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Abstract
We propose a framework to extract and binarize handwritten content in lecture videos. The extracted content could potentially
be used to index video collections powering content-based search and navigation within lecture videos helping students and
educators across the world. A deep learning pipeline is used to detect handwritten text, formulae and sketches and then
binarize the extracted content. We exploit the spatio-temporal structure of our binarized detections to compute associativity
information of content across all video frames. This information is later used to segment the video. Experiments are conducted
to compare the performance of key components of our framework in isolation, as well as the impact on overall performance,
with respect to existing methods. We evaluate our framework on the publicly available AccessMath lecture video dataset
obtaining an f-measure of 94.32% for binary connected components. Code for the framework (including trained weights) and
summarization will be released.

Keywords Lecture video summarization · Handwritten text detection · Binarization · Deep learning

1 Introduction

Lecture videos are a useful resource for students and edu-
cators across the world; however, they are still not properly
indexed by most common search engines. The main reason
is that, in many cases, search engines depend on existing
text annotations in order to index video collections. If such
annotations are unavailable, search engines do not have a
principled way to retrieve them. Manually producing such
annotations is a hard task given the scale of lecture video
content available.

In this paper, we provide a pipeline for automated lecture
summarization, which performs detection, binarization and
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temporal refinement of detected regions. We concentrate on
videoswhere a single lecturer conducts a class while explain-
ing and producing handwritten content on a whiteboard.
Handwritten content in lecturematerial is often loosely struc-
tured and exhibits significant variance such as sentences,
math expressions, matrices, sketches and plots. When com-
bined with background noise, illumination changes, video
compression artifacts and occlusions due to the lecturer, this
presents a significant challenge for automatic extraction of
handwritten content. Availability of limited annotated lecture
video data further compounds the problem.

Our lecture summarization pipeline takes as input a video
stream uniformly sampled at 1 frame per second. First, we
detect bounding boxes enclosing handwritten content within
a frame and binarize the full frame in parallel. After hand-
written content is extracted from all frames of videos, the
next task is to analyze the detected regions and identify
association relationships of text regions across space and
time—including cases where text regions are occluded due
to motion of the lecturer. We propose a locality-based and
lecturer detection-based algorithms to group and consolidate
predicted bounding boxes within and across frames and use
this to bring back binarized content occluded by the speaker.

These frames with recovered binary content are further
refined by performing a connected component (CC)-level
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Fig. 1 Our generalized framework for summarization of still-camera whiteboard lecture videos

analysis. Stable CCs across frames are identified and miss-
ingCCs in frames due to inconsistency in detector outputs are
recovered in this stage. In the next step, frames that contain
CCs conflicting in spatial location during non-overlapping
time intervals in the entire lecture video are identified.
Finally, we segment the videos by greedily selecting frames
that resolve the maximum number of spatio-temporal con-
flicts in content associations across frames [7], thus obtaining
the keyframes of the lecture video. A keyframe of a segment
ideally contains all unique content within that segment. Our
pipeline is shown in Fig. 1.

The performance of our system is benchmarked against a
publicly available dataset [6]. Evaluationmetrics used are the
number of keyframes produced aswell as the recall, precision
and f-measure of keyframe content (at the level of binarized
connected components)with respect to all unique text content
in the lecture video. Along with the corresponding temporal
associativity index, keyframes extracted from a set of lecture
videos can potentially be used to search and navigate to the
frames of occurrence of handwritten queries within the col-
lection [3,8]. The main research questions being investigated
in our work include:

– How does the annotated lecture video data compare with
transfer learning from scene text data for the purpose of
training the handwritten content detector?

– How does full frame handwritten content binarizer per-
form for the overall task of summarization?

– What temporal refinement strategies of detected and
binarized content are needed for efficient summarization?

2 Background

We view lecture video summarization as a special case of the
general video summarization problem in computer vision.
Prior work in this area can be can be categorized into domain-
specific topics, i.e., the types of videos handled such as
egocentric, sports, surveillance, lecture. This problem has
also been viewed as a supervised learning problem, where
human expert annotations are used to train and generate video
summaries. On the other hand, unsupervised methods are
usedwhen annotation is too expensive to discover visual sim-
ilarities within the video and select representative elements.
Video summarization methods can also be broadly classified

based on the kind of summary that is generated. Keyframes
that contain the highlights of the video content is a typical
form of summary found in the literature [17,18,22]. Broadly,
the main approach for video summarization is to obtain a
representation of every frame and use supervised or unsu-
pervised methods to filter out the relevant subset of frames
in order to produce a summary.

For the specific domain of whiteboard lecture videos, we
seek to build a representation of frames bydetecting andbina-
rizing handwritten content within that frame. Unsupervised
methods are used to obtain similarity information across
frames by learning to extract features from detected areas of
content. Then, the optimum frames to segment the video are
found based on this similarity information to generate sum-
mary keyframes. We propose a deep neural network-based
methodology for detecting and representing content inspired
by recent work on detection of text in natural scenes.We then
investigate methods to binarize and aggregate detected con-
tent across time. Finally, a space-time ‘conflict’minimization
approach is deployed to obtain the summary.

In the following subsections, we detail some of the exist-
ing work in the field of lecture video summarization, natural
scene text detectionmethods and benchmark datasets in these
fields.

2.1 Lecture summarization

Weprovide an overview of prior work on ourmain focus, lec-
ture videos with handwritten content on a whiteboard. Most
approaches in the literature follow the general pipeline of
preprocessing, content extraction and summarization. Image
processing and computer vision techniques are used exten-
sively in each stage to obtain better performance.

At first, binarization techniques such as Otsu’s [32] algo-
rithm applied on every frame are used in simple videos
without many challenges in illumination and background
[40]. Segmentation of region of interest or some background
subtraction followed by specialized binarization techniques
is required for preprocessing when the lecture video poses
illumination and background challenges [4,5,7,21].

After preprocessing, handwritten content is extracted or
separated from background content. A common approach
is to divide the video frame into a grid of cells followed
by rule-based or statistical classification of each cell as
content, background and noise [1,9,38,40]. Grouping and
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refining of handwritten content using OCR-based methods
[40] or temporal analysis [7,31] to handle noise and occlu-
sion are commonly used as well. Some work uses contrast
enhancement [9,40], while others use super-resolution-based
methods [38] to improve readability of whiteboard content.

Several methods exploit computer vision techniques to
take advantage of the characteristics of lecture videos.
Explicitly modeling the speaker allows better handling of
occluded content [4,9,21,31,36,38], while detecting erasure
events is useful for segmentation and content extraction [4].

The final stage after preprocessing and content extraction
is the summarization of the video. Video summaries in gen-
eral could be of the ‘keyframe’ variety (described in Sect. 1)
or a ‘video skim’ which is a shorter version of the input video
containing the highlights of the entire video. We concentrate
on keyframe-based summaries for our work. Keyframes are
typically decided by analyzing content peaks in frames over
time and segmenting the video when the content drops from
a maxima, which generally corresponds to erasure events in
the lecture [4,21]. A recursive algorithm to find the correct
frames to segment based on spatial conflicts of extracted con-
tent has been proposed along with the public release of the
AccessMath dataset [7]. Other forms of summaries of lecture
videos include recognized text lines extracted from the video
[38,40] and production of composite images that contain all
content [4,21].

In our previous work [20], a handwritten content detector
adapted from a scene text word detector model is used in
lieu of the preprocessing and content extraction stages and
the recursive conflict resolution approach is used to generate
keyframes. In our current work, we train a content detector
only on the AccessMath dataset.

2.2 Scene text detection

In order to detect handwritten content from video frames
directly, we focus on some relevant prior work carried out
in the domain of scene text detection in images and videos.
A comprehensive survey of methodologies and evaluation
strategies for text detection, tracking and recognition in video
images is presented by Yin et al. [43]. In general, evaluation
of detecting text content in video is done by treating text
regions as objects and using multiple object tracking (MOT)
metrics [2]. Specifically detecting handwritten content as a
specialized case of scene text detection in video is covered
in a survey by Ye and Doermann [42].

Earlier methods extract pixel or component level features
to identify the text candidates which are then postprocessed
using statistical learningmodels [10,29]. A list of prior meth-
ods can be found in the survey by Zhu et al. [45]. Of late,
deep learning-based methods have been adopted due to their
effectiveness in taking advantage of large annotated datasets

[12,41], andmost of these treat text detection as a specialized
case of object detection.

Popular strategies in deep object detection use a fixed set
of predefined anchor windows that slide across convolutional
feature maps in a deep neural network. At each location in
the feature map, a detector network makes a prediction of
whether an anchor window contains an object and if so it
regresses the offsets to the anchor window dimensions to fit
the object in a tight bounding box. This is the basic principle
in state-of-the-art object detectors like Faster-RCNN [35],
YOLO [34] and SSD [25]. SSD, in particular, carries out
detection on feature maps at multiple depths and combines
the predictions using non-maximum suppression (NMS).
Text detection neural networks generally adapt object detec-
tion networks by making modifications to size and aspect
ratio of anchor windows and search locations across feature
maps [12,23,39,44] to suit text localization in scene images.

Recently, deep learning-based detectors have also been
used to detect handwritten content on whiteboards. Our
prior work [20] shows summarization of lecture videos by
detection of text, formulae and plots using domain adapta-
tion from natural scene text datasets such as SynthText [12]
and ICDAR2015 Robust Reading Competition Dataset [16]
while Jia et al. concentrate purely on detection of whiteboard
handwritten text [15].

2.3 Dataset and evaluation

AccessMath is the largest, publicly available, benchmarked
dataset for this purpose. It was created from a collec-
tion of linear algebra lecture videos [7]. These HD videos
(1920×1080 pixels) were recorded using a single, still cam-
era covering the entire whiteboard with no zooming, tilting
or panning. It consists of 12 lecture videos—5 for training
and 7 for testing. The average length of all videos is about
49 min.

AccessMath uses the ‘keyframe’ method of lecture sum-
marization and evaluation is carried out by measuring the
average number of keyframes produced by the summariza-
tion methodology. Apart from this, the average recall and
precision of all ‘matching’ binary connected components
(CC) are measured across the entire video (‘global’) as well
as per frame. The AccessMath dataset is annotated at the
binary level in order to facilitate this evaluation scheme and
the benchmarking methodology at the CC level [7].

To determine if one or more ground truth CCs corre-
spond(s) to one or more predicted CCs, the predicted sum-
mary frames are translated and aligned with the ground truth
frames for the corresponding temporal segment, such that
overall pixel-wise recall is maximized. Then, overlapping
CCs are selected and appropriately grouped using one-to-
many, many-to-one and many-to-many matching groups [7].
The pixel-wise recall and precision is computed, and only
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the groups with more than 50% on each of these metrics are
accepted as valid matches. These measures are designed to
compensate for variations in thickness and focus on readabil-
ity of extracted summary CCs.

3 Detection of handwritten content

We treat the problem of detecting handwritten content as a
specialized case of text detection in scene images. The prob-
lem of finding text is compounded by the variety of possible
handwritten content which is elaborated in Sect. 1. We mod-
ify and adapt EAST [44] for this task, mainly because it is
anchor-free and produces dense per-pixel outputs which are
well-suited for a detection task with high variance in text
content and layout.

3.1 Structure

The general EAST detector consists of a pyramidal feature
extraction block, with downsampling convolutional lay-
ers and upsampling transpose convolutional layers and a
convolutional region proposal network consisting of two sub-
networks. One sub-network predicts text/non-text for every
pixel in the upsampled feature map, whereas the other pre-
dicts four real values that correspond to displacements from
top, right, bottom and left edges, respectively, which can be
used to reconstruct a rectangle enclosing text around a par-
ticular point. It also predicts a fifth value that corresponds to
an angle of rotation for the predicted rectangle, giving this
model the capacity to detect oriented text. In the original
article, the authors use a PVANet backbone [19], where the
upsampled features are concatenated with features from the
downsampling path as shown in Fig. 2.

However, in our implementation, we found that a feature
pyramid network (FPN) converged better during training for
both natural scene text detection and for detection of white-
board handwritten content. FPN has shown state-of-the-art
performance for object detection [24] and comprises of a
ResNet [13] backbone with residual connections between
features of corresponding scales in the upscale anddownscale
paths. We use unactivated upsampling layers and residual
connections across scales as originally prescribed for FPN
[24]. The region proposal sub-network, which acts on the
last upsampled featured map, consists of a 3×3 convolution
layer with one output channel for text/non-text predictions
and a similar layer with five output channels for bound-
ing box displacements and angle of rotation. This layer has
a sigmoid activation function. Since the annotations in the
AccessMath dataset have been released at the binary and at
the axis-aligned bounding box level, we suppress the angle
prediction output of the EAST region proposal sub-network.
The final structure of the network is illustrated in Fig. 3.

Fig. 2 The structure proposed by Zhou et al. for EAST Detector. Here,
k×k, c indicates kernel size k and number of channels of a convolutional
layer /n or ×n indicates downsampling or upsampling by factor of n.
C stands for block of multiple convolutional layers according to the
PVANet [19] structure

Fig. 3 Our modified structure for EAST Detector. Here, k × k, c indi-
cates kernel size k and number of channels of a convolutional layer /n
or ×n indicates downsampling or upsampling by factor of n. C and D
stands for block of multiple convolutional layers and transpose convo-
lutional layers, respectively, according to the feature pyramid network
[24] structure

3.2 Training

Lecturer bounding box for every frame of the training videos
are extracted at first. It should be noted that these are not part
of the original annotations, and we use a SSD [25] detector
trained on the PASCALVOCobject detection dataset [11], to
obtain the lecturer bounding boxes in the training videos. We
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then eliminate all ground truth text boxes which overlap with
the bounding box of the lecturer if their area of intersection
is a greater fraction of the text box area than 25%. To train
the EAST region proposal layer, we need to generate ground
truths corresponding to a text/non-textmask, and four ground
truthmaps with bounding box regression targets in each edge
direction.

Text pixel prediction A mask image is produced, where
every pixel inside a shrunken version of every text bounding
box has a label of 1 (denoting foreground) and every other
pixel has a label of 0 (denoting background). The shrinking
procedure is as follows:

– For every edge vertex vi in a bounding box, we find ri
which is the minimum of the lengths of either edges ema-
nating from vi

– For every pair of vertices vi , v j=i+1mod4 that form an
edge of the box, we shift the vertices inwards by 0.3× ri
and 0.3 × r j , respectively,

where i ∈ {0, 1, 2, 3} corresponding to each vertex of the
bounding box in clockwise order starting from top-left. The
idea of training against a shrunken version of the original
bounding box for dense predictions has been seen in Dense-

Box [14] and is mainly used to ensure tight bounding boxes
during inference. Further, since the foreground pixels also
have bounding box proposal targets corresponding to bound-
ing box displacements, this procedure also ensures targets are
nonzero.

Text box prediction For every foreground pixel, based on
the ground truth boundingboxwecompute the ideal displace-
ments to the top, right, bottom and left edges from the pixel.
There is no loss computed for these targets on background
pixels. An illustration of the ground truth masks, effect of
shrinking and each displacement target is shown in Fig. 4.

Loss functions A generalized DICE coefficient loss is
computed between text pixel predictions and ground truth
targets for every iteration using the equation below:

Ldice = 1− 2×
∑2

l=1 wl
∑

n rln pln
∑2

l=1 wl
∑

n rln + pln
; wl =

(
N∑

n=1

rln

)−2

(1)

where r and p are the targets and predictions respectively,
n ∈ [1, N ] are the pixels in the target and l ∈ [0, L − 1] are
the set of pixel labels.

Fig. 4 The leftmost column shows a sample frame with ground truth
annotations, dense bounding box predictions and bounding boxes after
our clustering and non-max suppression. The two rightmost images in
the top row show the pixel prediction targets and effect of box shrinking,

respectively. The two rightmost images in the middle and bottom row
show the box regression targets for top, right, bottom and left edges,
respectively. Note that the colors are inverted, so darker pixels denote
numerically greater values
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DICE losses have previously been used in segmentation
of bio-medical images and have been shown to perform well
under unbalanced classes [37]. In our implementation, we
found that the DICE loss was numerically more stable during
training than weighted binary cross-entropy (BCE) loss for
our data. Invalid numbers were observed during trainingwith
BCE loss possibly due to exponential and log computations
for BCE along with random initialization.

Since the ideal bounding box displacements per pixel are
known, we compute the intersection over union (IOU) loss
[44] as described by Zhou et al. This loss is found to work
better for text prediction in natural scene images than L2 or
smooth L1 losses which are generally preferred for continu-
ous value predictions [44]. If the angle predictions are to be
used (which is not the case in our work), then loss for angles
is computed as one minus cosine of the difference of pre-
dicted angle and ground truth angle of rotation. The overall
loss for the network is computed as the sum of DICE loss
and IOU loss.

3.3 Inference

Training procedure and hyperparameters are described in
detail in Sect. 6. After trained weights are obtained, the neu-
ral network predicts a mask of text regions and for each
foreground mask pixel it also predicts a corresponding text
bounding box. In order to reduce the number of redundant
predicted boxes, we use a combination of localilty-based
clustering and non-maximum suppression. The set of pre-
dicted bounding boxes is traversed in a row-wise scanning
pattern and if the IOU between two successive bounding
boxes are greater than a threshold (θloc) then it is marked
for clustering. This procedure is carried on greedily until a
bounding box with IOU lesser than θloc is obtained. From
this point, we continue the algorithm while maintaining a
new ‘cluster’ until all predicted boxes have been visited. All
bounding boxes marked for clustering are collapsed into a
single bounding box that barely contains all of them.We take
the surviving bounding boxes and perform a standard non-
maximum suppression, with a separate threshold (θnms), to

obtain the final set of predicted boxes. The effect of our post-
processing procedure can be seen in Fig. 4. In Table 2, we
compare performance of isolated text detection on the test-
ing frames of the AccessMath dataset with existing methods.
For the summarization metrics, we compare with a model
adapted from natural scene text used in our prior work [20]
in Table 1.

4 Binarization of handwritten content

A fully convolutional neural network with encoder–decoder
architecture is used for binarization of lecture video frames.
Such architectures have been successfully used for vari-
ous image segmentation tasks [26]. Recently, Meng et al.
[27] used a similar architecture to binarize degrade doc-
ument images and obtained state-of-the-art results on the
DIBCO competition dataset [33]. Encouraged by this per-
formance, we use the same network for our binarization
task.

4.1 Structure

The encoder part of the binarization neural network con-
sists of four blocks of convolutional layers. The first two
blocks contain two layers, and the last two blocks contain
three layers. Each layer has 3 × 3 kernel sizes, batch nor-
malization and leaky ReLU activation (p = 0.2). The output
of each block undergoes max-pooling with a stride of 2× 2.
All layers in the first block have 32 filters, and subsequent
blocks have double the number of filters per layer as the
last block. The decoder part of the network consists of four
blocks, each of which consists of transpose convolutional
layer, batch normalization, leaky ReLU activation (p = 0.2)
and dropout regularization (p = 0.2). Number of filters in
each layer is equal to the number of filters in the correspond-
ing encoder block. At each decoder block, the output of the
corresponding encoding block (at same scale) is concate-
nated before feeding it to the next decoder block. At the final

Table 1 Summarization metrics
comparing the content detector
from our prior work and current
work

Method AVG AVG global AVG per frame

Nf R P F R P F

Without TR

Current work 24 92.50 92.59 92.54 92.07 91.45 91.76

Prior work [20] 22 90.98 94.77 92.83 89.89 93.93 91.86

With TR

Current work 28 93.44 85.47 89.28 92.89 84.30 88.39

Prior work [20] 20 92.33 94.16 93.23 91.69 93.45 92.56

Otsu’s Binarization is used in bothmethods for fair comparison. Results with and without temporal refinement
are shown
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Fig. 5 Structure used for Binarization in our pipeline

block, the input image itself is used and a final convolutional
layer with sigmoid activation is used as the prediction layer,
lbin. Figure 5 shows the structure of our binarizer neural net-
work.

4.2 Training

The AccessMath dataset consists of binary ground truth for
keyframes in each lecture video. The total number of full
training frames amounts to roughly 80 frames. 128 × 128
patches are extracted randomly around the annotated ground
truth boxes for each frame for data augmentation. Back-
ground patches are sampled such that they constitute roughly
10% of every training mini-batch. Both training and test
images are preprocessed by bilateral filtering (σspace = 4.0,
σcolor = 13.5), followed by subtracting the median filter
(33 × 33) response of that patch. We found that doing so

improved binarization performance especially given lack of
sufficient training data.

Losses A reconstruction loss is measured in each block
of the decoder section of the binarizer. The output of each
block in decreasing order of scale is upsampled by a transpose
convolution layer (with strides 1, 2, 4 and 8), activated with
a sigmoid layer and their losses are weighted by factors of
1.0, 0.5, 0.25, and 0.125, respectively. They are then added
to the binarization loss computed at the final output layer
lbin of the decoder. All losses are computed using the binary
cross-entropy function.

Pixel-wise weights A pixel weighting scheme is used to
modify the importance of foreground pixels and neighboring
background pixels while computing layer losses:

f (x, y) = t(x, y) ∗ g(x, y) (2)

w(x, y) = log

(
f (x, y)

min( f (x, y))

)

+ 1 (3)

where g is the Gaussian filter, t is the binary target mask, ∗
denotes convolution and w(x, y) are the pixel-wise weights.
The pixel-wiseweight function is thus constructed in order to
avoid numerically unviable scales of convolution outputs.We
found that this weight scheme ensures that all pixels have at
least a weight of one with the maximum pixel weight being
6–8 depending on sparseness of text in the random patch.
This is a modified version of the scheme used by Davila and
Zanibbi [7], adapted for neural network loss computation. In
their work, dilation was used instead of Gaussian blurring,
and a global re-scaling ofweightswas done such that the total
weight of all pixels added up to 1. Further, their scheme was
used to bias sampling locations for a patch-based binarizer

Fig. 6 A sample training mini-batch with image crops and corresponding ground truth targets and pixel-wise weights are shown here. Note that in
subfigures b and c, the foreground and background colors are inverted for display purposes and black pixel border is artificially added (color figure
online)

123



B. U. Kota et al.

using a random forest. Figure 6 shows inputs, targets and
weights for a training mini-batch.

4.3 Inference

The output of the binarizer network is noisy especially in
areas of background where there was minimal pixel weight.
ThereforeweusedOtsu binarization [32] on the preprocessed
image and combined the two responses in a hysteresis fash-
ion to obtain the final binarized output image similar to the
process described by Davila and Zanibbi [7]. We use the
keyframes and binary ground truth provided in the test set of
the AccessMath dataset to compare isolated binarization per-
formance.We use the metrics proposed [30] for the degraded
document binarization competition dataset [33] for this com-
parison, and the results are presented in Table 4. For the
summarization metrics, we compare with the random forest
+ hysteresis-based binarizer used by Davila and Zanibbi [7].
Figure 8 shows the performance of our binarizer for a sample
input frame.

5 Lecture video summarization

The detected handwritten content regions obtained from
detector (described in Sect. 3) are used to generate a fore-
ground mask which is applied on the binarized full frames
(see Sect. 4). The evaluation scheme of the AccessMath
dataset requires the prediction of binary ‘keyframes’ which
are compared with ground truth binary keyframes using the
evaluation described in Sect. 2.3.

In order to summarize, we first need to perform temporal
refinement of predictions in order to find similarity relation-
ship of content across video frames. Broadly, if content is
similar enough across frames it is considered as a set of
instances of the same content. Dissimilar content occupying
the same spatial region but at different timestamps indicates
conflict, i.e., content has been erased and new content has
appeared; therefore, all frames in between are candidates for
points of video segmentation. We use a greedy approach to
segment the video at frames that resolve most of the con-
flicts per cut. Video frames that contain most content within
a segment are then designated as keyframes.

Since we have two levels of predictions—bounding box
of content regions and connected components (CC) from
binarized full frames we explore coarse-grained and fine-
grained temporal refinement in our pipeline. The general
refinement algorithm first proposed by Davila and Zanibbi
[7] is described below, followed by individual specifications
of matching criteria for bounding box and CCs, respectively,
which was proposed in our prior work [20]. In this work, we
propose new methods to refine predicted bounding boxes.

5.1 Temporal refinement algorithm

During the first pass, for a given matching criteria and every
sampled frame in sequential order, each element is tested for
a match against every other element present in all previous
frames that arewithin time t before the current frame’s times-
tamp (t = 85 s). Matched elements are treated as instances
of unique objects. After finding all the unique elements from
the input frames, only those that appear inmore than n frames
(n = 3) are marked as stable and are kept for further pro-
cessing.

In the second pass, elements that have an overlap in space
and with duration intervals that overlap or have an interme-
diate gap of at most 5 s are grouped into larger ‘temporally
stable’ groups. These can be used as the final units for con-
tent summarization and further temporal processing. Other
elements that only overlap in space but do not belong to the
same temporal group are marked to be in conflict, and this
information is used for summarization in order to produce
temporal splits of the video that minimize the number of
conflicts present on each video segment.

5.2 Coarse-grained temporal refinement

The output of our handwritten content detector is a set of
bounding boxes. Due to false positives, variations in illumi-
nation and occlusion by the speaker, these bounding boxes
might change for contiguous frames.We explore three strate-
gies for coarse-grained temporal refinement for the detected
text bounding boxes based on the application of the temporal
refinement algorithm described above. The three strategies
are compared in Table 5.

1. Two bounding boxes are accepted as a match if they have
an IOU value above 0.5. They are merged by finding a
bounding box that barely fits both of them.

2. Locality-based clustering followed by non-maximum
suppression as described in Sect. 3.3 is used across both
space and time to produce a set of refined bounding boxes

3. Person detection bounding boxes are used to clip or filter
content boxes before performing coarse-grained refine-
ment using strategy 2.

5.3 Fine-grained temporal refinement

Two CCs are assumed to be the same content if they have
overlap of more than 92.5%. Since we currently work under
the assumption that only one still camera is used, without
zooming or panning, we also assume that missing CCs from
intermediate frames, between their first and last known loca-
tion are caused by occlusion due to the lecturer. Temporal
Refinement Algorithm is then used to recover occluded con-
tent. The expected output is a set of reconstructed binary
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Fig. 7 Graphs showing the number of detected conflicts (Y-axis) against
the frame index (X-axis) for one lecture video. Each sub-figure from
left to right, shows a different recursion starting from first to third. The
vertical lines indicate points of segmentation, chosen to greedily reduce

the number of conflicts at each stage. Color coding indicates the con-
flicts resolved by a particular cut. Keyframes are selected as the frames
with maximum content within each segment

Table 2 Quantitative evaluation of isolated handwritten content detec-
tor in our prior work and current work

Method Framewise AVG Pixel-wise AVG

BBoxes Rec. Prec. F-meas.

Prior work [20] 12.25 81.87 76.20 76.48

Current work 12.35 88.43 68.39 75.27

video frames as though the lecturer was never occluding any
of the handwritten content.

5.4 Segmentation by conflict minimization

The reconstructed video has redundant frames where text is
seen being written gradually until the whiteboard is filled,
erased and rewritten. In our work, we use an algorithm,
originally proposed by Davila and Zanibbi [7] to produce
lecture summaries. The goal is to find those ‘keyframes’
that completely contain all unique CCs from the previous
erasure event up to the time new text appears in the same
spot. We identify all conflicting CC pairs during a video
segment and deploy conflict minimization. This greedy algo-
rithm segments a video lecture so as to maximize the number
of conflicts resolved per cut, recursively on the reconstructed
video. Finally, keyframes are selected bymaximizing content
CCs within a segment.

A graphical depiction of the segmentation algorithm can
be seen in Fig. 7, the Y-axis depicts number of conflicts and
X-axis depicts frame index increasing with time. After the
first pass, the video is segmented at frames indicated by dark
blue vertical lines in Fig. 7a, resolving the conflicts marked
by dark blue coloring, leaving behind the conflicts shown in
Fig. 7b. This process is repeated until convergence, and each
vertical line depicts a point of segmentation with the color
indicating which conflicts are resolved by that cut. The final
results can be found in Table 5.

6 Experiments

The AccessMath dataset was used to train and test our sum-
marization methodology. Evaluation metrics used are the
number of keyframes produced as well as the recall, pre-
cision and f-measure of keyframe content (at the level of
binarized connected components) as described in Sect. 2.3.

6.1 Handwritten content detection

The training and test videos are annotated to provide bound-
ing boxes [20] and binarized ground truth for keyframes [7].
We randomly split the annotated training frames into train and
validation sets in the ratio 4:1. This results in about 10,000
training frames and about 2500 validation frames to train
both the handwritten content detector (Sect. 3) and the bina-
rizer (Sect. 4).We eliminate all text boxeswhich overlapwith
the bounding box of the lecturer if their area of intersection
is a greater fraction of the text box area than 25%, in order
to mitigate the effect of occlusion due to movement of the
lecturer.

The handwritten content detector is trained for 50 epochs
with a batch size of 16 using a stochastic gradient descent
(SGD) optimizer with an initial learning rate of 0.001. Each
sample consists of random crops of size 512 × 512 with
ground truth boxes adjusted accordingly. The learning rate
is reduced at a constant rate of γ = 0.7943 per epoch. This
ensures that the learning rate drops by a factor of approx-
imately 0.1 for every 10 epochs. We initialize the ResNet
portion of the detector with pre-trained ImageNet weights
and use Kaiming-normal initialization for all other layers.
For this work, we only train with the AccessMath dataset
instead of pre-training on natural scene text data unlike our
previous work [20]. Dense bounding box clustering thresh-
olds θloc and θnms are both set to 0.2

Table 2 shows the per-pixel recall, precision and f-measure
evaluated using the ground truth bounding boxes and the
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Fig. 8 Comparison between different binarization strategies. a Raw
frame to binarize. After computing and subtracting the background esti-
mated with a median filtered version of the raw frame, b binarization

performed using Otsu alone; hysteresis between Otsu output and either
c random forest-based binarizer or d our proposed Deep Binarizer

predicted bounding boxes on the AccessMath test lectures.
We can observe that the recall is higher, precision is lower
and f-measure is comparable with the model in our previous
work [20] which was trained on natural scene images and
fine-tuned to the lecture video task. Our current model is
based on dense pixel-wise predictions, whereas the previous
model was restricted to predict bounding boxes that varied
with respect to a fixed number of bounding boxes.

This increased flexibility of predictions allows us to cap-
ture more variety of handwritten content. However when
coupled with illumination changes induced by the camera
and lecturer motion across consecutive frames, the detected
boxes display higher variation resulting in lower precision.
Table 1 compares our current content detector with the one
used in our prior work [20] on the summarization metrics
keeping all other pipeline components same. It can be seen
that even in the overall summarization pipeline, our current
model shows the same trend of higher recall and lower pre-
cision when all other components are fixed.

The drop in precision could also be due to more false pos-
itives induced by insufficient training data. Previously many
of the vertical line column separators on the whiteboard were
missed which we are currently able to detect. However, the
frame of the board which has similar structure is detected as

textmore often. False positives are seen on light backgrounds
with strong darker edges like block walls. Examples of these
cases canbe seen inFig. 4.Givenour summarizationpipeline,
especially with the assumption of occlusion for reconstruc-
tion of content that disappears and reappears, a false positive
is costly and we end up with oversegmentation and loss in
precision in the final summaries.

6.2 Handwritten content binarization

Our binarizer is trained for 10 epochs with a batch size of 8
also using stochastic gradient descent (SGD) optimizer with
an initial learning rate of 0.01. The learning rate is reduced
by a factor γ = 0.1 whenever the validation losses start
to plateau. Random crops of 128 × 128 are used in each
sample with corresponding binary targets and pixel weights
computed using the procedure described in Sect. 4.2. All
layers are initialized with Kaiming-normal initialization.

Figure 8 and Table 3 show qualitative and quantitative
comparison of the random forest (RF)-based whiteboard
binarizer [7] and our current work, respectively. Table 4
shows the comparison of the two binarizers in various config-
urations when run on the AccessMath test lecture keyframes,
compared using the degraded document binarization com-
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petition (DIBCO) [33] metrics. In particular, pseudo recall,
precision and f-measure were introduced by the authors such
that variations in thickness, while preserving connected com-
ponent shapes, receive lower penaltywhen compared to noisy
pixels that change the connected component shapes or intro-
duce false merges/splits [30]. We can see that our binarizer
performs better in terms of pseudo F-measure than previ-
ously used methods. The drop in precision for all methods is
due to binarization of the background objects.

However, when we compare against the metrics used to
evaluate summarization results, our binarization method suf-
fers large penalties in precision and recall, as seen in Table 3.
Thismight be due to the inherent challengeswith binarization
ground truth generation and evaluation. There is no agree-
ment among human experts as to what is the ideal stroke
thickness for each connected component and competitions
such as DIBCO use machine generated ground truth in order
to circumvent this challenge [33]. Using machine gener-

ated ground truth is debatable as well, since it encourages
competitor systems to merely match the prediction of a com-
bination of known binarization algorithms.

When the strictness of the connected component match-
ing criteria (described in Sect. 2.3) was reduced to be more
tolerant of predicted thickness (from 50 to 33%), our bina-
rization began to display performances comparable to the
random forest-based binarizer. This shows us that the drop
in performance can chiefly be attributed to the thickness of
predicted connected components.

6.3 Summarizationmethodology

Summarization metrics on the test lectures are compared in
Table 5 by using the current detector and RF-based binarizer
[7] to study the impact of the three coarse-grained refinement
strategies (see Sect. 5.2). Table 5 also contains average sum-
marization metrics for the entire pipeline choosing the best

Table 3 Average
summarization metrics showing
impact of proposed DNN-based
binarizer on all test lectures in
the AccessMath dataset

Method AVG AVG global AVG per frame

Nf R P F R P F

Binarized

Random Forest + Otsu [7] 296 98.96 63.83 77.60 98.71 63.1 76.99

Our Binarizer + Otsu 296 91.76 38.10 53.84 90.73 38.08 53.64

Summarized

Random Forest + Otsu 22 95.81 92.90 94.33 95.40 92.28 93.81

Our Binarizer + Otsu 18 87.70 80.20 83.78 86.68 79.79 83.09

In all cases, hysteresis function is used to combine with Otsu’s algorithm

Table 4 Comparison of random
forest-based and DNN-based
binarization methods with
DIBCO metrics averaged over
AccessMath testing keyframes

Method PSNR DRD Standard Pseudo

Rec. Prec. F-meas. Rec. Prec. F-meas.

Otsu 16.36 15.88 85.46 55.93 67.02 91.89 54.54 67.95

Random forest 13.25 33.72 95.74 37.48 53.40 99.32 36.21 52.69

Random forest + Otsu 14.08 27.65 94.89 42.05 57.79 98.15 40.51 56.96

Our binarizer∗ 10.31 59.87 38.69 12.64 18.99 36.13 10.19 15.84

Our binarizer 13.95 25.59 98.01 41.36 57.94 98.40 37.73 54.37

Our binarizer + Otsu 15.81 15.82 95.84 52.08 67.30 96.86 48.14 64.15

Results for Otsu binarization included for reference. Background subtraction using procedure described in
Sect. 4.2 is carried out in all cases except where marked with ∗

Table 5 Comparison of
different methods of lecture
video summarization by
measuring recall (R), precision
(P), f-score (F) and number of
frames (Nf )

Method AVG AVG global AVG per frame

Nf R P F R P F

AccessMath [7] 18 96.28 93.56 94.90 95.73 92.21 93.93

Prior work [20] 20 92.33 94.16 93.23 91.69 93.45 92.56

Maximum merge 21 95.80 92.88 94.32 95.40 92.44 93.90

Clustering 22 96.35 89.71 92.91 96.06 88.43 92.09

Using person 29 95.40 85.20 90.01 94.55 84.43 89.20

The second half of the table presents results for different temporal refinement strategies described in Sect. 5.2
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temporal refinement strategy (Maximum Merge) and bina-
rization technique (Random Forest + Otsu) and compared to
existing results [7,20].

Variation in predicted bounding boxes makes the problem
of matching content regions across frames challenging. This
is amplified by the limited amount of training data.We found
that the maximummerge strategy, i.e., finding largest bound-
ing box to fit overlapping boxes gave us the best results in
terms of summarization metrics. Clustering and using lec-
turer detections to filter content detection show high recall
but are sensitive to false positives which gets propagated over
time thus resulting in a loss of precision.

7 Future directions and conclusion

In the future, we would like to collect and annotate more lec-
ture data in order to train the detector. Generating simulated
whiteboard data are also a feasible step forward as this would
give us a quick way of generating labeled training images.
More training data will allow us to use stronger regulariza-
tion, loss constraints and techniques such as hard negative
mining to mitigate false positives and improve binarization.
Generative Adversial models could also be explored to gen-
erate handwritten content on whiteboards.

Looking at the discrepancies between DIBCO metrics
and pipeline metrics encourages a revisit of the AccessMath
evaluation methodology. The current evaluation procedure
matches two CCs if they have ≥ 50% recall and ≥ 50% pre-
cision when aligned. This punishes binarizations that may
differ at a pixel scale from human provided annotations but
are still visually similar without producing extra noise. For
example, as seen in Fig. 8 with our binarization method, we
obtained thicker traces which did not affect readability, but
were penalized. Pixel-level IOU-based measures would be
more suited to accommodate general binarizers especially
since the training data is limited in this dataset.

Combining handwritten content CCs with fine-grained
pixel mask segmentation of lecturer could lead to a more
robust fine-grained temporal refinement. In order to improve
coarse-grained refinement,weneed a robust representation of
detected area which is sensitive to degree of overlap between
content and not just exact similarity. Use of long short-
term memory layers and supervised neural network-based
feature matching techniques such as Siamese networks and
Triplet Loss Embeddingsmay also be consideredwhen larger
amount of training data is available in the future.

Given that one of the goals of lecture video summariza-
tion is to power content search in videos [8], annotations
at a consistent text granularity should be considered. Cur-
rently equations, words, etc., maybe grouped together in
the same box. Application of object tracking metrics on all
unique content objects could serve as a potential evaluation

scheme. Summarization in terms of ‘key objects’ rather than
keyframes [28] may also be considered.

We have explored the potential of a generalized pipeline
for still-camera whiteboard lecture video summarization.
Our results using a general framework1 are promising and
are comparable to the benchmark which uses a highly spe-
cialized pipeline tailor-made for the AccessMath dataset. We
analyzed the performance of modern computer vision tech-
niques for this task which could be easily extended to more
general cases of lecture videos summarization.
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