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SPARSE SOLUTIONS IN OPTIMAL CONTROL OF PDES WITH
UNCERTAIN PARAMETERS: THE LINEAR CASE*

CHEN LIT AND GEORG STADLERf

Abstract. We study sparse solutions of optimal control problems governed by PDEs with
uncertain coefficients. We propose two formulations, one where the solution is a deterministic control
optimizing the mean objective, and a formulation aiming at stochastic controls that share the same
sparsity structure. In both formulations, regions where the controls do not vanish can be interpreted
as optimal locations for placing control devices. In this paper, we focus on linear PDEs with linearly
entering uncertain parameters. Under these assumptions, the deterministic formulation reduces to
a problem with known structure, and thus we mainly focus on the stochastic control formulation.
Here, shared sparsity is achieved by incorporating the L!-norm of the mean of the pointwise squared
controls in the objective. We reformulate the problem using a norm reweighting function that is
defined over physical space only and thus helps to avoid approximation of the random space using
samples or quadrature. We show that a fixed point algorithm applied to the norm reweighting
formulation leads to a variant of the well-studied iterative reweighted least squares (IRLS) algorithm,
and we propose a novel preconditioned Newton-conjugate gradient method to speed up the IRLS
algorithm. We combine our algorithms with low-rank operator approximations, for which we provide
estimates of the truncation error. We carefully examine the computational complexity of the resulting
algorithms. The sparsity structure of the optimal controls and the performance of the solution
algorithms are studied numerically using control problems governed by the Laplace and Helmholtz
equations. In these experiments the Newton variant clearly outperforms the IRLS method.
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1. Introduction. Solving optimal control problems governed by partial differ-
ential equations (PDEs) that contain uncertain parameters represents a significant
challenge. However, thanks to theoretical and algorithmic advances, and to the ever
increasing availability of computing resources, significant progress has been made over
the last decade [2, 3, 4, 11, 19, 25, 26, 31, 36]. In this paper, we aim at optimal control
problems under uncertainty, where the control objective involves a sparsifying term
and, as a consequence, distributed optimal controls vanish on parts of the domain.
The areas where controls are nonzero are interpreted as locations where it is most
efficient to employ control devices [5, 7, 8, 10, 12, 13, 21, 35].

Given a physical domain D C R", n € {1,2,3}, we consider a PDE involving
uncertain parameters written as

(1) c(y, u, m(w)) = 0.

Here, u and y are the control and the state variables, respectively, m(w) is an uncer-
tain parameter, and ¢(-,-,-) denotes the PDE relating these variables. We assume
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that the distribution law of m, denoted by u, is supported on a Hilbert space 7,
and consider m as an #-valued random variable. That is, for a probability space
(Q,F,u), m:Q — I, where Q is the set of events, F a o-algebra of sets in 2, and
1 is a positive normalized measure. For example, S can be chosen as an infinite-
dimensional function space over D or its boundary 9D. We assume that for every
u € L?(D) and w € Q, (1) has a unique (weak) solution y = y(u;w,-) € V, with an
appropriate space V C L?*(D).} For w € ), we consider the optimal control problem
in reduced form,

(2) min J(w,u) = %/D(y(u;w, Y —wya)?dx + %/ u? dz.

UEUaa D

Here, Upg = {u € L?>(D) : a < u < b a.e.}, where a,b € L?(D) with a < b almost
everywhere. Moreover, o > 0 is a regularization/control cost parameter and y, €
L?*(D) a given desired state. For each w € €, (2) is a classical control-constrained
linear-quadratic optimal control problem. As is well known, this problem has a unique
solution that depends on w.

We are interested in distributed optimal control problems, where the controls
are sparse, i.e., they vanish on parts of the domain. We propose two practically
relevant approaches to sparse optimal control under uncertainty. The first computes
a deterministic sparse control that is optimal for the expectation of the cost functional.
The second aims at stochastic controls that depend on the uncertain parameter, but
have shared sparsity structure.

1.1. Deterministic sparse optimal control. Robust deterministic controls
are optimal in expectation [4, 25, 26], or optimal with respect to a risk measure [1, 27].
Since in this formulation the controls are deterministic, it is straightforward to add a
sparsity-enhancing term for the control to (2), resulting in

(3) min Jy(u) = 1/ / (y(uw;w,-) — ya)? dx du + g/ u? dz + ,8/ |u| de.

U€EUya 2 oJp 2 D D
Here, 3 > 0 is the weight for the sparsity-enhancing L!-term, in which | - | denotes
the absolute value. The deterministic optimal controls found from this formulation
vanish on parts of the spatial domain D, and the value of 8 influences how sparse the
controls are. The resulting control structure can be used to decide on the placement
of control devices. In the deterministic context, extensions of this approach have been
applied for instance to optimal device placement in tissue imaging [5], sparse control of
alignment models [7], optimal control of traveling wave fronts [10], or shaping controls
for quantum systems [12].

1.2. Stochastic optimal control with shared sparsity. An alternative prob-
lems class and this paper’s main focus is to find stochastic? controls v € U,q :=
{u e L2(Q,L*(D)),a < u(w,-) < ba.el}, ie., individual controls u = u(w) for each

IWhile the discussion is kept general in this introduction, in most of the remainder of this paper
we focus on linear equations, where this assumption can easily be verified.

2While stochasticity is often used in the context of time-dependent problems, here it simply
means that the controls depend on the random variable, in contrast to the deterministic optimal
control formulation discussed above.
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w € Q [3, 11, 31, 36]. These controls minimize the expected objective value, i.e.,

(4) uréllll_rald/QJ(w,u(w, ) du

with J(-,-) as defined in (2). Note that (4) amounts to solving optimal control prob-
lems of the form (2) for each w € Q, followed by computing the expectation over
the values of the objective obtained with these optimal controls. One possibility for
incorporating sparsity in this formulation is to add sparsity-enhancing regularization
for each w. However, since we interpret regions where optimal controls are nonzero
as regions where we propose to place control devices, it is more meaningful to require
that the stochastic controls share their sparsity structure. This can be achieved by
adding a sparsity-enforcing term to the objective functional in (4):

© i I [ e nds [ ([ |u<w,->|2du)é dz.

Here, 8 > 0 and the outer integral in the sparsity-enforcing term is over the point-
wise marginal distribution of the squared controls. Note that the sparsity term is
well defined and finite for u € U,q. As will be shown, using the L'-norm of the
pointwise expectation results in optimal controls u(w,-) with shared sparsity. While
the optimal controls are stochastic, i.e., they depend on w, the controller locations
resulting from (5) are deterministic, i.e., they only depend on the probability space,
but not the individual event w € ). A practical interpretation of this approach is
that the optimal location of controllers is computed by solving (5) in an offline phase,
while the optimal controls u(w) are computed in an online phase corresponding to the
particular realization of the random variable w.

Let us give two application examples for an optimal control formulation of the
form (21). First, we consider a problem from earthquake engineering, where one wants
to find locations for active damping devices (controllers) that shall dampen vibrations
that originate from an unknown earthquake forcing. In this situation, one can imagine
that the optimal controls can be computed in real time individually for each forcing,
but the location of controllers needs to be decided upfront and should be chosen in
an optimal way for all possible earthquakes. Another application could be to position
heaters in a building to obtain, for instance, a uniform temperature distribution in the
presence of uncertain heat sinks/sources caused, e.g., by open windows, leaky walls,
or the presence of people.

1.3. Related work. Optimization under uncertainty governed by PDEs has
been an active field of research over the last decade. Various formulations are proposed
in the literature, e.g., robust deterministic optimal control [1, 19, 25, 27] and stochastic
control [3, 11, 36]. The main focus of this paper is a stochastic control problem with
linear governing equations, but with the additional requirement that the optimal
controls are jointly sparse.

The interest in sparse optimal control is (1) due to its application for control
device placement and its ability to discover controls with simple structure [5, 7, 10,
13, 33, 35], and (2) due to the interesting nonreflexive Banach space structure that
arises if no Hilbert space norm term is added to the objective [8, 9, 13]. The stochastic
sparse control problem we study has similarities with the notion of directional sparsity
proposed for optimal control of parabolic problems [21, 28], in which one has to decide
on the sparsity for an entire time stripe. However, differently from directional sparsity
problems, our stochastic control formulation requires one to decide on the sparsity
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based on a potentially high-dimensional integration over the probability space rather
than an integration over the one-dimensional time direction.

The solution methods we propose are related to iteratively reweighted least squares
(IRLS) algorithms, which are used, e.g., in compressive sensing, image processing, and
matrix recovery [6, 16, 30]. While IRLS methods have mostly been used in finite di-
mensions and in the context of underdetermined problems, they have recently also
been studied for infinite-dimensional LP and ¢? (p < 1) optimization [23, 24]. Instead
of solving an LP-problem directly, iterative reweighting algorithms alternate between
solving a simpler (e.g., a quadratic minimization) problem, and updating a weighting
function that enters into this simpler problem. In this paper we focus on a convex
problem, but a significant challenge is that the optimization variable is defined over
physical and infinite/high-dimensional random space. Hence, we employ ideas from
iterative reweighting to avoid working with the high-dimensional optimization vari-
able. The proposed algorithms only iterate over the reweighting function, which does
not depend on the random variable. Additionally to the first-order IRLS method [16],
we propose a Newton-type algorithm based on the reweighting formulation and show
that it outperforms the classical IRLS iteration.

To accelerate norm reweighting methods, they have been combined with an active
set method [24]. This approach also applies to nonconvex problems, but it requires
the computation of norms of the optimization variable and the corresponding dual
variable, similarly as for Newton-type methods for directional sparsity problems [21].
In the context of control under high-dimensional uncertainty, these norms are integrals
over random spaces, making this integration a computational challenge.

Another attempt to accelerate the IRLS algorithm is to use the conjugate gradient
method for solution of the auxiliary least squares problems that occur in each iteration
[18]. In section 5, we propose a related idea, but instead of iterative linear solves,
we exploit the optimal control problem structure. Namely, we combine a low-rank
operator approximation and the Sherman—Morrison-Woodbury identity to design fast
(i.e., optimal complexity) iteration algorithms.

1.4. Contributions and limitations. The main contributions of this paper
are as follows. (1) We propose a formulation for stochastic optimal controls with
shared sparsity in the presence of uncertain parameters in the governing PDE. We
believe that this formulation is relevant in applications and that it is interesting from
the optimization-under-uncertainty perspective since the joint sparsity requirement
couples the controls for different uncertain parameters, and from the sparse control
perspective due to the infinite-dimensional nondifferentiable optimization structure.
(2) We propose a Newton-type variant of the IRLS minimization algorithm for the
solution of this optimization problem, which is significantly faster than the classical
IRLS method. (3) We present low-rank operator approximations which allow fast
iterations of the IRLS algorithm and its Newton variant. We also provide bounds for
the truncation error due to these approximations.

Next, we summarize limitations of this work. (1) We restrict ourselves to linear
governing equations with uncertain parameters that enter linearly into these equa-
tions, and our algorithms for stochastic control with shared sparsity do not allow
for control constraints. More general problems are a significant challenge even for
optimal control without sparsity requirements on the controls. (2) The proposed
norm reweighting problem reformulation requires regularization of the nondifferen-
tiable term in the objective and convergence to a truly sparse solution requires that
the regularization parameter is driven to zero. (3) Our arguments and in particular
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the low-rank operator approximation require that the parameter « in (5) is positive.
Using a = 0 does not allow a Hilbert space formulation and would be more challenging
from the theoretical as well as the computational perspective.

1.5. Notation. We consider a probability space (2, F, ), i.e., € is the set of
events, F a o-algebra of sets in €2, and p a positive normalized measure. For 1 <
p < 0o and a Banach space (X, || -[/x), the Bochner space L7, (£2; X) is the space of

Bochner integrable functions u : © — X for which ([, [[u(w)||% dp) Yr llullLe (0,x)

is finite. This value has the properties of a norm. For a domain D C R4, d € {1,2,3},
we will in particular use the spaces

(6) V= L2(QL*(D)) and Y := L2 (1Y),

where Y C H!(D) is a subspace that can include Dirichlet boundary conditions on
part of D. Both V and Y are Hilbert spaces with inner products derived from the in-
ner products in X, e.g., the inner product for V'is (u, v)v := [, (u(w, ), v(w, ")) 2(p) dp
and the induced norm for v € V' is |Ju|lv = (u, u)%,/Q. For u € V', we will commonly
use the notation

(7) Julle, = llullo(e) = ( / u(w,wfdu)m,

which is well-defined due to the isomorphism between Bochner spaces and spaces
defined over the product space @ x D [22]. In the remainder of this paper, we use
bold letters for function spaces defined over €2 x D, such as V and Y.

2. PDE with linearly entering uncertain parameters. The main focus of
this paper is on problems where the uncertain parameters enter linearly in (1). We
allow for infinite-dimensional uncertain parameters that follow a Gaussian distribution
u = N(mqg,Co) over a Hilbert space ¢, where mg € 5, and Cy is a self-adjoint,
positive definite trace class operator over .. We consider m as an .7/-valued random
variable and with a slight abuse of notation, we denote realization of this random
variable by the same symbol m. We consider a linear differential equation of the form

(8) Ay =u+ f + Bm,
where A : Y C HYD) — H YD) is invertible, B : 2 — H~ (D), and f,u €
H~1(D). The following two examples fit into this framework.

Ezample 1 (Poisson problem with uncertain Robin boundary data). As an exam-
ple for an equation of the form (8), we use 5 = L?*(0D,) and consider a problem
with inhomogeneous Robin boundary condition with uncertain data on 9Ds:

(9a) =V - (a(x)Vy(w,z)) = f(x) + u(zx) in D,
(9b) y(w,z) =0 in 0D,
(9¢) ky(w,z) + (a(x)Vy(w, x)) - n = m(w) in 9Ds.

Here, a(x) > ap > 0 and k > 0. For k = 0, the Robin condition on dDs reduces to a
Neumann boundary condition.

Ezample 2 (Poisson problem with uncertain right-hand side). This example co-
incides with Example 1 with the exception that the uncertain parameter field enters
on the right-hand side of (9a). We use ## = L?(D) with D C D an open subdomain,
and B : L?(D) — L?(D) is the extension-by-zero operator. The only difference to
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the problem above is that the term Bm(w) is added to the right-hand side in (9a),
whereas the right-hand side of (9c) is zero.

Ezample 3 (Helmholtz problem with uncertain Neumann boundary data). An-
other example that fits into our framework is a Helmholtz problem with uncertain
Neumann boundary forcing on 9Ds:

(10a) ~Ay(w,x) — k2y(w, ) = u(x) in D,
(10Db) y(w,x) =0 in 0D1,
(10c) Vy(w,z) -n=m(w) in dDs.

Here, A is the Laplace operator and x > 0 is the wave number.

Most formulations and solution methods in this paper can straightforwardly be
extended to generalizations of (8), e.g., to problems where u is a vector function as in
linear elasticity. However, for simplicity of the presentation, we restrict ourselves to
(8). Next, we specialize the deterministic and stochastic optimal control formulations
from subsections 1.1 and 1.2 for this linear case.

2.1. Deterministic sparse optimal control. Using the linear equation (8),
the deterministic sparse optimal control problem becomes

1

(11) min f/ / (A7 'u+ A7 Bm — §4)% dx dp + a / u? dx + 5/ |u| de,
u€U,q 2 QJD 2 D D

where (g = yq — A~'f. Since the integration of a quadratic form over a Gaussian

random variable can be done analytically [14, Remark 1.2.9], one obtains

(12) /Q / (A™Yu + A Bm — §4)% dx dp
D
= / (A_lu —+ A_leO — :ljd)z dax + Tr (Cé/QB*A_*A_lBCé/Q) ’
D

where B* denotes the adjoint of B, A=* the adjoint of A~!, and Tr(-) denotes the
trace of an operator. Note that since Cy is trace-class, and B*A~*A~!B is bounded
on L?(Q), the trace in (12) is finite. Since the trace term does not depend on the
control, it can be neglected in the computation of the minimizer. Thus, the optimal
control derived from (11) is equivalently characterized by the minimization problem

(13) min 1/ (A u — gg)* dx + g/ u? dz + 6/ |u] de,
u€laa D 2 Jp D

where 33 = yq— A~ f+ A1 Bmyg. This is a deterministic elliptic control problem with
L'-control cost, where the desired state §4 depends on the mean of the distribution
of m. Problems of this form and algorithms for their solution have been studied for
instance in [35], and have been generalized in various directions [8]. In particular,
it is known that (13) admits a unique optimal control, which is sparse in the sense
that it vanishes on parts of the domain D. Moreover, this solution can be computed
efficiently using a semismooth Newton algorithm in function space.

2.2. Stochastic optimal control with shared sparsity. Next, we consider
the stochastic optimal control formulation (5) for the linear governing equation (8):

1/2

1
I —1 -1 A2 2 )2
(14) min 2/0/29((%1 u+A" Bm—14) +au )dazd,u—i—ﬁ/p(/gu(w, ) du) dz,

u€U,zq
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where, as above, §4 = y4 — A~'f. The added sparsity term is an infinite-dimensional
version of an ¢%!-norm, used in finite dimensions to achieve group sparsity structure
or matrix sparsity [29, 32]. In general, for r,p > 0, the {"P-norm of a two-index array
a;j, 1 <i<n,1<j5<m,is defined as

n m

o= |20 | D laigl”

i=1 \j=1

la

In (14), we aim at obtaining shared sparsity structure amongst controls for different
uncertain parameters. If the integrand vanishes at a point & € D, then the controls
for almost all random parameters must vanish at this @, resulting in shared sparsity.
We also notice that the sparsifying term couples the problems for different random
variables w and thus one cannot integrate over the random space analytically. The
properties and solution algorithms for (14) are the main focus of this paper. Note
that this problem is related to the directional sparsity formulation for time-dependent
optimal control proposed in [21], with the stochastic space taking the role of the time
direction. One of the main differences between the directional sparsity and stochastic
control with shared sparsity is the high dimension of the probability space compared
to the one-dimensional time variable. Due to this difference, the generalized Newton
algorithms used to solve directional sparsity control problems cannot be applied for
the solution of (14). In the next section, we characterize solutions to the shared
sparsity control problem and introduce a regularized variant of (14).

3. Properties of the shared sparsity stochastic control problem. We first
introduce the notation Q : Uyq X 7 — R,

Q(u,m) := %/Q/D((A_lu + A7 Bm — §4)* + au?) dx dp.

First, we summarize necessary and sufficient optimality conditions for solutions to
(14) using the notation introduced in (7).

THEOREM 4. The optimal control problem (14) has a unique solution 4 € Ul,g,
characterized by the existence of a corresponding state §j € Y, adjoint state p € Y,
and multiplier A € V' such that

(15a) Ay—u—f—Bm =0,

(15b) A'p—ya+y=0,

(15¢) —p+au+ A+ ji=0,
< a(w,x) I
Mw, @) = 7———= € D with 0

(15d) @) l|a]lo(x) for @ with [[@a() # for a.a. x € D,
Ma(x) <1 for @ € D with ||i||q(x) =0

(16e) <0 ifu=a, p>0if au=>b, and =0 if a<u<b a.e. inD x .

Proof. We denote the sparsifying term in (14) by ¢(u), ie., o(u) == [, ||ullo dz.
It follows from convex analysis [17] that the variational inequality

(16) (Qu(a,m),u—a)y + B(e(u) — (@) >0 for all u € U,g,

is necessary and sufficient for @ to be a solution of (14), where @, denotes variation
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of @ with respect to w. This is equivalent to
(17) (A (A7 '+ A7 'Bm — §q) + ot + A\ u — @)y >0 for all u € U,g,

where A € V is an element in the subdifferential dp(u) of ¢ at . By introducing
the adjoint variable p and a Lagrange multiplier i € V associated with the bound
constraints in U,q, (17) results in (15a)—(15c) and (15¢).

It remains to show that A\ € dp(a) is equivalent to (15d). Considering ¢ : V — R,
the subdifferential is defined as

(18)  Oyp(u) = {)\ eV ihv—a)y < /D (Ilvlle — l|@llq) dx for any v € V}.

To show equivalence, let us first assume that A € 9y (). Choosing v := u + A,
where § € L*°(D), i.e., it only depends on @, we obtain [, §|[A[|g de = (X,6)\)v <
Jp 0l Alle dee, which implies that |[[Allo < 1. Setting v = 0 in (18) shows that

/nude< /Wumwmmdw<i/nmmdw

where we have used Holder’s inequality for the second estimate. For & € D with
|a)lo(x) # 0, necessarily A(w,z) = @(w,z)/|u|o(x). Thus, we have shown that
A € Op(u) implies that (@, \) satisfies (15d). Conversely, we assume that @ and A
satisfy (15d) and we split D into Dy = {x € D | ||@||a(x) = 0} and Dy = D\ D;. For
any v € V, we then have on Dy,

(19) / Mwms/ﬁmmwmms/|wmn=/nwmwww%
D, JQ D1 D, D1

and on Do,

(20) / / v —u)dudr = / / u) dpde < / lvllq — ||@llq de,
2 D, ||U||Q D,

where we have used the Cauchy-Schwarz inequality. Combining (19) and (20), we
find that A € d¢(@), which ends the proof. 0

We now define the following family of regularized control objectives for £ > 0.
(21) T (ue) = Qu,m) + 5/ (lul)z +¢2)"? da.
D

In particular, the objective in (14) is J (u, 0). A result similar to Theorem 4 also holds
for the regularized problem (21), where the objective function is now differentiable.

COROLLARY 5. The reqularized problem (21) with € > 0 has a unique solution
ue € Uyq, characterized by the existence of a corresponding state y. € Y, adjoint
pe €Y, and multiplier A\ € V' such that

(22a) Ay. —u. — f—Bm =0,
(22b) A*pe —ya +ye =0,
(22¢)  —p. + o + et

Vlluell, + 2

(22d) pe <O0ifu.=a, pue >0 ifus =0, and pe =0 if a <wu. <b a.e. inD x .

+pe =0 for a.a. x €D,
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The next result provides a bound for the difference between minimizers of (14)
and its e-regularized version with objective (21).

LEMMA 6. Let D be bounded, € > 0, and denote by @ the solution to (14), i.e.,
the minimizer of u— J(u,0), and by ue the minimizer of u — J(u,e). Then

(23) @ - uel}, < eBa”![D],

where |D| denotes the volume of D.

Proof. Since @ and u. are the unique minimizers of (21) for ¢ = 0 and ¢ > 0,
respectively, we have for all v € Uyq that

(24) (4747 + o =)y +5 [ (llla ) do > ~(g.0~ a)v.
(25)
(A= a7 vy = w8 [ (flol 2=l + <) do = (o0 - uv,

where g = A™*(A71Bm — 4). Using v = u. in (24) and v = @ in (25), and summing
the resulting inequalities yields

(26) ((A7*A7" 4+ @) (ue — 1), ue — W)y

<s [ (nusm ~llalle + y/llal3 + &2 — /llucli3 +52> dz.
D

The expression under the integral on the right-hand side can be estimated pointwise:

luell — /lluelg + €2 — alla + /1l + <2 < y/lial + <2 — all

2

< — c =————<e¢
Vilallg, + e + [l

Integrating this estimate over D and combining with (26) proves the result. |

In the next two sections, we introduce a first- and a second-order algorithm for
the solution of (21) without bound constraints on the control. Both algorithms avoid
approximation in random space using sampling and only iterate over functions de-
fined on the physical space D. Thanks to the linearity of the governing equation
and the Gaussianity of the uncertain parameter, computations over the (potentially
high-dimensional) random space 2 can be performed analytically. In practice, these
computations can be performed efficiently using low-rank operator approximations as
proposed in section 6.

4. Norm reweighting for shared sparsity control problem. To develop an
efficient algorithm for (14), we make the simplification Upygq = V = LZ(Q;LQ(D)),
i.e., we consider a problem without bound constraints on the control. The algorithm
we propose below cannot be generalized to incorporate inequality constraints. Such
constraints would destroy the Gaussianity of the controls in the auxiliary problems we
introduce below. We introduce a family of objective functions that are quadratic in u
and involve the parameter ¢ > 0 and a weighting function v : D — R with v(x) > 0:

(21) Fluv.) = Quum) + 5 [ (vlulfy + v+ de.
D
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Here, the function v weights the term ||u|3(x), and the latter two terms, which are
not present in (14) will be useful to update the weighting function v in the algorithm
presented next. Norm reweighting, in the context of underdetermined problems, also
known as IRLS, is commonly used to compute finite-dimensional sparse solutions
vectors. Some of the analysis presented below extends results from [16] to infinite
dimensions. Similar generalizations to infinite dimensions, also for the nonconvex case,
are presented in [23, 24], where the method is referred to as a monotone algorithm.
The basic idea behind these methods applied to the stochastic shared sparsity control
problem is presented next.

For a given, monotonously decreasing sequence (gx) x>0 with e > 0, the algorithm
performs alternate minimizations of J(u,v,¢) with respect to u and v. Given an
initialization 1, vo(x) > 0 for all * € D, we compute, for k > 1, a sequence of

iterates u* = u”(w, x), v*(x) as follows:
(28) w1 = argmin J (u, ¥, ¢4,
ueV
(29) P = argmin J(uFT v, e 00).
veL> (D)

Let us first discuss the minimization (29). Taking variations of (27) with respect to
v, and using that v must be positive, (29) implies that

-

(30) v (@) = ([ G () + i) 7

Note that v**! is a function only of & € D and, for each @, it requires integration
over the random space (2.

Since (28) is a strictly convex least squares® problem, it has a unique solution
uF*1. Taking variations with respect to u, one finds that u**! is characterized by the
optimality condition

(31) [A7* A7 + (a4 B9 Pt = A (ya — A7 (f + Bm)).

1 k+1

After introducing state and adjoint variables y**1, p €Y, this is equivalent to

AyFtt okt — f — Bm =0,

A — gy =0,

_pk+1 + (Oé—|-ﬁl/k)uk+1 =0.

Next, we observe that using the optimality condition (30) in (27) yields
- 1/2
(32)  J(@Fvher) = Q(ut,m) + 5/ (a3 +£3) ' dae = T (" e),
D

shining light onto the relation between J and 7. Note, however, that u* is in general
not a minimizer of u — J(u, ).

The alternate minimization property (28), (29) shows that the following mono-
tonicity holds for £k =0,1,2,...:

(33)  J(M A ) S T VF epin) < T VR e) < T(uF 08 ep).

3The occurrence of this least square problem is the reason why this algorithm is referred to as
the IRLS method in the literature [16].
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Here, the first inequality follows from the optimality of v**! for (29), the second
inequality from the definition (21) and from €41 < &i, and the last inequality from
the optimality of u¥*! for (28).# The iterates of the algorithm satisfy a boundedness
property summarized in the next lemma.

LEMMA 7. Leteg, k=0,1,..., be a nonincreasing sequence of positive numbers,
and (u®,v°) a given initialization. Then, the iterates u* satisfy

(34) Z// WP Y2 dap dp < oo.

Proof. The following estimate holds:

T WP v* ep) — T (W oA g i)

Tk, v* ep) — J(uk+1,yk,sk)

/ / (A~ — )2 4 (@ + BM) (k- uF )2 da dy

/ / w2 dae dp.
Q

Here, the first inequality uses (33), and the second inequality follows from a Taylor
expansion of u +> j(u, vk, er) at u**! in the direction u* — u**! in which due to
(28) the first-order term vanishes, i.e., (u**! u¥ —u¥*1)y, = 0. Summing the above
estimate over k proves (34). d

v

I \/

I V

Note that the above result implies that, in particular,

// k“ Y*dexdy —0 ask — co.

However, Lemma 7 does not imply convergence of the IRLS algorithm when 5, — 0.
The next result provides a convergence result for the case that e, — & > 0.

LEMMA 8. Let e,k = 1,2,..., be a nonincreasing sequence with limg_, € =
£ > 0. Then, for any initialization (u°,1°), u* — uz strongly in V as k — oo.

Proof. As above, we denote by p¥ € V' the adjoint variable corresponding to u*.
We conbider the derivative of J with respect to u, J,(u*,&) = —p* + au® + poFu”
where 7% = (||u* |3 + £2)~'/2. Then,

| ="+ au® + rru|ly = || = (0" = ") + aw® — ") + B E — VP |y

< [l =" v + allut = aF Ty + B b — uM
(I + 2 -l + 2 )

where we used that —pF+! 4+ auFt! + vFuF+1 = 0 in the first equality with u**! the
minimizer of J(u,v*,ex), v* defined as in (30) and the assumption e, > & in the
estimation. Using Lemma 7 and the fact that ¢, — & implies that Ju(ukf) — 0
as k — oco. Finally, since ||J,(u*,8)|ly > a|[u* — uz|ly, we obtain the postulated
convergence result. O

+ 372

b

4This monotonicity property of the algorithm is the reason why this class of algorithms are
referred to as monotone algorithms in [23, 24].
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5. Newton method for reweighted shared sparsity control problem.
Rather than using optimization objectives that depend on the control u € V', or both,
on the control v and the weighting function v, here we propose a reduced objective
that only depends on v (and on €). This objective considers u as a function of v and
thus a numerical scheme for this reduced formulation only requires iterations for v.
The optimality condition with respect to w in (27) shows that

(35) u=S,v,
where S, : V — V and v are defined as
(36) S, = [A* A (a+ )], vi= A (ya— A7N(f + Bm)).

Since for every v € L*°(D), v > 0, (35) has a unique solution u, we can consider u as
a function of v only, leading to the following reduced version of (27),

(37) w.e) = Qwm) + 5 [ WISl +ev+07Y) de.
D

Note that this is a nonquadratic functional in v. Its derivative in a direction 7 is

T (v, e)(D) = /D (A (A7'Syv 4+ A7 Bm — §4) + aSyv + frS,v) (S,v) ,(7) da

/8 2 2 1 ~
+§/D ISu0lR+* — ) pda

s LY .
=3 /D IS, v||3 + &% — ol vdx,

where (S,v),, denotes variation of S,v with respect to v, and the first term in the
second expression vanishes since [A™*A™! 4 (o + Bv)|S,v — A7*(jg — A~ Bm) = 0.
Using the L?(D)-inner product, the gradient G of J with respect to v is thus

1
(38) Gw) = ISvvlle +e* = .

where for simplicity, we neglect to denote the dependence of G on €. Note that using
(35) and (36), and introducing the control, state, and adjoint variables u., y., and p.,
the first-order optimality condition G(v) = 0 is equivalent to the optimality system
(22a), (22b), (22c) with p. = 0. This system uniquely characterizes u., and thus
the corresponding v. = (||luc||3 + €2)'/? satisfies G(v.) = 0 and is thus the unique
minimizer of (37).

A possible choice for an iterative fixed-point method to solve G(v) = 0 with
€ = e41 > 0 is, for given v*, to compute v*+! from
1

(39) = [[Syrvll§ + ekpa-

(VE+1)2
Taking square roots and reciprocals, we thus rediscover the IRLS method from sec-
tion 4 as an iterative fixed point method for solving G(v) = 0. This also implies that
the gradient can be computed from the iterates of the IRLS algorithm as

1 1

(40) g(Vk) = (V;CT)Q - k)2’

which provides a possible termination criterion for the IRLS algorithm.
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Computing second variations of J with respect to v in a direction 7 yields the
following Hessian operator,

(41) Hw)o = —28 /Q (S,0) © Su((Syv) @ 7) dpt + % ©p

where v as defined in (36) is a Gaussian random process, and ® denotes the pointwise
multiplication in space. That is, for f,g: D - Rand h: D x Q = R, (f © g)(x) :=
f(@)g(x) , and (h © g)(x,w) := h(x,w)g(x). In the derivation of (41), we have also
used that the derivative of S, v with respect to v satisfies (S,v) .o = =S, ((S,v) ©D)
for any random draw v(w). Thus, the Newton update step at an iterate v = v/* is

(42a)
2 9 9 1
—2/3/9(511’“1)) © Sy ((Syrv) © 6v) dp + (00 ©ov = —|Syrvllg — e + (e
(42b) VR =R S,

Due to the computational cost of integration over the (possibly high-dimensional)
random space, an efficient implementation of the IRLS algorithm (section 4) and its
Newton variant (section 5) is challenging. Hence, we next propose low-rank operator
approximations that make these computations feasible. We also present estimates for
the truncation error of these approximations and propose a diagonal preconditioner
for the Newton step (42).

6. Low-rank operator approximations. Since we assume that the (possibly
infinite-dimensional) uncertain parameter m follows a normal distribution, (31), and
equivalently (35), imply that, for given v, the corresponding control variable also
follows a normal distribution. To be precise, if the distribution of m is u = A (mg, Co),
then u ~ N(u,, Q,) with

(43)  w, =S, A (ya— AN (f + Bmy)), Q, =S, A*AT'BCoB*ATLAT*S?,

where S, is defined as in (36). Here, S} is the adjoint operator of S, with respect to
the L%-inner product, but since S, is self-adjoint, S, = S¥.

In this section, we develop a method that exploits operator properties to enable
the efficient implementation of the algorithms from sections 4 and 5. In particular,
we use properties that are typical, for instance, for inverse elliptic PDE operators, to
construct low-rank operator approximations. Moreover, we provide estimates for the
resulting errors in terms of the truncated eigenvalues of the low-rank approximations.

6.1. Spectral decomposition of A"*A~! and truncation error analysis.
We make the assumption that the symmetric and positive definite solution operator
A™* A1 is a trace class operator, and thus its spectrum is rapidly decaying. This
can be explored to enable fast computations based on low-rank approximations of the
operator S,,, as discussed next. We denote D, := (a + Sv)I, and assume we have a
spectral decomposition of A=*A~! with decreasing eigenvalues )\; and corresponding
eigenvectors u;, ¢ > 1. Thus,

(44) S,=(A"*A"'+D,)"" = (UAU* + D,) ",

where U*v = ((ui,v)2(p))iz1 € f2 for v € L*(D) and Uy = > ;2 ysu; for y =
(yi)i>1 € {2, that is, U and U* are operators corresponding to a change of basis.
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Moreover, A is a diagonal operator with entries \;. To approximate (UAU* + D)1,
in the following, we will truncate the eigenvalue expansion of A=*A~!. However, first
we use the Sherman—Morrison—Woodbury formula and find

(45) S, = (D, +UAU*)'=D;' - DY (UWN*+U*D,'U)'U*)D,* .

To show how to control the approximation error resulting from eigenvalue truncation,
we next derive an upper bound for the positive definite operator S,. To compare
positive definite operators F and F', we say that E < F'if F—F is positive semidefinite.
Then, because v is positive, we have U*D; 1U < a~1I, which implies that

A '+ (U*D,'U) s A+ 7' = diag (Ai h O‘) .

QA

Consequently,

1 *—1 -1 . O4)\1'
(At + (U*D,'U)) #dlag(}\i_’_a).

Along with (45), we conclude

Ai
(D, + UAU*)"* < D' — D;* (Udiag < < ) U*) D,
N +a
Let us now consider an approximation of A~*A~! obtained by truncation of the
eigenvalue expansion after the r largest eigenvalues. The corresponding truncated
analogues of U and A are denoted by U, and A,., respectively. Then,

(46a) S, = (D, +UAU)"' +R,
0o s

Tr(R) < Zi:rﬂ Xita

Te(Sy) = S, o2

i=1 N ta

(46b) where

Here, Tr(-) denotes the operator trace. This shows that the contribution to the
truncation error is small for eigenvalues that are small compared to «. Note that the
truncation error depends on 7. This truncation error can be made arbitrarily small
by choosing r large enough. This is of practical importance as it provides guidance on
where to truncate the eigenvalue expansion. We obtain the following approximation
Sy of S, as in (45):

(47) Sy, := (D, +UANUN =Dt — DY U(A +UrDU) U D,

Note that the proposed algorithms will only require application of this operator to
vectors, which can be done efficiently as will be discussed in subsection 7.3. To summa-
rize, for given v, the corresponding optimal controls are normally distributed. Given
a truncated eigenvalue expansion of A™*A~!, this distribution can be approximated
by replacing S, by S, in (43). In the remainder of this section, we derive analogues
for the gradient and Hessian of J building on the approximation Sy

6.2. Gradient and IRLS using low-rank approximation. After character-
izing the distribution of the optimal controls u, both the IRLS algorithm and its
Newton variant require computation of ||u||q, which involves integration over random
space. To be precise, ||ullqo = ||u|lo(x) is an integration over the Gaussian distribution
N (uy, Q,) with mean and covariance defined in (43), where S, is replaced by S, .
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To approximate integration over the random space, we use the square root of Q
given by Q% = S,,A_*A_lBCé/Q. Typical properties of Cy and B, as well as the
trace class property of A=*A~!, facilitate the approximation of A‘*A_lBCé/2 with
rank-7 operators E-FZ* = [e1,...,e7][f1,. .., fz]" as follows:

(48) E:Ff ~ A*A'BCY?.

Here, e; € L?(D) and f; € # which we can choose such that fi, ..., fz are orthonor-
mal. This results in the approximation

(49) Q=0QY%QY*)* ~ S, ,E:ELS:,

Thus, ||u||3 can be approximated by u, (z)? + Zle(Sl,mei)(a:)Q for € D. Defining
(50) eo = A" (ya — A~ (f + Bmo))

and recognizing that u, = S, e allows the more compact notation

(8

(51) lullf () ~ llullg, () =D (Surei) (@)™

=0

Using this in (38), we find the following approximation G,(v) of the gradient of J:

T

(52) Gv) = G.(v):= Z(Su,rei)Q L2 >

i=0
and a very similar expression to update the reweighting function in the IRLS method.

6.3. Hessian using low-rank approximation. We now derive expressions for
the application of the Hessian corresponding to the gradient G, (v) to vectors. We do
this by taking derivatives of G, (v) with respect to v in a direction év. This results in
the following Hessian H, based on the low-rank approximation,

- 2
H(W)ov ~ H, (v)ov :== —28 ;(S,,J.ei) © Sur((Svei) © bv) + 5 © v,

where we have used the identity (S, ,w) 7 = =85S, ,((Syrw) ® ). To summarize, a
Newton step based on the low-rank approximation of A=*A~! is as follows:

(53a) H, (V) ov = =G, (W),
(53b) P =R 4o
Despite the low-rank approximation, H, is usually not explicitly available. Hence, this

Newton system must be solved using an iterative method that, such as the conjugate
gradient method, only requires the application of H,(v*) to vectors.

6.4. Preconditioning of the Newton system. The convergence of the conju-
gate gradient (CG) method in each Newton step depends crucially on the availability
of an effective preconditioner. This is particularly true if the Hessian operator is
very ill-conditioned, as is the case due to the 1/v3 term in H,., which can vary over
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many orders of magnitude if ¢ is small. Using the low-rank approximations estab-
lished above, we propose a diagonal preconditioner that is effective in practice, as we
illustrate numerically in section 8. The diagonal of the Hessian H,.(v) is given by

T

(54) Paing(v) = —2Bdiag(Syr) Y ((Svrei) © (Syres)) + %
i=1

Here, diag(S, ) is the diagonal of S, ,, which can be computed from (47) using that
(55) diag(U, (A + Ur DU THUY) = D ws 0wy,
i=1

where w; = (A1 + UrD,*U,) ;. Note that the terms S, ,e; in (54) are already
available from the gradient computation. Moreover, this diagonal preconditioner de-
pends on v, which means it must be recomputed for each Newton step.

7. Offline-online algorithms for shared sparsity control problem. The
algorithms presented in this section are the result of combining the norm reweight-
ing algorithms from sections 4 and 5 with the low-rank approximations from sec-
tion 6. For large-scale and thus computationally challenging problems, our method
can be split into an offline phase, itself consisting of a setup and a compute step,
and an online phase. The offline phase includes a setup step, in which we construct
a low-rank approximation for the PDE-solution operator A~*A~! and the operator
A‘*A‘lBCé/ 2 This is followed by the offline compute step, in which we solve the
optimization problem (14) or (21). In this step, one can adjust the weight 8 > 0 for
the sparsity-enhancing term in the objective to obtain the desired sparsity structure
which, in applications, depends on the availability of control devices. In the online
phase, the goal is to compute the optimal control for a specific (and known) realiza-
tion of the uncertain parameter m(w). Here, one can use the low-rank approximation
for the fast computation of the optimal control for a specific event w. In this step,
the sparsity structure and operator approximations determined in the offline phase
are used.

7.1. Offline phase. In the offline phase, we first compute a rank-r approxima-
tion of the positive self-adjoint operator A=*A™1!, i.e.,

(56) AT*AT = U US.

As shown in the previous section, the error in the optimal control solution due to
truncation is small when the truncated eigenvalues are small compared to a—see
(46). The low-rank approximation can be found using either the Lanczos method [34],
or a randomized algorithm [20]. These methods only require the application of the
linear operator A~*A~! to vectors, i.e., each application amounts to a solve with the
forward and the adjoint PDE operators A and A*. Next, we compute ey according to
(50) and compute a rank-7* approximation of A_*A_IBCé/ % as follows:

(57) E;Ff ~ A A"'BC}/?,

where one can use the low-rank approximation (56). In most practical applications,

BCé /2 has a fast decaying spectrum since Cy is a trace class operator and, thus,
typically, 7 < r. After these preparations, we are ready to either employ the IRLS al-
gorithm (Algorithm 1) or its Newton variant (Algorithm 2). Note that in Algorithm 1,
the expression in the termination criterion (Line 6) is the norm of the reduced gradient
(52) due to the relation (40).
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Algorithm 1 Norm reweighting for shared sparsity control (IRLS).

: Setup step: Compute (50), (56), and (57).

: Choose v° € L*>(D), v°(x) > 0 a.e. in D, and ¢ > 0.
: for k=0,1,2,... compute do

For v := v* define S, as in (47).

Compute v* 1 = (Zfzo(Su,rei)z + 5%+1)

%wl\.’)»—t

—1/2

Terminate if the norm of (v¥*1)=2 — (v¥)~2 is small.
Update g1 < €.

end for

return v := "y, S5

Algorithm 2 Newton-CG norm reweighting for shared sparsity control (NIRLS).

: Setup step: Compute (50), (56), and (57).
: Choose 1° € L>=(D), 1°(z) > 0 a.e. in D, and g9 > 0.
: for k=0,1,2,... compute do
For v := v* define S, , as in (47).
Compute G, (v*) according to (52).
Terminate if norm of the gradient is small.
Perform CG iterations for Newton system (53) using preconditioner (54).
Update i1 < €.
end for
return v :=v

© NPT

k+1

H
@

, U, Sl?,%

7.2. Online phase. During the online phase, we compute the optimal control
for a specific realization of the uncertain parameter m(w). This step uses the weight
function 7 found in the offline phase, and also uses the truncated spectral expansion
(46). To be precise, for a sample draw m(0) = mg + M(w) from N (mg,Co), the
corresponding optimal control @ € V' is computed as

(58) =Sy, (eo — UpAUFBin)

where 7 and Sy, are as returned by Algorithm 1 or Algorithm 2. Note that the
optimal control 4 has the sparsity structure determined in the offline phase.

7.3. Computational cost. Here, we summarize and compare the dominant
computational cost of the proposed algorithms. We denote by N the discretization
dimension of the state and control variable, and discuss the complexity of the offline
phase (setup and optimization steps) and the online phase (computation of optimal
control). In the arguments below, we assume that 7 < r < N.

Offtine phase: Setup. In the offline phase, we first compute the truncated spectral
approximation (56). This requires solves with A and the adjoint A*. The number of
required solves depends on the spectrum of the operator A=A~ on the value of a,
and on the truncation error one is willing to commit. The reason why we report the
complexity in terms of PDE solves is that the cost in terms of operations depends on
whether A is available as an assembled matrix, which solvers are applicable to solve
systems with A and A*, and which solvers are available to a user. To compute a
rank-r approximation usually requires r + d products with A=*A~!, where d is small
(e.g., 10) to obtain a accurate rank-r approximation. If the low-rank approximation
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is computed using a randomized singular value decomposition, then d is the over-
sampling factor [20]. In the Lanczos method, adding d iterations enriches the Krylov
space and thus leads to improved accuracy of the dominant directions. It remains
to estimate the computational work for computing a singular value decomposition
of A’*A’lBC(%/z, required to find Ex = [eq,...,e7], during the offline phase. This
step can build on the truncated spectral decomposition of A=*A~! and thus does not
require additional PDE solves. Hence, the complexity of the offline setup phase is
2(r + d) PDE solves.

Offtine phase: Optimization. After the above setup step, the remaining steps do
not require further PDE solves and we simply estimate the complexity of the proposed
algorithms in terms of elementary linear algebra operations. Let us first consider the
computations required in each iteration of IRLS (Algorithm 1). Note that each step
is equivalent to computing (38), the gradient G, of the reduced objective J. Thus, the
computational complexity of one IRLS step coincides with computing the right-hand
side for the Newton step (42).

Computing G, requires application of the operator S, ., defined in (47), to vectors.
First, this necessitates the inverse of the 7 x r matrix (A;-* + U7 D; 'U,). This step
is dominated by the computation of U} D, 'U,, which amounts to 72N operations.
Since we assume that N > r, this dominates computation of an r X r matrix inverse.
Each application of S, to a vector requires 2r/N operations, amounting overall to a
complexity of 2r N (7 + 1) operations to compute ||u|/q. Thus, for the IRLS algorithm,
the computational complexity per iteration is N (r 4 27).

Additionally to the computation of the gradient G,., each iteration of the NIRLS
method (Algorithm 2) requires the application of the Hessian to one vector in each CG
step, amounting to 277N operations. It also requires one to set up the preconditioner
matrix, which requires 72N operations as can be seen from (55). Hence, we find that
the computational complexity for one inexact Newton-CG step is 2rN(r + 7 + Fngg),
where 1., denotes the number of CG iterations.

Note that it depends on r, 7 how much larger the complexity of an NIRLS iteration
is than an IRLS iteration. If 7 is significantly smaller than 7, as in the example
problems in section 8, one CG step only amounts to a fraction of the complexity of
one IRLS step. Finally, note that all steps in the offline optimization algorithms have
optimal complexity, i.e., they depend linearly on the discretization dimension N.

Online phase. In the online phase, the only necessary computation is (58). For
any fixed sample draw m(w), this is a deterministic expression. This online step
requires multiplication of a vector with U, and its transpose, and it requires one
application of S, , to a vector. This amounts overall to about 4rN operations, and
can thus be done fast and potentially in real time, depending on the application.

8. Numerical experiments. We end this paper with a numerical study for the
stochastic control problem with shared sparsity. Our aims are to study the qualitative
effect of the shared sparsity term on the optimal controls (subsection 8.1), and to
investigate the performance and accuracy of the proposed algorithms (subsection 8.2).

For this purpose, we use three model problems, which all use the physical domain
D = (0,1)? C R?. The boundary is split in Dy = {0} x[0,1] and Dy = dD\IDy. A
simple finite difference approximation (i.e., the five-point stencil) on a mesh of n x n
points is used to discretize the Laplacian that is part of the differential operator A.
While both algorithms we propose allow for a decreasing sequence of positive values
€1 > €9 > ---, we fix € to a small value in our tests, and study the influence of that
value on the performance of the methods.
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F1G. 1. Results for Problem 9: Random draws for boundary Neumann data (a). The highlighted
samples are used to compute the optimal controls shown in (b), (c), and (d). Note that the controls
are different but share the same sparsity structure.

Problem 9. This first problem is of the form of Example 1 with £ = 0 and
a(x) = 1. Except for the uncertain Neumann boundary data, it coincides with Ex-
ample 1 from [35]. In particular, the PDE operator is A = —A with zero Dirichlet
boundary conditions on dD; and Neumann boundary conditions on 0Dy. Further,
ya = sin(272) sin(27y) exp(22)/6, f = 0, a = 1075, and 8 = 10~2. The uncertain
parameter field enters as Neumann data on dD,. These data follow an infinite-
dimensional Gaussian distribution with mean mg = 0. The covariance operator is
given as the inverse elliptic PDE operator Cy = v(—0zz) ! with homogeneous Dirich-
let boundary conditions at the boundary of 9Ds, i.e., at the two points (0,0) and
(1,0), and with v = 4. It can easily be verified that Cy is a symmetric and positive
definite trace-class operator, and thus defines a valid covariance operator [15]. Ran-
dom draws from this distribution are shown in Figure 1(a), and optimal controls in
the remaining figures in Figure 1.

Problem 10. This problem has the form of Example 2. The data are as in Prob-
lem 9, but the uncertainty enters on the right-hand side of the equation rather than
as Neumann boundary data, and o = 5 x 107°. The uncertain parameter m is dis-
tributed as an infinite-dimensional Gaussian random field over the two-dimensional
physical domain D. Its mean is my = 0 and the covariance operator is the squared
inverse elliptic PDE operator Cy = y(—A)~2, where v = 20? and the Laplace operator
A in Cp satisfies homogeneous Dirichlet conditions on {1} x [0,1] and homogeneous
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F1G. 2. Results for Problem 10: Shown in (a) is a random draw from the Gaussian random field
defined over D. Note that all draws of the random field satisfy a homogeneous Dirichlet condition
on part of the boundary. Figure (b) shows the corresponding optimal control.

Neumann conditions for the remaining boundaries. Cy is a valid covariance operator
on L?(D) as it is symmetric, positive, and trace-class [15]. A random draw from this
distribution and the corresponding optimal control are shown in Figure 2.

Problem 11. This problem has the form of Example 3. In particular, A = —A —
k21 with k = 12 is the indefinite Helmholtz operator. Moreover, f = 0 and y4 = 0,
i.e., our aim is to dampen the uncertain Neumann boundary forcing, whose distribu-
tion is as in Problem 9. Optimal controls for o = 5x 107 and § = 5x 10~* are shown
in Figure 3. This problem is a substantially simplified version of the earthquake en-
gineering/vibration damping problem given as an example in the introduction, where
one aims to find controller locations that are best at actively dampening waves orig-
inating from uncertain boundary forcing. Clearly, this example only uses a single
frequency and a simple model for wave propagation.

8.1. Qualitative solution properties. Let us first discuss the results of Prob-
lem 9 shown in Figure 1. As in the version of this problem not involving uncertain
parameters [35], the distributed controls vanish on parts of the domain. We also find
that increasing § increases sparsity (not shown here). The deterministic optimal con-
trol, i.e., the solution to (13), looks similar to the stochastic optimal controls from
Figure 1 but vanishes near the Neumann boundary. As expected for the stochastic
control problem, the optimal controls corresponding to different realizations of the
uncertain Neumann data differ, but they share the same sparsity structure. Note
that the differences between the optimal controls occur primarily close to the bound-
ary 0D, which is where the uncertain Neumann data enter into the problem. This
local effect of different Neumann data is due to the locality properties of the Laplace
operator. A different behavior is found for Problem 11. Here, as can be seen from
Figure 3, the optimal controls differ substantially even far away from 9D5, which is a
consequence of the nonlocal behavior of the Helmholtz equation solutions. In fact, in
this problem, the only cause for the controls to be nonzero are the Neumann boundary
data, which impact the optimal controls in a nonlocal manner. We also point out that
the solution of the deterministic version (13) of Problem 11 is zero.

8.2. Performance of algorithms. Next, we focus on the accuracy of the low-
rank approximations we employ and the quantitative behavior of our solution algo-
rithms. While first we compare the low-rank approximations for both Problems 9

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/08/19 to 192.76.177.125. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

SPARSE OPTIMAL PDE-CONTROL UNDER UNCERTAINTY 653

‘b) optimal control for m

"’n i "/,;,/I[[[/iilliil'i

///IIII//I/
l%

’c) optimal control for mq

FIG. 3. Results for Problem 11: Shown in (a) is the pointwise standard deviation v—' of
the optimal controls. All stochastic controls have their support in the gray regions, and vanish in
the white regions. Figures (b), (c), and (d) show the optimal controls corresponding to the same
samples of the uncertain Neumann boundary condition highlighted in Figure 1(a). Note that the
optimal controls are different but have the same sparsity structure.

and 11, the remainder of the results shown in this section are for Problem 11. We
have verified that the behavior of the algorithms for Problem 9 is similar.
Truncation and low-rank approrimation. Let us first discuss the low-rank ap-
proximation of A=*A~! and the choice of the truncation. In Figure 4, the spectra of
A=* A~ for Problems 9 and 11 are shown for different mesh resolutions. First, it can
be seen that the eigenvalues converge as the mesh is refined, which is a consequence
of the smoothness of the eigenvectors of the inverse Laplace and Helmholtz operators.
Second, these plots help determine a reasonable truncation for the low-rank approx-
imation. For that purpose, we recall that from the error term in (46) it follows that
the low-rank error depends on how small the truncated eigenvalues are compared to
the value of « (also shown in Figure 4). For our numerical results, we use low-rank
approximations with » = 180 for Problems 9 and 10, » = 150 for Problem 11. For each
example, we show the exact relative truncation error at the solution and the upper
bound (46b), in which we truncate the infinite sums after another 500 eigenvalues.
For Problem 9, the relative truncation error rate is 3.3 x 1076 while the estimation
is 3.5 x 1072. In Problem 11, we have a relative truncation error of 1.5 x 10~* and
the theoretical bound is 3.0 x 1072. For the problems with the uncertain bound-
ary data, 7 = 16 results in an approximation of (48) up to machine precision. For
Problem 10, 7 = 64 is used since the two-dimensional Gaussian random field requires

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/08/19 to 192.76.177.125. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

654 CHEN LI AND GEORG STADLER

a) | n =16 by | n=16
1072 | —mem =32 i 1072
- - n=64
—n =128
1074 1 a (Prob. 9) || 104 |-

10—6 [

! ! ! !
0 50 100 150 0 50 100 150

eigenvalue # eigenvalue #

FIG. 4. Spectra of A=*A~1 for discretizations with n X n points for Problems 9 and 10 (a)
and Problem 11 (b). As reference, we also show the value of o, which allows estimation of the
truncation error as discussed in subsection 6.1.

more approximation vectors. This 7 captures > 99.9% of (48). We have numerically
verified that the convergence behavior does not change substantially if higher-rank
approximations are used. Moreover, the optimal controls are visually identical when
more basis functions are used, showing that the error due to truncation is small.

IRLS and overrelazed IRLS. In Figure 5(a), we show the performance of Algo-
rithm 1. We attempt to speed up the algorithm by means of overrelaxation, using the
reweighting function

(59) A= (1= 0k 4 hph

where § > 1 and 7**! is the weight function computed from the (original) IRLS
algorithm. For 6 = 1, we recover the original method. Empirical experiments have
led us to choose § = 1.5, which leads to moderately faster convergence, as can be
seen in Figure 5(a). The IRLS algorithms converge rather slowly but monotonously,
as predicted by the theory and also observed in other contexts [16, 24]. We find the
convergence behavior of the IRLS algorithm to be largely independent of € and of the
discretization mesh size N.

NIRLS algorithm. Next, we study the performance of the preconditioned Newton-
CG algorithm (Algorithm 2). Since the Newton method is not guaranteed to converge
monotonously and the IRLS algorithm converges rapidly in early iterations, we first
perform 15 overrelaxed TRLS steps, and then switch to NIRLS. Figure 5(b)—(d) shows
performance results of the method for different numbers of preconditioned CG itera-
tions per Newton step, various values of ¢, and different discretizations. In Figure 5(b),
(c), we show the norm of the gradient versus the computational cost as discussed in
subsection 7.3. We choose one step of the IRLS algorithm (i.e., one computation of
the gradient G,) as the unit of cost. The computational complexity of NIRLS itera-
tions is converted to this cost unit to allow for a fair comparison between the different
methods. For instance, following the complexity estimates from subsection 7.3 and
using the specific choices r = 150 and 7 = 16 used in this problem, the computational
complexity of a step of NIRLS with 3 CG iterations is 2.35x the cost of one IRLS
iteration. This ratio increases to 3.23 if 8 CG iterations are used in each NIRLS step.
As can be seen in Figure 5(b), the NIRLS method converges significantly faster than
the IRLS method. Moreover, a small number of CG steps per Newton iteration results
in the fastest convergence in terms of computational cost. Thus, we use 3 CG steps
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Fi1c. 5. Convergence behavior of algorithms for Problem 11. Shown in (a) is the reduction of
the norm of the gradient for IRLS and overrelazed IRLS (or-IRLS) with 0 = 1.5 (see (59)). Shown
in (b) is a comparison of the performance of or-IRLS and the preconditioned Newton-CG method
NIRLS for different numbers of CG iterations per Newton step, where we fit n = 128, ¢ = 10~7.
The figure in (c) compares the convergence of the preconditioned Newton-CG method with different &
for n =128 and 3 CG iterations per Newton step. Shown in (d) is a comparison of the convergence
of or-IRLS and the NIRLS method for different mesh sizes n, € = 10~7, and 3 CG iterations per
Newton step. As discussed in subsection 7.3, in (a)—(c), we use the computational work required for
one IRLS iteration as the unit for the x-axis to compare the computational complezity of the IRLS
algorithms and its Newton variants. In (d), we use the iteration number as the unit for the x-axis
since we study how the number of iterations changes for different discretizations.

per Newton iteration for the remaining tests. Figure 5(c) shows that we observe fast
local convergence for every value of £ and that we observe a mild dependence of the
convergence on the value of . Finally, Figure 5(d) compares the convergence for dif-
ferent mesh discretizations and we observe mesh-independent convergence behavior,
which illustrates the efficiency of the diagonal preconditioner.

9. Discussion and remarks. First, let us discuss the role of a > 0. This pa-
rameter plays a significant role in our problem formulation, the proposed solution
algorithms, and their analysis. Positivity of « is required for the deterministic prob-
lem to be formulated in an L2-Hilbert space framework rather than over a space of
measures [8, 33]. Additionally, & > 0 plays a crucial role for the truncation of the
spectral expansion of A™*A~! since we show that the truncation error is small when
the truncated eigenvalues are small compared to a. Both aspects are related to the
regularizing effect positive values of o have on the controls.
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Second, it would be desirable to include control bounds in the proposed algo-
rithms. However, it is not obvious how to achieve this without resorting to more
general algorithms that also apply to nonlinear problems and use random space ap-
proximations, such as stochastic Galerkin/collocation or Monte Carlo methods. The
main difference between bound constraints and the shared sparsity term is that bound
constraints apply to the controls individually for each random event, while the sparsity
term involves integration over the probability space.

Third, the proposed approach can be generalized to uncertain parameters that
do not follow a Gaussian distribution. As long as, for the resulting distribution of
the controls, ||ul|q(z) can be computed efficiently, the reweighting algorithms can be
applied to compute jointly sparse controls.

We believe that several questions raised in this paper deserve further research.
For instance, while challenging, extension to nonlinear problems is worthwhile pur-
suing, as well as the question whether the shared sparsity requirement can help to
reduce the effective dimension of nonlinear problems. Other interesting questions
include a study of the spatial discretization of the problem, extensions to parabolic
governing equations possibly combined with directional sparsity, problem formulation
and algorithms for o = 0, and the question of whether regularization with ¢ > 0 can
be avoided. A question of potentially general interest is if the Newton variant of the
TIRLS algorithm can accelerate the solution of other nonsmooth optimization problems
for which reweighting algorithms are currently used.
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