boxes
which overlap with the bounding box of the lecturer if their
area of intersection is a greater fraction of the text box area
than 25%. Sample frame and its annotations are shown in
Figure 2(a) and (b) respectively.
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Fig. 2: Tllustration of proposed pipeline. Sample outputs of
out-of-the-box and fine-tuned handwritten content detection
models for input frame 2(a) are shown in Figures 2(c) and
2(d). Figure 2(e) and 2(f) are binarized and reconstructed via
temporal refinement, generated using the fine-tuned model.



We attempted to annotate the lecturer bounding box in a
similar fashion by marking the beginning and end of major
movement events, and interpolating intermediate frames. How-
ever, due to large number of quick movements, gesticulation
and writing/erasing events this was time-consuming and hard
to verify. Therefore, we used an SSD [23] network (trained
on the VOC dataset !) on the video sampled at 1 fps to obtain
lecturer bounding boxes, and linearly interpolated bounding
boxes in unsampled frames. In case of multiple detections, we
retain the one with largest Jaccard overlap index, also called
‘Intersection Over Union’ (IOU), above a threshold of 0.25
with respect to the previous frame’s detection. If there are no
overlapping person detections above this threshold, we take
the box with highest confidence.

The TextBoxes model was fine-tuned using the training
procedure described in detail in Section IV. Since the recall
and precision at the level of binary CCs are evaluated in the
final stage of the pipeline, we decided to tune the content
detector to be biased towards slightly larger bounding boxes in
order to maximize handwritten pixel recall later in the pipeline.
Therefore, we double the multiplicative scaling parameter
(also termed variance in some implementations 2) of all
bounding box regression output layers. Qualitative results
comparing the two models are shown in Figure 2(c) and (d) for
a sample lecture frame and quantitative results are provided
in Table I and discussed in detail in Section IV.

B. Temporal Refinement

Our temporal refinements are based on the CC stability
approach from an existing method [1]. We call this method
Temporal Analysis Algorithm (TAA). The input of this method
is a set of individual objects detected for each frame and the
output is a spatio-temporal structure that groups together stable
elements that overlap in space and time. The algorithm runs
in two major passes: first for identifying stable elements, and
second for spatio-temporal grouping.

Temporal Analysis Algorithm: During the first pass, for a
given matching criteria and every sampled frame in sequential
order, each element is tested for a match against every other
element present in all previous frames that are within time
t before the current frame’s timestamp (! = 85s). Matched
elements are treated as instances of unique objects. After
finding all the unique elements from the input frames, only
those that appear in more than n frames (n = 3) are marked
as stable and are kept for further processing.

In the second pass, elements that have an overlap in space
and with duration intervals that overlap or have an intermediate
gap of at most 5 seconds, are grouped into larger ‘temporally
stable’ groups. These can be used as the final units for
content summarization and further temporal processing. Other
elements that only overlap in space but do not belong to the
same temporal group are marked to be in conflict, and this
information is used for summarization in order to produce

Uhttp://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html
2https://github.com/MhLiao/TextBoxes
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TABLE I: Quantitative evaluation of out-of-the-box TextBoxes
(TB) and fine-tuned (FT) models. The metrics are explained
in Section IV.

Model Avg. No. Avg. per Avg. per Avg. per
per Frame | pixel recall | pixel precision | pixel F-score
TB 17.67 38.66 83.98 48.59
TB + FT 12.25 81.87 76.20 76.48

temporal splits of the video that minimize the number of
conflicts present on each video segment.

Coarse-grained Temporal Refinement: The output of our
HCD is a set of bounding boxes. Due to false positives,
variations in illumination and occlusion by the speaker, these
bounding boxes might change for contiguous frames. We
obtain a coarse-grained temporal refinement for the detected
text bounding boxes based on the application of the temporal
analysis algorithm described above. Two bounding boxes are
accepted as a match if they have an IOU value above 0.5.
Designing content-based matching criteria for bounding boxes
is out of the scope of our current work.

Binarization. Frame binarization is achieved by processing
the text detection bounding boxes and combining the partial
results using pixel-wise OR operations. First, background is
estimated using a median filter [1] and is subtracted from each
bounding box region. Then, Otsu’s binarization is applied over
the resulting edge image.

Fine-grained Temporal Refinement. Since we currently
work under the assumption that only one still camera is used,
without zooming or panning, we also assume that missing
CCs from intermediate frames, between their first and last
known location are caused by occlusion due to the lecturer.
We apply a fine-grained temporal refinement over the detected
CCs from the binary frames using the Temporal Analysis
Algorithm, to recover occluded content and remove any noise
caused by HCD false positives. The expected output is a set of
reconstructed binary video frames as though the lecturer was
never occluding any of the handwritten content. The combined
effect of both stages of temporal refinement on the overall task
of lecture summarization can be seen in Table II.

C. Content Summarization

The binarized, reconstructed video has several redundant
frames which record the text being written gradually until the
whiteboard is filled, erased and rewritten. In our work, we
summarize lecture videos by finding those ‘keyframes’ that
completely contain all unique CCs from the previous erasure
event up to the time new text appears in the same spot. In
their work [1], the authors identify all conflicting CC pairs
during a video segment and deploy conflict minimization. This
greedy algorithm segments a video lecture so as to maximize
the number of conflicts resolved per cut, recursively on the
reconstructed video. We use the same algorithm to produce
lecture summaries. The final results can be found in Table II.



IV. EXPERIMENTS

We used the AccessMath dataset to train and test our HCD,
which is based on the TextBoxes neural network structure [5].
We annotated the training videos using the procedure described
in III-A. We split the annotated training frames into train
and validation sets in the ratio 4:1. This resulted in about
10,000 training frames and about 2500 validation frames. The
model is then fine-tuned for about 10,000 mini-batch update
iterations with batch-size 32 on the train split. The learning
rate decreased uniformly, so as to effectively decrease the
learning rate by a factor of 0.1 every 5000 iterations. We
used a stochastic gradient descent (SGD) optimizer with a
base learning rate of 0.0001 and weight decay of 0.0005. The
validation performance was measured using 11-point mean
average precision (Pj1,;) over all validation frames and was
77.67% at the end of training. Further training with lower
learning rates yielded little gain in validation performance.

ﬁi(rj) _Jmaxy<rce P(r) if Pi(r? exists
Pi(rj41) otherwise
1o N )
Pripe = 17 < szi(rj)§ rj=7x0.1
=0 i=1
Here, P(R = r) indicates precision at recall » and N is

number of training images.

Even though the number of frames seems large, it should
be noted that many training frames will include redundancies
in terms of text boxes with minor changes in illumination and
speaker positions. Therefore, the training frames can be viewed
as a naturally augmented smaller dataset, and along with the
initialization from scene text detection network, could have
caused the earlier convergence.

We evaluate the isolated HCD based on pixel-wise recall,
precision and f-measure with respect to annotated content
bounding boxes. We search for the optimal confidence thresh-
old in the range of 10% - 95% using f-measure obtained on
the training video frames. Quantitative comparison of out-
of-the-box TextBoxes (TB) and fine-tuned (FT) models on
testing videos for these metrics are shown in Table I. We
found that for the optimal confidence threshold for the TB
model was 10% and 65% for the TB + FT model. Although
we expect the fine-tuned model to do better than the out-of-
the-box model, the stark difference in performance and model
confidence assures us that annotating the data and retraining
a specialized model was worthwhile.

For the lecture summarization task, the same evaluation
procedure described for the AccessMath dataset was followed
(see Section II-A). The performance of our pipeline and state-
of-the-art method with respect to all these metrics at various
stages of summarization are presented in Table II. It must be
noted that the average recall and precision mentioned in this
table are different from the ones in Table I. We measure fine-
grained content recall and precision (at the binary CC level)
for summarization as opposed to coarse-grained content recall
and precision (at bounding box level).
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We observe in the Binarization section of Table II, that re-
placing the heuristic-based whiteboard segmentation approach
of the current state-of-the-art method [1] with our deep learn-
ing based handwriting detection model, has a considerable
improvement on the pipeline performance. This difference is
amplified by the fact that we use only Otsu’s binarization [6]
in instead of the hybrid binarization used in [1]. We can see
that our HCD consistently has higher f-score than the out-
of-the-box model which can be attributed to higher recall by
recovering a variety of HC on the whiteboard.

The reduction in recall in our method at later stages,
compared to state-of-the-art, arises from the fact that our HCD
model currently does not benefit from temporal information.
The detector produces spurious bounding boxes in a few
frames, due to illumination changes, which adversely affects
performance of the temporal refinement stage, especially at
the coarse-grained level which operates on bounding boxes
themselves. Currently boxes are grouped purely based on area
metrics which might cause many undesirable merges. In the
future, we will investigate content-based temporal refinement
to refine detected bounding boxes to mitigate this effect.

V. CONCLUSION

We set out to investigate the impact of replacing heuristic
and image processing based stages on the state-of-the-art
pipeline with machine learning based methods. The purpose
of the pipeline was to summarize lecture videos by recovering
all unique handwritten whiteboard content. We focused on the
aspect of detecting handwritten content using a vision-based
deep learning model treating the lecture video dataset as a
specialized case of text detection in videos.

A state-of-the-art scene text detection model was adapted
for detecting handwritten whiteboard content in lecture videos.
This was necessary in order to capture diverse handwritten

TABLE II: Comparison of fine-tuned (FT) TextBoxes (TB)
model based lecture video summarization pipeline, including
temporal refinement (TR) by measuring recall (R), precision
(P), f-score (F) and number of frames (NNy).

AVG AVG GLOBAL AVG PER FRAME
METHOD Ny R P F R P F
Binarized
Baseline [1] 296 98.96 64.01 77.73 | 98.69 63.30 77.12
TB 296 88.52 81.80 85.02 | 86.40 84.52 85.44
TB+TR 296 9396 69.70 80.03 | 9393 7532 83.60
TB+FT 296 97.03 86.05 91.21 | 9535 8395 89.28
TB+FT+TR 296 98.27 62.61 7648 | 97.60 6632 7897
Reconstructed
Baseline [1] 296 96.95 9428 9559 | 96.49 90.51 93.40
TB 296 83.16 93.13 87.86 | 82.39 91.59 86.74
TB+TR 296 88.74 9626 9234 | 88.78 9396 91.29
TB+FT 296 91.44 9563 93.48 | 90.28 9238 91.31
TB+FT+TR 296 9276 9546  94.09 | 92.09 9237 92.22
Summarized
Baseline [1] 18 96.28 9356 9490 | 9573 9221 9393
TB 22 82.61 92.66 87.34 | 81.82 91.87 86.55
TB+TR 17 88.29 9539 91.70 | 88.41 9422 91.22
TB+FT 22 90.98 9477 9283 | 89.89 9393 91.86
TB+FT+TR 20 9233  94.16 93.23 | 91.69 9345 92.56




content such as phrases, sentences, mathematical expressions,
multi-line sentences and expressions, sketches, labeled plots
and matrices, which are typically expected in lecture videos.
The problem was further challenged by occlusions and illu-
mination changes induced by lecturer movement.

In terms of summarization metrics, we showed that the
predicted bounding boxes were able to recall globally most
of the binarized whiteboard content with high precision. This
shows promise that a specialized handwritten content detector
trained end-to-end along with temporal information could
perform better on the task of lecture video summarization.
Better temporal refinement and binarization techniques will
be required to achieve state-of-the-art, in terms of recall.

AccessMath dataset was enriched by additional handwritten
content ground truth in the form of bounding boxes. The
annotation process was carried out manually for both training
and testing set of videos. The new annotations along with the
tools used to create them, the trained detection models, and the
code for deployment and evaluation have been released. We
believe that the handwriting research community can benefit
from this contribution 3.

In the future, we plan to investigate temporal refinement
using content of bounding boxes, end-to-end detection of
content in video frames with LSTM-based text tracking net-
works. We want to focus on lecturer pose estimation to better
handle occlusions and perform text detection via recognizing
writing and erasing actions. In addition, we want to collect and
annotate lectures, with multiple cameras incorporating pan,
zoom and tilt effects, while generalizing the summarization
stages to extract semantically meaningful information. We also
plan to incorporate material from subjects other than math, to
build a comprehensive video lecture dataset.
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