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ABSTRACT: Drug delivery vehicles can improve the func-
tional efficacy of existing antimicrobial therapies by improving
biodistribution and targeting. A critical property of such
nanomedicine formulations is their ability to control the
release kinetics of their payloads. The combination of (and
interactions among) polymer, drug, and nanoparticle proper-
ties gives rise to nonlinear behavioral relationships and large
data space. These factors complicate both first-principles
modeling and screening of nanomedicine formulations.
Predictive analytics may offer a more efficient approach
toward the rational design of nanomedicines by identifying key descriptors and correlating them to nanoparticle release
behavior. In this work, antibiotic release kinetics data were generated from polyanhydride nanoparticle formulations with
varying copolymer compositions, encapsulated drug type, and drug loading. Four antibiotics, doxycycline, rifampicin,
chloramphenicol, and pyrazinamide, were used. Linear manifold learning methods were used to relate drug release properties
with polymer, drug, and nanoparticle properties, and key descriptors were identified that are highly correlated with release
properties. However, these linear methods could not predict release behavior. Nonlinear multivariate modeling based on graph
theory was then used to deconvolute the governing relationships between these properties, and predictive models were
generated to rapidly screen lead nanomedicine formulations with desirable release properties with minimal nanoparticle
characterization. Release kinetics predictions of two drugs containing atoms not included in the model showed good agreement
with experimental results, validating the model and indicating its potential to virtually explore new polymer and drug pairs not
included in the training data set. The models were shown to be robust after the inclusion of these new formulations, in that the
new inclusions did not significantly change model regression. This approach provides the first step toward the development of a
framework that can be used to rationally design nanomedicine formulations by selecting the appropriate carrier for a drug
payload to program desirable release kinetics.
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1. INTRODUCTION

Intracellular bacterial infections are challenging to treat using
traditional antimicrobial therapies due to the difficulty in
achieving high enough local drug concentration for antimicro-
bial activity without inducing host cell toxicity.1 Elimination of
soluble drugs through host metabolism and excretion pathways
acts to reduce the bioavailable amounts of antimicrobials
requiring repeated dosing to maintain therapeutic concen-
trations to mitigate the development of antibiotic resistance in
pathogens.2,3 Drug delivery vehicles can improve the efficacy
and potency of antimicrobials by altering the drug biodis-
tribution with improved intracellular localization and delivery
of cargo to the pathogen’s intracellular niche within host
cells.4,5 Biodegradable polyanhydride nanoparticles show
passive targeting and payload stabilization properties that

make them uniquely suited for antibiotic delivery for
intracellular infections.4,6 These particles are internalized
efficiently by phagocytic cells using multiple mechanisms and
have been used to deliver antibiotics to kill intracellular
Brucella abortus.7 Additionally, polyanhydride nanoparticles
mediated the efficient killing of filarial parasites by codelivering
an antiparasitic with an antibiotic targeting an intracellular
endosymbiotic bacterium that supports parasite health and
reproduction.8
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A key feature of the effectiveness of these nanomedicine
formulations is their ability to control payload release rate;
however, rationally designing nanomedicines with program-
mable release remains elusive. Release kinetics are influenced
by drug distribution within a device and/or a particle, which is,
in turn, influenced by polymer−drug thermodynamic inter-
actions.9−11 These interactions give rise to nonlinear release
behavior, which is difficult to predict a priori. Screening
nanomedicine formulations is challenging as polymer and
nanoparticle properties (e.g., polymer chemistry, nanoparticle
size, polydispersity, release kinetics, and encapsulation
efficiency (EE)) yield a large number of additional variables
beyond drug-specific properties. This large data space, coupled
with the multiple length scales at play, poses difficulties for
generalizing conclusions to other nanoparticle systems and
impedes first-principles modeling of nanoparticle behavior.12,13

Hierarchical modeling may be a more efficient approach for
such systems, wherein key descriptors are identified and
correlated to performance parameters.
Informatics methods encompass several tools for such

hierarchical modeling. Data-mining techniques can deconvo-
lute complex behavior, unraveling relationships that lie on non-
Euclidian surfaces,14 which enables pattern recognition and
prediction through the development of quantitative structure−
property relationships (QSPRs).15 To this end, previous
informatics analyses from our laboratories have enabled the
identification of polyanhydride chemistry and structural factors
that influence protein release from films16 and enable
pathogen-mimicking nanoparticle processing by immune
cells.17−20

The focus of this work was to develop an informatics-based
framework that determines how polymer, drug, and nano-
particle characteristics influence drug encapsulation efficiency
and release kinetics. We sought to generate predictive models
that can virtually test potential new polymer and drug
combinations for desirable release kinetics. Our long-term
goal is to develop a predictive analytics framework to enable
the rational design of nanomedicine formulations for different
types of therapeutic and prophylactic applications.

2. MATERIALS AND METHODS
2.1. Materials. Sebacic acid (SA) was purchased from

Sigma-Aldrich (St. Louis, MO). Triethylene glycol, 4-p-
hydroxybenzoic acid, 1-methyl-2-pyrrolidinone, and 1,6-
dibromohexane were purchased from Sigma-Aldrich for 1,8-
bis(p-carboxyphenoxy)-3,6-dioxaoctane (CPTEG) and 1,6-
bis(p-carboxyphenoxy)hexane (CPH) monomer syntheses.
Potassium carbonate, dimethyl formamide, toluene, acetoni-
trile, acetic acid, sulfuric acid, N,N-dimethylacetamide, and
acetic anhydride were purchased from Fisher Scientific
(Fairlawn, NJ) for monomer and polymer syntheses. 4-p-
Fluorobenzonitrile was purchased from Apollo Scientific
(Cheshire, U.K.) for use in monomer synthesis. Methylene
chloride, pentane, and hexane were purchased from Fisher
Scientific for polymer purification and nanoparticle synthesis.
Doxycycline (DOX), rifampicin (RIF), and pyrazinamide
(PZA) were purchased from Sigma-Aldrich, and chloramphe-
nicol (CAM) was purchased from Fisher Scientific. Mer-
openem (MEM) was purchased from Ark Pharm, Inc.
(Arlington Heights, IL) and ceftazidime (CAZ) was purchased
from Acros Organics (NJ). 1H NMR analysis used deuterated
chloroform purchased from Cambridge Isotope Laboratories
(Andover, MA). Drug quantification used UV-transparent

microplates from Greiner Bio-One (Kremsmu nster, Austria),
HPLC-grade acetonitrile, methanol, and tetrahydrofuran from
Fisher Scientific, and phosphoric acid from Sigma-Aldrich.

2.2. Polymer and Nanoparticle Syntheses. CPTEG and
CPH diacids were synthesized, as described previously.10,21,22

CPTEG:CPH and CPH:SA copolymers were synthesized, as
described previously.10,21 Briefly, monomers were weighed in
appropriate molar ratios and added to a round-bottom flask.
The monomers were acetylated in excess acetic acid at 125 °C
for 30 min, and rotary evaporation was used to remove excess
solvent from the resulting prepolymer. CPTEG:CPH was
reacted for 6 h at 140 °C at <0.1 Torr and CPH:SA was
reacted for 30 min at 180 °C at <0.3 Torr. Polymers were
purified by precipitation in chilled hexanes. Copolymer
composition and number average molecular weight (Mn)
were confirmed by 1H NMR spectra acquired on a Varian MR-
400 (Varian, Inc., Palo Alto, CA), and thermal properties of
the copolymers were characterized by DSC (Q2000, TA
Instruments, New Castle, DE).
Antibiotic-loaded nanoparticles were synthesized, as de-

scribed previously.7,8 Polymer and drug were weighed in
separate scintillation vials at appropriate % w/w ratios. Enough
methylene chloride to dissolve the polymer at 20 mg/mL was
added to the drug vial to dissolve/disperse the drug and then
transferred to the polymer vial. The combined drug and
polymer solution was poured into a pentane antisolvent bath at
room temperature (CPH:SA) or −10 °C (CPTEG:CPH) at a
solvent/antisolvent ratio of 1:250 and nanoparticles were
recovered by vacuum filtration. CPTEG:CPH nanoprecipita-
tion was carried out in a cold room at 4 °C. A total of 68
nanoformulations were tested, spanning drug loadings between
1 and 20% loadings (% w/w). All drugs were tested in 20:80
CPH:SA and 20:80 CPTEG:CPH nanoparticles, and rifampi-
cin was additionally tested in 10:90, 30:70, and 50:50
CPTEG:CPH. 1H NMR spectra of empty 20:80 CPTEG:CPH
and 20:80 CPH:SA nanoparticles indicated undetectable
amounts of methylene chloride and trace amounts of pentane
(data not shown).
To validate the informatics analysis, nanoparticles encapsu-

lating meropenem or ceftazidime were synthesized using a
high-throughput method adapted from Goodman et al.23

Briefly, polymer and drugs were dissolved/dispersed in
methylene chloride and dispensed via a high-throughput,
automated robot into 10 mL borosilicate tubes at a final
polymer concentration of 20 mg/mL. The robot sonicated and
dispensed the combined polymer and drug solution into 50
mL conical polypropylene tubes containing 45 mL pentane
(1:18 solvent/antisolvent ratio) at the temperatures listed
above. Multiple particle batches were pooled and recovered by
vacuum filtration. Scanning electron microscopy (SEM, FEI
Quanta 250, Hillsboro, OR) was used to image all nano-
particles, and size distributions were calculated using Fiji image
analysis software24 and the ParticleSizer plugin script for Fiji.
Nanoparticle ζ-potential was measured using a Zetasizer Nano
(Malvern Instruments Ltd., Worcester, U.K.).

2.3. Drug Release Kinetics. Nanoparticles (9−11 mg)
were dispersed in 0.5 mL phosphate buffered saline (PBS), pH
7.4 and suspended by sonication (VCX 130 PB, Sonics &
Materials, Inc., Newtown, CT). At each time point, the
nanoparticles were pelleted by centrifugation and supernatant
was collected for drug quantification. Fresh PBS was added to
maintain perfect sink conditions, and the nanoparticles were
dispersed by sonication. At the end of the release experiment,
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40 mM sodium hydroxide was added to accelerate polymer
degradation and extract the remaining encapsulated drug, as
described previously.25

The drug mass released at each time point was determined
by spectrophotometry (SpectraMax M3, Molecular Devices,
San Jose, CA) and UV-HPLC (1200 series, Agilent
Technologies, Santa Clara, CA). Doxycycline, rifampicin, and
chloramphenicol were quantified by absorbance in UV-
transparent 96-well plates at 350, 333, and 293 nm,
respectively. Pyrazinamide release and base extraction samples
were separated using a Phenomenex Kinetex 2.6 μm C18 100
Å 100 × 4.6 mm column and a 30:5:65 acetonitrile/methanol/
water mobile phase adjusted to pH 5.2 with phosphoric acid.26

The flow rate was 0.6 mL/min and pyrazinamide was
quantified at 268 nm. Meropenem and ceftazidime release
and base extraction samples were separated using a Zorbax
Eclipse XDB-C8 5 μm 150 × 4.6 mm column, monitoring at
299 and 246 nm, respectively. Meropenem release samples
used a mobile phase gradient ramping from 0.1:99.9 (% v/v)
methanol/water to 50:50 over 15 min. Meropenem base
extraction samples used a gradient ramping from 0.1:99.9
acetonitrile 0.1% trifluoroacetic acid/water 0.1% trifluoroacetic
acid to 50:50 over 15 min. Ceftazidime release samples used a
mobile phase protocol with an isocratic step at 0.1:99.9
methanol/water for 5 min followed by a gradient ramping to
50:50 over 10 min. Ceftazidime base extraction samples used
an isocratic step at 15:85 from 0.1:99.9 acetonitrile 0.1%
trifluoroacetic acid/water 0.1% trifluoroacetic acid for 1 min
followed by a gradient ramping to 40:60 over 5 min. All
meropenem and ceftazidime HPLC protocols used a flow rate
of 1 mL/min.
The small mass of drug and large volume of antisolvent used

in nanoparticle synthesis render the nonencapsulated drug
concentration below the limit of detection of the analytical
methods used in this study. Therefore, EE was calculated from
the cumulative sum of detected drug mass released in PBS and
base extraction samples using eq 1.25 In a minority of
formulations of >100%, EE was observed, which could arise
from the presence of drug nanocrystals27 (which was not
detected on nanoparticle surfaces by SEM), gravimetric
inaccuracies due to the static charge of the nanoparticles, or
residual error in the drug concentration quantification assays.
Drug release kinetics are presented as fraction released, where
the cumulative drug mass release is normalized by the total
encapsulated drug mass. Prism 7 (GraphPad Software, La Jolla,
CA) was used to generate release kinetics figures.

=

× ( )

EE
100%

cumulative drug mass from release & base extraction

nanoparticle mass drug loading fraction wt
wt

(1)

2.4. Informatics Analysis. Release behavior parameters,
along with polymer, drug, and nanoparticle properties, were
normalized and mean-centered. Three different informatics
approaches were integrated and applied to analyze the data in
this work. Linear manifold learning approaches, such as
principal component analysis (PCA),28−30 permit us to
identify the right projection of data from which meaningful
features associated with the input data can be identified. PCA
performs an eigenvector decomposition and defines a new set
of linear combinations of descriptors, which maximize the

amount of unique information in a minimal set of orthogonal
axes, termed principal components (PCs). The original data
are decomposed into two matrices of interest for this work: the
scores and loadings. The scores describe the different
conditions (i.e., nanoparticle and drug chemistry), while the
loadings describe the different descriptors and properties. The
interpretation of these matrices is provided here with the
relevant results, and an additional term called the variable
importance projection (VIP) is calculated from the loading
matrix using eq 2

=
×

∑ ×
VIP

PC PC
PC PC
x
T

x
i

x
T

x
i

(2)

In this case, x = 5 because 5 PCs captured >90% of the
variance in the data. The analysis was performed for T =
encapsulation efficiency, the drug released at 2 h, and the
fraction released/day. Partial least square (PLS) is a multilinear
regression approach, which accounts for collinearity in the data
and therefore limits bias and develops more robust quantitative
relationships.31−34 PLS performs separate PC analyses on the
predictor variables (i.e., descriptors) and the predicted
variables (i.e., properties). These therefore represent linear
manifold learning approaches, which provide qualitative and
quantitative design relationships.
To model the drug release properties accurately and

robustly, we found that nonlinearity needed to be accounted
for in the modeling. Therefore, we first developed nonlinear
parameterization of the data through nonlinear manifold
learning, based on graph theory, using the Isomap
algorithm.14,35 This approach generates a graph connecting
data points on a high-dimensional space to their nearest
neighbors, mapped out in the high-dimensional space, and
then fit to a low-dimensional manifold. The assumption here is
that the graph Euclidean distance between the points in high
dimensions closely approximates the curvilinear distances
along the low-dimensional manifold. Through dimensionality
reduction, the manifold unravels in two or three dimensions,
allowing it to be visualized. The result of such dimensionality
reduction is a weighted graph of the original data points where
the edges are weighted according to the geodesic distances.
Like in PCA, we develop a set of parameters for each set of
conditions, although in this case, the parameters are based on a
nonlinear combination of descriptors.

3. RESULTS
3.1. Building Descriptor Library. To generate the data

set, we focused on nanoparticles composed of CPTEG, CPH,
and SA copolymers (Figure 1a,b). Nanoparticles synthesized
from these polyanhydride copolymers have been shown to kill
intracellular bacteria because of their high internalization rates
by phagocytic cells,7,36 localization in intracellular compart-
ments that harbor these bacteria,17,36 and improved anti-
microbial activity of encapsulated drugs.6−8 In addition to the
structural descriptors defined by Li et al.,16 we included
molecular weight and compositional data from 1H NMR and
thermal characterization from DSC analysis. The release
kinetics of four antibiotics, doxycycline (Figure 1c), rifampicin
(Figure 1d), chloramphenicol (Figure 1e), and pyrazinamide
(Figure 1f), were studied. The choice of the drug library was
motivated by multiple factors. These drugs were selected due
to their diversity of molecular weight, chemical structure, and
hydrophobicity, among other physicochemical differences. All
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are FDA-approved drugs and belong to separate antibiotic
classes, target distinct bacterial structures, and have well-
characterized pharmacokinetics/pharmacodynamics. Experi-
mental and predicted physicochemical properties for each of
these drugs were gathered from the DrugBank database.37

Predicted drug properties from this database were calculated
by ALGOPS and ChemAxon methodologies.
These drugs were encapsulated in polyanhydride nano-

particles by flash nanoprecipitation, and ζ-potential, size
distributions, and polydispersity index were obtained. Release
profiles and encapsulation efficiencies were obtained from in
vitro experiments in PBS, pH 7.4 (Figure 2). Figure 2 shows
the representative release kinetics data for multiple drugs,
selected from a total of 68 nanoformulations that were tested.
The formulations depicted in Figure 2 were selected to show
the diversity of release behavior in the data set. CPH:SA−
doxycycline nanoformulations tended to show a higher burst
than CPTEG:CPH nanoformulations, and the lower loading in
the CPH:SA nanoformulations tended to have a greater
sustained release slope (Figure 2a). The chemistry trend was
reversed in the rifampicin nanoformulations, where the
CPTEG:CPH chemistries tended to show a higher burst
release than the CPH:SA chemistries, and increasing the
loading increased the burst (Figure 2b). For chloramphenicol,
both 20:80 CPH:SA and CPTEG:CPH nanoformulations
tended to generate a large burst release followed by a slow rate
of drug release (Figure 2c). Pyrazinamide formulations
generated a large burst from the 20:80 CPH:SA nanoparticles
followed by a steady rate of drug release (Figure 2d). In
contrast, the 20:80 CPTEG:CPH nanoparticles encapsulating
pyrazinamide showed a small burst and slow rate of drug
release and did not release more than 20% of the payload in 1
week. These results add to the body of literature,9−11,38 which
indicates that copolymer chemistry, drug type, and drug
loading influence drug release kinetics from biodegradable
particles and other devices.

3.2. Identifying Factors That Influence Drug Release.
The drug release profiles were parameterized using three
attributes: (i) fraction released at 2 h (FR (2 h)); (ii) fraction
released in 1 day (FR (24 h)), both of which characterized the
burst effect; and (iii) the slope of the release profile between 2
and 7 days to characterize the sustained release (Table 1). The
normalized and mean-centered data are represented in the
form of a heat map to provide an overview and to ensure that
no outliers are biasing the results (Figure 3, Tables S1 and S2).
In this step, no data specific to particle chemistry were
included so as to not bias the analysis. A clustering analysis,
based on Euclidian distance, was used to visualize broad trends

Figure 1. Polymer and antibiotic chemical structures. (a, b) Structures
of CPH:SA (a) and CPTEG:CPH (b) copolymers, where m and n are
the number of repeats for each unit. (c−f) Structure of doxycycline
(DOX, a), rifampicin (RIF, b), chloramphenicol (CAM, c), and
pyrazinamide (PZA, d).

Figure 2. Representative antibiotic release kinetics from nanoparticles
encapsulating doxycycline (DOX, a), rifampicin (RIF, b), chlor-
amphenicol (CAM, c), and pyrazinamide (PZA, d). The depicted
nanoformulations represent a subset of the 68 formulations tested and
were selected to display the diversity of release behavior in the data
set. Data are presented as mean ± SD. Error bars are not depicted in
cases where the error bar height is smaller than the symbol. Release
profiles were parameterized into a 2 h burst, a 1 day burst, and a 2−7
day sustained release slope.
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in the data set between descriptors and nanoformulations and
is represented in Figure 3 by dendrograms, which define the
correlative indices. The clustering along the y-axis of Figure 3
can be visualized as plotting each nanoformulation in a
multidimensional space, where each dimension is a different
descriptor. Encompassing n-dimensional “spheres” are defined

at the locations of the nanoformulations, and as the radii of the
spheres increase, additional nanoformulations are encom-
passed. The relative sphere size needed to encompass multiple
descriptors is comparable to the height of the branch in the
dendrogram. Nanoformulations or descriptors grouped lower
in the dendrograms are likely to show relatively strong, positive
correlations. Branches higher in the dendrograms are more
likely to show weak, positive correlations or inverse
correlations.
From Figure 3, we find that the primary difference is

between CPH:SA and CPTEG:CPH, given that the two
chemistries branch off at the lowest correlation node.
Therefore, particle chemistry is the key discriminator for
nanoformulation behavior. Within each node, the compounds
then group based on drug type and then finally branch off
based on theoretical drug loading and molar monomer ratios
within the copolymer. This defines the order of importance on
release properties with CPH:SA versus CPTEG:CPH as the
most important and the theoretical drug loading having less
importance. For CPH:SA nanoparticles, rifampicin and
pyrazinamide grouped together strongly, whereas doxycycline
and chloramphenicol grouped together within the
CPTEG:CPH chemistries. The CPTEG:CPH−chlorampheni-
col and −pyrazinamide nanoformulations clustered together
and diverged from the CPTEG:CPH−rifampicin and −dox-
ycycline nanoformulations. Considering correlations to the
release properties, the fractions released at 2 and 24 h are
strongly correlated with the polymer melting point (Tm) and ζ-
potential. The fraction released/day clustered with nano-
particle diameter and PDI polymer DOP and Mn. The
relatively low branching of these properties in the dendrogram
indicates a moderate to strong correlation. Encapsulation
efficiency (EE) was most strongly correlated with water
solubility, followed by fraction released/day. This (weak)
correlation to water solubility is expected, as incompatibility
between the polymer and drug hydrophobicity/hydrophilicity
can result in drug partitioning more strongly in the antisolvent
than the polymer matrix. The drug release properties (burst
release, slope of release, and encapsulation efficiency) appeared
relatively isolated from each other within the dendrogram,
suggesting a potential for the independent control of these
properties in designing nanoformulations.
A dimensionality reduction analysis, specifically principal

component analysis (PCA), was then applied to the data of
Figure 3, with descriptors specific to the particle and drug
chemistries added to the data set (Table S3). Plots of
formulation mapping and descriptor mapping within the
dimensionally reduced space are shown in Figures 4 and 5,

Table 1. Representative Antibiotic Release Propertiesa

nanoformulation EE (%) FR (2 h) FR (24 h) FR slope (FR/day)

20:80 CPH:SA 5% DOX 64.9 ± 5.8 0.878 ± 0.005 0.921 ± 0.007 0.00003 ± 0.00016
20:80 CPH:SA 1% DOX 159.0 ± 9.3 0.675 ± 0.025 0.702 ± 0.010 0.02963 ± 0.97909
20:80 CPTEG:CPH 1% DOX 71.6 ± 5.8 0.329 ± 0.023 0.462 ± 0.159 0.00082 ± 0.00014
50:50 CPTEG:CPH 10% RIF 86.7 ± 2.6 0.818 ± 0.008 0.872 ± 0.004 0.00087 ± 0.20502
20:80 CPH:SA 3% RIF 29.8 ± 2.4 0.240 ± 0.013 0.335 ± 0.009 0.06993 ± 0.96020
20:80 CPH:SA 1% RIF 49.3 ± 2.8 0.106 ± 0.011 0.168 ± 0.010 0.06285 ± 0.96084
20:80 CPH:SA 20% CAM 59.8 ± 0.4 0.886 ± 0.009 0.927 ± 0.006 0.00192 ± 0.47169
20: 80 CPTEG:CPH 20% CAM 123.5 ± 13.0 0.766 ± 0.020 0.782 ± 0.018 0.00055 ± 0.00821
20:80 CPH:SA 5% PZA 34.9 ± 4.8 0.298 ± 0.053 0.449 ± 0.069 0.02168 ± 0.30458
20:80 CPTEG:CPH 5% PZA 89.7 ± 36.6 0.057 ± 0.013 0.086 ± 0.020 0.00879 ± 0.33933

aFR (2 h) fraction released in a 2 h burst and FR (24 h) fraction released in a 24 h burst. Data are presented as mean ± SD.

Figure 3. Representation of correlations in data using Euclidian
distance-based clustering, with the dendrograms defining the degree
of correlation (i.e., branches at the bottom of the dendrogram have a
high correlation and correlation decreases as moving along the
branches). From the dendrograms, the key discriminators among
nanoformulations (vertical axis) in the order of importance are carrier
chemistry (CPTEG:CPH versus CPH:SA), drug type, and theoretical
drug loading. Concerning correlations between drug release proper-
ties and descriptors (horizontal axis), nanoparticle burst release (FR
(2 h) and FR (24 h)) was most strongly correlated with ζ-potential
and drug melting point. The release slope was most strongly
correlated with the nanoparticle and polymer size properties.
Encapsulation efficiency was most strongly correlated with the
water solubility of the drug. That these data fall within comparable
ranges demonstrates the robustness of the method and data set,
enabling the interrogation of nanoformulation behavior. Drug
abbreviations: doxycycline (DOX), rifampicin (RIF), chlorampheni-
col (CAM), and pyrazinamide (PZA). Raw and processed input data
are included in Tables S1 and S2.
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respectively. In these figures, the principal components (PCs)
are ordered in terms of decreasing variability captured. PC1,
the most important PC, captured particle chemistry properties
(43.1%); therefore, differences in particle chemistry descriptors
explain more variance in release behavior than those of other
descriptor sets. The next most important PC, PC2, captured
differences in drug-specific descriptors (27.9%). The score plot
(Figure 4), which maps individual nanoparticle formulations
onto these PCs (which, between them, allow us to reliably
capture correlations in those two dimensions), shows a clear
separation between CPTEG:CPH and CPH:SA particle
chemistries. Within each polymer, doxycycline, chlorampheni-
col, and pyrazinamide clustered together, whereas rifampicin
formulations formed a cluster isolated from the other drugs,
indicating potentially different types of interactions with the
particle carriers.
The loading plot (Figure 5), which maps the descriptor

variables onto the PCs, shows that the role of the particle and

the DrugBank descriptors have been isolated (i.e., particle data
lie along the PC1 axis and DrugBank data are along the PC2
axis). Given that PC1 is the most important axis, we are
capturing that the particle chemistry is the critical characteristic
for predicting particle release behavior. The drug release
properties do not adhere exclusively to either the PC1 or PC2
axis, indicating that they are influenced by both polymer and
drug characteristics. The ability to isolate different controls
allows us to assess, model, and design the material character-
istics.
To further quantify the correlation between descriptors and

release properties, we calculated the VIP (Figure 6). In all, a

total of 36 descriptors were used in the VIP analysis (as shown
in Table 2), describing nanoparticle (1−3), polymer (4−13),
and drug properties (14−36). The encapsulation efficiency was
most strongly correlated with ζ-potential (−), % Cl (drug)
(+), % O (drug) (+), Tm,drug (−), predicted water solubility
(−), pKa (strongest base) (−), and drug rotatable bond count
(+). As seen in Figure 3, the 2 h burst and slope of release were
highly correlated with each other and showed similar
correlations with the descriptors. Both the 2 h burst and
slope of release were most strongly correlated with % Cl
(drug) (+), % O (drug) (+), water solubility (−), % N (drug)
(−), pKa (strongest acid) (−), and rotatable bond count (+).
The identification of several highly correlated descriptors
allows for the reduction of the descriptor space to a minimum
number and defines the number of descriptors necessary for
performing high-throughput calculations. This minimization is
an important objective in computational modeling to improve
model robustness. The purpose of VIP analysis is to assess the
descriptors that contribute significant information as well as to
identify correlated descriptors. Although we identify the drug-
related descriptors as having the highest individual impact, the
particle-related descriptors collectively contribute to the largest
amount of information, as seen in Figure 4.

3.3. Modeling Release Behavior. Beyond only observing
the correlation of data, we wanted to identify similarities and
design pathways between the various nanoformulations. This
connectivity defines samples, which have the most similar
behavior and can provide information on potential replace-
ments and design. To accomplish this, we performed a graph
theory analysis (Figure 7). For the CPH:SA particle
chemistries, there is high connectivity (illustrated by black

Figure 4. PCA score plot. PC1 captures differences due to particle
chemistry (10:90 CPTEG:CPH in blue, 20:80 CPTEG:CPH in black,
and >30:<70 CPTEG:CPH in green) and PC2 captures the
differences due to the drug. There is a clear separation of formulations
due to different chemistries, with a demonstrated capability to isolate
the effects of particle chemistry from drug properties. PC1 and PC2
captured 43.1 and 27.9% of variability, respectively. Drug abbrevia-
tions: doxycycline (DOX), rifampicin (RIF), chloramphenicol
(CAM), and pyrazinamide (PZA). Raw input data are provided in
Table S3.

Figure 5. PCA loading plot. Particle descriptors lie along the PC1 axis
and drug descriptors lie along the PC2 axis. Drug release properties lie
along both axes, indicating some dependence on both particle and
drug descriptors. PC1 and PC2 captured 43.1 and 27.9% of variability,
respectively. Raw input data are provided in Table S3.

Figure 6. Variable importance projection of descriptors with respect
to drug release properties. Descriptors are listed in Table 2. Positive
VIP values correspond to positive correlation and negative values to
inverse correlation.
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lines) and tight clustering within individual drugs. For the
CPTEG:CPH particle chemistries, chloramphenicol, doxycy-
cline, and pyrazinamide showed high internal connectivity, but
rifampicin branched out significantly. Each drug showed some
degree of connectivity between the CPH:SA and
CPTEG:CPH particle chemistries, and doxycycline appeared
to be the most interconnected across particle chemistries.
The degree of similarity can be defined by the number of

connections required to connect two points. The distance
along the two-dimensional projection also indicates the
similarity of formulations. Pyrazinamide and chloramphenicol
generated the least similarity in release behavior, as they
required 4−6 connections, and lie far from each other along
the projection. Within each particle chemistry, doxycycline
showed the most similarity to rifampicin and pyrazinamide,
and rifampicin showed the most similarity to doxycycline and
chloramphenicol. The branched region of the CPTEG:CPH−
rifampicin nanoformulations indicates some dissimilarity from

the other rifampicin nanoformulations and some unique
behavior that will need to be explored more systematically
using experiments. Of note, the rifampicin formulations with
an altered molar composition of CPTEG:CPH (from the
20:80 that makes up most of the data set) showed high
similarity to the 20:80 CPTEG:CPH nanoformulations within
the cluster. This would suggest that nanocarrier copolymer
compositions can be interchanged within these rifampicin-
loaded formulations without a major impact.
This graph theory mapping in Figure 7 yielded notably

different drug clustering within each nanocarrier chemistry
compared to PCA (Figure 4). Rifampicin and chloramphenicol
formulations are closely related in this map, while they were
distant from each other in the PCA score plot. Strikingly,
chloramphenicol and pyrazinamide are most distant in the
graph theory map, while they were clustered closely in the
PCA score plot. These clustering differences are likely due to
PCA’s limited ability to capture nonlinear relationships.
Nonlinear modeling techniques like graph theory are better
equipped to capture the nonlinear release behavior arising
from interactions between polymer and drug properties. In
summary, the graph theory mapping defined similarity and
connectivity between different nanoparticle formulations, while
capturing nonlinearity in relationships that can be lost in a
linear analysis.
As PCA projects data onto a linear manifold, it has difficulty

explaining nonlinear relationships. To this end, PCA
demonstrated an insufficient capability to accurately predict
release properties in this data set. By contrast, graph theory can
be used to project the data onto a nonlinear manifold. This
provides high-throughput modeling that accounts for non-
linearity without requiring so many terms as to reduce the
robustness of the analysis. Therefore, the input into the
predictions defines the graph theory values of Figure 7, which
reflects a nonlinear combination of descriptors, and a
multilinear regression between these values and the drug
release properties was developed. It should be noted that the
drug release properties were not included in the nonlinear
parameterization used for the prediction input, because that
would result in predicting a property as a function of itself. The
result of high-throughput modeling is shown in Figure 8. This
represents a model with nonlinear parameters that are a
function of nanoparticle chemistry and theoretical drug loading
and is defined generally so as to be applied to a wide range of
chemistries. These models are fairly accurate, with R2 values
ranging between 70.0 and 75.5%. Cross-validation was applied
to ensure an even trade-off between robustness and accuracy.
Since these methods are based on descriptors that can be

Table 2. List of Descriptors Used in VIP Analysis

1 ζ-potential 13 Tg (°C) 25 log P (predicted, ChemAxon)
2 diameter 14 % C (drug) 26 log S (predicted, ALGOPS)
3 PD1 15 % H (drug) 27 pKa (strongest acidic)
4 water contact angle 16 % Cl (drug) 28 pKa (strongest base)
5 backbone O 17 % N (drug) 29 physiological charge
6 aliphatic C 18 % O (drug) 30 hydrogen acceptor count
7 aromatic C 19 molar mass 31 hydrogen donor count
8 % O 20 Tm (°C, drug) 32 polar surface area
9 % H 21 water solubility (experimental) 33 rotatable bond count
10 % C 22 log P (experimental) 34 refractivity
11 DOP 23 water solubility (predicted, ALGOPS) 35 polarizability
12 Ma (Da) 24 log P (predicted, ALGOPS) 36 number of rings

Figure 7. Graph theory map of formulation connectivity of release
properties. Similarity between points is defined as the number of
connections (solid lines) required to connect points. CPH:SA
chemistries are represented by orange squares, while CPTEG:CPH
chemistries are represented by circles (10:90 CPTEG:CPH in blue,
20:80 CPTEG:CPH in black, and >30:<70 CPTEG:CPH in green).
This represents an approach for building a set of nonlinearly derived
parameters for performing high-throughput predictions. This
approach was applied to a reduced descriptor set to develop a
parameterization of the data, which ensures robustness by minimizing
the number of input parameters, while incorporating nonlinear
relationships and maximizing variance in the data. Drug abbreviations:
doxycycline (DOX), rifampicin (RIF), chloramphenicol (CAM), and
pyrazinamide (PZA).
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generated for potentially new nanoparticle formulations, the
models provide a method to virtually explore a large search
space. This method can guide experimentation by predicting
target properties for the desired release profile, suggesting
chemistries that match the targeted properties for testing.

3.4. Model Validation. To evaluate the robustness and
accuracy of the multilinear models, nanoparticles encapsulating
two new antibiotic drugs (not included in the training data
set), meropenem and ceftazidime, were synthesized and
characterized. Importantly, these drugs contain sulfur atoms
(Figure S4), which are not present in the four drugs used in
the original model training. The models in Figure 8 were used
to predict the release properties for these new formulations
(Table 3). Based on these predictions, it is expected that all
eight formulations would show a high (>80%) burst release at
2 and 24 h and a minimal sustained release over d2−d7. With
the exception of the 20:80 CPH:SA−meropenem formula-
tions, all other nanoformulations are expected to show a near-
100% encapsulation efficiency.
Strikingly, these predictions match experimental results

closely. These new nanoformulations displayed similar release
profiles characterized by a >90% burst release within 2 h,
followed by small amounts of drug released over the following
2 weeks (Figure S5 and Table 3). For this data set, the models
tended to underpredict the burst release and overpredict the
sustained release behavior of the nanoformulations. The EE
model was relatively accurate for 20:80 CPH:SA formulations,
within 5−20% of the measured EEs. The EE model showed
more deviation from measured values for 20:80 CPTEG:CPH
formulations, at ca. 15−35% differences from the experimental
values.
To test the robustness of the models when adding new,

untrained chemistries, eight nanoformulations were included in
the models (compositional percentages were calculated,
including sulfur atoms, but without a separate descriptor for
sulfur) and new regressions were calculated. We found R2

values for EE, FR (2 h), FR (24 h), and d2−d7 slope after
these inclusions to be 74.3, 75.5, 69.9, and 74.6%, respectively.
The small changes in regression from the original model data
in Figure 8 indicate that the analytics methodology was able to
incorporate new drug chemistries with minor impacts on the
models. This confirms the robustness of the model and its
capability to screen drug and polymer chemistries not included
in the model development.

4. DISCUSSION
Due to the wide diversity of microbial infections, nano-
medicines need to be customizable. Infections that are
responsive to antibiotics may benefit from sustained release-
skewing formulations by leveraging the dose-sparing proper-
ties, limiting the risk of off-target effects, reducing the number
of administrations, and enhancing patient compliance.4,8,39

Polyanhydride nanoparticles represent an attractive and
adaptable nanomedicine platform by virtue of their tunable
degradation and payload release rates,25,40 high biocompati-
bility,41,42 and efficient internalization by phagocytic cells.7

Predictive analytics approaches have the potential to
accelerate nanomedicine clinical translation, but the applica-
tion of such informatics and data-mining techniques to
nanomedicine design has been slow to develop.13 To date,
the majority of such efforts has focused on either linear
dimensionality reduction through PCA and regression through
PLS,27 which provides insight into relationships between

Figure 8. Graph theory high-throughput modeling of drug release
properties. The horizontal axis is the experimental measurements. The
vertical axis is the predicted encapsulation efficiency (a), 2 h burst
release (b), 24 h burst release (c), and the d2−d7 release profile slope
values from our model based on the reduced descriptor set. These
calculations are based on a new hybrid informatics approach where
nonlinear manifold projections serve as the input, thereby accounting
for greater complexity in descriptor−property relationships while also
increasing the robustness of the models. The models are reasonably
accurate for all tested release properties.
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formulations and variables but has limited capacity to capture
nonlinear behavior, or else artificial neural network “black box”
models,43−45 which can capture nonlinear behavior but
obscure interpretation of the structure of the model and data
space. As the long-term goal of this research is to facilitate the
rational design of nanomedicine formulations, interpretation of
the relationships between formulations is important. Accord-
ingly, the dimensionality reduction approach was selected for
this research and paired with graph theory mapping to
overcome the linearity limitations of PCA.
A hybrid data-mining approach was employed to deconvo-

lute the complex polymer and drug relationships and develop
QSPRs that describe release kinetics and encapsulation
efficiency. We correlated antibiotic release properties from
varying polyanhydride chemistries, encapsulated drug types,
and drug loading within the nanoparticles. Through PCA
analysis, we showed that release properties are dependent on
both copolymer chemistry properties and drug properties, with
polymer properties being more important. VIP analysis
identified key polymer and drug descriptors that predicted
drug release and encapsulation properties, but PCA was
insufficient to predict release behavior from these formulations.
Graph theory was used to characterize the multilinear

connectedness and similarity of formulations, which can guide
the selection of replacement formulations with similar release
behavior. For example, it is expected that 20:80 CPH:SA−
rifampicin-loaded nanoparticles (Figure 2b) would demon-
strate similar release behavior (including burst release, slope of
release between days 2 and 7, and encapsulation efficiency) as
20:80 CPH:SA−doxycycline-loaded nanoparticles (Figure 2a)
based on their close connections and proximal distance on the
map (Figure 7). Similarly, 20:80 CPTEG:CPH−pyrazinamide-
loaded nanoparticles (Figure 2d) would be expected to show
large differences in release behavior from 20:80 CPH:SA−
chloramphenicol-loaded nanoparticles (Figure 2c) due to a
large number of lines needed to connect them and far distance
on the map (Figure 7). The descriptors identified by VIP
analysis were paired with the multilinear mapping from graph
theory to generate predictive models for a priori screening of
nanoparticle formulations with desired release kinetics and
high encapsulation efficiency.
The physicochemical properties of compounds influence

their distribution either in blood plasma or a polymer matrix.
To this effect, VIP analysis (Figure 6) indicated that the
descriptors most strongly correlated with release properties
were both polymer and drug properties. This is expected, as
favorable mixing thermodynamics allows the distribution of the
drugs inside the polymer device.10,46 In polyanhydride

nanoparticles, such distribution allows an erosion-controlled
release profile, which tends toward sustained release.9,11 In
contrast, poor mixing between the polymer and drug induces
thermodynamic partitioning of the drug into polymer micro-
domains and/or localization at the particle surface, which
skews the release profile toward a high-burst, diffusion-
dominated regime.11 Many of these same drug properties
were correlated with encapsulation efficiency, supporting the
notion that polymer−drug mixing influences the carrying
capacity of delivery devices. As empty polyanhydride nano-
particles have a moderately negative ζ-potential,23 the strong
negative correlation between ζ-potential and encapsulation
efficiency could reflect a strong surface localization of
positively charged drugs. If this were the case, however, we
would expect a strong positive correlation between ζ-potential
and the 2 h burst release, which was not observed. Regardless,
the predictive power of this descriptor could support the use of
ζ-potential as a quality control metric to ensure consistent
encapsulation efficiencies of lead formulations. While it is not
surprising that these drug properties affect encapsulation and
release kinetics, this informatics analysis provides a sense of
their relative impact. Reducing the data space in this way can
help guide the rational selection of antibiotic and polymer
carrier pairs for nanomedicine formulations. These observa-
tions underline the complexity of these relationships and
provide support for the use of data analytics approaches to
enable the rational design of nanomedicines.
It should be noted that we can only confidently make

quantitative predictions in chemical spaces represented in our
training data. While the additional testing of drugs containing
sulfur, which was not represented in our training data, resulted
in approximately no change in accuracy, materials that have
unique behavior but with chemistries outside our training data
may not be quantitatively described by this approach.
However, even in these cases, our approach has a significant
impact. While the objective for the systems described by our
training data is to predict properties with high accuracy, the
objective for systems containing groups and elements not in
our training data is to identify polymer and drug combinations,
which have the most promising characteristics and identify
where additional experiments are needed. This leads to an
iterative approach where necessary experiments are identified,
thus feeding back to the analysis.
From all of these results, we propose a framework for the

rational design and rapid testing of nanomedicine formulations
(Scheme 1). In the first step, selected antibiotic drug
candidates are encapsulated within nanoparticles of various
polymer chemistries (potentially using high-throughput

Table 3. Parameterized Release Properties of Nanoparticles Encapsulating Two Drugs (Meropenem and Ceftazidime) Not
Included in the Training Data Seta

EE (%) FR (2 h) FR (24 h) FR slope (FR/day)

nanoformulation predicted measured predicted measured predicted measured predicted measured

20:80 CPTEG:CPH 5% meropenem 159 195.0 0.83 0.9406 0.84 0.9408 0.0033 0.000853
20:80 CPTEG:CPH 10% meropenem 128 140.9 0.81 0.9616 0.86 0.9617 0.0026 0.000271
20:80 CPH:SA 5% meropenem 29 34.5 0.95 0.9933 0.90 0.9933 0.0011 0.000656
20:80 CPH:SA 10% meropenem 49 61.7 0.98 0.9965 0.91 0.9967 0.0014 0.000168
20:80 CPTEG:CPH 5% ceftazidime 175 156.8 0.92 0.9997 0.88 1.0000 0.0019 0.000001
20:80 CPTEG:CPH 10% ceftazidime 190 159.9 0.91 0.9997 0.87 1.0000 0.0041 0.000004
20:80 CPH:SA 5% ceftazidime 114 91.8 0.97 0.9915 0.91 0.9952 0.0031 0.000771
20:80 CPH:SA 10% ceftazidime 129 112.7 0.94 0.9910 0.91 0.9941 0.0051 0.000686

aFR (2 h) fraction released in 2 h burst and FR (24 h) fraction released in a 24 h burst.
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techniques,23 as demonstrated in Section 3.4), and the
characterization of size distribution by SEM and ζ-potential
is obtained. These nanoparticle characteristics, along with
polymer properties and drug properties, can then be fed into
the multilinear graph theory model to predict encapsulation
efficiencies and release kinetics. Nanomedicine candidates with
predicted insufficient encapsulation and/or undesirable drug
release profiles can be discarded. The in vitro performance of
the lead nanomedicine candidates that emerge from this step
can then be validated using drug release kinetics assays. A
feedback reformulation loop allows the gradual optimization of
nanomedicine formulations and iterative updates to the models
when release behavior deviates from predictions. In theory, this
framework could be expanded to include other performance
metrics, including internalization by appropriate cells and
biological efficacy. As this methodology uses standard polymer
and nanoparticle characterization techniques used in nano-
carrier drug delivery research and publicly available drug
information, this approach could be expanded to include other
types of polymeric materials and other classes of small
molecule drugs. This data analytics framework constitutes
the first step toward the rational design of nanomedicine
formulations for antimicrobial therapies.

5. CONCLUSIONS
A multivariate data analytics approach was used to correlate
drug release profiles from nanomedicine formulations based on
different polyanhydride chemistries, encapsulated antibiotic
drug type, and varying drug loading. We showed that both

drug and polymer properties influence the drug encapsulation
efficiency within the nanoparticles, the prevalence of burst in
the drug release profile, and the slope of postburst release.
Polymer and drug properties that significantly impacted drug
encapsulation efficiency and release kinetics were identified
and defined a minimum descriptor set. The informatics
analysis captured and preserved nonlinear behavior governing
relationships between drug type, polymer chemistry, and
nanoparticle release properties, enabling the interrogation of
nanomedicine design pathways. We developed predictive
models for drug release kinetics of untested drugs, using data
from the DrugBank database and nanocarrier characterization
as inputs. Release kinetics predictions of two drugs containing
atoms not included in the model showed good agreement with
experimental results, validating the model and indicating its
potential to virtually explore new polymer and drug pairs not
included in the training data set. The models were shown to be
robust after the inclusion of these new formulations, in that
there were no significant changes in model regressions. This
multilinear modeling approach provides the first step toward
the development of a framework that can be used to rationally
design nanomedicine formulations by selecting the appropriate
carrier for a drug payload to program desirable release kinetics
profiles.
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