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Abstract

Joint inversion refers to the simultaneous inference of multiple parameter
fields from observations of systems governed by single or multiple forward
models. In many cases these parameter fields reflect different attributes of
a single medium and are thus spatially correlated or structurally similar.
By imposing prior information on their spatial correlations via a joint
regularization term, we seek to improve the reconstruction of the parameter
fields relative to inversion for each field independently. One of the main
challenges is to devise a joint regularization functional that conveys the spatial
correlations or structural similarity between the fields while at the same time
permitting scalable and efficient solvers for the joint inverse problem. We
describe several joint regularizations that are motivated by these goals: a
cross-gradient and a normalized cross-gradient structural similarity term, the
vectorial total variation, and a joint regularization based on the nuclear norm
of the gradients. Based on numerical results from three classes of inverse
problems with piecewise-homogeneous parameter fields, we conclude that
the vectorial total variation functional is preferable to the other methods
considered. Besides resulting in good reconstructions in all experiments, it
allows for scalable, efficient solvers for joint inverse problems governed by
PDE forward models.

Keywords: joint inversion, multi-physics inverse problem, structural
similarity prior, vectorial total variation, cross-gradient, nuclear norm
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1. Introduction

In a joint inverse problem one seeks to reconstruct multiple parameter fields from observa-
tional data and forward models that map the parameter fields to the data. In many cases these
parameter fields reflect different attributes of a single medium and are thus spatially correlated
or structurally similar. By imposing prior information on their spatial correlations via a joint
regularization term, we seek to improve the reconstruction of the parameter fields relative to
inversion for each field independently.

We formulate the joint inverse problem as an optimization problem with a regularized data
misfit objective, governed by a forward model that represents a single or multiple physical
phenomena. In the following, we restrict ourselves to forward models that take the form of
partial differential equations (PDEs) characterized by two unknown parameter fields, m; and
my, which we seek to reconstruct from observational data d. The parameter-to-observable
map F(my, m;) typically involves solution of the forward PDEs given the parameter fields,
followed by application of the observation operator, which restricts the PDE solution to the
space of observables. The optimization problem is thus

min {lf(tnl,mz) —d|2—|—’R(m1,m2)}. (1)
(mima) | 2

The role played by R in (1) is discussed in the next paragraph. Here, we address two spe-
cific settings for (1). In the first, the forward model in F (m;, m,) describes a single physical
phenomenon. An example of such a joint inverse problem is inversion for the primary and
secondary wave speeds in the Earth given measurements of the acceleration at the surface.
Obtaining high quality reconstructions for both parameter fields is known to be difficult with-
out incorporating some form of prior knowledge that couples the two fields [1-3]. We refer to
formulation (1) as a single physics joint inverse problem.

In the second type of joint inverse problem, we consider observations d; and d, stemming
from two distinct physical phenomena respectively, each depending on a single parameter
field. In this case the forward models of the physical phenomena are uncoupled, and coupling
occurs only via the inverse problem. The corresponding parameter-to-observable maps are
denoted by Fi(m) and F,(m,), resulting in

min {1}'1 (my) —d; > + l\J’-'z(mz) —dy|* + R(ml,mz)} . )
(my,my) 2 2

This  formulation emerges from the general case above by defining
F(mi,ma) = [Fi(mi), F2(mz)]" and d = [d;,d]”. In the context of subsurface exploration,
just a few of the different physical phenomena that can be combined in (2) include electro-
magnetic and seismic waves [4, 5], radar and seismic waves [6], DC resistivity and seismic
waves [7], and current resistivity and groundwater flow [8].

The joint regularization term R(my,my) in (1) and (2) acts to impose regularity on m, and
my individually to combat ill-posedness, but can also express structural similarity or spatial
correlations between the two parameter fields. The remainder of this section introduces sev-
eral different choices for R. To isolate regularization from structural similarity, we decom-
pose the joint regularization term R (m;, m;) into

R(mi,my) = 1 Ri(my) + 1 Ra(my) + yR(my,my),

with 7,71, 72 > 0. The terms R, and R, are regularization terms for each parameter field,;
here we take them to be total variation (TV) regularizations, since our target media are
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piecewise-homogeneous (i.e. blocky). The term 713,(m1 ,my) incorporates the structural similar-
ity between m; and m,. We now discuss several choices for R. In [7], the authors introduce
the cross-gradient term

1
R(my,my) = E/ |Vm; x sz|2 dx,
Q

which seeks to align gradients of the two parameter fields at each point in the medium, i.e.
level sets that have the same shape. This seems to be the most popular choice in geophysics
[4-8], and is discussed in section 2.1. Instead of the gradients of the parameter fields, one can
use normalized gradients. This results in the normalized cross-gradient term

le % sz
|le| |Vm2|

A 1
7?/ncg(’/’/ll,’/’/Q) = E/
Q

The normalized cross-gradient was first used in the context of image registration [9], and is
discussed in section 2.2. Alternatively, when an empirical relationship between both param-
eters is known, one could use it in place of the structural similarity term R [4, 10]; this
approach, however, can be problematic in practice as these relationships are typically uncer-
tain (thus introducing bias) and the resulting optimization problems can be difficult to solve
[10, 11].

Alternatively, a single joint regularization term can impose regularity on both parameter
fields while also expressing a preference for structural similarity. In particular, we consider the
vectorial total variation (VTV) functional,

R(my,mp) = ’V/ [Vm |2 + [Vmy|? dx,
Q

with v > 0. The VTV functional was introduced in the context of multi-channel imaging [12,
13], and later used in PDE-constrained joint inverse problems [10]; it is discussed in sec-
tion 3. A second term we consider is the nuclear norm, which was used in [14, 15] to promote
gradient alignment of a vector-valued image. Building on this idea, in section 4 we introduce
a nuclear norm-based joint regularization term for PDE-constrained joint inverse problems.

The objective of this article is to construct and assess joint regularization terms that are
(1) efficient for inverse problems governed by PDEs with infinite-dimensional parameter
fields (and are thus large-scale after discretization) and (2) perform well in reconstructing
sharp interfaces in the truth parameter fields. Indeed, targeting large-scale inverse problems
entails several unique challenges that limit choices of the joint regularization term. Nonlinear
inverse problems such as (1) and (2) must be solved iteratively, which requires gradient- (and
Hessian-) based optimization methods to limit the number of optimization iterations, along
with adjoint methods to limit the number of PDE model solutions that must be carried out
at each iteration. Moreover, the adjoint method efficiently provides only directional second
derivatives rather than full Hessians, the construction of which would require as many PDE
solves as there are parameters (or observations). For these reasons, unless otherwise specified,
we employ an inexact Hessian-free Newton-conjugate gradient method with backtracking
line-search [1, 16, 17]. That is, we compute the Newton search direction using the precondi-
tioned conjugate gradient method, with early termination to guarantee a descent direction and
to avoid over-solving [18]. The efficient solution of the Newton system depends crucially on
the choice of preconditioner; we detail our choices for each joint regularization functional in
sections 2—4. An overview of the numerical methods we employ to solve large-scale inverse
problems governed by PDEs can be found in appendix A.
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Besides practicality and efficiency, our comparison of joint inversion methods focuses on the
quality of the reconstructions. Truth parameter fields in geophysical exploration and medical
imaging problems often present sharp contrasts within parameter fields. We focus on joint regu-
larization terms that can best preserve sharp edges in the reconstructed images. Motivated by
these criteria and a literature review, we identified the four candidates discussed above, namely
(1) the cross-gradient and (2) its normalized variant, both paired with individual TV regulariza-
tions, (3) the VTV joint regularization, and (4) a nuclear norm-based joint regularization.

1.1. Contributions

The main contributions of this article are as follows: (1) We review three joint regularization
terms commonly found in the literature (cross-gradient paired with TV, normalized cross-gradient
paired with TV, and VTV joint regularization), and discuss their practical use for large-scale joint
inverse problems governed by PDEs. We derive their first and second derivatives, and use them
to study properties of the different joint regularization terms. (2) We adapt a nuclear norm joint
regularization term to the context of joint inverse problems governed by PDEs. We discuss some
of the resulting computational challenges, and propose a solver to address them. (3) We carry out
a detailed comparison of all four joint regularization terms over a broad range of applications, and
discuss their practical performance to reconstruct parameter fields with sharp interfaces.

1.2. Paper overview

In the next three sections, we introduce the four joint regularization terms. The cross-gradient
and normalized cross-gradient are discussed in sections 2.1 and 2.2, the vectorial total varia-
tion in section 3, and the nuclear norm joint regularization in section 4. Section 5 summarizes
our numerical experiments. In section 5.1, we report on several multiple physics joint inverse
problems of the form (2), in which the two parameters fields arise as coefficients in two inde-
pendent Poisson equations, respectively. We use this example to illustrate some key features of
each joint regularization term. In section 5.2, we consider a single physics joint inverse prob-
lem of the form (1) for the acoustic wave equation, in which we invert for the bulk modulus
and the density. Finally, in section 5.3, we study a multiple physics joint inverse problem with
two different forward models, one an elliptic PDE and the other an acoustic wave equation.
Section 6 provides concluding remarks.

2. Cross-gradient terms

In this section, we introduce the cross-gradient term and its normalized version. The main
idea behind both of these structural similarity terms is to express the preference that the level
sets of the inversion parameter fields m; and m; align. As illustrated in figure 1, alignment of
the level sets is equivalent to the alignment of the gradients Vm; and Vm; at each point. By
definition of the cross-product of two vectors, the vectors Vm; and Vm, are aligned when
\Vm; x Vmy|? vanishes.

2.1. The cross-gradient term

The cross-gradient term ﬁcg, defined as

~

1
ch(ml,mz) = E/ |le X sz\zdx, 3)
Q
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Figure 1. Sketch of a level set of the parameter fields m, (red) and m, (blue), with their
respective gradients at a point.

was introduced in [7] and has become a popular choice in geophysical applications, par-
ticularly in seismic imaging. Although the formulation (3) is intuitive, it is inconvenient for
discretization and computation of derivatives. Hence, using vector calculus, we re-write (3) as

A~

1
Reg(mi,mp) = = \Vm1|2\Vm2|2 — (Vmy- Vm2)2 dx. 4
2 Jo

Combining the cross-gradient term (4) with independent TV regularizations for m and m,, we
obtain the joint regularization

R(mi,my) = iRrve(mi) + nRrve(m) + ’chg(ml’ my), (5)

where and 7, y1, 72 > 0, and here and in the remainder of this paper, we use the notation

Rrve(m) == / \/|Vm|72+5dx fore > 0. (6)
Q

In [10] the authors propose a different formulation, in which each independent TV regular-
ization is weighted by a non-linear function of the gradient of the other parameter. The goal
of this weighting is to apply TV regularization only for points in the parameter space where
the cross-gradient term by itself is not sufficient to prevent oscillatory solutions. Such oscil-
lations may occur where the gradient of one parameter is very small, resulting in an (almost)
vanishing cross-gradient term. Because this formulation further increases the nonlinearity of
the problem, we instead use (5).

Next, we derive first and second derivatives of the cross-gradient regularization, interpret
these derivatives as PDE operators, and draw analogies with the derivatives of the TV func-
tional Ry or its regularized version (6). For this purpose, we first derive the first and second
variation of the TV functional as follows:

SmRrv(m;m) = / \Vm| ™ (Vm- Vin) dx,
Q

82 Rrv (ms i, i) = / V|~ (Vi Vin) — |Vim| =3 (Vm- Vin) (Vm- Vi) dx,
Q

where m and 71 are arbitrary directions. Using integration by parts, the fact that 7 in the
expression for 62 is arbitrary, and the vector identity (a - b)(c - d) = b - (ac) - d, one finds
that the Hessian H is the following second-order elliptic PDE operator
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Hyyi := —=V- (Apy(m) Vi),

with the anisotropic coefficient tensor

1 vmVm?
A = - .
™) = (’ VP ) @

This interpretation as diffusion operator shows that Htv acts very differently at different
points x € €. In particular, let us consider a point x where the norm of Vm is large, e.g. x is
located at an interface in the parameter field m. Then, in directions parallel to Vm (i.e. direc-
tions normal to an interface), Aty vanishes and thus the elliptic operator does not smooth the
reconstruction m in these directions. In contrast, in directions that are orthogonal to Vm (i.e.
directions that are tangent to interfaces), Aty does not vanish, thus smoothing the reconstruc-
tion m along interfaces. This explains the anisotropic smoothing properties of the TV func-
tional and, in particular, its ability to recover sharp interfaces in parameter fields. Away from
interfaces, where Vm is small, Aty behaves like a scaled identity, thus smoothing m in all
directions, much as H' norm-based Tikhonov regularization does.

‘We now turn to the derivation of the derivatives of the cross-gradient term ﬁcg. Following
similar arguments as for the scalar TV regularization above, this will provide us with insight
regarding the regularization properties. Additionally, these derivatives are useful for devising
a Newton-type algorithm for the inverse problem solution and for preconditioning the linear
systems that arise.

Starting from (4), we now compute the gradient, and the action of the Hessian in a given
direction for the cross-gradient term. We perform the computations using weak forms and then
use integration by parts to derive the corresponding strong forms. The directional derivative at
m := (my,my) in a direction m := (i, my) is given by

(5,,,1'ch(m; ﬁll) = / |Vm2|2(Vﬁ11- le) — (le sz)(Vrhl sz) dx,
Q

Oy Reeg (m i) = / |V, |*(Ving- Vimy) — (Vimy- V) (Vii- Vimy) dx.
Q

Taking another variation, we find that the action of the Hessian of the cross-gradient term in a
direction m = (i, i) is given by

02, Reg (ms iy, iy ) :/ |V |2 (Viny - Ving) — (Vi - Vima ) (V- Vi ) dx,
Q

02 s Reg (m i, ity ) = Az(vml-vm,)(vmz- Vi) — (Vmy- Vimy) (Ving - Vi)
— (Vi - Vmy)(Vmy - Vi) dx,
Gy Reg (m g, i) = /Q |V, |*(Ving- Vin) — (Ving- Vimy ) (Vmy - Vi) da.
In strong form and neglecting boundary conditions, the Hessian H acts, in a direction 7z, like
an anisotropic vector diffusion operator, i.e.
Hin = V- (Ag (m) Vi),

where A, is a diffusion tensor given by
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D(my) B(m)] ’ ®

<t = [ i
with, fori = 1,2,
D(m;) := |Vm;|’I — Vm;Vm!,
B(m) :=2Vm Vm} — (Vm;- Vmp)l — VmyVm] .

The block-diagonal part of A, indicates a TV-like behavior but where parameter m; (resp. ;)
preserves interfaces in directions where parameter m; (resp. m;) presents an interface; this illus-
trates the coupling between both parameters. As we show numerically in figure 2, the Hessian
of the cross-gradient term can be indefinite. The TV regularization being a convex functional,
its Hessian is guaranteed to be positive semidefinite. Therefore, the Hessian obtained by retain-
ing the block diagonal parts of the diffusion tensor (8), i.e. Hyrit := —V- (Acg q(m) Vi), with

st = [0 ]

is also guaranteed to be positive semidefinite. For this reason, when using the cross-gradient
paired with two independent TV regularizations, we precondition the Newton system with
a block-diagonal matrix containing the Hessian of the TV regularizations, combined with a
small multiple of the identity in each block, and the block-diagonal part of the Hessian of the
cross-gradient term (9).

&)

2.2. Normalized cross-gradient

A disadvantage of the cross-gradient term (4) is that it vanishes where one of the inversion
parameter fields is constant, hence potentially ignoring sharp discontinuities in the other. A
remedy, proposed in the context of image registration in [9], is to normalize the gradient of
both inversion parameters in the formulation of the cross-gradient. The normalized cross-
gradient is given by

R 1 Vm, Vi, |? 1 / < Vmy-Vimy )2
R(my,m :f/ X dx== [ 1- =——=—=) dx
(m1smz) = 5 o IVmy| = [Vmy 2 Jq [V, || Vm;|
Since this formulation is non-differentiable where |Vm;| = 0 or|Vmy| = 0, we use the modi-
fied normalized cross-gradient,
1 Vm-V ’
5 my- Vi
Rncg (M1, my) := f/ 1— dx, (10)
¢ 2 Ja VIV 2+ ey/[Vm2 + ¢

with € > 0. In the rest of this paper, we refer to (10) when discussing the normalized cross-
gradient. Combining the normalized cross-gradient term (10) with two TV regularizations, we
obtain the joint regularization

R(my, my) = 1 Rrve(mi) + 2Ry (m2) + 'yﬁncg(ml’”h), an

where v,71,v2 > 0. Compared to the cross-gradient term, the derivatives of the normalized
cross-gradient term give less obvious insight into its regularization behavior. Instead, we illus-
trate numerically that the normalized cross-gradient often behaves as a concave operator. In
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Figure 2. Eigenvalues of the Hessian operator (blue) and block-diagonal part of the
Hessian operator (red) for the (iii) cross-gradient term (3) and the (iv) normalized cross-
gradient term (10) with e = 10™%, for two combinations of truth parameter fields (i)
my and (ii) m;. The domain is a unit square discretized by a 40 x 40 mesh of squares
subdivided into triangles, and the parameter fields m; and m, are discretized using
continuous piecewise linear finite elements.

figure 2, we plot the eigenvalues of its Hessian and of the block-diagonal part of its Hessian
for different parameter fields m; and m,, and observe that most eigenvalues are negative. The
main practical consequence of this observation is that the Hessian of the joint regularization
(11) may be indefinite. For this reason, the preconditioner for the Newton system is formed by
the Hessians of the TV regularizations alone.

3. Vectorial total variation

The vectorial total variation functional [13], or color TV [12], is the multi-parameter equiva-
lent of the total variation functional. It was first introduced for multi-channel imaging applica-
tions [12, 13], and later applied to joint inverse problems [10]. The VTV functional is convex,
and unlike the cross-gradient and normalized cross-gradient, it serves as a regularization by
itself, i.e. it does not require additional regularization terms. It is given by

R(my,mp) = 7/ [Vm |2 + [Vmy|? dx,
¢ (12)

with v > 0. Since this formulation is non-differentiable where |Vm,| = |Vm,| = 0, we intro-
duce a modified VTV regularization given by

'R,VTv(ml,mz) = 'y/ \/|le ‘2 + |VWl2|2 + edx, (13)
Q
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Figure 3. Values of the VTV regularization (12), for two parameter fields m; and m,
defined over 2 = [0, 2], with both parameter fields having a single jump of the same
amplitude, and Ry (m;) = Rrv(my). This informal argument can be made rigorous by
using piecewise linear functions for 7, and m,.

with €,y > 0. Whereas the cross-gradient terms (see section 2) work by aligning the level sets
of the inversion parameter fields, VTV favors superimposition of discontinuities. An intuitive
way to explain this, given the understanding of the TV regularization [19], is sketched in fig-
ure 3. Given two parameter fields with a single jump of same amplitude, the VTV functional
is minimum when both jumps occur at the same location.

The derivatives of the VTV regularization resemble those of the TV regularization. For
simplicity, we set 7y = | in the rest of this section. The directional derivative at a point
m = (my,my) in a direction i = (1, m,) is given by

Vm,-- Vﬁ’l,’ .
Om R m;m;) = dx, fori=1,2.
Ryt (m; ;) o VP VPt e (14)
We again interpret the Hessian of the VTV as a diffusion tensor to study its anisotropic diffu-
sion behavior. In strong form (see section 2.1), it is given by

Vi Vm! Vm Vil
Avry(m) = |1 T e e s
VTV T |Vm\5 _Vm2leT I— VmZVmg ? ( )
V2 2

where |Vm|? = |Vm|? + |Vmy|* 4+ e. Comparing with the diffusion tensor for the Hessian
of the TV regularization (7), we find similar terms along the block diagonal, with the excep-
tion of the normalization factor in the denominator. It is |V ;| in the case of TV, and |[Vm|. in
the case of VTV, i.e. it involves the gradient of both parameters, hence introducing coupling
between the parameter fields. The eigen-decomposition of the diffusion tensor of the Hessian
provides further insights. For simplicity, we use € = 0 in this analysis. Skipping details that
can be found in [20], the eigenpairs for the diffusion tensor Ayty are

(d-0)- (17" ) (o] o) (o] )

The kernel of the diffusion tensor contains parameter field directions that are not smoothed out
by the regularization. Reconstructions in these directions can display sharp edges. It is infor-
mative to compare the eigenpairs of the diffusion tensor arising from the VTV Hessian with
those arising from Ry (m;) + Rrv(mz), the sum of two independent TV regularizations. In
this case, the eigenpairs are
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(B DACADR S R (R

The sum of independent TV regularizations acts in the direction of each parameter m; indepen-
dently from the other parameters, analogously to the TV functional for a single inverse prob-
lem. That is, it preserves sharp interfaces in the parameter fields (large values of |Vm;|) but
smoothes along interfaces. This is in contrast with the kernel of the diffusion tensor of VTV,
which favors parameter fields with sharp variations occurring at the same physical locations.

The use of TV regularization in PDE-constrained inverse problems increases the non-
linearity of the problem, and requires the use of customized solvers. Due to the similarity
between TV and VTV, a similar challenging numerical behaviour can be expected for VTV. In
[20] we tailor a primal-dual Newton method [21] for the efficient, scalable solution of PDE-
constrained joint inverse problems regularized with VTV. Since the focus of the current paper
is on a qualitative comparison of several joint regularization terms, we skip details of this
solver here and instead refer to [20].

4. Nuclear norm joint regularization

The nuclear norm joint regularization seeks to promote gradient alignment by minimizing the
rank of the Jacobian of the gradients of the parameter fields. Different versions of that idea
have been used in various imaging applications. In color image denoising, this approach is
often referred to as total nuclear variation [14]; the unified framework to discuss VTV and the
total nuclear variation in [14] shows that the nuclear norm-based functional is a regularizer in
itself. This can be simply justified by the equivalence of all norms in finite dimensions (here,
on the space of matrices). In [15], the authors propose the pointwise nuclear norm of a matrix
field as regularization to express a preference for alignment of image edges. Building on [14,
15], we propose a nuclear norm joint regularization suitable for large-scale PDE constrained
optimization.

As for the methods discussed in section 2, this term seeks to promote alignment of param-
eter level sets by attaining its minimum value when gradients align. Let us introduce the
matrix-valued function G :  — R?*2, with Q C R the physical domain, defined by

Oxymy Oy, iy
G(x) == [Vm|Vm,| =
Oy,my Oy My

The gradients Vm; and Vm; are aligned at x € Q if the columns of G(x) are multiples of each
other, in which case the rank of G(x)is 1. One could seek to promote gradient alignment by
minimizing [, rank (G(x))dx. However, in practice, minimization of the rank of a matrix
is notoriously difficult. The nuclear norm of a matrix, defined as the /-norm of its singular
values and denoted by ||- | ., is often a good proxy for the rank [22]. We therefore define, with
~ > 0, the nuclear norm joint regularization as

Rulmm) = [ 160 dx. 16)

10
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4.1. Gradient of the nuclear norm joint regularization

We now compute derivatives of (16) using the chain rule. Let us introduce the notation
f(M) := ||M]|.., for arbitrary M € R?*2. Thus, R.(mi,my) = 7 [,,f(G(x)) dx. Denoting the
gradient of f with respect to the entries of the matrix M by Vf(M) € R" Xz , the first direc-
tional derivatives of (16) with respect to the inversion parameters m;, i = 1, 2, in a direction
m;, are given by

O R = [ (VF(G). 0, Glx)m) . (a7)
Q
where
Dy 0 0 Oyriy
O, G(x)iy = : | and 0, G(x)my = | : : ,
axdﬂll 0 0 (9)@,1’712

and the inner product for matrices M = (my);,N = (n;); € R?*? is defined as
(M.N) = Y20, S0 myn.

We next compute the gradient of the nuclear norm Vf(M). Given a full-rank matrix
M e R™™ ie. r:= rank(M) = min(m,n), and singular values {oy};_,, we define its
(reduced) singular value decomposition (SVD)by M = UX VT, withU € R**",V € R™*", and
3 € R™" adiagonal matrix containing the singular valuesof M,i.e. Xy = o > 0,k =1,...,r.
The (i,j)-entry of the gradient of the nuclear norm is given by

8 r
(), = ,f;’; = Zu,kvjk,

k=1

where the second equality uses the singular value sensitivity [23]. The gradient of the nuclear
norm with respect to the entries of M is then given by

V(M) = Uv'.

4.2. Modified nuclear norm joint reqularization

The nuclear norm f(M) is non-differentiable when the matrix M is not full-rank, corre-
sponding to the case where at least one of the singular values vanishes. To make it differen-
tiable, similar to the treatment of TV regularization, we define the modified nuclear norm by

min(m,n)

fo(M) = ||M]|... = Z Voi+e (18)

where € > 0. For v > 0, we define the modified nuclear norm joint regularization as

Ric(my,m) = 'y/QfE(G(x))dx. (19)

The (i, j)-entry of the gradient of the modified nuclear norm (18) is given by

min(m,n)

R S St

ak—l—s

1"



Inverse Problems 35 (2019) 024003 B Crestel et al

where in the last expression the sum is up to r since, by definition of the rank of a matrix,
oy =0 for all k > r. Let us now introduce the diagonal matrix W_ € R"™*’, with entries
(W.)ii = 0i/+/0? + €. Using the expression for the sensitivity of the singular values [23], the
gradient of the modified nuclear norm is then given by

Vf.(M) = UW_VT. (20)

The first directional derivatives of (19) with respect to the inversion parameters m;, i = 1,2,
in a direction rm;, are given by

O R (1 )ity = / (V£-(G). 0y G x)iny) . @1
Q

The modified nuclear norm (18), however, is not twice differentiable when two singular
values are equal (crossing singular values). This is because the second derivative requires
the sensitivity of the individual singular vectors, which are not differentiable where singular
values cross. We have not found a practical workaround for this singularity, and thus proceed
with a gradient-based method to solve joint inverse problems regularized with the nuclear
norm joint regularization; the solver is detailed in appendix A.2. In the rest of this paper,
when using ‘nuclear norm joint regularization’, we refer to the modified nuclear norm joint
regularization (19).

5. Numerical examples

In this section, we present a comprehensive numerical comparison of the four joint regu-
larization approaches introduced in sections 2—4, i.e. the cross-gradient (5), the normalized
cross-gradient (11), the vectorial total variation (13), and the nuclear norm (18) regularization.
Reconstructions obtained with these joint regularization terms are compared with each other,
and with the reconstructions obtained by solving a joint inverse problem with independent
TV regularizations. The parameters for all joint regularization terms are selected empirically
as leading to the best reconstructions. The values of € are chosen small enough to provide
reconstructions with sharp interfaces, but large enough to avoid numerical difficulties (see for
instance the discussion in [24]).

The different regularizations are compared using three examples covering both types of
joint inverse problems (1) and (2). In section 5.1, we combine two uncoupled Poisson inverse
problems to form the joint inverse problem (2), where we invoke prior knowledge that the
two truth parameter fields have similar structure. In section 5.2, we compare the ability of the
joint regularization terms to improve the reconstruction of the bulk modulus and the density in
an acoustic wave equation, an example of a joint inverse problem (1). Finally, in section 5.3,
we formulate a multi-physics joint inverse problem (2), which combines an inverse problem
governed by the Poisson equation with one governed by the acoustic wave equation. Here
again, the Poisson parameter and the wave speed fields are assumed to have similar structure.

In all examples, the domain is a 2D unit square, with a uniform mesh of isosceles right trian-
gles obtained by cutting in half N x N squares; we define the mesh size parameter 4 := 1/N.
All data are generated synthetically from the truth parameter fields, and then polluted by add-
ing independent and identically distributed Gaussian noise; the noise level is specific to each
example. We use continuous Galerkin finite elements to discretize all field variables, with the
state, adjoint, incremental state, and incremental adjoint variables using quadratic elements,
and the parameter fields using linear elements. All examples are implemented in Python and
built on the finite element library FEniCS [25, 26]. For the examples in section 5.1 and 5.3,
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we used the optimization routines from hIPPYlib [27], a Python library for deterministic and
Bayesian inverse problems. A short description of the numerical methods used for the solution
of these problems can be found in appendix A. For details regarding the computation of the
adjoint-based derivatives we refer to [20].

5.1. Joint Poisson inverse problems with different observation points

Here, we solve a joint inverse problem of the form (2) for the two coefficient fields m; and
my. Considered separately, m; and m, are solutions to the (almost identical) TV-regularized
inverse problems governed by the Poisson equation, i.e.

1
m; = arg min {2|Biu —d* + %/ \/ | Vm|* + adx} ,  where
m Q

—V-(e"Vu) =1, in 0,
u =0, on 0N

(22)

The operators B; represent pointwise observation operators, and the data d; are synthetic
observations polluted with 2% Gaussian noise. The domain €2 is discretized with a mesh of
8192 triangles (i.e. h = 1/64). In all experiments presented in this section, the initial guesses
for both parameter fields are constant zero over the domain, i.e. m) = 0 and m9 = 0.

The differences between the inverse problems for m; and m; reside in the truth param-
eter fields, and in the observation operators B;. In the first example (section 5.1.1), the truth
parameter fields differ but have interfaces at the same spatial locations. In the second example
(section 5.1.2), some interfaces in the truth parameter field for m; are not present in the truth
parameter field for m;. In both examples, the observation locations defined by B; only cover
the top-right quadrant of the domain, whereas the observation locations defined by B, are
distributed over the entire domain; see figures 4 and 6.

5.1.1. Truth parameter fields having identical interface locations. In the first example, the
parameter fields have interfaces at the same locations. In figure 4, we show the truth param-
eter fields m; and m; and their reconstructions obtained by solving the inverse problems (22)
independently. The reconstructions obtained with the four regularization methods are shown
in figure 5, and the corresponding values of the relative medium misfit are given in table C1.

The reconstructions for parameter m, do not differ significantly (figure 5(b)). Due to the
large number of observation points, this parameter is already well reconstructed in an inde-
pendent inverse problem (figure 4(d)). We observe an improvement in the reconstruction of
parameter m; for all four joint inverse problems compared to the independent reconstruc-
tion shown in figure 4(c). Using the cross-gradient only marginally improves the reconstruc-
tion for parameter m;, most likely because the independent reconstruction for m; shows large
areas of constant values, where the cross-gradient term vanishes; these areas therefore cannot
be improved by the cross-gradient. The normalized cross-gradient improves over the cross-
gradient but fails to recover the circular interface. Both the VTV joint regularization and the
nuclear norm joint regularization perform better in this example, and lead to reconstructions
that contain all sharp interfaces in the target image.

5.1.2. Truth parameter fields having different interface locations. Here, the only difference
with the previous example is that the truth parameter field for m; no longer has a vertical
discontinuity along the line x = 0.5 (see figure 6). In figures 6(c) and (d), we again show
the reconstructions for parameters m; and m; obtained by solving two independent inverse
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(a) Truth my (b) Truth mo ¢) Indep my d) Indep mso

Figure 4. Parameter fields m; and m; in the example of section 5.1.1: truth parameter
fields ((a), (b)) and reconstructions ((c), (d)) obtained by solving the inverse problem (22)
with e = 1073, 41 =3-1077, 7, = 4-1077, and initial guesses m(l) = mg = 0. White
dots in (a) and (b) indicate the location of the pointwise observations. The observation
points defined through B, are a lattice of 25 x 25 points that cover only the top-right
quadrant of the domain. The observation points for B, are a square lattice of 50 x 50
points distributed over the entire domain.

(a) my

(b) ma

(i) cross-gradient (ii) norm. cross-gd (iii) vectorial TV  (iv) nuclear norm

Figure 5. Reconstructions for the parameter fields (a) m; and (b) m,, obtained by
solving a joint inverse problem (2) regularized with (i) the cross-gradient (y = 2- 10~%)
combined with two independent TV regularizations, (ii) the normalized cross-gradient
(y=6-10"% and € = 10~3) combined with the same independent TV regularizations,
(iii) the VTV joint regularization (y = 3- 10~ 7 and & = 10~3), and (iv) the nuclear norm
joint regularization (y = 31077 and £ = 1073). The parameters for the independent
TV regularizations and the initial guesses for all problems are as for the independent
inverse problems (see caption of figure 4). The legend for all plots is as in figure 4.

problems (22). The reconstructions for the four joint inverse problems are shown in figure 7,
and the corresponding values of the relative medium misfit are given in table C1.

As in the previous example, for m, the reconstructions obtained with the different joint
inverse problems do not differ significantly (see figure 7(b)). However, we observe differ-
ences among the reconstructions for parameter m,. Using the cross-gradient only marginally
improves the reconstruction for parameter m;. The use of the normalized cross-gradient does
not show improvement over the cross-gradient. As in the first example, both the VTV joint
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(a) Truth m; (b) Truth mqy (¢) Indep my (d) Indep mo

Figure 6. Parameter fields for m; and m; in the example of section 5.1.2: truth parameter
field ((a), (b)) and reconstructions ((c), (d)) obtained by solving the inverse problem
(22) with e = 1073, 4y =4-1077, 7, =4-1077, and initial guesses m! = mJ = 0.
White dots in (a) and (b) indicate the location of the pointwise observations, as detailed
in figure 4.

) cross-gradient (ii) norm. cross-gd (iii) vectorial TV  (iv) nuclear norm

(a) my

(b) ma

Figure 7. Reconstructions for the parameter fields (a) m; and (b) m,, obtained by
solving a joint inverse problem (2) regularized with (i) the cross-gradient combined
with 2 independent TV regularizations (y = 5- 10~%), (ii) the normalized cross- gradient
combined with the same independent TV regularizations (y = 7- 1077 and € = 1073),
(iii) the VTV joint regularization (y = 4- 10~ " and £ = 10~3), and (iv) the nuclear norm
joint regularization (y = 4- 107 and & = 1073). The parameters for the independent
TV regularizations and all initial guesses are the same as used for the independent
inverse problems (see caption in figure 6). The legend is as in figure 6.

regularization and the nuclear norm joint regularization perform the best, and their corre-
sponding reconstructions contain all sharp interfaces present in the true image. However, in
figures 7(a) (iii) and (iv) we also see a vertical discontinuity not present in the true image 6(c).
This ghost interface in m is due to the presence of such a discontinuity in m;, and highlights
the tendency of the VTV joint regularization and nuclear norm joint regularization to super-
impose discontinuities in both parameters. Note, however, that the amplitude of this ghost
interface is small compared to the amplitudes of the correctly recovered interfaces.
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5.2. Joint inversion of bulk modulus and density in the acoustic wave equation

We now study a joint inverse problem of the form (1), i.e. both parameters enter the same
equation, namely the acoustic wave equation.

5.2.1. Problem description. We start by defining the forward problem, i.e. the acoustic wave
PDE. The propagation of acoustic waves depends on the bulk modulus « and the density p of
the medium of propagation. Let us define the acoustic pressure, u(x,?) := —x(x)V-u(x, ),
with u(x, ¢) the displacement vector at location x and time . The time-domain acoustic wave
equation with first order absorbing boundary condition [28] and initial conditions at rest is
given by

Li v <1Vu> =f. in Q x (0,7),
K P
u(x,0) = i(x,0) =0, in 2,
qu- n=0, on 082, x (0,7),
p
1V n L, on 99, x (0,7) (23)
—viu = ——U, a ) >
P NG

where f is a forcing term, i and i are the first and second time derivatives of u, and the bound-
ary of the domain 0f2 is partitioned as 9Q2 = 09, U 9€2,,. The acoustic wave velocity of the
medium is given by ¢, with the relation 5 = pc?. The PDE in (23) is the variable density form
of the acoustic wave equation; when the density p is assumed constant, equation (23) reduces
to C'—,u —Au=f.

Here, we assume that both the bulk modulus x and the density p are unknown. Since
they both appear in (23) through their inverse, we introduce the parameters « := 1/ and
B :=1/p, and formulate the inverse problem in terms of & and 5. As common in seismic
inversion, we consider N; multiple experiments, characterized by their forcing terms f; and
datasets d;, which correspond to pointwise observations in space, recorded continuously in
time. The acoustic wave inverse problem is then formulated as

Ny o oT
c{,%igo { 211Vs I_Zl/o |Bu;(t) — d;()|* dr + R(a, B)} , (24)
where each u; solves the forward problem (23) with forcing term f;,
aily — V- (BVu;) = fi, in Q x (0,7),
u;(x,0) = i;(x,0) = 0, in Q,
BVuyn =0, on 99, x (0,T),
BVui-n = —/apBi, on 98, x (0,T).

In our experiments, the physical constraints «, 3 > 0 are never active, and therefore not
enforced explicitly.

5.2.2. Solution of the acoustic wave joint inverse problem. Because the solution of the acous-

tic wave equation couples the parameters a and 3, the inverse problem (24) could be reg-
ularized by two independent TV regularizations, i.e. R(c, 8) = Rrve(a) + Rrve(8) [1].
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However, the resulting problem can be difficult to solve and does not incorporate the structural
correlation that usually exists between these parameters due to the types of rock occurring in
the subsurface. Going beyond the use of ad hoc methods to handle both parameters at once,
some researchers have addressed (24) as a joint inverse problem [2, 3]. Previous attempts have
used the cross-gradient term, but not its normalized version, the VTV or the nuclear norm
regularization. In this section, we study whether the use of joint regularization can improve
reconstructions for o and /3.

In our numerical tests, we use 6 independent sources, f;(x,7), located on the top bound-
ary of the domain at 0.1, 0.25, 0.4, 0.6, 0.75, and 0.9 from the left boundary (yellow stars
in figure 8(a)); each source is a point source in space, and a Ricker wavelet in time with a
central frequency of 2 Hz. The data are recorded at 20 locations equally spaced along the
top boundary (green triangles in figure 8(b)), and polluted by independent Gaussian noise
with zero mean and variance corresponding to a signal-to-noise ratio of 20 dB. The bound-
ary conditions are a homogeneous Neumann boundary condition along the top boundary
09, =10,1] x {1}, and an absorbing boundary condition along the left, bottom, and right
boundaries 9, = {0, 1} x [0, 1] U [0, 1] x {0}. The truth parameter fields for « and /3 are
shown in figure 8; they correspond to an acoustic wave velocity varying from 2 km s~ to 3
km s, typical values for a shallow subsurface (see for instance [29, 30]). The finite-element
mesh consists of 800 triangles (2 = 1/20). The initial guesses for parameters « and 3 are
smoothed versions of the truth parameter fields (see figure 8(ii)).

In figure 8(iii), we show the reconstructions of parameters v and 8 obtained by solving
(24) with independent TV regularizations. Whereas parameter « is well reconstructed, the
reconstruction for £ is rather poor. We next solve (24) with the proposed joint regularization
terms. The results are shown in figure 9, and the corresponding values of the relative medium
misfit are given in table C1.

The different reconstructions for a (figure 9(a)) do not differ significantly from each other.
However, the use of joint regularization improves the quality of the reconstruction for the
parameter [ (figure 9(b)). Whereas the use of the cross-gradient only results in marginal
improvement compared to the reconstruction in figure 8(d), the use of the normalized cross-
gradient allows recovery of the interfaces more clearly. The best reconstructions are obtained
using the VTV or the nuclear norm joint regularizations.

5.3. Joint inverse problem with different physics

As a last problem, we study a joint inverse problem (2) governed by two different physics
models; namely, we combine a Poisson inverse problem and an acoustic wave inverse prob-
lem (assuming the density p is known). This inverse problem is intended as a model problem
for joint seismic-electromagnetic inversion in the electromagnetic low frequency limit. The
Poisson inverse problem is identical to the one used in section 5.1,

1
min {Bu —d* + 'y,,,/ \/ | Vm|? + adx} , Wwhere
m 2 Q

—V-(e"Vu) =1inQ,
u = 0on 00.

(25)

The observation operator B extracts the state u at 20 x 20 equally distributed points over the
entire domain (white dots in figure 10(a)). The data are polluted with 1% Gaussian noise.

4 The following units are used: distance in km, velocity in km s !, density in g cm 3, and bulk modulus in GPa.
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Figure 8. Parameter fields (a) o and (b) S in the joint acoustic inverse problem (24):
(i) truth parameter fields, (ii) initial guesses, and (iii) reconstructions when solving

(24) regularized with two independent TV regularizations (¢ = 1073, v, = 5- 1079,
and 73 = 9- 1075). The yellow stars in (a-i) and the green triangles in (b-i) indicate the
locations of the point sources and observations, respectively.

3
—
=

) cross-gradient (ii) norm. cross-gd (iii) vectorial TV  (iv) nuclear norm

Figure 9. Reconstructions for the parameter fields (a) « and (b) (3, obtained by
solving (24) regularized with (i) the cross-gradient (y = 10~2) combined with two
independent TV regularizations, (ii) the normalized cross-gradient (y = 9- 10~ and
€ = 107%) combined with the same independent TV regularizations, (iii) the VTV joint
regularization (y = 7 10 %and e = 10~3), and (iv) the nuclear norm joint regularization
(y =7-10"%and ¢ = 1073). The parameters for the independent TV regularizations are
the ones selected for the independent inverse problems (see caption in figure 8). The
legend is as in figure 8.
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Figure 10. Plots of (a) truth parameter field for m in the Poisson inverse problem (25),
and (b) its reconstruction (7,, = 2- 1073 and € = 1073) with initial parameter field set
to a constant value of 0.625. The white dots in (a) indicate the location of the pointwise
observations.

For the acoustic wave inverse problem, we set 8 = 1, and invert only for the parameter
a=1/k=1/c,

: 1/T 2
min< = Bu(t) — d(¢ dt—i—'ya/ Va2+s} dx, where
in {5 [ 1Buto) - a) [ \ival

it — Au = f,, inQ x (0,7),
u(x,0) = ua(x,0) =0, in Q,
Vu-n=0, on 092, x (0,T),
Vu-n = —/ai, on 99, x (0,T).

We use a single source f,, with frequency 2 Hz or 4 Hz, located at (0.5,0.1) (yellow star in
figure 11(a)), and 20 pointwise observations equally spaced along the top boundary (green
triangles in figure 11(a)). The boundary conditions, the noise level in the data, the mesh, and
the numerical discretization are as in section 5.2. The initial guess for the Poisson parameter
field m (resp. for the acoustic parameter field «) is set to a constant field with value 0.625
(resp. 0.25), corresponding to the value in the upper layer of the truth parameter field, in blue
in figure 10(a) (resp. figure 11(a)).

As reference, we first solve the inverse problem for the parameters m and o when (25) and
(26) are solved independently. The results for the Poisson inverse problem (26) are shown in
figure 10(b), where it can be seen that the horizontal interface is well reconstructed, but the
shape of the rectangular perturbation is smeared out. For the acoustic wave inverse problem
(26), we show two reconstructions in figure 11, one with a source f;, of frequency 2 Hz (figure
11(b)), and one with a source f, of frequency 4 Hz (figure 11(c)). While the reconstruction at
2 Hz is excellent, the reconstruction at 4 Hz lacks sufficient low-frequency information and
appears to converge toward a local minimum, missing the horizontal discontinuity present in
the truth parameter field (figure 11(a)). The reconstructions for all four joint inverse problems,
with a seismic source f,, of frequency 4 Hz, are shown in figure 12, and the corresponding
values of the relative medium misfit are given in table C1.

The use of the cross-gradient or its normalized variant improves the reconstruction for
the Poisson parameter m (figures 12(a), (i) and (ii)), compared to the reconstruction from
the Poisson inverse problem (25) alone (figure 10(b)). However, neither of the cross-gra-
dient terms brings any improvement to the reconstruction of the acoustic wave velocity

(26)
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Figure 11. Plots of (a) truth parameter field for « in the acoustic inverse problem (26),
and ((b), (¢)) its reconstructions (7, = 3- 10~ and € = 10~3) with initial value for
the parameter field set to 0.25, and a source f,, of frequency (b) 2 Hz, and (c) 4 Hz.
The green triangles in (a) indicate the locations of the pointwise observations, and the
yellow star in (a) indicates the location of the source.

(i) cross-gradient (ii) norm. cross-gd (iii) vectorial TV  (iv) nuclear norm

Figure 12. Reconstructions for the parameter fields (a) m in (25) and (b) a in (26),
obtained by solving a joint inverse problem with seismic source f, of frequency
4 Hz, and regularized with (i) the cross-gradient (y = 8- 10~7) combined with two TV
regularizations, (ii) the normalized cross-gradient (y = 8- 10~ 3and e = 10~%) combined
with the same TV regularizations, (iii) the VTV joint regularization (y = 4- 1078 and
€ = 1073), and (iv) the nuclear norm joint regularization (y = 5- 10~7 and ¢ = 1073).
The parameters for the independent TV regularizations are as for the independent inverse
problems (see captions of figures 10 and 11). Legend is the same as in figures 10 and 11.

(figures 12(b), (i) and (ii)); in particular, the reconstructions do not show the horizontal dis-
continuity that was missing in the reconstruction of the acoustic wave velocity alone (figure
11(c)). On the other hand, the use of either the VTV joint regularization, or the nuclear norm
joint regularization, leads to significant improvements in the reconstruction of the acoustic
wave velocity (figures 12(b), (iii) and (iv)). Both reconstructions contain all features of the
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truth parameter field (figure 11(a)); most noticeably, the horizontal discontinuity that was
missing in the independent reconstruction (figure 11(c)) is now fully reconstructed. The use
of the VTV joint regularization provides only marginal improvement to the reconstruction
of the Poisson parameter m, in terms of relative medium misfit (table C1); however, the
shape of the rectangular perturbation, which was smeared out in the reconstruction from the
Poisson inverse problem alone (figure 10(b)), is clearer in figure 12(a) (iii). The reconstruc-
tion of the Poisson parameter obtained with the nuclear norm joint regularization indicates
that the optimization converged to a local minimum. Despite all discontinuities present in
the truth parameter field (figure 10(a)) being clearly reconstructed in figure 12(a) (iv), the
values of the parameters are significantly different. Similar, or worse, performance was
observed when setting H, to be a multiple of the identity matrix in the BFGS solver [17].
Moreover, almost identical results were obtained when solving the Poisson-acoustic joint
inverse problem, regularized by VTV, using the BFGS method described in appendix A.2.
We therefore conjecture that the poor performance of the nuclear norm joint regularization,
in the case of a multi-physics joint inverse problem, can be attributed to the use of a gradi-
ent-based method for the solution of the joint inverse problem. The significant difference
in the structure of the gradients, coming from the Poisson and acoustic wave inverse prob-
lems, dictate the use of a Newton method, which is affine-invariant, in order to balance the
individual search directions. This conjecture is supported by previous results found in the
literature. For instance, in the context of a joint full waveform inversion for the conductivity
and permittivity of a medium, the authors in [31] found the reconstructions obtained using
the L-BFGS method to be highly sensitive to the scaling of the parameter fields. The authors
of [32] report similar difficulties when employing a quasi-Newton method on a cross-well
example, inverting for compressibility and anisotropy, and study alternative formulations to
remedy this problem.

6. Conclusion

We conducted a systematic review of regularization terms for joint inverse problems governed
by PDEs with infinite-dimensional parameter fields. We considered two types of joint inverse
problems: (1) those coupling several uncoupled physics forward problems via joint regular-
ization terms, and (2) those in which all inversion parameters depend on the same physics.
Based on a review of the literature, we identified three joint regularization terms for this study
that are tractable for large-scale PDE constrained joint inverse problems. The cross-gradient
is a popular choice in geophysical applications and seeks to align level sets of the parameter
fields. The normalized cross-gradient was designed to overcome some of the potential weak-
nesses of the cross-gradient term. The vectorial total variation is an extension of total varia-
tion regularization to joint inverse problems, and originated from the imaging community. In
addition, we introduced a fourth novel joint regularization term based on the nuclear norm of
a gradient matrix. The comparison of these joint regularization terms was carried out for three
problems: (1) a joint Poisson inverse problem for which the truth parameter fields are known
to share a similar structure, (2) an acoustic wave inverse problem in which we invert for the
bulk modulus and the density, and (3) a joint Poisson-acoustic wave inverse problem, provid-
ing an example of multiple physics joint inversion.

Based on this study, we recommend use of the vectorial total variation joint regulariza-
tion. It leads to superior reconstructions in all our examples. Moreover, we have available a
scalable, efficient primal-dual nonlinear optimization solver and Hessian preconditioner for
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joint inverse problems regularized with this term [20]. The nuclear norm joint regularization
showed encouraging results, even leading to slightly better reconstructions than the vectorial
total variation for some examples. However, its numerical realization is challenging since
it is not twice differentiable as required by Newton’s method. For piecewise-homogeneous
parameter fields, the cross-gradient similarity term does not improve significantly over inde-
pendent reconstructions. In particular, it can fail to reconstruct some edges entirely, since the
cross-gradient term vanishes at points where one parameter field is constant. The normalized
cross-gradient similarity term leads to a joint inverse problem that is challenging to solve
numerically. Even though it improves on the cross-gradient, the improvement is generally
minimal, and the reconstructions do not compare favorably with the ones obtained with vecto-
rial total variation. Compared to the cross-gradient approaches, an additional advantage of the
VTV and nuclear norm functionals is that they also act as regularizations, making individual
regularization functionals unnecessary. This reduces the number of hyperparameters or regu-
larization weights that must be chosen (see table B1), thereby simplifying the inverse problem.
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Appendix A. Summary of numerical optimization techniques for the solution
of regularized inverse problems

In this section, we describe the large-scale numerical optimization methods used for our
numerical examples. As already discussed in the introduction, the solution of PDE-constrained
optimization problems typically requires iterative methods. These methods require first (and
ideally, also second) derivatives of the objective function with respect to the parameter fields
[17, 33]. These derivatives can be computed efficiently using adjoint methods [34-36]. In
particular, the computation of a gradient requires one solve of the governing state equation,
the solution of an adjoint equation and the evaluation of the expression for the gradient.
Moreover, adjoint methods allow the computation of directional second derivatives by solving
two linear PDEs, one a linearization of the state equation, and the other one a linearization
of the adjoint. Since these PDE solves usually dominate all other required operations, one
often measures the complexity of PDE-constrained optimization algorithms by the number of
required PDE solves. Line search and trust-region methods are employed to globalize local
optimization methods [17]. We restrict our description here to the former, since we use line
search methods in this paper. In the remainder of this section, we denote the parameter field
pair by m = (m;,m;), the objective function by 7 (m) and use upper indices to denote itera-
tion numbers.
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A.1. Line-search Newton-CG for cross-gradient and VTV regularizations

In the kth iteration, we update the medium parameters m®) along a search direction p® by
computing m**1) = m®) 4 & p*) with an appropriate step length o¥) > 0. To ensure conv-
ergence, the search direction must be a descent direction, i.e. it must satisfy (g(k), p("')> <0,
where g(*) is the gradient of J with respect to m evaluated at m®), and (-, -) is an appropriate
inner product. The step length a® could be chosen to minimize the objective functional along
this search direction p®). However, solving this minimization problem exactly is too expen-
sive for large-scale applications, since a single evaluation of the objective functional requires
the solution of the state PDE, potentially multiple times (e.g. N, times in the example of sec-
tion 5.2 which has multiple sources). Instead, we seek an approximate minimizer that satisfies
the following Armijo condition to ensure sufficient descent,

T (m® + a®p®y < 7m0y + ¢;a® (K, p®y, (A1)

with 0 < ¢; < L. To ensure sufficiently large step lengths, we use backtracking line search
[17] to find a step length that satisfies (A.1). That is, the step length is computed by starting
from an initial guess a(()k) > 0, and is reduced until the sufficient descent condition (A.l) is
satisfied. When computing the search direction for a Newton-type method (see next para-

graph), we use ol

= 1, since this is guaranteed to be a successful step length in a neighbor-
hood of a minimizer [17].

The choice of good search directions is crucial in PDE-constrained optimization. In
the steepest descent method, one chooses the search direction as the negative gradient, i.e.
p®) = —g®_ Unfortunately, the resulting algorithm usually converges slowly in the pres-
ence of stretched contour lines of the objective J, a consequence of the typical ill-posedness
of inverse problems. The Newton direction is given by the solution of the linear system
H(m®)p®) = —g®) where H(m®)) is the Hessian, i.e. the second derivative of 7, evalu-
ated at m™), The direction p¥) arising as solution of this equation is a descent direction only
if the Hessian is positive definite, which may not be the case, in particular far away from the
minimizer. When the Hessian is indefinite, one solution is to replace the Hessian with a posi-
tive definite approximation, a common choice being the Gauss—Newton Hessian [17]. This
approximation is obtained by setting the adjoint variables to zero in the computation of the
Hessian. Another option is to retain the full Hessian but solve the Newton system approxi-
mately, in a way that guarantees the computed solution to be a descent direction. Since for
large-scale problems exactly constructing the Hessian is infeasible, we solve the Newton sys-
tem using the conjugate gradient (CG) method. This requires only Hessian-vector products as
provided by the adjoint method. CG is a Krylov subspace iterative method that solves linear
systems of equations for symmetric positive definite matrices. When applied to a Newton
system with an indefinite Hessian it will eventually encounter a negative curvature direction
and fail. However, one can use the previous iterate before the iteration failed as the search
direction, which is guaranteed to be a descent direction [17]. Additionally, regardless of the
definiteness of the Hessian, we terminate the CG iterations prematurely to avoid over-solving,
that is, we solve the Newton system with a coarse termination tolerance, thus applying just
a few iterations of the CG method [18]. As the optimization iteration converges, the toler-
ance is gradually decreased to allow increasingly accurate computation of the Newton search
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direction in order to benefit from the fast local convergence properties of the Newton method.
For our experiments with cross-gradient regularization, its normalized version and the vector-
TV regularization, we use the Newton-CG method with backtracking line search described
above. For the nuclear norm regularization, we do not use directional second derivatives, but
instead approximate the Newton direction using a BEGS method, as summarized next.

A.2. BFGS method for nuclear norm regularization

To solve joint inverse problems regularized with the nuclear norm joint regularization (sec-
tion 4), we use a BFGS quasi-Newton method with damped update [17]. That is, we find the
search direction p*) by computing p®) = —B® g, where g() is again the gradient of the
objective function and B®) is a positive definite approximation of the inverse of the Hessian.
This approximation is updated at each iteration with the rank-2 update

BUD = (1= pur® OB (1 = piy® (r D) + pr O () (A2)

where y®) is the difference between the gradient at steps k + Land k, p; == 1/(y®)7r®), and
) is the damped form of s*), the difference between the parameter at steps k + 1 and k, and
is defined as r®) := 65 + (1 — 6;,)BWyK), with

L, if (s0)TyR > o (yE)TRRyE)
Or = { (1) (y®)TBO,®

OB, mynme  otherwise.

The classical BFGS method requires the curvature condition (s%))Ty(*) > 0 to be satisfied
at all steps. This condition is necessary to maintain positive definiteness of B*) for all k.
However, the curvature condition can be guaranteed to be satisfied only when the objective
function is strictly convex, which is typically not the case for nonlinear inverse problems.
Using a damped update allows us to apply a backtracking line search, while avoiding skipping
some updates of B% entirely. In our numerical experiments, we found that o = 0.2 worked
well. The BFGS formula (A.2) requires the initialization B(®). BFGS-type methods perform
well when the difference between the initial Hessian approximation and the true Hessian is
a compact operator [37]. Thus, we take B(?) as the inverse of the Hessian of the regulariza-
tion. This quantity is not available for the nuclear norm joint regularization. However, VTV
and the nuclear norm joint regularization come from the same family of joint regularizations,
differing only by the matrix norm employed [14]. Since matrix norms are equivalent in finite
dimensions, we set B() to the inverse of the Hessian of the VTV joint regularization at the
parameter m X,
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Appendix B. Number of hyperparameters for each joint regularization

Table B1. Number of hyperparameters for a joint inverse problem with 2 parameter

fields.
Joint regularization
Cross-grad n-cross-grad Vectorial TV Nuclear norm

v

TV 2 2 — —

joint 1 1 1 1
€

vV 1 1 — —

joint 1 1 1 1
Total

Appendix C. Table of relative medium misfits for examples

In table CI1, the relative misfits for the examples presented in section 5 are summarized.

Table C1. Relative medium misfits (in L?-norm) for the examples in section 5.

Section 5.1.1  Section 5.1.2 Section 5.2 Section 5.3

my ny
my(%) (%) m(%) (%) (%) B(%) m(%) o(%)

Independent 232 51 46.9 5.1 2.8 0.8 9.0 9.9
Cross-grad 223 5.2 46.1 5.6 3.1 0.7 4.9 11.0
n-cross-grad 212 50 46.7 5.0 2.5 04 4.9 10.7
Vectorial TV~ 20.2 5.1 41.1 52 2.4 0.2 8.9 33
Nuclear norm  20.2 4.8 40.8 5.0 24 0.2 20.6 4.5
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