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• Using limited land to meet FEW

demand with sustainable concerns

requires compromise.

• A “Design-Modeling-Optimization”

framework to facilitate land use

decision-making

• The land use system is analyzed

and synthesized by a FEW-based

superstructure.

• FEW metrics based optimization

can derive trade-off strategies under

climate change.
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A B S T R A C T

Allocation and management of agricultural land is of emergent concern due to land scarcity, diminishing

supply of energy and water, and the increasing demand of food globally. To achieve social, economic and

environmental goals in a specific agricultural land area, people and society must make decisions subject to

the demand and supply of food, energy and water (FEW). Interdependence among these three elements, the

Food-Energy-Water Nexus (FEW-N), requires that they be addressed concertedly. Despite global efforts on

data, models and techniques, studies navigating the multi-faceted FEW-N space, identifying opportunities

for synergistic benefits, and exploring interactions and trade-offs in agricultural land use system are still lim-

ited. Taking an experimental station in China as a model system, we present the foundations of a systematic

engineering framework and quantitative decision-making tools for the trade-off analysis and optimization

of stressed interconnected FEW-N networks. The framework combines data analytics and mixed-integer

nonlinear modeling and optimization methods establishing the interdependencies and potentially com-

peting interests among the FEW elements in the system, along with policy, sustainability, and feedback

from various stakeholders. A multi-objective optimization strategy is followed for the trade-off analysis

empowered by the introduction of composite FEW-N metrics as means to facilitate decision-making and

compare alternative process and technological options. We found the framework works effectively to bal-

ance multiple objectives and benchmark the competitions for systematic decisions. The optimal solutions

tend to promote the food production with reduced consumption of water and energy, and have a robust

performance with alternative pathways under different climate scenarios.

© 2018 Elsevier B.V. All rights reserved.
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1. Introduction

Agricultural land is the largest ecosystem to provide food

for human (Ellis and Ramankutty, 2008). Agricultural production
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accounts for ∼30% of the global energy consumption, ∼92% of the

human water footprint, and over 20% of global greenhouse gas

emissions (Alexandratos et al., 2012; Sims, 2011). The Food and

Agricultural Organization (FAO) estimates a ∼60% increase of food

demand (compared with that of 2005/2007) for feeding 9.7 billion

people by 2050, but the contribution of cropland expansion to the

increase is expected to reduce from 14% to 10% due to environmen-

tal reasons at that time (Alexandratos et al., 2012; Ramankutty et al.,

2018). Several countries, particularly in the Near East/North Africa

and South Asia, have already reached or are close to the limits of land

resource (FAO, 2009). Thus, there is an increasing pressure to meet

the food demand of current and future human populations with lim-

ited land expansion while minimizing the consumption of energy

and water and conserving the environment.

Typically, agricultural food production is a water and energy

intensive process, for instance, water is used for irrigation, energy is

used as power or fertiliser source during production, and there are

also land competitions among food crops and energy crops. There-

fore, for specific land use system, the decisions to meet both human

needs and nature conservation goals are subject to the demand and

supply of food, energy and water (FEW), and can be dealt with opti-

mization techniques (Bergstrom et al., 2013; Rathmann et al., 2010;

Beinat and Nijkamp, 1998). Due to the interdependence among FEW,

which is commonly referred to as the Food-Energy-Water Nexus

(FEW-N) (Keairns et al., 2016; Scanlon et al., 2017), unbiased deci-

sions require that they should be addressed concertedly. That is,

for the land use optimization problem, solutions considering Nexus

scope rather than individual FEW elements would provide more sus-

tainable decisions due to the very nature of FEW nexus in land use

systems. In addition, the land-specific optimal decisions will pro-

vide optimal FEW Nexus for individual production sectors in the

system, which will improve productivity and develop more efficient

resource management. Accordingly, the FEW Nexus for the land use

optimization problem offers a promising conceptual method to iden-

tify trade-offs and integration effort of FEW elements in the system

(D’Odorico et al., 2018).

To identify unbiased decisions and interactions of FEW elements

in the systems, methodologies of current nexus studies mainly

include data-intensive modeling for geographical land area, life cycle

analysis for specific technologies or products, and systematic anal-

ysis based on descriptive methods (Keairns et al., 2016; Albrecht et

al., 2018). These nexus methods provide essential knowledge and

useful approaches for expanding our understanding of FEW interac-

tions and addressing social and economic concerns of FEW related

systems.

Yet to achieve a quantitative understanding of the FEW-N interre-

lationships andmake optimal holistic decisions, it is required to solve

challenges including predictive modeling approaches, effective inte-

gration of data and models, optimization methods for exploring and

evaluating trade-offs, and generic metrics for assessing FEW inter-

linkages in the systems (Mohtar and Daher, 2019; Sayer et al., 2013;

D’Odorico et al., 2018; Ramankutty et al., 2018).

A fundamental challenge for optimal decision-making is the pre-

dictive modeling approaches (McCarl et al., 2017a,b; Holzworth

et al., 2015; van Ittersum et al., 2013). To represent compo-

nents in a land use system, many studies have focused on the

modeling aspect of crop and livestock production systems, mod-

els including DSSAT (Jones et al., 2003), APSIM (Keating et al.,

2003), and AquaCrop (Steduto et al., 2009) have improved our

ability to predict the productivity gains of crop or livestock in

scientific understanding and data availability. In general, these

kinds of models are often described as large sets of sub-models

or equations, and take into consideration many factors, such as

climate change and biological properties for different objectives

(Nelson et al., 2014). However, increasing considerations may also

result to more data input, more parameters, and therefore more

complicated models. Such consideration may increase the need

for more available data and region-specific and/or crop-specific

parameters (Paul et al., 2017), which may not be really available to

most developing countries. All of these underlying uncertainties will

cause changes in land use systems, which must be merged to the

learning process for better decision-making (Vermeulen et al., 2013).

Hence, it is important to consider data limitations and adaptive

strategies for modeling productivity in the land use systems.

In addition, from a process systems engineering perspective,

systematic decisions require efficient and quantitative integration

methods for data andmodels (Bertran et al., 2017; Jones et al., 2017a).

In agricultural systemswithmultiple productionunits involving large

amounts of FEW data and potential pathways, a family of available

models are needed to represent these complex relations in the pro-

ductionprocesses. Comparisonsofultimate results also requiremodel

integration from each process. All of these integrations will lead to

low computational efficiency in a complex land use system (Jones et

al., 2017b). Therefore, effective integration methods for data man-

agement, alternatives generation, and flexible modeling in land use

systems are urgently needed.

Another major challenge in agricultural land use arises from the

presence of multiple stakeholders and their differing, and often con-

flicting, objectives such as profit, food demand, environmental goals,

and efficient use of resources (e.g., water and energy) (Stewart et

al., 2004; Garcia and You, 2016). Thus, the problem of land use opti-

mization is often studied as a multi-objective optimization problem

(Seppelt, 2016). Despite multi-objective optimization techniques,

such as the e-constraint method, can effectively reach the best com-

promise when the bounds of objective functions are known, and has

been used in FEW related systems (Uen et al., 2018; Dhaubanjar et al.,

2017; Zhang et al., 2018), it is critically difficult to get trade-offswhile

facing large amounts of uncertainties and complicated interactions

in land use systems (Chiandussi et al., 2012).

When considering FEWNexus wide decision-making approaches,

more challenges emerge including the identification of interactions

among the FEW elements (Flammini et al., 2017; Mohtar et al.,

2019; El-Gafy, 2017; Dargin et al., 2019), the resilience decision-

making for climate change (Van Tra et al., 2018), and the conflicts

between stakeholders’ interests and environmental impacts (Song

et al., 2018). These challenges can limit progress towards improved

FEW resources management, trade-off decisions, and sustainable

outcomes across different production sectors. Although the impor-

tance of addressing systematic uncertainties is well acknowledged,

few studies have generic and quantitative metrics for decision-

making in land use systems (Albrecht et al., 2018; Daher et al.,

2018).

All the above challenges raise a need for the development of

robust and systematic methods to derive trade-offs for land use

decision-making. In this study, we propose a three-step framework,

especially targets at the development of novel workflows and data

flows for generic land distribution in the context of effective inte-

gration of FEW-N related data, models and optimization methods.

As a result, the framework can output a flexible superstructure for

designing the land use system with effective integration of data

and models, a family of adaptable models for representing the

production processes with limited data and adaptation strategies,

and a mixed integer nonlinear programming (MINLP) model along

with adjustable FEW-based metrics for solving the multi-objective

decision-making problem and assessing different solutions. Opera-

tional decisions from the framework include the production and use

of food, energy and water in the production process for each pro-

duction unit that can trade-off conflicted objectives. Our framework

can assist policy-makers by supplying themwith quantitative assess-

ment of solutions for different objectives, as well as provide action-

able pathways to meet economic goals with reduced environmental

concerns.
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2. Case study area

As a case study of our approach, we select Yucheng Station (36.96◦

N, 116.63◦ E), an experimental station belonging to Chinese Academy

of Sciences, as the land use system. Yucheng Station is located in

Yucheng County, Shandong Province of China, which is a typical agri-

cultural county in the North China Plain (NCP). In this region, grain

and cotton are the main crops, while agriculture is experiencing an

adjustment from single cropping to crop-livestock mixed farming

system (Chen et al., 2012). Considering the local common choice,

specific crops (wheat, corn and cotton) and livestock (cattle, hens

and pig) are selected as the typical production units to construct the

system. This land use system can be a typical example for the land

use decision-making in NCP, as it has great support on local data and

policies, and it also includes several similar characteristics, such as

large demand of food, water scarcity, overuse of fertiliser, and seri-

ous water and soil pollution problems (Fang et al., 2006). We believe

this framework will have the potential to become a widely used tool

to optimize and benchmark agricultural land use systems.

3. Material and methods

Our framework requires three steps. 1) Superstructure design of

land use allocation with dependencies on FEW. This step is used to

identify the main features of the land use system, thus providing

a base holistic design. 2) Unit modeling of production units, which

provides generic simulations of the production processes and quan-

tifies the FEW relations for basic production units in the system.

3) Multi-objective MINLP optimization. This last step translates the

decision-making problem into a multi-objective MINLP problem by

integrating the FEW data and unit models based on the proposed

superstructure, and the problem can be efficiently solved with the

help of a flexible and adjustable FEWmetric. The structure summary

is shown in Table 1, and the modeling framework is summarized

in Fig. 1. Each step is discussed below, the data sources in the

consideration area are shown in Supplementary Section 1.

3.1. Step 1: superstructure design

The goal of land allocation is to optimize the basic structure for

a given area by considering land competitions among different pro-

duction units. A generic land allocation structure is shown in Fig. 2,

and it is constructed with a set of grids with two land types: crop-

land and livestock land. Land competitions not only exist between

different land types, but also can appear among different production

units within the same land types. The workflow for step 1 follows

two sub-step: (1.1) Land use and FEW-Nexus definition, and (1.2)

superstructure generation.

3.1.1. Step 1.1: problem definition based on FEW-Nexus

This work is to provide a generic decision-making framework to

maximize the trade-off benefits of the crop and livestock production

in the land use system. In order to model the system, the follow-

ing information should be specified: the objectives, the available

FEW and land data sets, the production units set, the products set,

the processing procedures, and the set of available technologies and

operations.

In this study, according to the feedback of stakeholders and

policy-makers, the optimization objectives includes total profit (TP),

total food production (TF), total energy use (TE), total water use (TW),

and total environmental penalty (TEn) over a course of production

years.

As shown in Fig. 2, the cultivation area includes two land types:

cropland and livestock land, which are allocated to crop production

units (wheat, corn, and cotton) and livestock production units (cattle,

hens, and pig), respectively. Specifically, the production of wheat and

corn can construct a rotation system in the consideration area since

they can grow in the same area in sequenced seasons, that is, there

is no land competition in the rotation system in one production year.

The land area we study is divided into grids with different scales

according to realistic production situations (Table S1 in Supplemen-

tary Section 1), then the FEW constraints for different production

units are defined based on each grid.

All of the input-output data in the land use system include input

FEW resources and output products and byproducts data from pro-

duction units, economic data from social surveys, and other data

for dynamic conditions, such as climate data. These data are col-

lected from various sources, for instance, the open literatures and

databases, local experiments recordings and experts’ experience

(Supplementary Section 1). Some data, such as the original input-

output FEW data for crop modeling, are not readily available, but can

be generated by using the simulator APSIM (Keating et al., 2003).

Then all these data are grouped based on the input-output FEW

use and production by different production units, and the nexus is

defined by quantifying the FEW flow sheet through them.

Alternative pathways that use different technologies are identi-

fied based on local availability. Specifically, considering crop produc-

tion units, the main food output is crop products while straw is the

main byproduct. The crop food produced by the wheat-corn rota-

tion subsystem can be sold to market or sent to livestock land for

feeding. The crop straw can have three routes: sell to market, return

to cropland as an alternation of chemical fertiliser, or used as feed

for cattle. Saline (low quality) and drinkable water (high quality) are

set as the two choices for irrigation. To improve the efficiency of

organic fertiliser, the biological technology such as fermentation can

be an optional choice for manure return. Only drinkable water can be

selected for livestock feeding.

Table 1

Structure summary for each step of the framework.

Step 1 Step 2 Step 3

Problem features Design Modeling Optimization

Input FEW-land supply/demand Condition data set Conditional unit models

climate conditions FEW data flow FEW-land constraints

process parameters basic production units optimization objectives

interest of stakeholders superstructure connections

policy and law a FEW-based metric

Output Condition data set Conditional unit models Optimal system designs

FEW data flow optimal FEW-land use

basic production units assessment of solutions

FEW-land constraints

optimization objectives

superstructure connections
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Step 1: Superstructure Representation of Land Use Allocation with Dependencies on FEW
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Fig. 1. Framework for crop-livestock land use problem.

Based on all the above known parameters and information, the

framework need to make decisions including:

• production units selection for different land grids based on

different climate conditions;

• input-output FEW demand/supply for production units;

• sustainable pathways selection in the superstructure network;

• final product production and pathways for specific objectives

and final trade-offs, given the boundaries of FEW, price, cost

and specifications of the crop-livestock system;

• quantitative assessment for objective-related solutions.

3.1.2. Step 1.2: superstructure generation

From the collected data and alternatives involved in the decision-

making land use system, a superstructure is generated. Fig. 3 presents

an example of a land use system network considering three differ-

ent food crops and three livestock crops through a superstructure

consisting of FEW resources, production units, land grids, products

and byproducts, known technologies, and FEW-related operations

that connect them. The superstructure also includes several alterna-

tive pathways for resource recycling in the system, such as supply

resources of feed food, treatment of livestock waste, and routes for

crop straw use. The size of the decision-making problem depends on

the numbers of these elements in the superstructure, which can be

C1-C2 C1-C2 C1-C2

C1-C2 C1-C2 C3

C3 C3 C3

L1 L1 L1

L2 L2 L3

L3 L3 L3

C1-C2 C1-C2 C1-C2

L2 L2 C3

L2 L1 L1

C1-C2 C1-C2 L1

C1-C2 C3 L1

C3 C3 L2

Different Conditions

Cropland

Land Competition within the same land types

C3 C3 C3

C1-C2 C1-C2 L3

L3 L3 L3

Livestock land C1-C2  Crop rotation system

Land Competition between different land types

L1/L2/L3  Livestock typesC3  Crop type

Fig. 2. Problem definition of land allocation. In the consideration area, the typical growing season for wheat is from early October to the middle of the following June, and

summer maize is planted at the end of winter wheat season and harvested in late September, therefore, the wheat and corn can be set as a rotation system, which don’t have land

competitions in one year.
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Land Conversion

Products Conversion
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Fig. 3. Initial superstructure representation for the crop-livestock land use system. For the difference of two treatment techniques, this study considers the additional cost of the

biotechnology treatment (Table S5 and Supplementary Section 1).

flexible based on the scales of resources, units, land, and alternative

technologies and operations. In this study, fertiliser and power use

are taken as energy use, there is no energy production as we focus

on agricultural land use optimization for food production.

3.2. Step 2: data-driven modeling

In the modeling step (Step 2), input-output FEW relations are

established for all the production units in the system based on

surrogate models. For production units with high uncertainties, a

data-drivenmodelingmethod is applied to surrogate themodels. For

other production units, a set of simple piecewise functions are used

to approximate the production actions. The data-driven modeling

method includes three sub-step: (2.1) input-output data set construc-

tion for different conditions, (2.2) parameter estimation for surrogate

models based on conditional input-output data set, and (2.3) model

improvement by using adaptation strategies. Here, the workflow of

the data-driven modeling method are highlighted in Fig. S1.

3.2.1. Step 2.1: input-output data set construction for different

conditions

Climate change can significantly affect agricultural production

(Asseng et al., 2013). Especially, taking the crop production as an

example, different climate conditions will alter the potential crop

yield with the same irrigation and fertilisation schedules. In addi-

tion, thescheduleof irrigationandfertilisationduringproductionscan

also affect the potential yield even with the same water and fertiliser

input at the same climate conditions. Thus, different climate condi-

tion data and schedule data can have many combinations, making it

extremely difficult for us to obtain data for all the combinations from

real productionprocesses. To address thedata limitation formodeling

crop production units, a frequency analyze-based method is used to

achieve the near-optimal schedules and construct the input-output

data for modeling under different climate conditions. For each cli-

mate condition, a candidate schedule set can be constructed based

on randomly selected operation times for irrigation and fertilisation.

Simulated experiments of a group of input data points (irrigation and

fertiliser,X) are carried out through the simulator based on the sched-

ule set. The near-optimal schedules (S) for input water and fertiliser

can be simply chosen through statistic analysis, that is, counting the

frequency of schedules withmaximum response food yield y for each

input data point, the schedules with maximum frequency are set as

the good choices for cropproduction in the specific conditions (details

in Supplementary Section 2.1).

3.2.2. Step 2.2: parameter estimation for surrogate models based on

conditional input-output data set

Note the fact that no single type of surrogate model outperforms

all other types for dissimilar processes, and choosing the best type of

surrogates for each process is a challenging task (Linker and Sylaios,

2016). In general, the surrogate model may have better performance

by choosing a combination of different types of surrogate models

rather than using just a single type of surrogate models (Bhosekar

and Ierapetritou, 2018).
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In this step, a mix-weighted surrogate model is used to estimate

the unit production model M. The types (k ∈ K) of surrogate func-

tions f
(k)
h

can be linear, quadratic and reference types, etc. (Frank et

al., 1990; Wang and Baerenklau, 2014). Thus, in this step the opti-

mization problem of parameter estimation for weights yk and h
(k) of

surrogate model F̂h is solved. By using the conditional input-output

data set {X, y|S}, the proposed method can solve the surrogate mod-

eling problem based on the OLS (Ordinary Least Square) approach

(Montgomery et al., 2012), cross validation technique and a mix-

weight method (Goel et al., 2007). Eq. (1) shows the general type of

the surrogate models, and the detailed methods are in Supplemen-

tary Section 2.2.

F̂h(X) =
3

∑

k=1

ykf
(k)
h

(X) (1)

3.2.3. Step 2.3: model improvement by using adaptation strategies

Though accurate surrogate models M can be achieved by the

above mentioned data-driven modeling methods based on accurate

input-output data, available data for modeling are quite limited in

reality (Humblot et al., 2017). To address this challenge, as the opti-

mal surrogate model MK based on simulating experiments data is

generated, an adaptation strategy based on new available data is

designed to decrease the error ratios of surrogate models (see details

in Supplementary Section 2.3 and Fig. S3) .

3.3. Step 3: multi-objective optimization and assessment

Since the production units in the system can be described by

the proposed modeling methods in Step 2, a family of unit models

are developed to predict their yields. Based on the collected FEW

data, we can define the land use problem as a multi-objective MINLP

problem, and solve it with two sub-step: (3.1) Mathematical Formu-

lations for theMulti-Objective Problem, (3.2) MINLP Problem Solving

and Assessing Based on the FEW Metric.

3.3.1. Step 3.1: mathematical formulations for the multi-objective

problem

The five different objectives for the system are given in Eq. (2):

maximal profit (TP), maximal food yield (TF), minimal energy use

(TE), minimal water use (TW) and minimal environmental penalty

(TEn). Each individual objective can be solved directly to optimal-

ity using the global MINLP solver ANTIGONE in GAMS (Misener and

Floudas, 2014) (see details in Supplementary Section 3).

maxTP =
∑

c∈C

∑

a∈A

(pcFca − TCca) +
∑

l∈L

∑

b∈B

(plFlb − TClb)

maxTF =
∑

c∈C

∑

a∈A

Fca +
∑

l∈L

∑

b∈B

Flb −
∑

b∈B

F ′
1b

minTE =
∑

c∈C

∑

a∈A

(Eca − E′
ca) +

∑

l∈L

∑

b∈B

(Elb − E′
lb)

minTW =
∑

c∈C

∑

a∈A

Wca +
∑

l∈L

∑

b∈B

Wlb

minTEn =
∑

c∈C

∑

a∈A

Enca +
∑

l∈L

∑

b∈B

Enlb

s.t.

TF ≥ TF lo

TW lo ≤ TW ≤ TWup

TElo ≤ TE ≤ TEup

yr ∈ {0; 1}; r ∈ R (2)

where c ∈ C and l ∈ L are production units of crop (C) and live-

stock (L), respectively. a ∈ A and b ∈ B represent cropland grids and

livestock land grids. These objectives are calculated based on energy

(Eca, Elb), water use (Wca,Wlb), economic cost (TCca, TClb), environ-

mental penalty (Enca, Enlb), and yield output (Fca, Flb) from different

land grids. The total cost for production units (TC) includes their

related constant cost, energy cost, water cost and other cost (e.g.

biotechnology, labor, etc.) (Table S5). The energy use for production

(E) is the combination of fertiliser, pesticide, irrigation, diesel and

feed. The water use (W) mainly comes from irrigation and livestock

feeding. The environmental penalty (En) in this study only consid-

ers the carbon emission and nitrogen leakage. As the framework

supposes to provide solutions over production years, by choosing

recycling pathways, the previous crop production in the system can

supply part of the food consumed in the livestock production units

(F1b
′), and the previous wastes (Eca ′ and Elb

′) generated in the crop

and livestock production can be converted to organic fertiliser used

in the crop production, which are regarded as new sources for energy

use (the fertiliser ratios of waste are shown in Table S3, and the

corresponding energy intensities are shown in Table S4). Defining

appropriate boundaries for any FEW Nexus related systems is a chal-

lenge, as the FEW Nexus is broad and complex both in time and

space. Narrow boundaries for the systemwill miss some key impacts,

while broad boundaries will increase the model complexity. In this

case, we define the system boundaries by considering the production

on the pieces of land rather than the whole supply chains. The con-

straints include FEW constraints (TF, TE, TW) with lower bounds (lo)

and upper bounds (up), the binary variables yr with several choices

of land allocation
(

yland
)

, water quality
(

ysaltW
)

, byproducts reuse

Fsc

Esc Wsc

A

120 °

Psc

Fsc

Esc Wsc

Ensc

B

72 °

Fig. 4. Representation of the composite metric. A: FEWS1; B: FEWS2 .
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(

yreturn
)

and biotechnology treatments
(

ybio
)

(Eqs. ( S8) to ( S12)) in

the system.

3.3.2. Step 3.2: MINLP problem solving and assessing based on the FEW

metric

Each individual objective in Eq. (2) can be solved directly to

optimality using global MINLP solvers through GAMS (Misener and

Floudas, 2014). A set of indicators is defined as a FEWmetric for them

(Eq. (3)), these indicators quantify each of the objectives (decision

elements) from different stakeholders, which provide multiple crite-

rions for decision-makers. The decision-makers decide the quantities

that best describe each of the decision elements. Those indicators can

heavily dependent on the choice of the system boundary.

Psc =
TP − TPmin

TPmax − TPmin

Fsc =
TF − TFmin

TFmax − TFmin

Esc = 1 −
TE − TEmin

TEmax − TEmin

Wsc = 1 −
TW − TWmin

TWmax − TWmin

Ensc = 1 −
TEn − TEnmin

TEnmax − TEnmin

(3)

where Psc, Fsc, Esc, Wsc and Ensc are the indexes for five objective

functions in Eq. (2), respectively and selected here as decision ele-

ments. Before calculating these indexes, true boundaries for them

can be calculated by solving the corresponding individual objective

optimization problem. For instance, for the index Psc, the maximal

and minimal objective determined values of TP need to be calculated

by using the same constraints (Supplementary Section 3). Then the

index Psc can be scaled into the range of 0 to 1 by using themaximum

and minimum value of TP.

To achieve trade-offs among multiple objectives and make quan-

titative assessments for solutions, two bilinear average metrics,

“FEWS1” and “FEWS2” metric, are formulated in Eqs. (4) and (5).

FEWS1 =
1

2
(FscEsc + EscWsc +WscFsc) sin 120◦ (4)

FEWS2 =
1

2
(PscFsc + FscEsc + EscWsc +WscEnsc + EnscPsc) sin 72◦ (5)

The metric FEWS1 integrates all the three main indexes of the

FEW nexus by using them to construct a triangular spider map,

presented in Fig. 4a. Therefore, the objective function of the opti-

mization problem can be simply converted to the maximization of

the graph area combined by the three indexes, and the solution

can be easily visualized on the spider plot. To create a metric that

integrates additional decision elements such as profit and environ-

mental cost the FEWS2 metric was formulated in Eq. (5) and the

spider plot resulting from this index is presented in Fig. 4b. Simi-

larly, the multi-objective optimization problem can be converted to

themaximumproblem of the pentagonal area in the spidermap. Pre-

liminary results from previous work have verified the effectiveness

(Avraamidou et al., 2018a,b; Nie et al., 2018; Mroue et al., 2019).

4. Results

We construct a crop-livestock land use system by selecting three

crops and three livestock throughout three land types among 16-

year climate conditions at Yucheng Station (Fig. S2, Table S1). The

proposed framework solves the land use problem through three

sequential steps including design, modeling, and optimization based

on FEW-Nexus in the system, which is a decomposed strategy for

solving the overall decision-making problem (see Section 3).

We represent the initial configuration of the crop-livestock land

use system with a superstructure network in step 1 of the frame-

work (Fig. 3). Fig. 5 shows two optimal superstructures of the system

based on our trade-off solutions, which are generated by respectively

taking the two FEW metrics FEWS1 and FEWS2) as integrated objec-

tives to solve the multi-objective optimization problem. The optimal

superstructures show the general decisions of production units, land

allocation, technology options, and FEW pathways in the system.

In step 2, the production units of crop and livestock in the system

are modeled. The proposed adaptive data-driven modeling meth-

ods (Section 3.2) is used to construct crop yield predictive models

based on the near-optimal schedules (Table S7) under different cli-

mate conditions (Fig. S2). Fig. 6 shows the cotton predictive model

under climate condition 1 as an illustration of good-of-fit perfor-

mance. Fig. 6A shows that the adaptation strategies can efficiently

reduce the error ratios when iteratively adding new reliable input-

output data samples, where strategy 2 hasmore robust performance.

Fig. 6B shows the final fit performance of the predictive model

after limited adaptation times, illustrating the mix-weighted predic-

tive model and the models with single types are good enough to

simulate production behaviors (error ratio < 2%). By using the adap-

tation strategies, we can keep on improving the fit performance with

new data. Fig. S4A shows the relative robust contribution of differ-

ent single model types to the final mix-weighted predictive model

when the adaptation iterations increase (i.e., theweights for different

types of model vary over narrow ranges). In general, the predictive

model of crop production units describe the relations between input

energy (fertiliser) and water and output food yield (Fig. S4B). The

optimal parameters, weights, and final error rates for the crop pro-

duction mix-weighted predictive models in three climate conditions

are reported by Table S8.

The livestock production units aremodeledwith linear and piece-

wise functions (see Supplementary Section 4.1). All the functions

show the relations between production time and food yield, as the

use of input energy and water have been standardized by using

known feed formulas (Table S3). Fig. S5 takes milk production and

pig growth as examples to report the fit performance. The results

show that the fitted data can match the reference data very well

(R2
> 0.99).

Interests of different stakeholders are converted into multiple

objectives including total profit (TP), total food production (TF), total

energy use (TE), totalwater use (TW) and total environmental penalty

(TEn). In step 3, two FEW metrics (FEWS1 and FEWS2) are designed

as the integrated objectives of the above multiple objectives and are

solved as mixed integer nonlinear programming problems (MINLP)

efficiently (Section 3.3. Table 2 summarizes the annual trade-off solu-

tions based on two FEWmetrics and five individual objectives, which

include optimal objective values, diverse decisions for land alloca-

tion, food output, energy and water use, and choices of resources

and treatment techniques in the system. The optimal solutions allow

options for material recycles in the system for different objectives.

Fig. 7 compares the trade-off solutions with individual objective

based solutions under climate condition 1. Barplots in Fig. 7A com-

pare the relative optimal determined values including production

cost, food yield, energy use, water use and environmental penalty

based on different solutions. Specifically, the solutions based on

minimizing energy use, water use and environmental penalty (TE,

TW and TEn) have the lowest relative values compared with other

objective-based solutions. The solutions based on maximizing total

profit and food production (TF and TP) achieve a high level of food

output but also consume large amounts of resources and make enor-

mous negative impacts on the environment. As for the trade-off

solutions by maximizing the FEW-metrics (FEWS1 and FEWS2), they
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can achieve more food yield (compare with the TE, TW and TEn based

solutions) while using fewer resources (compare with the TF and TP

based solutions). Looking into the compositions of all the consid-

ered factors, all the solutions suggest that crop productions rather

than livestock productions make greater contributions to food out-

put, water and energy use, and environmental impacts. Fig. 7B shows

the solutions of land allocation for different objectives, which illus-

trate using less land and keeping diversity of land use are better

strategies than using all the land to produce food. To compare and

assess all the solutions comprehensively, Fig. 7C shows the results

in the spider maps with five indexes, which quantitatively represent

the five individual objectives respectively. The performance of FEW

metric based solutions (FEWS1 and FEWS2) is shown in the first and

second spider map, illustrating more balanced designs for decision

making, since they consider several interests of stakeholders at the

same time (Section 3.3).

We also analyze the FEW Nexus in the system by taking opti-

mal solutions under climate condition 1. Figs. S6 and S7 show that

the livestock productions will be stopped at a different time based

on different objectives, and all the solutions select to allocate live-

stock land to cattle and pig production. Note that minimizing energy,

water and environmental penalty will get the same stop times with

the proposed tradeoff solutions from maximizing the graph area,

which is indicated by FEWS1 and FEWS2 (Fig. S7C). Figs. S8 and S9

describe the objective-related routes for three main materials in the

system. The three materials are feed straw for feeding cattle, fer-

tiliser for all the crop production, and feed food for feeding all the

livestock. These different material supply routes indicate that not all

the advanced technologies and resource reuse are always necessary

for systematic decision-making. For instance, the biotechnology for

treating livestock waste and organic fertiliser return are not selected

for the tradeoff decisions (Fig. S8). Even for the solutions that choose

organic fertiliser return as one kind of fertiliser for crop production,

the chemical fertiliser still play the key role and cannot be totally

replaced ( Figs. S8A, S9B).

In this study, the lowest food yield at normal climate condition

(Condition 1, shown in Fig. S2) are used as the lower constraint of food

demand inorder to compare climate-relatedperformance at the same

basis. Fig. 8A present the comparisons of relative food yield, energy

and water use, environmental penalty and production cost for the

trade-off solutions at the three climate conditions. The results show

that generally production at years in condition 1 may achieve more

yield and consume fewer resources, and consistent decisions can be

made for landallocation indifferent conditions (Fig. 8B). The solutions

are also evaluated by the FEWmetrics (Fig. 8C), which show that the

trade-off solutions perform robust across different conditions.

Table 2

Optimal solutions for multi-objective optimization (condition 1).

Max TP Max TF Max TE Max TW Max TEn Max FEWS1 Max FESS2

Cropland grid Wheat-corn(2) Wheat-corn(2) Wheat-corn(1) Wheat-corn(1) Wheat-corn(1) Wheat-corn(2) Wheat-corn(2)

Cotton(1) Cotton(1) Cotton(1)

Livestock land grid Cattle(1) Cattle(1) Cattle(1) Cattle(1) Cattle(1) Cattle(1) Cattle(1)

Pig(1) Pig(3) Pig(1) Pig(1) Pig(1) Pig(1) Pig(1)

Profit (Yuan) 1.54E+05 −3.06E+05 −1.26E+06 −1.26E+06 −1.26E+06 5.29E+04 1.01E+04

Food production (MJ) 3.55E+06 4.01E+06 7.15E+05 7.15E+05 7.15E+05 3.01E+06 8.37E+05

Energy use (MJ) 3.97E+06 6.42E+06 4.77E+05 4.77E+05 4.77E+05 1.30E+06 3.92E+05

Water use (t) 1.65E+04 2.69E+05 1.46E+03 40 40 1.53E+04 3.10E+03

Environment Penalty (Yuan) 6.80E+04 9.88E+4 1.40E+03 1.40E+03 1.40E+03 2.61E+04 6.70E+03

Irrigation water High quality High quality High quality – – High quality High quality

Crop byproduct use Feed(100%) Feed(99.4%) Feed(5.6%) Feed(5.6%) Feed(5.6%) Return(0.1%) Return(3%)

Sell(0.6%) Sell(94.4%) Sell(94.4%) Sell(94.4%) Feed(2.2%) Feed(3%)

Sell(97.7%) Sell(94%)

Livestock byproduct use Sell(100%) Sell(97.2%) Sell(100%) Sell(100%) Sell(100%) Sell(62.4%) Sell(100%)

Return(2.8%) Return(37.6%)

Bio-technology treatment No No No No No No No

Feedfood source Market Market Cropland Cropland Cropland Market Market

Feedstraw source Cropland Cropland Cropland Cropland Cropland Cropland Cropland

TP: total profit; TF: total food production; TE: total energy use; TW: total water use; TEn: total environmental penalty.
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Fig. 7. Comparison and assessment of multiple solutions under climate condition 1. (A) Optimal solutions for multiple objectives including FEW metrics (FEWS1 and FEWS2),

and five individual objectives including total profit (TP), total food production (TF), total energy use (TE), total water use (TW), and total environmental penalty (TEn). FEWS1

is an integrated index by combining the objectives of total food, energy and water; FEWS2 is an integrated index by combining all the five individual objectives. The relative

optimal determined value and compositions of production cost, food yield, energy use, water use, and environmental penalty are compared for the seven objectives. (B) Optimal

land allocations for different objective based optimization. Specifically, the green color represent the land grids allocated to wheat-corn rotation system, and there is no land

competition for wheat and corn production. The white color means the grids are unused. (C) Solution comparison for different objectives. The indexes for five objectives are

represented as: Profit - Psc , Food - Fsc , Energy - Esc , Water - Wsc , Environment - Ensc .

5. Discussion

Thecasestudy illustrates that theproposedframeworkcanachieve

trade-off solutions to inform and assist decision-makers by follow-

ing three steps: design, modeling, and optimization. Specifically, the

land use system can be designed as a superstructure network by

analyzing the FEW flow and nexus; multiple production components

in the network can be simulated by using an adaptive data-driven

modeling method for yield prediction under different climate condi-

tions; and the final trade-off solutions for diverse stakeholders can be

achieved based on the previous superstructure and models by using

a FEW metric based optimization method. Our results show that the

proposed framework provides an effective and consistent methodol-

ogy for improving, selecting, and assessing systematic decisions for
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land use, which is an innovative try for constructing generic work-

flows for systematic land use considering quantitative FEW-Nexus,

effective integration of data and models, and standardized metrics

for solution selection and assessment.

Superstructure optimization based approaches have been proven

to be cost effective and energy efficient for industrial process syn-

thesis and analysis (Yuan et al., 2013). However, its application for

agricultural process integration is still in the infancy. Food-Energy-

Water Nexus (FEW-N), as presented in this study, is what makes the

superstructure design possible (Hang et al., 2016). From the system-

atic view of FEW-N, we simplify the complicated agricultural system

based on input and output FEW flow and use the interdependence

among diverse process units to combine them, which will generate

all the possible pathways for the system. Based on the superstructure

optimization formulation with desired objectives such as maximum

food production or minimum water use, we can find optimal pro-

cess topology network without any unnecessary connections and the

operating parameters for each units in the system simultaneously.

Recent developments in agricultural modeling and optimization

have created increased capability for the management of land use

via complicated modeling methods with more parameters (Goel et

al., 2007). However, the responses of productivity vary widely across

different model types and region/climate specific data, reflecting dif-

ferences in the realistic gap between optimal potential yield and real

yield. The results in the Modeling step of our framework show that

the proposed models have the robust performance based on lim-

ited region and climate specific data compared to previous studies

(Humblotetal.,2017).This isbecausetheproposedmodelingmethods

use a mix-weighted methods to balance the bias performance from

different model types, and provides adaptation strategies to keep on

improving the fit performance of region and climate specific models

generated by limited data-driven modeling methods. The characters

of the our modeling methods illustrate that we can control the neg-

ative impact on data limitations and simplify complicated scientific

models for realistic use, which are especially important for develop-

ing countries who are lacking systematic agricultural databases with

local details. The adaptation strategies also provide effectiveways for

improving predictive models and accumulating available data.

Agricultural land is not only farming entity but also known as sup-

plying various products and services to multiple stakeholders (Van

Ittersum et al., 2008). Such landmanagement is an evolving outcome

of unremitting negotiation and frequent conflicting interests among

the stakeholders. The means by which conflicts are settled will be

subject to varying supply and demand of FEW, and will vary depend-

ing on regions and climate conditions (Daher et al., 2019). Thus, the

compromise of different stakeholders, and the robust performance

with uncertainties are crucially important due to their impacts on

systematic decision-making for land use. By using the FEW metric

based optimization method provided by the framework, trade-offs

among diverse stakeholders can be achieved most effectively and

consistently. In the optimization step, each of the stakeholder’s

objective is formulated and normalized by taking their own maxi-

mum and minimum optimal values as boundaries. Therefore, all the

objectives can be transformed into the same scale (e.g., from 0 to

1) by using their own boundaries, which provides a consistent basis

for comparison and evaluation. All of these scaled objectives can be

merged together by taking the FEW metric as the integrated objec-

tive, which can be visualized in spider graphs. We find that the FEW

metric based solutions always show more balanced designs since it

can effectively facilitate the simultaneous farming of diverse goals

from stakeholders. Based on integrated use of previous FEW data,

models, and alternative pathways in the superstructure, the assess-

ment results show that the FEW metric based methods also have

robust performance when considering different climate scenarios,

since the framework can adjust the operations in the system to keep

consistent performance of the land use decisions.

There is a need for developing methodologies for quantifying pol-

icy coherence through quantifying the impact of proposed policies

across different sectors based on multiple scales, and identify the

compatibility of current institutional setup and sectional interactions

considering the nature of FEW resource systems and their intercon-

nections (Daher et al., 2019). The proposed framework designs a

series of FEW indexes for objectives from different stakeholders, and

finally offers a generic metric for evaluating and comparing different

solution strategies, which provides possibilities for policy-makers to

adjust policies across different stakeholders, production sectors, and

time periods.

6. Limitations and future work

It is important to discuss some limitations of the developed

framework and the potential implications of the modeling and opti-

mization methods. First, we assume the schedules calculated base

on frequency analysis as the “near-optimal” schedules for crop pro-

duction units. While this choice reduces the computational demands

of the data-driven modeling, it may result to an underestimation of

the real potential yield. Future modeling work should seek to model

production under dynamic schedules and expect to solve the opti-

mization problem of minimizing the gap between simulating yield

and real potential yield based on optimal schedules.

A further limitation of the framework is the distribution problem.

Our current work focuses on the allocated amount of land and

FEW resources for different production units with a given area.

Furthermore, the spatial distribution of different production objects

in the land graph has not yet been considered. In the future, this can

be important for the optimization of supply chains in the land use

system. We also expect to integrate methods, such as graph theory,

to consider the spatial distribution of land, FEW, and facilities.

7. Conclusion

Meeting the demand for food, energy, and water on a diminishing

supply of agricultural land in the world without negative envi-

ronmental impact is a major scientific challenge facing humanity.

Despite the increasing techniques, data and models, a unified frame-

work to integrate them and make trade-offs is lacking. To this end,

we propose a framework to facilitate decision-makings based on a

“Design-Modeling-Optimization” procedure. Taking an experimen-

tal station in China as a model system, our framework quantifies

the related Food-Energy-Water Nexus, explores trade-offs for diverse

stakeholders, identifies sustainablepathways formeetingbothnature

conservation goals and humandemand, and provides benchmarks for

assessing strategies directing alternative pathways. Inspired by the

multi-scale integration, our methodology should have general utility

in complex agricultural systems.

Acknowledgments

The authors gratefully acknowledge financial supports from STS

Project of Chinese Academy of Sciences [KFJ-EW-STS-054-3], the Pro-

gram of China Scholarship Council [201604910976], the National

Natural Science Foundation of China [61603370], National Science

Foundation under Grant Addressing Decision Support for Water

Stressed FEW Nexus Decisions [1739977], and Texas A & M Energy

Institute.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://

doi.org/10.1016/j.scitotenv.2018.12.242.



Y. Nie, S. Avraamidou, X. Xiao, et al. / Science of the Total Environment 659 (2019) 7–19 19

References

Albrecht, T.R., Crootof, A., Scott, C.A., 2018. The water-energy-food nexus: a systematic
review of methods for nexus assessment. Environ. Res. Lett. 13, 043002.

Alexandratos, N., Bruinsma, J., et al. 2012. World Agriculture Towards 2030/2050: The
2012 Revision. Technical Report, ESA Working paper FAO, Rome.

Asseng, S., Ewert, F., Rosenzweig, C., Jones, J., Hatfield, J., Ruane, A., Boote, K.J.,
Thorburn, P.J., Rötter, R.P., Cammarano, D., et al. 2013. Uncertainty in simulating
wheat yields under climate change. Nat. Clim. Chang. 3, 827.

Avraamidou, S., Beykal, B., Pistikopoulos, I.P., Pistikopoulos, E.N., 2018a. A hierarchical
Food-Energy-Water Nexus (FEW-N) decision-making approach for land use
optimization. Computer Aided Chemical Engineering. 44. Elsevier, pp.
1885–1890.

Avraamidou, S., Milhorn, A., Sarwar, O., Pistikopoulos, E.N., 2018b. Towards a quan-
titative food-energy-water nexus metric to facilitate decision making in process
systems: A case study on a dairy production plant. Computer Aided Chemical
Engineering. 43. Elsevier, pp. 391–396.

Beinat, E., Nijkamp, P., 1998. Multicriteria Analysis for Land-Use Management. 9.
Springer Science & Business Media.

Bergstrom, J.C., Goetz, S.J., Shortle, J.S., 2013. Land Use Problems and Conflicts: Causes,
Consequences and Solutions. Routledge.

Bertran, M.-O., Frauzem, R., Sanchez-Arcilla, A.-S., Zhang, L., Woodley, J.M., Gani, R.,
2017. A generic methodology for processing route synthesis and design based on
superstructure optimization. Comput. Chem. Eng. 106, 892–910.

Bhosekar, A., Ierapetritou, M., 2018. Advances in surrogate based modeling, feasibility
analysis, and optimization: A review. Comput. Chem. Eng. 108, 250–267.

Chen, Z., Lu, C., Fan, L., 2012. Farmland changes and the driving forces in Yucheng,
North China Plain. J. Geogr. Sci. 22, 563–573.

Chiandussi, G., Codegone, M., Ferrero, S., Varesio, F.E., 2012. Comparison of multi-
objective optimization methodologies for engineering applications. Comput.
Math. Appl. 63, 912–942.

Daher, B., Lee, S.-H., Kaushik, V., Blake, J., Askariyeh, M.H., Shafiezadeh, H., Zamaripa,
S., Mohtar, R.H., 2019. Towards bridging the water gap in Texas: a water-energy–
food nexus approach. Sci. Total Environ. 647, 449–463.

Daher, B., Mohtar, R.H., Pistikopoulos, E.N., Portney, K.E., Kaiser, R., Saad, W., 2018.
Developing socio-techno-economic-political (STEP) solutions for addressing
resource nexus hotspots. Sustainability 10, 512.

Dargin, J., Daher, B., Mohtar, R.H., 2019. Complexity versus simplicity in water energy
food nexus (WEF) assessment tools. Sci. Total Environ. 650, 1566–1575.

Dhaubanjar, S., Davidsen, C., Bauer-Gottwein, P., 2017. Multi-objective optimization
for analysis of changing trade-offs in the Nepalese Water-Energy-Food Nexus
with hydropower development. Water 9, 162.

D’Odorico, P., Davis, K.F., Rosa, L., Carr, J.A., Chiarelli, D., Dell’Angelo, J., Gephart, J.,
MacDonald, G.K., Seekell, D.A., Suweis, S., et al. 2018. The global food-energy-
water nexus. Rev. Geophys. 56, 456–531.

El-Gafy, I., 2017. Water-food-energy nexus index: analysis of water-energy-food
nexus of crops production system applying the indicators approach. Appl Water
Sci 7, 2857–2868.

Ellis, E.C., Ramankutty, N., 2008. Putting people in the map: anthropogenic biomes of
the world. Front. Ecol. Environ. 6, 439–447.

Fang, Q., Yu, Q., Wang, E., Chen, Y., Zhang, G., Wang, J., Li, L., 2006. Soil nitrate
accumulation, leaching and crop nitrogen use as influenced by fertilization and
irrigation in an intensivewheat-maize double cropping system in the North China
Plain. Plant Soil 284, 335–350.

FAO, U., 2009. How to feed the world in 2050. Rome: High-Level Expert Forum.
Flammini, A., Puri, M., Pluschke, L., Dubois, O., et al. 2017. Walking the Nexus Talk:

Assessing theWater-Energy-Food Nexus in the Context of the Sustainable Energy
for All Initiative. FAO.

Frank, M.D., Beattie, B.R., Embleton, M.E., 1990. A comparison of alternative crop
response models. Am. J. Agric. Econ. 72, 597–603.

Garcia, D.J., You, F., 2016. The water-energy-food nexus and process systems
engineering: a new focus. Comput. Chem. Eng. 91, 49–67.

Goel, T., Haftka, R.T., Shyy, W., Queipo, N.V., 2007. Ensemble of surrogates. Struct.
Multidiscip. Optim. 33, 199–216.

Hang, M.Y.L.P., Martinez-Hernandez, E., Leach, M., Yang, A., 2016. Designing integrated
local production systems: a study on the food-energy-water nexus. J. Clean. Prod.
135, 1065–1084.

Holzworth, D.P., Snow, V., Janssen, S., Athanasiadis, I.N., Donatelli, M., Hoogenboom,
G., White, J.W., Thorburn, P., 2015. Agricultural production systems modelling
and software: current status and future prospects. Environ. Model. Softw. 72,
276–286.

Humblot, P., Jayet, P.-A., Petsakos, A., 2017. Farm-level bio-economic modeling of
water and nitrogen use: calibrating yield response functions with limited data.
Agric. Syst. 151, 47–60.

Jones, J.W., Antle, J.M., Basso, B., Boote, K.J., Conant, R.T., Foster, I., Godfray, H.C.J.,
Herrero, M., Howitt, R.E., Janssen, S., et al. 2017b. Brief history of agricultural
systems modeling. Agric. Syst. 155, 240–254.

Jones, J.W., Antle, J.M., Basso, B., Boote, K.J., Conant, R.T., Foster, I., Godfray, H.C.J.,
Herrero, M., Howitt, R.E., Janssen, S., et al. 2017a. Toward a new generation of
agricultural system data, models, and knowledge products: state of agricultural
systems science. Agric. Syst. 155, 269–288.

Jones, J.W., Hoogenboom, G., Porter, C.H., Boote, K.J., Batchelor, W.D., Hunt, L., Wilkens,
P.W., Singh, U., Gijsman, A.J., Ritchie, J.T., 2003. The DSSAT cropping system
model. Eur. J. Agron. 18 (3-4), 235–265.

Keairns, D., Darton, R., Irabien, A., 2016. The energy-water-food nexus. Ann. Rev. Chem.
Biomol. Eng. 7, 239–262.

Keating, B.A., Carberry, P.S., Hammer, G.L., Probert, M.E., Robertson, M.J., Holzworth,
D., Huth, N.I., Hargreaves, J.N., Meinke, H., Hochman, Z., et al. 2003. An overview
of apsim, a model designed for farming systems simulation. Eur. J. Agron. 18,
267–288.

Linker, R., Sylaios, G., 2016. Efficient model-based sub-optimal irrigation scheduling
using imperfect weather forecasts. Comput. Electron. Agric. 130, 118–127.

McCarl, B.A., Yang, Y., Schwabe, K., Engel, B.A., Mondal, A.H., Ringler, C., Pistikopoulos,
E.N., 2017a. Model use in WEF nexus analysis: a review of issues. Current
Sustainable/Renewable Energy Reports 4, 144–152.

McCarl, B.A., Yang, Y., Srinivasan, R., Pistikopoulos, E.N., Mohtar, R.H., 2017b. Data for
WEF nexus analysis: a review of issues. Current Sustainable/Renewable Energy
Reports 4, 137–143.

Misener, R., Floudas, C.A., 2014. Antigone: algorithms for continuous/integer global
optimization of nonlinear equations. J. Glob. Optim. 59, 503–526.

Mohtar, R.H., Daher, B., 2019. Lessons learned: Creating an interdisciplinary team and
using a nexus approach to address a resource hotspot. Sci. Total Environ. 650,
105–110.

Mohtar, R.H., Shafiezadeh, H., Blake, J., Daher, B., 2019. Economic, social, and
environmental evaluation of energy development in the eagle ford shale play. Sci.
Total Environ. 646, 1601–1614.

Montgomery, D.C., Peck, E.A., Vining, G.G., 2012. Introduction to Linear Regression
Analysis. 821. John Wiley & Sons.

Mroue, A.M., Mohtar, R.H., Pistikopoulos, E.N., Holtzapple, M.T., 2019. Energy portfolio
assessment tool (EPAT): sustainable energy planning using the wef nexus
approach-Texas case. Sci. Total Environ. 648, 1649–1664.

Nelson, G.C., Valin, H., Sands, R.D., Havlík, P., Ahammad, H., Deryng, D., Elliott, J.,
Fujimori, S., Hasegawa, T., Heyhoe, E., et al. 2014. Climate change effects on
agriculture: economic responses to biophysical shocks. Proc. Natl. Acad. Sci. 111,
3274–3279.

Nie, Y., Avraamidou, S., Li, J., Xiao, X., Pistikopoulos, E.N., 2018. Land use modeling and
optimization based on food-energy-water nexus: a case study on crop-livestock
systems. Computer Aided Chemical Engineering. 44. Elsevier, pp. 1939–1944.

Paul, C., Weber, M., Knoke, T., 2017. Agroforestry versus farm mosaic systems-
comparing land-use efficiency, economic returns and risks under climate change
effects. Sci. Total Environ. 587, 22–35.

Ramankutty, N., Mehrabi, Z., Waha, K., Jarvis, L., Kremen, C., Herrero, M., Rieseberg,
L.H., 2018. Trends in global agricultural land use: implications for environmental
health and food security. Annu. Rev. Plant Biol. 69, 789–815.

Rathmann, R., Szklo, A., Schaeffer, R., 2010. Land use competition for production of
food and liquid biofuels: an analysis of the arguments in the current debate.
Renew. Energy 35, 14–22.

Sayer, J., Sunderland, T., Ghazoul, J., Pfund, J.-L., Sheil, D., Meijaard, E., Venter, M.,
Boedhihartono, A.K., Day, M., Garcia, C., et al. 2013. Ten principles for a landscape
approach to reconciling agriculture, conservation, and other competing land uses.
Proc. Natl. Acad. Sci. 110, 8349–8356.

Scanlon, B.R., Ruddell, B.L., Reed, P.M., Hook, R.I., Zheng, C., Tidwell, V.C., Siebert,
S., 2017. The food-energy-water nexus: transforming science for society. Water
Resour. Res. 53, 3550–3556.

Seppelt, R., 2016. Landscape-scale resource management: environmental modeling
and land use optimization for sustaining ecosystem services. Handbook of
Ecological Models used in Ecosystem and Environmental Management 3, 457.

Sims, R., 2011. Energy-smart food for people and climate. Technical Report, UN Food
and Agriculture Organisation.

Song, Y., Hou, D., Zhang, J., O’Connor, D., Li, G., Gu, Q., Li, S., Liu, P., 2018. Environmental
and socio-economic sustainability appraisal of contaminated land remediation
strategies: a case study at a mega-site in China. Sci. Total Environ. 610, 391–401.

Steduto, P., Hsiao, T.C., Raes, D., Fereres, E., 2009. Aquacropthe fao crop model to
simulate yield response to water: I. Concepts and underlying principles. Agron. J.
101, 426–437.

Stewart, T.J., Janssen, R., van Herwijnen, M., 2004. A genetic algorithm approach to
multiobjective land use planning. Comput. Oper. Res. 31, 2293–2313.

Uen, T.-S., Chang, F.-J., Zhou, Y., Tsai, W.-P., 2018. Exploring synergistic benefits
of Water-Food-Energy Nexus through multi-objective reservoir optimization
schemes. Sci. Total Environ. 633, 341–351.

van Ittersum, M.K., Cassman, K.G., Grassini, P., Wolf, J., Tittonell, P., Hochman, Z., 2013.
Yield gap analysis with local to global relevancea review. Field Crop Res. 143,
4–17.

Van Ittersum, M.K., Ewert, F., Heckelei, T., Wery, J., Olsson, J.A., Andersen, E.,
Bezlepkina, I., Brouwer, F., Donatelli, M., Flichman, G., et al. 2008. Integrated
assessment of agricultural systems-a component-based framework for the
European Union (seamless). Agric. Syst. 96, 150–165.

Van Tra, T., Thinh, N.X., Greiving, S., 2018. Combined top-down and bottom-up climate
change impact assessment for the hydrological system in the Vu Gia-Thu Bon
River basin. Sci. Total Environ. 630, 718–727.

Vermeulen, S.J., Challinor, A.J., Thornton, P.K., Campbell, B.M., Eriyagama, N., Vervoort,
J.M., Kinyangi, J., Jarvis, A., Läderach, P., Ramirez-Villegas, J., et al. 2013.
Addressing uncertainty in adaptation planning for agriculture. Proc. Natl. Acad.
Sci. 110, 8357–8362.

Wang, J., Baerenklau, K., 2014. Crop response functions integrating water, nitrogen,
and salinity. Agric. Water Manag. 139, 17–30.

Yuan, Z., Chen, B., Gani, R., 2013. Applications of process synthesis: moving from
conventional chemical processes towards biorefinery processes. Comput. Chem.
Eng. 49, 217–229.

Zhang, J., Campana, P.E., Yao, T., Zhang, Y., Lundblad, A., Melton, F., Yan, J., 2018. The
water-food-energy nexus optimization approach to combat agricultural drought:
a case study in the United States. Appl. Energy 227, 449–464.


	A Food-Energy-Water Nexus approach for land use optimization
	1. Introduction
	2. Case study area
	3. Material and methods
	3.1. Step 1: superstructure design
	3.1.1. Step 1.1: problem definition based on FEW-Nexus
	3.1.2. Step 1.2: superstructure generation

	3.2. Step 2: data-driven modeling
	3.2.1. Step 2.1: input-output data set construction for different conditions
	3.2.2. Step 2.2: parameter estimation for surrogate models based on conditional input-output data set
	3.2.3. Step 2.3: model improvement by using adaptation strategies

	3.3. Step 3: multi-objective optimization and assessment
	3.3.1. Step 3.1: mathematical formulations for the multi-objective problem
	3.3.2. Step 3.2: MINLP problem solving and assessing based on the FEW metric


	4. Results
	5. Discussion
	6. Limitations and future work
	7. Conclusion
	Acknowledgments
	References


