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Data-intensive scientific discovery

The challenges of dealing with the rapid growth of data in
materials science-related fields has long been recognized.!
With more recent advances in computer science, the tools for
advancing data-intensive scientific discovery have opened the
door for more engagement from the scientific community.
As suggested by Gray, this has created “The Fourth Paradigm:
Data-Intensive Scientific Discovery.”* He pointed out that
experimental, theoretical, and computational science were all
being affected by the data deluge, and a fourth “data-intensive”
science paradigm was emerging. Indeed, we are witnessing
materials science being greatly affected in the new era of “data-
centric” materials science, which will likely become the new
paradigm for materials research and education.

For more than a decade, MRS Bulletin has published issues
related to the nexus of data science and materials science, includ-
ing materials informatics® and microstructural informatics.®
In this issue, we continue to expand on those themes by focusing
on the numerous efforts in developing and utilizing databases of
electronic structure calculations, and their impact on addressing
different classes of problems in materials science.

Computational high-throughput screening
First-principles calculations with predictive performance play
an essential role in data-centric materials science. In 1990s,
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With the development of high-speed computers, networks, and huge storage, researchers
can utilize a large volume and wide variety of materials data generated by experimental facilities
and computations. The emergence of these big data and advanced analytical techniques has
opened unprecedented opportunities for materials research. The discovery of many kinds of
materials, such as energy-harvesting materials, structural materials, catalysts, optoelectronic
materials, and magnetic materials, have been greatly accelerated through high-throughput
screening. The utility of data-centric science for materials research is likely to grow significantly
in the future. Unraveling the complexities inherent in big data could lead to novel design rules
as well as new materials and functionalities.

researchers were able to make first-principles calculations of
10—-100 inorganic crystalline compounds at most with less
than a few atoms in a unit cell with a level of accuracy com-
parable to experiments. Density functional theory (DFT) is a
reasonable way to fulfill the accuracy level without prohibitive
computational costs. Today, developments of computational
hardware and software have enabled computations of 10°—-10°
compounds having much larger unit cells. These results have
been stored in databases such as the Materials Project (MP)
(materialsproject.org), AFLOW (aflowlib.org), OQMD (ogmd.
org), NOMAD (www.nomad-coe.cu), and Materials Cloud
(www.materialscloud.org).

In order to construct such databases, powerful software
tools to automate computational engines to run thousands of
simulations are essential, as are application programming
interfaces (APIs) for the resulting databases. Complex sequences
of calculations are encoded into scientific workflows. Robust
tools to store, search, and disseminate big data are important as
well, and scientists benefit greatly from them. Such software
platforms are described in this issue.”!

When a target property can be accurately computed by
DFT without excessive computational cost, high-throughput
screening (HTS) within the DFT database is a straightfor-
ward strategy. These types of screening approaches have been
used to design and discover materials with a wide range of
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properties, including those for structural, electronic, func- thermodynamic stability should be examined before or after
tional, and energy materials. Unfortunately, many materials the screening. However, computational demand increases
properties are not directly computable by DFT. For some dramatically when one goes beyond the boundaries of
materials properties that can be computed, the computational known compounds. Hence, it remains a challenge to explore

expense precludes a HTS approach. In these instances, de- the vast chemistry space exhaustively by only using DFT
scriptors or features that correlate with the target property calculations.

may instead be used for HTS. Examples of useful descrip- One significant deficiency of current databases is that
tors have been found through physical considerations and the they contain (for the most part) only experimentally syn-
knowledge of experts.'* 1 thesized compounds for which the crystal structure has been

Initially, DFT databases were developed for crystal structures determined. Examination of diffraction databases such as the
registered in experimental databases, such as the International Powder Diffraction File?! shows that there are on the order
Crystal Structure Database (ICSD).'® A DFT calculation can of 10*-10° experimentally synthesized inorganic compounds
find an equilibrium structure corresponding to the local min- whose crystal structures have not been solved. Solution of
ima of the potential energy surface, which is called geometry these structures followed by subsequent DFT calculations
optimization. However, the optimization is typically limited would enable a large increase in the size of available data-
within a local structure space fixing the number of atoms in bases. Methods such as the first-principles assisted structure
the given unit cell. In addition, this local optimization is most solution (FPASS) have been developed and applied to this
often made using the symmetry of the starting configuration, problem of automating structure solution.?>?* However, the
and does not allow switching to other symmetries. In other computation expense of the methods still leaves a large
words, the thermodynamic stability of the compound is far number of unsolved compounds today. In addition, all DFT
from guaranteed if the structure of a hypothetical compound databases (MP, AFLOW, OQMD) largely or completely

is simply optimized locally. ignore compounds that contain partial occupancy in the crys-
Methods to perform global structure optimization based tal structure. Although methods such as cluster expansions
on strategies such as the evolutionary algorithm,!” par- of special quasi-random structures**?> could address these

ticle swarm optimization,'® minima hopping,' and random partially occupied structures, the automated use of these
structure searching® have been developed and successfully tools in HTS still presents challenges. Since a large fraction of
applied to many examples using program packages such the total number of compounds experimentally reported have
as USPEX (http://uspex-team.org/en/), CALYPSO (www. partial occupancy, a solution of these challenges would also
calypso.cn), and AIRSS (www.mtg.msm.cam.ac.uk/Codes/ represent a large expansion of the data set.

AIRSS). However, these are computationally demanding

for exploration of the vast chemistry space composed of ~ Machine-learning models for formation energy
possible combinations of chemical elements. For example, ~ and other physical quantities

the number of combinations exceeds one billion for quater- If one can obtain a good “guess” of formation energy by
nary systems with simple composition ratios. Additionally, machine learning (ML) using a large set of DFT calculations
even with these global optimization tools,

which search for minimum energy struc-
tures at a given composition, thermodynamic E descriptors/models
stability is still often not guaranteed, since ! @
a stable compound must be lower in free ‘ t
energy than phase separation into all possible DFT databases $ $ ¢
.- J = :
declomlziosnlljon prol()iucts. The utility of larhge- Experimental-J----- [thermodynamically stable g t i i § 3
scale . atabases ecome.:s appa.rfznt w en databases - J..__.| [ __ Im w ! s § ¢ § @ :
assessing thermodynamic stability, since 2 ® o 2 Aicorjvex|hull
these databases allow comparison of the i b
. . yet unknown P ;_shasa_sepzjtano?
energy of any compound under consideration ! A A
with all possible combinations of phases - P A.B P |
included in the database. The major databases candidates Chemical Composition
previously listed (MP, AFLOW, OQMD)
all have automated the construction of these Figure 1. (a) A flowchart of high-throughput screening of density functional theory (DFT)
“convex hulls” to assess thermodynamic sta- databases. “Known”ldenotes compounds registered in the Interpational Crystal StructL_Jre
. . R Database whose existence and structure are known by experiments. (b) A schematic

bility. Figure 1 illustrates the HTS scheme diagram for the convex hull of free energy. Blue and green dots correspond to compounds
using a DFT database, along with the convex with negative and positive formation energies, respectively. Violet dots show the lowest
hull concept. If one wants to expand the energy structures for given chemical compositions. The red line shows the convex hull.

) The AB compound corresponding to the violet dot is thermodynamically not stable and is
search space beyond the set of known com- subject to phase separation since it is not on the convex hull.
pounds to “as yet-unknown” compounds, the
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as training data, the thermodynamic stability of an arbitrary
compound can be assessed without computationally demand-
ing DFT calculations. Attempts at such ML models have been
carried out for 134,000 small organic molecules in the GDB-9
database.?** The accuracy of these ML models is comparable
to target values not only for the energy, but also for geometry,
harmonic frequency, dipole moment, and polarizability. For
inorganic crystals, ML models with reasonable accuracy have
been reported as well.*3* In some cases, errors in the for-
mation energy from these ML models (relative to DFT) were
estimated to be close to the errors of DFT relative to experi-
ments.** These ML models are thus becoming useful for rapid
screening to select candidates for detailed examination.?>3336

Scientific intuition suggests that the energetics and proper-
ties of compounds are determined not only by their chemical
compositions, but also by their structures. Consequently, ML
models with high accuracy typically use structural descrip-
tors as well as elemental descriptors. The need for structural
descriptors limits the use of ML models for the exploration
within an unknown compound domain, since the structural
descriptors cannot be a priori provided for unknown com-
pounds. Even when the compound of interest (e.g., at the
extremum of a target property) with respect to structural and
elemental descriptors is predicted by an ML model, there is
currently no robust approach to reconstruct the crystal struc-
ture from these descriptors.

Instead of making ML models for energy or other quantities
by a regression approach, one can use a classification approach
to judge whether a compound is relevant for further investiga-
tion. Attempts to find chemically relevant compositions (CRCs),
where the presence of a stable compound is anticipated, have
been made using ML models.***7? In a similar manner, a CRC

DATA-CENTRIC SCIENCE FOR MATERIALS INNQVATION

database (www.htem.nrel.gov).* Linking such data to theory
and the related assessment of accuracy of measurements in HTS
can help in making combinatorial libraries become a source
of generating reference data.*® Materials systems for such
experiments can be selected using ML models based on DFT
databases and other preceding databases, as described earlier
in this article. Such combinations are expected to accelerate
data-driven discovery.

Further, we had noted*® that “when combinatorial experi-
ments are coupled to the plethora of HTS techniques, they can
then serve as experimental platforms for linking length scales
and time scales and, hence, multiscale modeling.” To accom-
plish this, “combinatorial library synthesis needs to be linked
to the significant advances in computational modeling,” and
this is one area of research that opens new trajectories for
harnessing electronic structure databases. With advances
in experimental capabilities coupled to the availability and
access to large amounts of robust electronic structure data,
the foundations for an integrated workflow between experi-
ment and theory can be laid (Figure 2).¥

Finally, it may be useful for readers to refer to some other
materials databases. NIMS (National Institute for Materials
Science) in Japan provides a wide range of materials databases,
MatNavi,* with basic properties of polymers, inorganic
materials, and metals, together with experimental materials
datasheets such as creep data. The Materials Data Facility
(MDF)* (www.materialsdatafacility.org), a pilot project funded
by NIST, provides a scalable repository where materials
scientists can publish, preserve, and share research data.
Citrination® is an open database of materials data collected
by Citrine Informatics. The Nanoporous Materials Genome
Center has produced a database of nanoporous materials,

with a high metallic glass-forming ability with-
in experimentally unexplored composition
domains was recently successfully predicted and
experimentally validated.***! These and other
efforts in the ML domain have demonstrated
the power of application of these nascent tools
for materials problems.

HTE Discovery

Experimental big data analysis and
databases Fe
Progress in digitally controlled microanalysis

functionality

Ti

— e 4

electronic states
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— :
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S Co Composition
Ni

tools has enabled acquisition of big data from
nanostructures with atomic resolution. There
are many examples of this, such as the analy-
sis of hyperspectral image data obtained by
transmission electron microscopy,*** and
topological data analysis of atom probe tomog-
raphy images.** A high-throughput synthesis
(thin films) and characterization approach
with composition and temperature gradients
across the substrate has been systematically
conducted and the outputs are stored in the high-
throughput experimental materials (HTEMs)

10° samples per day 102-3 samples per day 1-10 saméles p'ér day
(JCAP) (ARPES, PEEM, STXM Microscopies) (nanoRIXS, STM)

measurement speed information content

Figure 2. Large quantities of samples are analyzed in an automatic manner for a specific
functionality that is faster to measure, after which a reduced number of highly contrasting
samples are subjected to a more detailed analysis (middle) to investigate the relationship
between preparation conditions and composition. Courtesy of the Advanced Light Source,
Lawrence Berkeley National Laboratory.*” Note: HTE, high-throughput experimental;
JCAP, Joint Center for Artificial Photosynthesis; ARPES, angle-resolved photoelectron
spectroscopy; PEEM, photoemission electron microscopy; STXM, scanning transmission
x-ray microscopy; RIXS, resonant inelastic x-ray scattering; STM, scanning tunneling
microscopy.

Downloaded from https://www.cambridge.org/core. University at Buffalo Libraries, on 08 Sep 2019 at 20:17:07, JMBfeBUbbLE R ar HUYE ¢Bre SEPHNBER ) /aitmiw 2ars.org/bulletin 1 661
https://www.cambridge.org/core/terms. https://doi.org/10.1557/mrs.2018.205



http://www.htem.nrel.gov
https://www.materialsdatafacility.org
https://www.cambridge.org/core/terms
https://doi.org/10.1557/mrs.2018.205
https://www.cambridge.org/core

DATA-CENTRIC SCIENCE FOR MATERIALS INNOVATION

including existing and proposed zeolites, metal—organic
frameworks (MOFs), and porous polymer networks (PPNs).
Textural properties (surface area and void fraction) have been
calculated for all materials, and adsorption properties for gas-
es such as hydrogen, methane, and CO, have been simulated
for large numbers of these materials.’!

In this issue

Currently, several DFT databases of structure, formation energy,
and other materials properties for 10°—10° inorganic compounds
are available. Combining ML tools, the databases have been util-
ized for discovery and design of new materials and solving dif-
ferent classes of problems in materials science.

The article by Pizzi et al. in this issue’ presents automation
software for preparing and performing multistep computational
workflows. The AiiDA program manages the execution of
dynamic workflows ensuring a format reusable in different
projects and by different researchers. The way to integrate
some tools for the automated computation is explained as
well.

The Ye et al. article® describes the MP database, which con-
tains DFT results for most of the known inorganic materials.
Features or descriptors useful for applying the ML techniques to
the database are explained. Examples of the data-accelerated
materials design are then showcased.

The AFLOW database contains DFT results for more than
1.8 million materials, including hypothetical compounds. The
Oses et al. article® in this issue illustrates how they combined
the database with ML tools in order to make thermodynamic
formability modeling feasible. Construction of electronic struc-
ture fingerprints is explained as well.

The Ward et al. article!'' presents another DFT database,
OQMD. Applications of informatics techniques for accel-
erated materials discovery and extraction of design rules
are described. A data-centric approach in experimental mate-
rials science is given as well. Future perspectives for the
continued expansion of materials informatics applications
are then discussed.

The activity of a European Centre of Excellence, NOMAD,
is explained by Draxl and Scheffler!® in this issue. It collects
computed data obtained by the most important first principles
codes. It can also manage the data of other databases, such
as MP, AFLOW, and OQMD, to feed into the ML process.
The outlook for handling experimental data is then discussed.

The Seko et al. article* describes the data-centric approach-
es used for characterization and design of nanostructures of
materials, which is called nanoinformatics. Combination of
ML techniques with DFT data and digitally controlled micros-
copy and spectroscopy data are shown to be powerful for
exploration of the design spaces.

Looking forward

In this issue of the MRS Bulletin, we have focused on electronic
structure databases or properties that can be derived from elec-
tronic structure calculations. There are many ongoing efforts

that are compiling data on different genres of materials, their
chemistry, properties, and characterization. As these databases
increase in size and diversity, one needs to begin to consider
the development of other functionalities of databases. These
include the ability to find ways to merge the knowledge derived
from different types of databases that capture multiscale infor-
mation. The integration of information will help to create a new
paradigm for the next generation of databases—transforming
them from repositories of data to “laboratories” where infor-
mation and data are fused to help unravel the complexity of
materials engineering problems.’>%
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principles atomistic calculations, high-throughput
and machine-learning tools to accelerate mate-
rials discovery, and “multiscale” methodologies for linking atomistic and micro-
structural scales. He is a Fellow of the American Physical Society. Wolverton can
be reached by email at c-wolverton@northwestern.edu.

JANILS

Recirculating Cryocooler
Eliminates the use of LHe for
“Wet” Systems

Existing LHe cooled
cryostats and probe
stations can be -
converted to cryogen-free operation with
the addition of an external cryocooler, the
Janis Recirculating Gas Cryocooler
(RGC4). Instead of using LHe from a
storage vessel, the RGC4 delivers a
stream of 4K helium to the cryostat or
probe station. Contact Janis today for
more information.

Contact us today:
sales@janis.com
www.janis.com/RecirculatingCryocooler.aspx
www.facebook.com/JanisResearch

Downloaded from https://www.cambridge.org/core. University at Buffalo Libraries, on 08 Sep 2019 at 20:17:07, MR feBUtbL4HH R ar MOMUE dBre SEPTEABER ) Lainmiw ars.org/bulletin M 663
https://www.cambridge.org/core/terms. https://doi.org/10.1557/mrs.2018.205


http://als.lbl.gov/wp-content/uploads/2017/08/ALS-U-Early-Science-Workshop-Report-Full.pdf
http://als.lbl.gov/wp-content/uploads/2017/08/ALS-U-Early-Science-Workshop-Report-Full.pdf
http://mits.nims.go.jp/index_en.html
http://mits.nims.go.jp/index_en.html
https://materialsdatafacility.org
https://citrination.com
https://doi.org/10.1038/srep179601
mailto:tanaka@cms.mtl.kyoto-u.ac.jp
mailto:krajan3@buffalo.edu
mailto:c-wolverton@northwestern.edu
https://www.cambridge.org/core/terms
https://doi.org/10.1557/mrs.2018.205
https://www.cambridge.org/core

