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SPARSE SOLUTIONS IN OPTIMAL CONTROL OF PDES WITH

UNCERTAIN PARAMETERS: THE LINEAR CASE
∗

CHEN LI† AND GEORG STADLER†

Abstract. We study sparse solutions of optimal control problems governed by PDEs with
uncertain coefficients. We propose two formulations, one where the solution is a deterministic control
optimizing the mean objective, and a formulation aiming at stochastic controls that share the same
sparsity structure. In both formulations, regions where the controls do not vanish can be interpreted
as optimal locations for placing control devices. In this paper, we focus on linear PDEs with linearly
entering uncertain parameters. Under these assumptions, the deterministic formulation reduces to
a problem with known structure, and thus we mainly focus on the stochastic control formulation.
Here, shared sparsity is achieved by incorporating the L

1-norm of the mean of the pointwise squared
controls in the objective. We reformulate the problem using a norm reweighting function that is
defined over physical space only and thus helps to avoid approximation of the random space using
samples or quadrature. We show that a fixed point algorithm applied to the norm reweighting
formulation leads to a variant of the well-studied iterative reweighted least squares (IRLS) algorithm,
and we propose a novel preconditioned Newton-conjugate gradient method to speed up the IRLS
algorithm. We combine our algorithms with low-rank operator approximations, for which we provide
estimates of the truncation error. We carefully examine the computational complexity of the resulting
algorithms. The sparsity structure of the optimal controls and the performance of the solution
algorithms are studied numerically using control problems governed by the Laplace and Helmholtz
equations. In these experiments the Newton variant clearly outperforms the IRLS method.

Key words. optimal control of PDEs, uncertainty, sparse controls, iterative reweighting, L1-
minimization, Newton method
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1. Introduction. Solving optimal control problems governed by partial differ-
ential equations (PDEs) that contain uncertain parameters represents a significant
challenge. However, thanks to theoretical and algorithmic advances, and to the ever
increasing availability of computing resources, significant progress has been made over
the last decade [2, 3, 4, 11, 19, 25, 26, 31, 36]. In this paper, we aim at optimal control
problems under uncertainty, where the control objective involves a sparsifying term
and, as a consequence, distributed optimal controls vanish on parts of the domain.
The areas where controls are nonzero are interpreted as locations where it is most
efficient to employ control devices [5, 7, 8, 10, 12, 13, 21, 35].

Given a physical domain D ⊂ R
n, n ∈ {1, 2, 3}, we consider a PDE involving

uncertain parameters written as

(1) c(y, u,m(ω)) = 0.

Here, u and y are the control and the state variables, respectively, m(ω) is an uncer-
tain parameter, and c(· , · , ·) denotes the PDE relating these variables. We assume
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that the distribution law of m, denoted by µ, is supported on a Hilbert space H ,
and consider m as an H -valued random variable. That is, for a probability space
(Ω,F , µ), m : Ω → H , where Ω is the set of events, F a σ-algebra of sets in Ω, and
µ is a positive normalized measure. For example, H can be chosen as an infinite-
dimensional function space over D or its boundary ∂D. We assume that for every
u ∈ L2(D) and ω ∈ Ω, (1) has a unique (weak) solution y = y(u;ω, ·) ∈ V , with an
appropriate space V ⊂ L2(D).1 For ω ∈ Ω, we consider the optimal control problem
in reduced form,

(2) min
u∈Uad

J(ω, u) :=
1

2

∫

D

(y(u;ω, ·)− yd)
2 dx+

α

2

∫

D

u2 dx.

Here, Uad = {u ∈ L2(D) : a ≤ u ≤ b a.e.}, where a, b ∈ L2(D) with a < b almost
everywhere. Moreover, α > 0 is a regularization/control cost parameter and yd ∈
L2(D) a given desired state. For each ω ∈ Ω, (2) is a classical control-constrained
linear-quadratic optimal control problem. As is well known, this problem has a unique
solution that depends on ω.

We are interested in distributed optimal control problems, where the controls
are sparse, i.e., they vanish on parts of the domain. We propose two practically
relevant approaches to sparse optimal control under uncertainty. The first computes
a deterministic sparse control that is optimal for the expectation of the cost functional.
The second aims at stochastic controls that depend on the uncertain parameter, but
have shared sparsity structure.

1.1. Deterministic sparse optimal control. Robust deterministic controls
are optimal in expectation [4, 25, 26], or optimal with respect to a risk measure [1, 27].
Since in this formulation the controls are deterministic, it is straightforward to add a
sparsity-enhancing term for the control to (2), resulting in

(3) min
u∈Uad

Jd(u) =
1

2

∫

Ω

∫

D

(y(u;ω, ·)− yd)
2 dx dµ+

α

2

∫

D

u2 dx+ β

∫

D

|u| dx.

Here, β > 0 is the weight for the sparsity-enhancing L1-term, in which | · | denotes
the absolute value. The deterministic optimal controls found from this formulation
vanish on parts of the spatial domain D, and the value of β influences how sparse the
controls are. The resulting control structure can be used to decide on the placement
of control devices. In the deterministic context, extensions of this approach have been
applied for instance to optimal device placement in tissue imaging [5], sparse control of
alignment models [7], optimal control of traveling wave fronts [10], or shaping controls
for quantum systems [12].

1.2. Stochastic optimal control with shared sparsity. An alternative prob-
lems class and this paper’s main focus is to find stochastic2 controls u ∈ Uad :=
{u ∈ L2

µ(Ω, L
2(D)), a ≤ u(ω, ·) ≤ b a.e.}, i.e., individual controls u = u(ω) for each

1While the discussion is kept general in this introduction, in most of the remainder of this paper
we focus on linear equations, where this assumption can easily be verified.

2While stochasticity is often used in the context of time-dependent problems, here it simply
means that the controls depend on the random variable, in contrast to the deterministic optimal
control formulation discussed above.
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ω ∈ Ω [3, 11, 31, 36]. These controls minimize the expected objective value, i.e.,

(4) min
u∈Uad

∫

Ω

J(ω, u(ω, ·)) dµ

with J(·, ·) as defined in (2). Note that (4) amounts to solving optimal control prob-
lems of the form (2) for each ω ∈ Ω, followed by computing the expectation over
the values of the objective obtained with these optimal controls. One possibility for
incorporating sparsity in this formulation is to add sparsity-enhancing regularization
for each ω. However, since we interpret regions where optimal controls are nonzero
as regions where we propose to place control devices, it is more meaningful to require
that the stochastic controls share their sparsity structure. This can be achieved by
adding a sparsity-enforcing term to the objective functional in (4):

(5) min
u∈Uad

J (u) :=

∫

Ω

J(ω, u(ω, ·)) dµ+ β

∫

D

(∫

Ω

|u(ω, ·)|2 dµ

)
1

2

dx.

Here, β > 0 and the outer integral in the sparsity-enforcing term is over the point-
wise marginal distribution of the squared controls. Note that the sparsity term is
well defined and finite for u ∈ Uad. As will be shown, using the L1-norm of the
pointwise expectation results in optimal controls u(ω, ·) with shared sparsity. While
the optimal controls are stochastic, i.e., they depend on ω, the controller locations
resulting from (5) are deterministic, i.e., they only depend on the probability space,
but not the individual event ω ∈ Ω. A practical interpretation of this approach is
that the optimal location of controllers is computed by solving (5) in an offline phase,
while the optimal controls u(ω) are computed in an online phase corresponding to the
particular realization of the random variable ω.

Let us give two application examples for an optimal control formulation of the
form (21). First, we consider a problem from earthquake engineering, where one wants
to find locations for active damping devices (controllers) that shall dampen vibrations
that originate from an unknown earthquake forcing. In this situation, one can imagine
that the optimal controls can be computed in real time individually for each forcing,
but the location of controllers needs to be decided upfront and should be chosen in
an optimal way for all possible earthquakes. Another application could be to position
heaters in a building to obtain, for instance, a uniform temperature distribution in the
presence of uncertain heat sinks/sources caused, e.g., by open windows, leaky walls,
or the presence of people.

1.3. Related work. Optimization under uncertainty governed by PDEs has
been an active field of research over the last decade. Various formulations are proposed
in the literature, e.g., robust deterministic optimal control [1, 19, 25, 27] and stochastic
control [3, 11, 36]. The main focus of this paper is a stochastic control problem with
linear governing equations, but with the additional requirement that the optimal
controls are jointly sparse.

The interest in sparse optimal control is (1) due to its application for control
device placement and its ability to discover controls with simple structure [5, 7, 10,
13, 33, 35], and (2) due to the interesting nonreflexive Banach space structure that
arises if no Hilbert space norm term is added to the objective [8, 9, 13]. The stochastic
sparse control problem we study has similarities with the notion of directional sparsity
proposed for optimal control of parabolic problems [21, 28], in which one has to decide
on the sparsity for an entire time stripe. However, differently from directional sparsity
problems, our stochastic control formulation requires one to decide on the sparsity
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based on a potentially high-dimensional integration over the probability space rather
than an integration over the one-dimensional time direction.

The solution methods we propose are related to iteratively reweighted least squares
(IRLS) algorithms, which are used, e.g., in compressive sensing, image processing, and
matrix recovery [6, 16, 30]. While IRLS methods have mostly been used in finite di-
mensions and in the context of underdetermined problems, they have recently also
been studied for infinite-dimensional Lp and ℓp (p ≤ 1) optimization [23, 24]. Instead
of solving an Lp-problem directly, iterative reweighting algorithms alternate between
solving a simpler (e.g., a quadratic minimization) problem, and updating a weighting
function that enters into this simpler problem. In this paper we focus on a convex
problem, but a significant challenge is that the optimization variable is defined over
physical and infinite/high-dimensional random space. Hence, we employ ideas from
iterative reweighting to avoid working with the high-dimensional optimization vari-
able. The proposed algorithms only iterate over the reweighting function, which does
not depend on the random variable. Additionally to the first-order IRLS method [16],
we propose a Newton-type algorithm based on the reweighting formulation and show
that it outperforms the classical IRLS iteration.

To accelerate norm reweighting methods, they have been combined with an active
set method [24]. This approach also applies to nonconvex problems, but it requires
the computation of norms of the optimization variable and the corresponding dual
variable, similarly as for Newton-type methods for directional sparsity problems [21].
In the context of control under high-dimensional uncertainty, these norms are integrals
over random spaces, making this integration a computational challenge.

Another attempt to accelerate the IRLS algorithm is to use the conjugate gradient
method for solution of the auxiliary least squares problems that occur in each iteration
[18]. In section 5, we propose a related idea, but instead of iterative linear solves,
we exploit the optimal control problem structure. Namely, we combine a low-rank
operator approximation and the Sherman–Morrison–Woodbury identity to design fast
(i.e., optimal complexity) iteration algorithms.

1.4. Contributions and limitations. The main contributions of this paper
are as follows. (1) We propose a formulation for stochastic optimal controls with
shared sparsity in the presence of uncertain parameters in the governing PDE. We
believe that this formulation is relevant in applications and that it is interesting from
the optimization-under-uncertainty perspective since the joint sparsity requirement
couples the controls for different uncertain parameters, and from the sparse control
perspective due to the infinite-dimensional nondifferentiable optimization structure.
(2) We propose a Newton-type variant of the IRLS minimization algorithm for the
solution of this optimization problem, which is significantly faster than the classical
IRLS method. (3) We present low-rank operator approximations which allow fast
iterations of the IRLS algorithm and its Newton variant. We also provide bounds for
the truncation error due to these approximations.

Next, we summarize limitations of this work. (1) We restrict ourselves to linear
governing equations with uncertain parameters that enter linearly into these equa-
tions, and our algorithms for stochastic control with shared sparsity do not allow
for control constraints. More general problems are a significant challenge even for
optimal control without sparsity requirements on the controls. (2) The proposed
norm reweighting problem reformulation requires regularization of the nondifferen-
tiable term in the objective and convergence to a truly sparse solution requires that
the regularization parameter is driven to zero. (3) Our arguments and in particular
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the low-rank operator approximation require that the parameter α in (5) is positive.
Using α = 0 does not allow a Hilbert space formulation and would be more challenging
from the theoretical as well as the computational perspective.

1.5. Notation. We consider a probability space (Ω,F , µ), i.e., Ω is the set of
events, F a σ-algebra of sets in Ω, and µ a positive normalized measure. For 1 ≤
p < ∞ and a Banach space (X, ‖ · ‖X), the Bochner space Lp

µ(Ω;X) is the space of

Bochner integrable functions u : Ω → X for which
(∫

Ω
‖u(ω)‖pX dµ

)1/p
:= ‖u‖Lp(Ω,X)

is finite. This value has the properties of a norm. For a domain D ⊂ R
d, d ∈ {1, 2, 3},

we will in particular use the spaces

(6) V := L2
µ(Ω;L

2(D)) and Y := L2
µ(Ω;Y ),

where Y ⊂ H1(D) is a subspace that can include Dirichlet boundary conditions on
part of ∂D. Both V and Y are Hilbert spaces with inner products derived from the in-
ner products inX, e.g., the inner product for V is 〈u, v〉V :=

∫

Ω
(u(ω, ·), v(ω, ·))L2(D) dµ

and the induced norm for u ∈ V is ‖u‖V = 〈u, u〉
1/2
V

. For u ∈ V , we will commonly
use the notation

(7) ‖u‖Ω = ‖u‖Ω(x) =

(∫

Ω

u(ω,x)2 dµ

)1/2

,

which is well-defined due to the isomorphism between Bochner spaces and spaces
defined over the product space Ω × D [22]. In the remainder of this paper, we use
bold letters for function spaces defined over Ω×D, such as V and Y .

2. PDE with linearly entering uncertain parameters. The main focus of
this paper is on problems where the uncertain parameters enter linearly in (1). We
allow for infinite-dimensional uncertain parameters that follow a Gaussian distribution
µ = N (m0, C0) over a Hilbert space H , where m0 ∈ H , and C0 is a self-adjoint,
positive definite trace class operator over H . We consider m as an H -valued random
variable and with a slight abuse of notation, we denote realization of this random
variable by the same symbol m. We consider a linear differential equation of the form

(8) Ay = u+ f +Bm,

where A : Y ⊂ H1(D) 7→ H−1(D) is invertible, B : H 7→ H−1(D), and f, u ∈
H−1(D). The following two examples fit into this framework.

Example 1 (Poisson problem with uncertain Robin boundary data). As an exam-
ple for an equation of the form (8), we use H = L2(∂D2) and consider a problem
with inhomogeneous Robin boundary condition with uncertain data on ∂D2:

−∇ · (a(x)∇y(ω,x)) = f(x) + u(x) in D,(9a)

y(ω,x) = 0 in ∂D1,(9b)

ky(ω,x) + (a(x)∇y(ω,x)) · n = m(ω) in ∂D2.(9c)

Here, a(x) ≥ a0 > 0 and k ≥ 0. For k = 0, the Robin condition on ∂D2 reduces to a
Neumann boundary condition.

Example 2 (Poisson problem with uncertain right-hand side). This example co-
incides with Example 1 with the exception that the uncertain parameter field enters
on the right-hand side of (9a). We use H = L2(D̃) with D̃ ⊂ D an open subdomain,
and B : L2(D̃) → L2(D) is the extension-by-zero operator. The only difference to
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the problem above is that the term Bm(ω) is added to the right-hand side in (9a),
whereas the right-hand side of (9c) is zero.

Example 3 (Helmholtz problem with uncertain Neumann boundary data). An-
other example that fits into our framework is a Helmholtz problem with uncertain
Neumann boundary forcing on ∂D2:

−∆y(ω,x)− κ2y(ω,x) = u(x) in D,(10a)

y(ω,x) = 0 in ∂D1,(10b)

∇y(ω,x) · n = m(ω) in ∂D2.(10c)

Here, ∆ is the Laplace operator and κ > 0 is the wave number.

Most formulations and solution methods in this paper can straightforwardly be
extended to generalizations of (8), e.g., to problems where u is a vector function as in
linear elasticity. However, for simplicity of the presentation, we restrict ourselves to
(8). Next, we specialize the deterministic and stochastic optimal control formulations
from subsections 1.1 and 1.2 for this linear case.

2.1. Deterministic sparse optimal control. Using the linear equation (8),
the deterministic sparse optimal control problem becomes

(11) min
u∈Uad

1

2

∫

Ω

∫

D

(A−1u+A−1Bm− ŷd)
2 dx dµ+

α

2

∫

D

u2 dx+ β

∫

D

|u| dx,

where ŷd = yd − A−1f . Since the integration of a quadratic form over a Gaussian
random variable can be done analytically [14, Remark 1.2.9], one obtains

(12)

∫

Ω

∫

D

(A−1u+A−1Bm− ŷd)
2 dx dµ

=

∫

D

(A−1u+A−1Bm0 − ŷd)
2 dx+Tr

(

C
1/2
0 B⋆A−⋆A−1BC

1/2
0

)

,

where B⋆ denotes the adjoint of B, A−⋆ the adjoint of A−1, and Tr(·) denotes the
trace of an operator. Note that since C0 is trace-class, and B⋆A−⋆A−1B is bounded
on L2(Ω), the trace in (12) is finite. Since the trace term does not depend on the
control, it can be neglected in the computation of the minimizer. Thus, the optimal
control derived from (11) is equivalently characterized by the minimization problem

(13) min
u∈Uad

1

2

∫

D

(A−1u− ỹd)
2 dx+

α

2

∫

D

u2 dx+ β

∫

D

|u| dx,

where ỹd = yd−A−1f+A−1Bm0. This is a deterministic elliptic control problem with
L1-control cost, where the desired state ỹd depends on the mean of the distribution
of m. Problems of this form and algorithms for their solution have been studied for
instance in [35], and have been generalized in various directions [8]. In particular,
it is known that (13) admits a unique optimal control, which is sparse in the sense
that it vanishes on parts of the domain D. Moreover, this solution can be computed
efficiently using a semismooth Newton algorithm in function space.

2.2. Stochastic optimal control with shared sparsity. Next, we consider
the stochastic optimal control formulation (5) for the linear governing equation (8):

(14) min
u∈Uad

1

2

∫

Ω

∫

D

((A−1u+A−1Bm−ŷd)
2+αu2) dx dµ+β

∫

D

(∫

Ω

u(ω, ·)2 dµ

)1/2

dx,

D
o

w
n
lo

ad
ed

 0
9
/0

8
/1

9
 t

o
 1

9
2
.7

6
.1

7
7
.1

2
5
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



❈�✁✂✄☎✆✝✞ © ✥✂ ✟✠✡☛☞ ✌✍❛✎✞✝�✄☎✏✑✒ ✄✑✁✄�✒✎❝✞☎�✍ �✓ ✞✝☎t ❛✄✞☎❝✔✑ ☎t ✁✄�✝☎✥☎✞✑✒☞

SPARSE OPTIMAL PDE-CONTROL UNDER UNCERTAINTY 639

where, as above, ŷd = yd −A−1f . The added sparsity term is an infinite-dimensional
version of an ℓ2,1-norm, used in finite dimensions to achieve group sparsity structure
or matrix sparsity [29, 32]. In general, for r, p > 0, the ℓr,p-norm of a two-index array
ai,j , 1 ≤ i ≤ n, 1 ≤ j ≤ m, is defined as

‖a‖r,p :=







n
∑

i=1





m
∑

j=1

|ai,j |
r





p

r







1

p

.

In (14), we aim at obtaining shared sparsity structure amongst controls for different
uncertain parameters. If the integrand vanishes at a point x ∈ D, then the controls
for almost all random parameters must vanish at this x, resulting in shared sparsity.
We also notice that the sparsifying term couples the problems for different random
variables ω and thus one cannot integrate over the random space analytically. The
properties and solution algorithms for (14) are the main focus of this paper. Note
that this problem is related to the directional sparsity formulation for time-dependent
optimal control proposed in [21], with the stochastic space taking the role of the time
direction. One of the main differences between the directional sparsity and stochastic
control with shared sparsity is the high dimension of the probability space compared
to the one-dimensional time variable. Due to this difference, the generalized Newton
algorithms used to solve directional sparsity control problems cannot be applied for
the solution of (14). In the next section, we characterize solutions to the shared
sparsity control problem and introduce a regularized variant of (14).

3. Properties of the shared sparsity stochastic control problem. We first
introduce the notation Q : Uad × H → R,

Q(u,m) :=
1

2

∫

Ω

∫

D

((A−1u+A−1Bm− ŷd)
2 + αu2) dx dµ.

First, we summarize necessary and sufficient optimality conditions for solutions to
(14) using the notation introduced in (7).

Theorem 4. The optimal control problem (14) has a unique solution ū ∈ Uad,

characterized by the existence of a corresponding state ȳ ∈ Y , adjoint state p̄ ∈ Y ,

and multiplier λ̄ ∈ V such that

Aȳ − ū− f −Bm = 0,(15a)

A⋆p̄− yd + ȳ = 0,(15b)

−p̄+ αū+ βλ̄+ µ̄ = 0,(15c)

(15d)
λ̄(ω,x) =

ū(ω,x)

‖ū‖Ω(x)
for x ∈ D with ‖ū‖Ω(x) 6= 0

‖λ̄‖Ω(x) ≤ 1 for x ∈ D with ‖ū‖Ω(x) = 0







for a.a. x ∈ D,

µ̄ ≤ 0 if ū = a, µ̄ ≥ 0 if ū = b, and µ̄ = 0 if a ≤ ū ≤ b a.e. in D × Ω.(15e)

Proof. We denote the sparsifying term in (14) by ϕ(u), i.e., ϕ(u) :=
∫

D
‖u‖Ω dx.

It follows from convex analysis [17] that the variational inequality

(16) 〈Qu(ū,m), u− ū〉V + β(ϕ(u)− ϕ(ū)) ≥ 0 for all u ∈ Uad,

is necessary and sufficient for ū to be a solution of (14), where Qu denotes variation
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of Q with respect to u. This is equivalent to

(17) 〈A−⋆(A−1ū+A−1Bm− ŷd) + αū+ βλ̄, u− ū〉V ≥ 0 for all u ∈ Uad,

where λ̄ ∈ V is an element in the subdifferential ∂ϕ(ū) of ϕ at ū. By introducing
the adjoint variable p̄ and a Lagrange multiplier µ̄ ∈ V associated with the bound
constraints in Uad, (17) results in (15a)–(15c) and (15e).

It remains to show that λ̄ ∈ ∂ϕ(ū) is equivalent to (15d). Considering ϕ : V → R,
the subdifferential is defined as

(18) ∂ϕ(ū) =

{

λ ∈ V | 〈λ, v − ū〉V ≤

∫

D

(‖v‖Ω − ‖ū‖Ω) dx for any v ∈ V

}

.

To show equivalence, let us first assume that λ̄ ∈ ∂ϕ(ū). Choosing v := ū + λ̄δ,
where δ ∈ L∞(D), i.e., it only depends on x, we obtain

∫

D
δ‖λ̄‖2Ω dx = 〈λ̄, δλ̄〉V ≤

∫

D
δ‖λ̄‖Ω dx, which implies that ‖λ̄‖Ω ≤ 1. Setting v = 0 in (18) shows that

∫

D

‖ū‖Ω dx ≤ 〈λ, ū〉V ≤

∫

D

‖λ̄‖Ω‖ū‖Ω dx ≤

∫

D

‖ū‖Ω dx,

where we have used Hölder’s inequality for the second estimate. For x ∈ D with
‖ū‖Ω(x) 6= 0, necessarily λ̄(ω,x) = ū(ω,x)/‖ū‖Ω(x). Thus, we have shown that
λ̄ ∈ ∂ϕ(ū) implies that (ū, λ̄) satisfies (15d). Conversely, we assume that ū and λ̄
satisfy (15d) and we split D into D1 = {x ∈ D | ‖ū‖Ω(x) = 0} and D2 = D \ D1. For
any v ∈ V , we then have on D1,

(19)

∫

D1

∫

Ω

λ̄v dµdx ≤

∫

D1

‖λ̄‖Ω‖v‖Ω dx ≤

∫

D1

‖v‖Ω dx =

∫

D1

‖v‖Ω − ‖ū‖Ω dx,

and on D2,

(20)

∫

D2

∫

Ω

λ̄(v − ū) dµdx =

∫

D2

∫

Ω

ū

‖ū‖Ω
(v − ū) dµdx ≤

∫

D2

‖v‖Ω − ‖ū‖Ω dx,

where we have used the Cauchy–Schwarz inequality. Combining (19) and (20), we
find that λ̄ ∈ ∂ϕ(ū), which ends the proof.

We now define the following family of regularized control objectives for ε ≥ 0.

(21) J (u, ε) := Q(u,m) + β

∫

D

(

‖u‖2Ω + ε2
)1/2

dx.

In particular, the objective in (14) is J (u, 0). A result similar to Theorem 4 also holds
for the regularized problem (21), where the objective function is now differentiable.

Corollary 5. The regularized problem (21) with ε > 0 has a unique solution

uε ∈ Uad, characterized by the existence of a corresponding state yε ∈ Y , adjoint

pε ∈ Y , and multiplier λε ∈ V such that

Ayε − uε − f −Bm = 0,(22a)

A⋆pε − yd + yε = 0,(22b)

−pε + αuε + β
uε

√

‖uε‖2Ω + ε2
+ µε = 0 for a.a. x ∈ D,(22c)

µε ≤ 0 if uε = a, µε ≥ 0 if uε = b, and µε = 0 if a ≤ uε ≤ b a.e. in D × Ω.(22d)
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The next result provides a bound for the difference between minimizers of (14)
and its ε-regularized version with objective (21).

Lemma 6. Let D be bounded, ε > 0, and denote by ū the solution to (14), i.e.,
the minimizer of u 7→ J (u, 0), and by uε the minimizer of u 7→ J (u, ε). Then

(23) ‖ū− uε‖
2
V

≤ εβα−1|D|,

where |D| denotes the volume of D.

Proof. Since ū and uε are the unique minimizers of (21) for ε = 0 and ε > 0,
respectively, we have for all v ∈ Uad that

〈(A−⋆A−1 + α)ū, v − ū〉V + β

∫

D

(‖v‖Ω − ‖ū‖Ω) dx ≥ −〈g, v − ū〉V ,(24)

〈(A−⋆A−1+α)uε, v − uε〉V +β

∫

D

(

√

‖v‖2Ω + ε2−
√

‖uε‖2Ω + ε2
)

dx ≥ −〈g, v − uε〉V ,

(25)

where g = A−⋆(A−1Bm− ŷd). Using v = uε in (24) and v = ū in (25), and summing
the resulting inequalities yields

(26) 〈(A−⋆A−1 + α)(uε − ū), uε − ū〉V

≤ β

∫

D

(

‖uε‖Ω − ‖ū‖Ω +
√

‖ū‖2Ω + ε2 −
√

‖uε‖2Ω + ε2
)

dx.

The expression under the integral on the right-hand side can be estimated pointwise:

‖uε‖Ω −
√

‖uε‖2Ω + ε2 − ‖ū‖Ω +
√

‖ū‖2Ω + ε2 ≤
√

‖ū‖2Ω + ε2 − ‖ū‖Ω

≤
ε2

√

‖ū‖2Ω + ε2 + ‖ū‖Ω
≤ ε.

Integrating this estimate over D and combining with (26) proves the result.

In the next two sections, we introduce a first- and a second-order algorithm for
the solution of (21) without bound constraints on the control. Both algorithms avoid
approximation in random space using sampling and only iterate over functions de-
fined on the physical space D. Thanks to the linearity of the governing equation
and the Gaussianity of the uncertain parameter, computations over the (potentially
high-dimensional) random space Ω can be performed analytically. In practice, these
computations can be performed efficiently using low-rank operator approximations as
proposed in section 6.

4. Norm reweighting for shared sparsity control problem. To develop an
efficient algorithm for (14), we make the simplification Uad = V = L2

µ(Ω;L
2(D)),

i.e., we consider a problem without bound constraints on the control. The algorithm
we propose below cannot be generalized to incorporate inequality constraints. Such
constraints would destroy the Gaussianity of the controls in the auxiliary problems we
introduce below. We introduce a family of objective functions that are quadratic in u
and involve the parameter ε ≥ 0 and a weighting function ν : D → R with ν(x) > 0:

(27) J̄ (u, ν, ε) := Q(u,m) +
β

2

∫

D

(

ν‖u‖2Ω + ε2ν + ν−1
)

dx.
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Here, the function ν weights the term ‖u‖2Ω(x), and the latter two terms, which are
not present in (14) will be useful to update the weighting function ν in the algorithm
presented next. Norm reweighting, in the context of underdetermined problems, also
known as IRLS, is commonly used to compute finite-dimensional sparse solutions
vectors. Some of the analysis presented below extends results from [16] to infinite
dimensions. Similar generalizations to infinite dimensions, also for the nonconvex case,
are presented in [23, 24], where the method is referred to as a monotone algorithm.
The basic idea behind these methods applied to the stochastic shared sparsity control
problem is presented next.

For a given, monotonously decreasing sequence (εk)k≥0 with εk > 0, the algorithm
performs alternate minimizations of J̄ (u, ν, ε) with respect to u and ν. Given an
initialization ν0, ν0(x) > 0 for all x ∈ D, we compute, for k ≥ 1, a sequence of
iterates uk = uk(ω,x), νk(x) as follows:

uk+1 = argmin
u∈V

J̄ (u, νk, εk),(28)

νk+1 = argmin
ν∈L∞(D)

J̄ (uk+1, ν, εk+1).(29)

Let us first discuss the minimization (29). Taking variations of (27) with respect to
ν, and using that ν must be positive, (29) implies that

(30) νk+1(x) =
(

‖uk+1‖2Ω(x) + ε2k+1

)− 1

2 .

Note that νk+1 is a function only of x ∈ D and, for each x, it requires integration
over the random space Ω.

Since (28) is a strictly convex least squares3 problem, it has a unique solution
uk+1. Taking variations with respect to u, one finds that uk+1 is characterized by the
optimality condition

(31)
[

A−⋆A−1 + (α+ βνk)
]

uk+1 = A−⋆(yd −A−1(f +Bm)).

After introducing state and adjoint variables yk+1, pk+1 ∈ Y , this is equivalent to

Ayk+1 − uk+1 − f −Bm = 0,

A⋆pk+1 − yd + yk+1 = 0,

−pk+1 + (α+ βνk)uk+1 = 0.

Next, we observe that using the optimality condition (30) in (27) yields

(32) J̄ (uk, νk, εk) = Q(uk,m) + β

∫

D

(

‖uk‖2Ω + ε2k
)1/2

dx = J (uk, εk),

shining light onto the relation between J and J̄ . Note, however, that uk is in general
not a minimizer of u 7→ J (u, εk).

The alternate minimization property (28), (29) shows that the following mono-
tonicity holds for k = 0, 1, 2, . . .:

J̄ (uk+1, νk+1, εk+1) ≤ J̄ (uk+1, νk, εk+1) ≤ J̄ (uk+1, νk, εk) ≤ J̄ (uk, νk, εk).(33)

3The occurrence of this least square problem is the reason why this algorithm is referred to as
the IRLS method in the literature [16].

D
o

w
n
lo

ad
ed

 0
9
/0

8
/1

9
 t

o
 1

9
2
.7

6
.1

7
7
.1

2
5
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



❈�✁✂✄☎✆✝✞ © ✥✂ ✟✠✡☛☞ ✌✍❛✎✞✝�✄☎✏✑✒ ✄✑✁✄�✒✎❝✞☎�✍ �✓ ✞✝☎t ❛✄✞☎❝✔✑ ☎t ✁✄�✝☎✥☎✞✑✒☞

SPARSE OPTIMAL PDE-CONTROL UNDER UNCERTAINTY 643

Here, the first inequality follows from the optimality of νk+1 for (29), the second
inequality from the definition (21) and from εk+1 ≤ εk, and the last inequality from
the optimality of uk+1 for (28).4 The iterates of the algorithm satisfy a boundedness
property summarized in the next lemma.

Lemma 7. Let εk, k = 0, 1, . . . , be a nonincreasing sequence of positive numbers,

and (u0, ν0) a given initialization. Then, the iterates uk satisfy

(34)
∞
∑

k=0

∫

Ω

∫

D

(uk − uk+1)2 dx dµ < ∞.

Proof. The following estimate holds:

J̄ (uk, νk, εk)− J̄ (uk+1, νk+1, εk+1)

≥ J̄ (uk, νk, εk)− J̄ (uk+1, νk, εk)

≥
1

2

∫

Ω

∫

D

(A−1(uk − uk+1))2 + (α+ βνk)(uk − uk+1)2 dx dµ

≥
α

2

∫

Ω

∫

D

(uk − uk+1)2 dx dµ.

Here, the first inequality uses (33), and the second inequality follows from a Taylor
expansion of u 7→ J̄ (u, νk, εk) at uk+1 in the direction uk − uk+1, in which due to
(28) the first-order term vanishes, i.e., 〈uk+1, uk − uk+1〉V = 0. Summing the above
estimate over k proves (34).

Note that the above result implies that, in particular,

∫

Ω

∫

D

(uk − uk+1)2 dx dµ → 0 as k → ∞.

However, Lemma 7 does not imply convergence of the IRLS algorithm when εk → 0.
The next result provides a convergence result for the case that εk → ε̄ > 0.

Lemma 8. Let εk, k = 1, 2, . . . , be a nonincreasing sequence with limk→∞ εk =
ε̄ > 0. Then, for any initialization (u0, ν0), uk → uε̄ strongly in V as k → ∞.

Proof. As above, we denote by pk ∈ V the adjoint variable corresponding to uk.
We consider the derivative of J with respect to u, Ju(u

k, ε̄) = −pk + αuk + βν̄kuk,
where ν̄k = (‖uk‖2Ω + ε̄2)−1/2. Then,

‖ − pk + αuk + βν̄kuk‖V = ‖ − (pk − pk+1) + α(uk − uk+1) + β(ν̄kuk − νkuk+1)‖V

≤ ‖pk − pk+1‖V + α‖uk − uk+1‖V + βε̄−1‖uk − uk+1‖V

+ βε̄−2

∥

∥

∥

∥

uk+1

(

√

‖uk‖2Ω + ε̄2 −
√

‖uk‖2Ω + ε2k

)∥

∥

∥

∥

V

,

where we used that −pk+1 + αuk+1 + νkuk+1 = 0 in the first equality with uk+1 the
minimizer of J̄ (u, νk, ǫk), ν

k defined as in (30) and the assumption εk ≥ ε̄ in the
estimation. Using Lemma 7 and the fact that εk → ε̄ implies that Ju(u

k, ε̄) → 0
as k → ∞. Finally, since ‖Ju(u

k, ε̄)‖V ≥ α‖uk − uε̄‖V , we obtain the postulated
convergence result.

4This monotonicity property of the algorithm is the reason why this class of algorithms are
referred to as monotone algorithms in [23, 24].
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5. Newton method for reweighted shared sparsity control problem.

Rather than using optimization objectives that depend on the control u ∈ V , or both,
on the control u and the weighting function ν, here we propose a reduced objective
that only depends on ν (and on ε). This objective considers u as a function of ν and
thus a numerical scheme for this reduced formulation only requires iterations for ν.
The optimality condition with respect to u in (27) shows that

(35) u = Sνv,

where Sν : V → V and v are defined as

(36) Sν :=
[

A−⋆A−1 + (α+ βν)
]−1

, v := A−⋆(yd −A−1(f +Bm)).

Since for every ν ∈ L∞(D), ν ≥ 0, (35) has a unique solution u, we can consider u as
a function of ν only, leading to the following reduced version of (27),

J̃ (ν, ε) := Q(Sνv,m) +
β

2

∫

D

(

ν‖Sνv‖
2
Ω + ε2ν + ν−1

)

dx.(37)

Note that this is a nonquadratic functional in ν. Its derivative in a direction ν̃ is

J̃ν(ν, ε)(ν̃) =

∫

D

(

A−⋆(A−1Sνv +A−1Bm− ŷd) + αSνv + βνSνv
)

(Sνv),ν(ν̃) dx

+
β

2

∫

D

(

‖Sνv‖
2
Ω + ε2 −

1

ν2

)

ν̃ dx

=
β

2

∫

D

(

‖Sνv‖
2
Ω + ε2 −

1

ν2

)

ν̃ dx,

where (Sνv),ν denotes variation of Sνv with respect to ν, and the first term in the
second expression vanishes since [A−⋆A−1 + (α+ βν)]Sνv − A−⋆(ŷd − A−1Bm) = 0.
Using the L2(D)-inner product, the gradient G of J̃ with respect to ν is thus

(38) G(ν) = ‖Sνv‖
2
Ω + ε2 −

1

ν2
,

where for simplicity, we neglect to denote the dependence of G on ε. Note that using
(35) and (36), and introducing the control, state, and adjoint variables uε, yε, and pε,
the first-order optimality condition G(ν) = 0 is equivalent to the optimality system
(22a), (22b), (22c) with µε = 0. This system uniquely characterizes uε, and thus
the corresponding νε = (‖uε‖

2
Ω + ε2)1/2 satisfies G(νε) = 0 and is thus the unique

minimizer of (37).
A possible choice for an iterative fixed-point method to solve G(ν) = 0 with

ε = εk+1 > 0 is, for given νk, to compute νk+1 from

(39)
1

(νk+1)2
= ‖Sνkv‖2Ω + ε2k+1.

Taking square roots and reciprocals, we thus rediscover the IRLS method from sec-
tion 4 as an iterative fixed point method for solving G(ν) = 0. This also implies that
the gradient can be computed from the iterates of the IRLS algorithm as

(40) G(νk) =
1

(νk+1)2
−

1

(νk)2
,

which provides a possible termination criterion for the IRLS algorithm.
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Computing second variations of J̃ with respect to ν in a direction ν̃ yields the
following Hessian operator,

(41) H(ν)ν̃ = −2β

∫

Ω

(Sνv)⊙ Sν((Sνv)⊙ ν̃) dµ+
2

ν3
⊙ ν̃,

where v as defined in (36) is a Gaussian random process, and ⊙ denotes the pointwise
multiplication in space. That is, for f, g : D → R and h : D × Ω → R, (f ⊙ g)(x) :=
f(x)g(x) , and (h ⊙ g)(x, ω) := h(x, ω)g(x). In the derivation of (41), we have also
used that the derivative of Sνv with respect to ν satisfies (Sνv),ν ν̃ = −βSν((Sνv)⊙ ν̃)
for any random draw v(ω). Thus, the Newton update step at an iterate ν = νk is

−2β

∫

Ω

(Sνkv)⊙ Sνk((Sνkv)⊙ δν) dµ+
2

(νk)3
⊙ δν = −‖Sνkv‖2Ω − ε2k+1 +

1

(νk)2
,

(42a)

νk+1 = νk + δν.(42b)

Due to the computational cost of integration over the (possibly high-dimensional)
random space, an efficient implementation of the IRLS algorithm (section 4) and its
Newton variant (section 5) is challenging. Hence, we next propose low-rank operator
approximations that make these computations feasible. We also present estimates for
the truncation error of these approximations and propose a diagonal preconditioner
for the Newton step (42).

6. Low-rank operator approximations. Since we assume that the (possibly
infinite-dimensional) uncertain parameter m follows a normal distribution, (31), and
equivalently (35), imply that, for given ν, the corresponding control variable also
follows a normal distribution. To be precise, if the distribution of m is µ = N (m0, C0),
then u ∼ N (uν ,Qν) with

uν = SνA
−⋆(yd −A−1(f +Bm0)), Qν = SνA

−⋆A−1BC0B
⋆A−1A−⋆S⋆

ν ,(43)

where Sν is defined as in (36). Here, S⋆
ν is the adjoint operator of Sν with respect to

the L2-inner product, but since Sν is self-adjoint, Sν = S⋆
ν .

In this section, we develop a method that exploits operator properties to enable
the efficient implementation of the algorithms from sections 4 and 5. In particular,
we use properties that are typical, for instance, for inverse elliptic PDE operators, to
construct low-rank operator approximations. Moreover, we provide estimates for the
resulting errors in terms of the truncated eigenvalues of the low-rank approximations.

6.1. Spectral decomposition of A−⋆A−1 and truncation error analysis.

We make the assumption that the symmetric and positive definite solution operator
A−⋆A−1 is a trace class operator, and thus its spectrum is rapidly decaying. This
can be explored to enable fast computations based on low-rank approximations of the
operator Sν , as discussed next. We denote Dν := (α + βν)I, and assume we have a
spectral decomposition of A−⋆A−1 with decreasing eigenvalues λi and corresponding
eigenvectors ui, i ≥ 1. Thus,

(44) Sν = (A−⋆A−1 +Dν)
−1 = (UΛU⋆ +Dν)

−1,

where U⋆v = (〈ui, v〉L2(D))i≥1 ∈ ℓ2 for v ∈ L2(D) and Uy =
∑∞

i=1 yiui for y =
(yi)i≥1 ∈ ℓ2, that is, U and U⋆ are operators corresponding to a change of basis.
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Moreover, Λ is a diagonal operator with entries λi. To approximate (UΛU⋆ +Dν)
−1,

in the following, we will truncate the eigenvalue expansion of A−⋆A−1. However, first
we use the Sherman–Morrison–Woodbury formula and find

Sν = (Dν + UΛU⋆)−1 = D−1
ν −D−1

ν (U(Λ−1 + U⋆D−1
ν U)−1U⋆)D−1

ν .(45)

To show how to control the approximation error resulting from eigenvalue truncation,
we next derive an upper bound for the positive definite operator Sν . To compare
positive definite operators E and F , we say that E 4 F if F−E is positive semidefinite.
Then, because ν is positive, we have U⋆D−1

ν U 4 α−1I, which implies that

Λ−1 +
(

U⋆D−1
ν U

)

4 Λ−1 + α−1I = diag

(

λi + α

αλi

)

.

Consequently,
(

Λ−1 +
(

U⋆D−1
ν U

))−1
< diag

(

αλi

λi + α

)

.

Along with (45), we conclude

(Dν + UΛU⋆)−1
4 D−1

ν −D−1
ν

(

Udiag

(

αλi

λi + α

)

U⋆

)

D−1
ν .

Let us now consider an approximation of A−⋆A−1 obtained by truncation of the
eigenvalue expansion after the r largest eigenvalues. The corresponding truncated
analogues of U and Λ are denoted by Ur and Λr, respectively. Then,

Sν = (Dν + UrΛrU
⋆
r )

−1 +R,(46a)

where
Tr(R)

Tr(Sν)
≤

∑∞

i=r+1
λi

λi+α
∑∞

i=1
λi

λi+α

.(46b)

Here, Tr(·) denotes the operator trace. This shows that the contribution to the
truncation error is small for eigenvalues that are small compared to α. Note that the
truncation error depends on r. This truncation error can be made arbitrarily small
by choosing r large enough. This is of practical importance as it provides guidance on
where to truncate the eigenvalue expansion. We obtain the following approximation
Sν,r of Sν as in (45):

Sν,r := (Dν + UrΛrU
⋆
r )

−1 = D−1
ν −D−1

ν (Ur(Λ
−1
r + U⋆

rD
−1
ν Ur)

−1U⋆
r )D

−1
ν .(47)

Note that the proposed algorithms will only require application of this operator to
vectors, which can be done efficiently as will be discussed in subsection 7.3. To summa-
rize, for given ν, the corresponding optimal controls are normally distributed. Given
a truncated eigenvalue expansion of A−⋆A−1, this distribution can be approximated
by replacing Sν by Sν,r in (43). In the remainder of this section, we derive analogues

for the gradient and Hessian of J̃ building on the approximation Sν,r.

6.2. Gradient and IRLS using low-rank approximation. After character-
izing the distribution of the optimal controls u, both the IRLS algorithm and its
Newton variant require computation of ‖u‖Ω, which involves integration over random
space. To be precise, ‖u‖Ω = ‖u‖Ω(x) is an integration over the Gaussian distribution
N (uν ,Qν) with mean and covariance defined in (43), where Sν is replaced by Sν,r.
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To approximate integration over the random space, we use the square root of Q

given by Q1/2 = SνA
−⋆A−1BC

1/2
0 . Typical properties of C0 and B, as well as the

trace class property of A−⋆A−1, facilitate the approximation of A−⋆A−1BC
1/2
0 with

rank-r̃ operators Er̃F
⋆
r̃ = [e1, . . . , er̃][f1, . . . , fr̃]

⋆ as follows:

(48) Er̃F
⋆
r̃ ≈ A−⋆A−1BC

1/2
0 .

Here, ei ∈ L2(D) and fi ∈ H which we can choose such that f1, . . . , fr̃ are orthonor-
mal. This results in the approximation

(49) Q = Q1/2(Q1/2)⋆ ≈ Sν,rEr̃E
⋆
r̃S

⋆
ν,r.

Thus, ‖u‖2Ω can be approximated by uν(x)
2 +

∑r̃
i=1(Sν,rei)(x)

2 for x ∈ D. Defining

(50) e0 := A−⋆(yd −A−1(f +Bm0))

and recognizing that uν = Sν,re0 allows the more compact notation

(51) ‖u‖2Ω(x) ≈ ‖u‖2Ω,r(x) :=

r̃
∑

i=0

(Sν,rei)(x)
2.

Using this in (38), we find the following approximation Gr(ν) of the gradient of J̃ :

(52) G(ν) ≈ Gr(ν) :=
r̃

∑

i=0

(Sν,rei)
2 + ε2 −

1

ν2

and a very similar expression to update the reweighting function in the IRLS method.

6.3. Hessian using low-rank approximation. We now derive expressions for
the application of the Hessian corresponding to the gradient Gr(ν) to vectors. We do
this by taking derivatives of Gr(ν) with respect to ν in a direction δν. This results in
the following Hessian Hr based on the low-rank approximation,

H(ν)δν ≈ Hr(ν)δν := −2β

r̃
∑

i=0

(Sν,rei)⊙ Sν,r((Sνei)⊙ δν) +
2

ν3
⊙ δν,

where we have used the identity (Sν,rw),ν ν̃ = −βSν,r((Sν,rw)⊙ ν̃). To summarize, a
Newton step based on the low-rank approximation of A−⋆A−1 is as follows:

Hr(ν
k)δν = −Gr(ν

k),(53a)

νk+1 = νk + δν.(53b)

Despite the low-rank approximation, Hr is usually not explicitly available. Hence, this
Newton system must be solved using an iterative method that, such as the conjugate
gradient method, only requires the application of Hr(ν

k) to vectors.

6.4. Preconditioning of the Newton system. The convergence of the conju-
gate gradient (CG) method in each Newton step depends crucially on the availability
of an effective preconditioner. This is particularly true if the Hessian operator is
very ill-conditioned, as is the case due to the 1/ν3 term in Hr, which can vary over
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many orders of magnitude if ε is small. Using the low-rank approximations estab-
lished above, we propose a diagonal preconditioner that is effective in practice, as we
illustrate numerically in section 8. The diagonal of the Hessian Hr(ν) is given by

(54) Pdiag(ν) = −2βdiag(Sν,r)
r̃

∑

i=1

((Sν,rei)⊙ (Sν,rei)) +
2

(ν)3
.

Here, diag(Sν,r) is the diagonal of Sν,r, which can be computed from (47) using that

(55) diag(Ur(Λ
−1
r + U⋆

rD
−1
ν Ur)

−1U⋆
r ) =

r
∑

i=1

ui ⊙ wi,

where wi = (Λ−1
r + U⋆

rD
−1
ν Ur)

−1ui. Note that the terms Sν,rei in (54) are already
available from the gradient computation. Moreover, this diagonal preconditioner de-
pends on ν, which means it must be recomputed for each Newton step.

7. Offline-online algorithms for shared sparsity control problem. The
algorithms presented in this section are the result of combining the norm reweight-
ing algorithms from sections 4 and 5 with the low-rank approximations from sec-
tion 6. For large-scale and thus computationally challenging problems, our method
can be split into an offline phase, itself consisting of a setup and a compute step,
and an online phase. The offline phase includes a setup step, in which we construct
a low-rank approximation for the PDE-solution operator A−⋆A−1 and the operator

A−⋆A−1BC
1/2
0 . This is followed by the offline compute step, in which we solve the

optimization problem (14) or (21). In this step, one can adjust the weight β > 0 for
the sparsity-enhancing term in the objective to obtain the desired sparsity structure
which, in applications, depends on the availability of control devices. In the online
phase, the goal is to compute the optimal control for a specific (and known) realiza-
tion of the uncertain parameter m(ω). Here, one can use the low-rank approximation
for the fast computation of the optimal control for a specific event ω. In this step,
the sparsity structure and operator approximations determined in the offline phase
are used.

7.1. Offline phase. In the offline phase, we first compute a rank-r approxima-
tion of the positive self-adjoint operator A−⋆A−1, i.e.,

(56) A−⋆A−1 ≈ UrΛrU
⋆
r .

As shown in the previous section, the error in the optimal control solution due to
truncation is small when the truncated eigenvalues are small compared to α—see
(46). The low-rank approximation can be found using either the Lanczos method [34],
or a randomized algorithm [20]. These methods only require the application of the
linear operator A−∗A−1 to vectors, i.e., each application amounts to a solve with the
forward and the adjoint PDE operators A and A⋆. Next, we compute e0 according to

(50) and compute a rank-r̃ approximation of A−⋆A−1BC
1/2
0 as follows:

(57) Er̃F
⋆
r̃ ≈ A−⋆A−1BC

1/2
0 ,

where one can use the low-rank approximation (56). In most practical applications,

BC
1/2
0 has a fast decaying spectrum since C0 is a trace class operator and, thus,

typically, r̃ < r. After these preparations, we are ready to either employ the IRLS al-
gorithm (Algorithm 1) or its Newton variant (Algorithm 2). Note that in Algorithm 1,
the expression in the termination criterion (Line 6) is the norm of the reduced gradient
(52) due to the relation (40).
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Algorithm 1 Norm reweighting for shared sparsity control (IRLS).

1: Setup step: Compute (50), (56), and (57).
2: Choose ν0 ∈ L∞(D), ν0(x) > 0 a.e. in D, and ε0 > 0.
3: for k = 0, 1, 2, . . . compute do

4: For ν := νk, define Sν,r as in (47).

5: Compute νk+1 =
(

∑r̃
i=0(Sν,rei)

2 + ε2k+1

)−1/2

.

6: Terminate if the norm of (νk+1)−2 − (νk)−2 is small.
7: Update εk+1 ≤ εk.
8: end for

9: return ν̄ := νk+1, uν̄ , Sν̄,r.

Algorithm 2 Newton-CG norm reweighting for shared sparsity control (NIRLS).

1: Setup step: Compute (50), (56), and (57).
2: Choose ν0 ∈ L∞(D), ν0(x) > 0 a.e. in D, and ε0 > 0.
3: for k = 0, 1, 2, . . . compute do

4: For ν := νk, define Sν,r as in (47).
5: Compute Gr(ν

k) according to (52).
6: Terminate if norm of the gradient is small.
7: Perform CG iterations for Newton system (53) using preconditioner (54).
8: Update εk+1 ≤ εk.
9: end for

10: return ν̄ := νk+1, uν̄ , Sν̄,r.

7.2. Online phase. During the online phase, we compute the optimal control
for a specific realization of the uncertain parameter m(ω). This step uses the weight
function ν̄ found in the offline phase, and also uses the truncated spectral expansion
(46). To be precise, for a sample draw m(ω̂) = m0 + m̂(ω) from N (m0, C0), the
corresponding optimal control û ∈ V is computed as

(58) û = Sν̄,r (e0 − UrΛrU
⋆
rBm̂) ,

where ν̄ and Sν̄,r are as returned by Algorithm 1 or Algorithm 2. Note that the
optimal control û has the sparsity structure determined in the offline phase.

7.3. Computational cost. Here, we summarize and compare the dominant
computational cost of the proposed algorithms. We denote by N the discretization
dimension of the state and control variable, and discuss the complexity of the offline
phase (setup and optimization steps) and the online phase (computation of optimal
control). In the arguments below, we assume that r̃ ≤ r ≪ N .

Offline phase: Setup. In the offline phase, we first compute the truncated spectral
approximation (56). This requires solves with A and the adjoint A⋆. The number of
required solves depends on the spectrum of the operator A−⋆A−1, on the value of α,
and on the truncation error one is willing to commit. The reason why we report the
complexity in terms of PDE solves is that the cost in terms of operations depends on
whether A is available as an assembled matrix, which solvers are applicable to solve
systems with A and A∗, and which solvers are available to a user. To compute a
rank-r approximation usually requires r+ d products with A−⋆A−1, where d is small
(e.g., 10) to obtain a accurate rank-r approximation. If the low-rank approximation
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is computed using a randomized singular value decomposition, then d is the over-
sampling factor [20]. In the Lanczos method, adding d iterations enriches the Krylov
space and thus leads to improved accuracy of the dominant directions. It remains
to estimate the computational work for computing a singular value decomposition

of A−⋆A−1BC
1/2
0 , required to find Er̃ = [e1, . . . , er̃], during the offline phase. This

step can build on the truncated spectral decomposition of A−⋆A−1 and thus does not
require additional PDE solves. Hence, the complexity of the offline setup phase is
2(r + d) PDE solves.

Offline phase: Optimization. After the above setup step, the remaining steps do
not require further PDE solves and we simply estimate the complexity of the proposed
algorithms in terms of elementary linear algebra operations. Let us first consider the
computations required in each iteration of IRLS (Algorithm 1). Note that each step
is equivalent to computing (38), the gradient Gr of the reduced objective J̃ . Thus, the
computational complexity of one IRLS step coincides with computing the right-hand
side for the Newton step (42).

Computing Gr requires application of the operator Sν,r, defined in (47), to vectors.
First, this necessitates the inverse of the r × r matrix (Λ−1

r + U∗
rD

−1
ν Ur). This step

is dominated by the computation of U∗
rD

−1
ν Ur, which amounts to r2N operations.

Since we assume that N ≫ r, this dominates computation of an r× r matrix inverse.
Each application of Sν,r to a vector requires 2rN operations, amounting overall to a
complexity of 2rN(r̃+1) operations to compute ‖u‖Ω. Thus, for the IRLS algorithm,
the computational complexity per iteration is rN(r + 2r̃).

Additionally to the computation of the gradient Gr, each iteration of the NIRLS
method (Algorithm 2) requires the application of the Hessian to one vector in each CG
step, amounting to 2r̃rN operations. It also requires one to set up the preconditioner
matrix, which requires r2N operations as can be seen from (55). Hence, we find that
the computational complexity for one inexact Newton-CG step is 2rN(r + r̃ + r̃ncg),
where ncg denotes the number of CG iterations.

Note that it depends on r, r̃ how much larger the complexity of an NIRLS iteration
is than an IRLS iteration. If r̃ is significantly smaller than r, as in the example
problems in section 8, one CG step only amounts to a fraction of the complexity of
one IRLS step. Finally, note that all steps in the offline optimization algorithms have
optimal complexity, i.e., they depend linearly on the discretization dimension N .

Online phase. In the online phase, the only necessary computation is (58). For
any fixed sample draw m̂(ω), this is a deterministic expression. This online step
requires multiplication of a vector with Ur and its transpose, and it requires one
application of Sν,r to a vector. This amounts overall to about 4rN operations, and
can thus be done fast and potentially in real time, depending on the application.

8. Numerical experiments. We end this paper with a numerical study for the
stochastic control problem with shared sparsity. Our aims are to study the qualitative
effect of the shared sparsity term on the optimal controls (subsection 8.1), and to
investigate the performance and accuracy of the proposed algorithms (subsection 8.2).

For this purpose, we use three model problems, which all use the physical domain
D = (0, 1)2 ⊂ R

2. The boundary is split in ∂D2 = {0}× [0, 1] and ∂D1 = ∂D\∂D2. A
simple finite difference approximation (i.e., the five-point stencil) on a mesh of n× n
points is used to discretize the Laplacian that is part of the differential operator A.
While both algorithms we propose allow for a decreasing sequence of positive values
ε1 ≥ ε2 ≥ · · · , we fix ε to a small value in our tests, and study the influence of that
value on the performance of the methods.
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Fig. 1. Results for Problem 9: Random draws for boundary Neumann data (a). The highlighted
samples are used to compute the optimal controls shown in (b), (c), and (d). Note that the controls
are different but share the same sparsity structure.

Problem 9. This first problem is of the form of Example 1 with k = 0 and
a(x) ≡ 1. Except for the uncertain Neumann boundary data, it coincides with Ex-
ample 1 from [35]. In particular, the PDE operator is A = −∆ with zero Dirichlet
boundary conditions on ∂D1 and Neumann boundary conditions on ∂D2. Further,
yd = sin(2πx) sin(2πy) exp(2x)/6, f ≡ 0, α = 10−5, and β = 10−3. The uncertain
parameter field enters as Neumann data on ∂D2. These data follow an infinite-
dimensional Gaussian distribution with mean m0 ≡ 0. The covariance operator is
given as the inverse elliptic PDE operator C0 = γ(−∂xx)

−1 with homogeneous Dirich-
let boundary conditions at the boundary of ∂D2, i.e., at the two points (0, 0) and
(1, 0), and with γ = 4. It can easily be verified that C0 is a symmetric and positive
definite trace-class operator, and thus defines a valid covariance operator [15]. Ran-
dom draws from this distribution are shown in Figure 1(a), and optimal controls in
the remaining figures in Figure 1.

Problem 10. This problem has the form of Example 2. The data are as in Prob-
lem 9, but the uncertainty enters on the right-hand side of the equation rather than
as Neumann boundary data, and α = 5 × 10−5. The uncertain parameter m is dis-
tributed as an infinite-dimensional Gaussian random field over the two-dimensional
physical domain D. Its mean is m0 ≡ 0 and the covariance operator is the squared
inverse elliptic PDE operator C0 = γ(−∆)−2, where γ = 202 and the Laplace operator
∆ in C0 satisfies homogeneous Dirichlet conditions on {1} × [0, 1] and homogeneous
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a) random draw m b) optimal control for m

Fig. 2. Results for Problem 10: Shown in (a) is a random draw from the Gaussian random field
defined over D. Note that all draws of the random field satisfy a homogeneous Dirichlet condition
on part of the boundary. Figure (b) shows the corresponding optimal control.

Neumann conditions for the remaining boundaries. C0 is a valid covariance operator
on L2(D) as it is symmetric, positive, and trace-class [15]. A random draw from this
distribution and the corresponding optimal control are shown in Figure 2.

Problem 11. This problem has the form of Example 3. In particular, A = −∆−
κ2I with κ = 12 is the indefinite Helmholtz operator. Moreover, f ≡ 0 and yd ≡ 0,
i.e., our aim is to dampen the uncertain Neumann boundary forcing, whose distribu-
tion is as in Problem 9. Optimal controls for α = 5×10−5 and β = 5×10−4 are shown
in Figure 3. This problem is a substantially simplified version of the earthquake en-
gineering/vibration damping problem given as an example in the introduction, where
one aims to find controller locations that are best at actively dampening waves orig-
inating from uncertain boundary forcing. Clearly, this example only uses a single
frequency and a simple model for wave propagation.

8.1. Qualitative solution properties. Let us first discuss the results of Prob-
lem 9 shown in Figure 1. As in the version of this problem not involving uncertain
parameters [35], the distributed controls vanish on parts of the domain. We also find
that increasing β increases sparsity (not shown here). The deterministic optimal con-
trol, i.e., the solution to (13), looks similar to the stochastic optimal controls from
Figure 1 but vanishes near the Neumann boundary. As expected for the stochastic
control problem, the optimal controls corresponding to different realizations of the
uncertain Neumann data differ, but they share the same sparsity structure. Note
that the differences between the optimal controls occur primarily close to the bound-
ary ∂D2, which is where the uncertain Neumann data enter into the problem. This
local effect of different Neumann data is due to the locality properties of the Laplace
operator. A different behavior is found for Problem 11. Here, as can be seen from
Figure 3, the optimal controls differ substantially even far away from ∂D2, which is a
consequence of the nonlocal behavior of the Helmholtz equation solutions. In fact, in
this problem, the only cause for the controls to be nonzero are the Neumann boundary
data, which impact the optimal controls in a nonlocal manner. We also point out that
the solution of the deterministic version (13) of Problem 11 is zero.

8.2. Performance of algorithms. Next, we focus on the accuracy of the low-
rank approximations we employ and the quantitative behavior of our solution algo-
rithms. While first we compare the low-rank approximations for both Problems 9
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Fig. 3. Results for Problem 11: Shown in (a) is the pointwise standard deviation ν−1 of
the optimal controls. All stochastic controls have their support in the gray regions, and vanish in
the white regions. Figures (b), (c), and (d) show the optimal controls corresponding to the same
samples of the uncertain Neumann boundary condition highlighted in Figure 1(a). Note that the
optimal controls are different but have the same sparsity structure.

and 11, the remainder of the results shown in this section are for Problem 11. We
have verified that the behavior of the algorithms for Problem 9 is similar.

Truncation and low-rank approximation. Let us first discuss the low-rank ap-
proximation of A−⋆A−1 and the choice of the truncation. In Figure 4, the spectra of
A−⋆A−1 for Problems 9 and 11 are shown for different mesh resolutions. First, it can
be seen that the eigenvalues converge as the mesh is refined, which is a consequence
of the smoothness of the eigenvectors of the inverse Laplace and Helmholtz operators.
Second, these plots help determine a reasonable truncation for the low-rank approx-
imation. For that purpose, we recall that from the error term in (46) it follows that
the low-rank error depends on how small the truncated eigenvalues are compared to
the value of α (also shown in Figure 4). For our numerical results, we use low-rank
approximations with r = 180 for Problems 9 and 10, r = 150 for Problem 11. For each
example, we show the exact relative truncation error at the solution and the upper
bound (46b), in which we truncate the infinite sums after another 500 eigenvalues.
For Problem 9, the relative truncation error rate is 3.3 × 10−6 while the estimation
is 3.5 × 10−2. In Problem 11, we have a relative truncation error of 1.5 × 10−4 and
the theoretical bound is 3.0 × 10−2. For the problems with the uncertain bound-
ary data, r̃ = 16 results in an approximation of (48) up to machine precision. For
Problem 10, r̃ = 64 is used since the two-dimensional Gaussian random field requires
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Fig. 4. Spectra of A−⋆A−1 for discretizations with n × n points for Problems 9 and 10 (a)
and Problem 11 (b). As reference, we also show the value of α, which allows estimation of the
truncation error as discussed in subsection 6.1.

more approximation vectors. This r̃ captures > 99.9% of (48). We have numerically
verified that the convergence behavior does not change substantially if higher-rank
approximations are used. Moreover, the optimal controls are visually identical when
more basis functions are used, showing that the error due to truncation is small.

IRLS and overrelaxed IRLS. In Figure 5(a), we show the performance of Algo-
rithm 1. We attempt to speed up the algorithm by means of overrelaxation, using the
reweighting function

(59) νk+1 := (1− θ)νk + θν̄k+1,

where θ ≥ 1 and ν̄k+1 is the weight function computed from the (original) IRLS
algorithm. For θ = 1, we recover the original method. Empirical experiments have
led us to choose θ = 1.5, which leads to moderately faster convergence, as can be
seen in Figure 5(a). The IRLS algorithms converge rather slowly but monotonously,
as predicted by the theory and also observed in other contexts [16, 24]. We find the
convergence behavior of the IRLS algorithm to be largely independent of ε and of the
discretization mesh size N .

NIRLS algorithm. Next, we study the performance of the preconditioned Newton-
CG algorithm (Algorithm 2). Since the Newton method is not guaranteed to converge
monotonously and the IRLS algorithm converges rapidly in early iterations, we first
perform 15 overrelaxed IRLS steps, and then switch to NIRLS. Figure 5(b)–(d) shows
performance results of the method for different numbers of preconditioned CG itera-
tions per Newton step, various values of ε, and different discretizations. In Figure 5(b),
(c), we show the norm of the gradient versus the computational cost as discussed in
subsection 7.3. We choose one step of the IRLS algorithm (i.e., one computation of
the gradient Gr) as the unit of cost. The computational complexity of NIRLS itera-
tions is converted to this cost unit to allow for a fair comparison between the different
methods. For instance, following the complexity estimates from subsection 7.3 and
using the specific choices r = 150 and r̃ = 16 used in this problem, the computational
complexity of a step of NIRLS with 3 CG iterations is 2.35× the cost of one IRLS
iteration. This ratio increases to 3.23 if 8 CG iterations are used in each NIRLS step.
As can be seen in Figure 5(b), the NIRLS method converges significantly faster than
the IRLS method. Moreover, a small number of CG steps per Newton iteration results
in the fastest convergence in terms of computational cost. Thus, we use 3 CG steps
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Fig. 5. Convergence behavior of algorithms for Problem 11. Shown in (a) is the reduction of
the norm of the gradient for IRLS and overrelaxed IRLS (or-IRLS) with θ = 1.5 (see (59)). Shown
in (b) is a comparison of the performance of or-IRLS and the preconditioned Newton-CG method
NIRLS for different numbers of CG iterations per Newton step, where we fix n = 128, ε = 10−7.
The figure in (c) compares the convergence of the preconditioned Newton-CG method with different ε
for n = 128 and 3 CG iterations per Newton step. Shown in (d) is a comparison of the convergence
of or-IRLS and the NIRLS method for different mesh sizes n, ε = 10−7, and 3 CG iterations per
Newton step. As discussed in subsection 7.3, in (a)–(c), we use the computational work required for
one IRLS iteration as the unit for the x-axis to compare the computational complexity of the IRLS
algorithms and its Newton variants. In (d), we use the iteration number as the unit for the x-axis
since we study how the number of iterations changes for different discretizations.

per Newton iteration for the remaining tests. Figure 5(c) shows that we observe fast
local convergence for every value of ε and that we observe a mild dependence of the
convergence on the value of ε. Finally, Figure 5(d) compares the convergence for dif-
ferent mesh discretizations and we observe mesh-independent convergence behavior,
which illustrates the efficiency of the diagonal preconditioner.

9. Discussion and remarks. First, let us discuss the role of α > 0. This pa-
rameter plays a significant role in our problem formulation, the proposed solution
algorithms, and their analysis. Positivity of α is required for the deterministic prob-
lem to be formulated in an L2-Hilbert space framework rather than over a space of
measures [8, 33]. Additionally, α > 0 plays a crucial role for the truncation of the
spectral expansion of A−⋆A−1 since we show that the truncation error is small when
the truncated eigenvalues are small compared to α. Both aspects are related to the
regularizing effect positive values of α have on the controls.
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Second, it would be desirable to include control bounds in the proposed algo-
rithms. However, it is not obvious how to achieve this without resorting to more
general algorithms that also apply to nonlinear problems and use random space ap-
proximations, such as stochastic Galerkin/collocation or Monte Carlo methods. The
main difference between bound constraints and the shared sparsity term is that bound
constraints apply to the controls individually for each random event, while the sparsity
term involves integration over the probability space.

Third, the proposed approach can be generalized to uncertain parameters that
do not follow a Gaussian distribution. As long as, for the resulting distribution of
the controls, ‖u‖Ω(x) can be computed efficiently, the reweighting algorithms can be
applied to compute jointly sparse controls.

We believe that several questions raised in this paper deserve further research.
For instance, while challenging, extension to nonlinear problems is worthwhile pur-
suing, as well as the question whether the shared sparsity requirement can help to
reduce the effective dimension of nonlinear problems. Other interesting questions
include a study of the spatial discretization of the problem, extensions to parabolic
governing equations possibly combined with directional sparsity, problem formulation
and algorithms for α = 0, and the question of whether regularization with ε > 0 can
be avoided. A question of potentially general interest is if the Newton variant of the
IRLS algorithm can accelerate the solution of other nonsmooth optimization problems
for which reweighting algorithms are currently used.
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squares minimization for sparse recovery, Comm. Pure Appl. Math., 63 (2010), pp. 1–38.

[17] I. Ekeland and R. Temam, Convex Analysis and Variational Problems, Classics Appl. Math.
28, SIAM, Philadelphia, 1999.

[18] M. Fornasier, S. Peter, H. Rauhut, and S. Worm, Conjugate gradient acceleration of
iteratively re-weighted least squares methods, Comput. Optim. Appl., 65 (2016), pp. 205–
259, https://doi.org/10.1007/s10589-016-9839-8.

[19] S. Garreis and M. Ulbrich, Constrained optimization with low-rank tensors and applications
to parametric problems with PDEs, SIAM J. Sci. Comput., 39 (2017), pp. A25–A54, https:
//doi.org/10.1137/16M1057607.

[20] N. Halko, P. G. Martinsson, and J. A. Tropp, Finding structure with randomness: Prob-
abilistic algorithms for constructing approximate matrix decompositions, SIAM Rev., 53
(2011), pp. 217–288.

[21] R. Herzog, G. Stadler, and G. Wachsmuth, Directional sparsity in optimal control of
partial differential equations, SIAM J. Control Optim., 50 (2012), pp. 943–963, https:
//doi.org/10.1137/100815037.

[22] G. Hytönen, J. van Neerven, M. Veraar, and L. Weis, Analysis in Banach Spaces, Vol.
1: Martingales and Littlewood, Paley Theory, Ergeb. Math. Grenzgeb. (3) 63, 2016, https:
//doi.org/10.1007/978-3-319-48520-1.

[23] K. Ito and K. Kunisch, Optimal control with Lp(Ω), p ∈ [0, 1), control cost, SIAM J. Control
Optim., 52 (2014), pp. 1251–1275, https://doi.org/10.1137/120896529.

[24] K. Ito and K. Kunisch, A variational approach to sparsity optimization based on La-
grange multiplier theory, Inverse Problems, 30 (2014), 015001, https://doi.org/10.1088/
0266-5611/30/1/015001.

[25] D. Kouri, An Approach for the Adaptive Solution of Optimization Problems Governed by
Partial Differential Equations with Uncertain Coefficients, Ph.D. thesis, Rice University,
Houston. TX, 2012.

[26] D. P. Kouri, M. Heinkenschloss, D. Ridzal, and B. G. van Bloemen Waanders, A trust-
region algorithm with adaptive stochastic collocation for PDE optimization under uncer-
tainty, SIAM J. Sci. Comput., 35 (2013), pp. A1847–A1879.

[27] D. P. Kouri and T. M. Surowiec, Risk-averse PDE-constrained optimization using the con-
ditional value-at-risk, SIAM J. Optim., 26 (2016), pp. 365–396, https://doi.org/10.1137/
140954556.

[28] K. Kunisch, K. Pieper, and B. Vexler, Measure valued directional sparsity for parabolic
optimal control problems, SIAM J. Control Optim., 52 (2014), pp. 3078–3108, https://doi.
org/10.1137/140959055.

[29] J. Liu, S. Ji, and J. Ye, Multi-task feature learning via efficient ℓ2,1-norm minimization, in
Proceedings of the Twenty-Fifth Conference on Uncertainty in Artifical Intelligence, AUAI
Press, Corvallis, OR, 2009, pp. 339–348, https://arxiv.org/abs/1205.2631, (2012).

[30] K. Mohan and M. Fazel, Iterative reweighted algorithms for matrix rank minimization, J.
Mach. Learn. Res., 13 (2012), pp. 3441–3473.

[31] F. Negri, G. Rozza, A. Manzoni, and A. Quarteroni, Reduced basis method for parametrized
elliptic optimal control problems, SIAM J. Sci. Comput., 35 (2013), pp. A2316–A2340,
https://doi.org/10.1137/120894737.

[32] F. Nie, H. Huang, X. Cai, and C. H. Ding, Efficient and robust feature selection via
joint ℓ2,1-norms minimization, in Advances in Neural Information Processing Systems
23, Curran Associates, Red Hook, NY, 2010, pp. 1813–1821, http://papers.nips.cc/paper/
3988-efficient-and-robust-feature-selection-via-joint-l21-norms-minimization.pdf.

[33] K. Pieper, Finite Element Discretization and Efficient Numerical Solution of Elliptic and
Parabolic Sparse Control Problems, Dissertation, Technische Universität München, Mu-
nich, 2015.

D
o

w
n
lo

ad
ed

 0
9
/0

8
/1

9
 t

o
 1

9
2
.7

6
.1

7
7
.1

2
5
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



❈�✁✂✄☎✆✝✞ © ✥✂ ✟✠✡☛☞ ✌✍❛✎✞✝�✄☎✏✑✒ ✄✑✁✄�✒✎❝✞☎�✍ �✓ ✞✝☎t ❛✄✞☎❝✔✑ ☎t ✁✄�✝☎✥☎✞✑✒☞

658 CHEN LI AND GEORG STADLER

[34] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, Philadelphia, 2003,
https://doi.org/10.1137/1.9780898718003.

[35] G. Stadler, Elliptic optimal control problems with L1-control cost and applications for the
placement of control devices, Comput. Optim. Appl., 44 (2009), pp. 159–181, https://doi.
org/10.1007/s10589-007-9150-9.

[36] H. Tiesler, R. M. Kirby, D. Xiu, and T. Preusser, Stochastic collocation for optimal control
problems with stochastic PDE constraints, SIAM J. Control Optim., 50 (2012), pp. 2659–
2682.

D
o

w
n
lo

ad
ed

 0
9
/0

8
/1

9
 t

o
 1

9
2
.7

6
.1

7
7
.1

2
5
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p


