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Abstract We present a simple, physical explanation of 

underlying microscopic mechanisms that lead to the 

emergence of the negative phenomena in ferroelectric 

materials. The material presented herein is inspired by the 

pedagogical treatment of ferroelectricity by Feynman and 

Kittel. In a toy model consisting of a linear one-dimensional 

chain of polarizable units (i.e., atoms or unit cells of a crystal 

structure), we show how simple electrostatic interactions can 

create a microscopic, positive feedback action that leads to 

negative capacitance phenomena. We point out that the 

unstable negative capacitance effect has its origin in the so 

essential to explain displacement type ferroelectrics. 

Furthermore, the fact that even in the negative capacitance 

state, the individual dipole always aligns along the direction of 

the local electrical field not opposite is made clear through the 

S -shaped polarization vs. 

applied electric field curve emerges out of the electrostatic 

interactions in an ordered set of polarizable units is shown.  

I. INTRODUCTION 

The negative capacitance effect in ferroelectric materials 

can be utilized to enable continued performance gains in the 

complementary metal-oxide-semiconductor (CMOS) 

platforms. When used in the gate dielectric stack of a metal-

oxide-semiconductor field-effect transistor (MOSFET), a 

ferroelectric oxide owing to its negative capacitance properties 

can provide a passive voltage amplification of the gate voltage 

at the oxide-semiconductor interface. This effect can lower the 

sub-threshold slope below the fundamental Boltzmann limit of 

60 mV/decade [1]. Such steep switching in negative 

capacitance field-

aggressive scaling of the power supply voltage, thereby, 

allowing for significant reduction of power dissipation in the 

CMOS technology. To date, different aspects of ferroelectric 

negative capacitance phenomena have been demonstrated in 

different experimental set-ups such as ferroelectric capacitors, 

ferroelectric-dielectric heterostructures and superlattices and 

NCFETs.  

The underlying theory of ferroelectric negative capacitance 

as proposed by Salahuddin et al. 

phenomenological theory of phase transitions. The free energy 

density of a ferroelectric material can be expanded in an even 

order polynomial of the polarization which through the Landau-

Khalatnikov equation, leads to the following relation between 

the applied electric field E and the polarization P.  

  (1) 

Here, , ,  are anisotropy constants. Polarization is 

equivalent to the surface charge density. Furthermore, 

 where T is the temperature,  is the Curie 

temperature and  is a positive constant. Below Curie 

temperature, , and the E vs. P S -shape 

where under certain range of E and P, the curve has a negative 

slope and hence a negative capacitance (i.e., 

 being the ferroelectric thickness). 

Between the coercive field (+EC and -EC), the polarization P is 

a multiple valued function of E. The negative capacitance states 

are unstable in a free-standing ferroelectric material; hence in 

the absence of an applied electric field, the ferroelectric gets 

spontaneously polarized in either of the stable states (+P0, -P0) 

indicated by points A and B in fig. 1(a). For a detailed treatment 

of stability of the negative capacitance state, the readers are 

referred to Ref. [2].  

First appeared in the classic 1937 paper [3,4], the Landau 

framework takes a phenomenological, mean field and 

symmetry-based approach to analyze phase transitions. Right 

after the discovery of ferroelectricity in BaTiO3 in early 1940s, 

the Landau theory was first applied to ferroelectric oxides led 

 
 

Fig. 1. -shaped polarization P vs. applied electric field 

E curve of a ferroelectric material. (b) One of the earliest illustrations 

-shaped P vs. E curve appeared in Landauer et al. in Ref. 

[7]. Similar illustration appeared in Ref. [8]. In these reports, the 

properties of the negative capacitance region were not explicitly 

jumps. 

Reproduced with permission from Ref. [7]. 
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the works of Ginzburg and Devonshire [5, 6]. However, in none 

of these early works and the ones that followed, the negative 

capacitance region in ferroelectric was explicitly discussed 

ry serves as a 

reliable, conceptual bridge between microscopic models and 

observed macroscopic phenomena, the theory itself leaves out 

the physical, microscopic details of the phenomenon it 

describes. These two facts in fact has created multitudes of the 

confusion whether the negative capacitance effect is a real, 

physical phenomenon or an unphysical, artificial construct for 

the convenience of the phenomenology (the Landau theory 

neither implicitly nor explicitly implies the latter). To date, all 

of the theoretical analysis of negative capacitance effects and 

modeling and simulation of NCFETs starts with Eq. 1 or its 

variants all based on the Landau framework. What is missing in 

the current discussion of negative capacitance is a physical 

picture that explains the microscopic origin of the negative 

capacitance in ferroelectric materials. As such, in this invited 

article, we take on this task to present a simple, atomic scale 

model that elucidates the underlying physical mechanisms 

responsible for this phenomenon. We point out that the unstable 

negative capacitance effect has its origin in the so called 

which is generally 

used in the ferroelectric literature to explain the emergence of 

ferroelectricity of displacement type.  

Another commonly held misconception is that, in the 

negative capacitance state even when it is stabilized by putting 

a positive capacitor in series, the ferroelectric dipoles align 

fundamentals of thermodynamics. To resolve this issue, we 

make the point that it is important to distinguish between the 

applied electric field and the local electric field (the field that 

the dipoles feel). The local electric field is, in fact, the sum of 

the applied electric field and the effective dipole field (mean 

field) created by all the other dipoles. It is only when the 

polarizability of the ferroelectric dipoles attains a large enough 

value to create an atomic scale positive feedback mechanism 

such that the local field overcompensates the applied field and 

the unstable negative capacitance phenomena and the 

polarizability of the dipoles always remains positive and the 

dipoles always remain in the same direction of the local electric 

field the dipole aligns opposite only to the applied electric 

field. Building upon the pedagogical treatment of 

S -shaped 

dipole moment p vs. applied electric field E curve emerges from 

a toy model consisting of a linear one-dimensional chain of 

polarizable units.  

II. A MICROSCOPIC TOY MODEL OF FERROELECTRICS 

AND NEGATIVE CAPACITANCE 

Let us consider a linear, one dimensional chain of 

polarizable units with a spacing of a. on which an electric field 

E is applied along the chain axis (Fig. 2). The treatment 

presented herein is influenced by the pedagogical writing of 

Feynman in Ref. [9]. A more rigorous treatment along the same 

lines based on Clausius-Mossotti relation available in Ref. [10]. 

The polarizable unit here can represent an atom or a bond or a 

unit cell of a crystal. For the sake of simplicity, we first assume 

that these units have a linear polarizability  such that the 

dipole moment p and the local electric field is relation by 

the following relation.  

    (2) 

Here,  is the vacuum permittivity. The field created by a 

dipole at a distance r from the along its axis is given by 

 . Hence, at a given dipole, the electric field due to the 

interaction with all the other dipoles in the chain is  

 

 (3) 

This particular calculation of  is repeated from Ref. [9] 

Here,  is a structural factor. In the calculations that follow, we 

will not pay attention to the value of , rather treat it as a 

variable that depends on the arrangement of the units.   will 

have a different value if the dipoles have a different 

arrangement (e.g. three dimensional cubic, tetragonal, or 

orthorhombic lattice). Note that the local electric field is the 

sum of the applied electric field E and the electric field created 

by all the other dipoles , i.e., 

   (4) 

It is interesting to note that, the dipole moment p depends 

on the local electric field  (Eq. 2), which in turn depends 

on p through Eq. 4 thereby creating a microscopic positive 

feedback. A block diagram representation is shown in Fig. 3. 

Combining Eq. (2), (3) and (4), we obtain the following 

expression.  

   (5) 

Rearranging this equation, we obtain,  

    (6) 

 
Fig.2. A linear, one dimensional chain of polarizable units with a 

spacing of a. The electric field created by a polarized dipole is also 

shown.  
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and scaled dielectric constant,  is given by the following 

relation.  

  (7) 

The polarizability  is generally inversely proportionate to 

the temperature T (i.e., . At Curie temperature Tc, 

 for which the scaled dielectric constant  shows a 

singularity. For T>Tc, , and p=0 is stable solution of 

Eq. 5 for E=0. Physically, it means that in the absence of an 

applied electric field, the dipoles are not polarized and the 

dipole moment and the local electric field are both zero. It can 

be shown that Eq. 7 leads to the Curie-Weiss dependent of  

on temperature (i.e., .  

Of particular interest to our analysis is the case when 

 and the scaled dielectric constant  becomes negative. 

As the ferroelectric material is cooled down from a temperature 

higher than TC to below that, the resulting negative value of  

amplifies small thermal fluctuations in dipole moments through 

the positive feedback mechanism in the absence of an applied 

electric field E. As soon as a dipole electric field  

however small emerges due to the fluctuations of p, it 

regeneratively increases p. In the ferroelectric literature, this 

electric field, any thermal fluctuation of dipole moment sets up 

a local electric field that spontaneously polarizes the dipoles.  

The point to note here is that it is the negative dielectric 

constant or the negative capacitance at T<TC that sets off the 

polarization catastrophe and leads to the emergence of the 

spontaneous polarization in ferroelectric material. By 

introducing time dependent, kinetic terms in Eq. (2) and (5), it 

can be shown that p=0 is no longer a stable solution of the 

system when T<TC and  

III. THE EMERGENCE OF THE SPONTANEOUS 

POLARIZATION AND THE S -SHAPED P-E CURVE 

Now that we have seen at T<TC, the negative capacitance 

sets off the positive feedback mechanism that tends to increase 

the dipole moment p in an unbounded fashion, we now address 

what stops this run-way process such that p settles down to 

stable spontaneous polarization states indicated by points A and 

B in fig. 1 (in fig. 1, the polarization P is a scaled version of the 

dipole moment p). To explain the emergence of the stable 

spontaneously polarized state, we need to add the next level of 

details by considering the non-linearity in the polarizability in 

the dipole moment. An electric field stretches a dipole

however, a dipole is not infinitely stretchable. With the increase 

of the local electric field beyond a critical value, the dipole 

moment is not expected to increase any further. We assume that 

the saturation dipole moment is ,  being the 

critical saturation local electric field. For the sake of simplicity, 

we assume the following relation between p and Elocal:  

   (8) 

where . When , we get back the 

linear relation between p and  as in Eq. (2). Combining 

Eq. 2, 3, 4 and 8, we obtain 

   (9) 

Using the identity:  in Eq. (9), the 

following relation is obtained.  

  (10) 

Assuming ,  being a positive constant, and 

, Eq. 10 can be simplified as follows.  

 (11) 

Fig. 4 plots p/pmax vs. E/Ecr curves using Eq. 11 for Tc/T=0.6, 

S -shaped p-E curve clearly emerges for 

T<Tc. In fig. 4, the stable p=0 at T>Tc is indicated point P. As 

the temperature reduces below Tc, the point P no longer remains 

stable due to the instability of negative capacitance. At this 

point, as soon as thermal fluctuations cause the dipole moment 

p to attain a small value, the dipole moment p traverses a path 

-shaped curve in a transient path and settles at 

one of the stable spontaneously polarized states (for example, 

at points A or B for T/Tc=1.4 in fig. 4).  

In the regime where  and , we expand 

Eq. 10 to obtain the following relation.  

 

 (12) 

Thus, from our toy model, we arrive at an odd order 

expansion of the applied electric field E in terms of p as in Eq. 

1.  Comparing Eq. 12 with Eq. 1, 

, ,  and so 

on. 

 
Fig.3. The positive feedback mechanism at the atomic scale.   
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 An important point to note in this analysis is that the 

polarizability of the polarizable units is always positive i.e., 

the dipole always aligns along the direction of the local electric 

field. This is because p and Elocal always have the same sign in 

Eq. 2 and 8. It is in fact the case, at T<Tc, the polarizability 

attains a large positive value which leads to the negative 

capacitance phenomena and the emergence of ferroelectricity. 

Given the limited scope of the article, we intentionally 

excluded a discussion of the stabilization mechanism of the 

otherwise unstable negative capacitance states which is 

described in details elsewhere. In a stabilized negative 

capacitance state in a ferroelectric-dielectric series combination 

and an NCFET, the polarization and the external electric field 

in the ferroelectric are in opposite direction however, the local 

electric field and the polarization are still in the same direction. 

IV. CONCLUSIONS 

We have presented a physical, microscopic picture of the 

emergence of negative capacitance in ferroelectric materials. 

We have shown that a large dielectric polarizability set off an 

atomic scale, positive feedback mechanism that aligns the 

dipoles opposite to the applied electric field but not to the local 

electric field. This situation is unstable and hence transient. The 

instability there c

and the dipoles become spontaneously polarized even in the 

absence of an applied electric field. By assuming a non-linear 

polarizability of the dipoles, S -shaped dipole 

moment p vs. applied electric field E curve emerges from a toy 

model consisting of a linear one-dimensional chain of 

polarizable units (i.e., atoms or dipoles or crystal unit cells).  

It is important to note that polarization reversal generally 

occurs through domain nucleation and growth mechanisms 

especially in ferroelectric capacitors with lateral dimensions of 

-shaped polarization 

vs. applied electric curve also had a hysteresis in recent 

experimental work reported in Ref. [11, 12, 13]. The effects of 

domain mediated switching in such observation of negative 

capacitance was analyzed in Ref. [14]. In fact, the topic of 

intrinsic, homogeneous and single domain switching has 

appeared in the ferroelectric literature since the 1950 in the 

c 7, 15, 

16]. It is interesting that in nanoscale ferroelectric HfO2 gated 

field-effect transistors where the dimensions are of a few tens 

of nanometers, the evidence of single domain switching has 

been claimed to have been observed in Ref. [17]. Further 

analysis of such nanoscale devices will elucidate more about 

the nature of negative capacitance and its stability of associate 

ferroelectrics.  
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Fig.4. p/pmax vs. E/Ecr curves for Tc/T=0.6, 1.01, 1.4 and 1.7 

plotted using Eq. 11: . 

Note that pmax is a function of T as well.  
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