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Abstract
Cave oxygen isotope (δ18O) records have been important in characterizing Asian Monsoon variations on a wide range of 
timescales. The climatic significance of the δ18O proxy of the cave records and its main control factors, however, remain hotly 
debated, especially with respect to annual to decadal timescales. In particular, while the spatial and intensity variations of 
the Western Pacific Subtropical High (WPSH) affects the East Asian Monsoon remarkably on annual to decadal timescales, 
cave records up to present do not show clear evidence of the WPSH signal. Here we report a new high-resolution (average 
of 1.5 months) δ18O record from Dongshiya Cave, Qinling Mountain, central China. The region is highly sensitive to vari-
ations in the position of the WPSH western boundary, which in turn regulates the alternation of dominant moisture sources 
between the proximal Pacific Ocean and the remote Indian Ocean. Together with another cave record near the WPSH western 
boundary, we established a new index to reconstruct variations of the WPSH western boundary over the past 200 years. Our 
new data revealed two significant periodicities, 12 and 2–7 years respectively, that can be causally linked to solar and ENSO 
variances correspondingly.

Keywords  Speleothem · Oxygen isotopes · Asian Monsoon · WPSH

1  Introduction

Speleothem oxygen isotope (δ18O) records have been widely 
used to characterize Asian Monsoon (AM) variations on a 
wide range of timescales from orbital (e.g., Cheng et al. 
2006, 2009a, 2016; Wang et al. 2008; Cai et al. 2015) and 
millennial (e.g., Wang et al. 2001; Cheng et al. 2009a; Yuan 
et al. 2004; Hu et al. 2008; Yang et al. 2010; Zhao et al. 
2010; Jiang et al. 2016; Chen et al. 2016) to centennial-
multidecadal (e.g., Fleitmann et al. 2003; Wang et al. 2005; 
Cheng et al. 2009b; Liu et al. 2013; Sinha et al. 2015; Tan 
et al. 2009, 2011, 2015) and decadal–annual (e.g., Zhang 
et al. 2008; Orland et al. 2015; Tan et al. 2014, 2016; Zhao 
et al. 2015; Li et al. 2017). While speleothem δ18O vari-
ability has been widely attributed to changes in δ18O of pre-
cipitation (e.g., Cheng et al. 2012, 2016; Tan 2009, 2011, 
2013, 2016; Tan and Nan 2010; Tan et  al. 2009, 2011, 
2014, 2015, 2016; Duan et al. 2016), the climate interpre-
tation of this isotope proxy remains a subject of intensive 
debate. The δ18O variability on decadal to annual timescales 
has essentially been regarded as an expression of (a) the 
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‘amount effect’ on the basis of an inverse correlation with 
the local–regional precipitation amount (e.g., Zhang et al. 
2008; Zhao et al. 2015; Tan et al. 2009, 2011, 2014, 2015, 
2016; Jiang et al. 2012; Goldsmith et al. 2017), or (b) the 
‘circulation effect’, reflecting different moisture sources and 
trajectories controlled by different modes of atmospheric 
circulations (e.g., Tan 2009, 2011, 2013, 2016; Tan and Nan 
2010; Dayem et al. 2010; Clemens et al. 2010; Pausata et al. 
2011; Caley et al. 2014; Maher 2008).

The ‘amount effect’ interpretation of Chinese cave δ18O 
records is somewhat perplexing. Indeed, statistically signifi-
cant anti-correlations of speleothem δ18O values and instru-
mental rainfall amount or wet/dry indexes were observed 
over the past ~ 60 years (e.g., Zhang et al. 2008; Zhao et al. 
2015; Tan et al. 2009, 2016; Jiang et al. 2012; Li et al. 2017). 
However, this apparent ‘amount effect’ is essentially dif-
ferent from the sensu-stricto amount effect which refers to 
the observed decrease in rainfall δ18O value with increased 
rainfall amount in tropics where deep convection events pre-
vail (e.g., Dansgaard 1964; Rozanski et al. 1993). In the sub-
tropical AM region, the apparent ‘amount effect’ observed 
for cave records is basically an overall negative correlation 
between the precipitation δ18O and precipitation amount on 
annual to decadal timescales, which may be largely con-
trolled by changes in moisture sources (e.g., Maher 2008; 
Maher and Thompson 2012; Dayem et al. 2010; Clemens 
et al. 2010), rather than the convectional amount effect 
mechanism. For instance, in the Asian summer monsoon 
fringe area (such as Wanxiang and Wuya caves), relatively 
more precipitation in summer time will increase the amount 
of precipitation with more negative δ18O value originated 
from remote sources (Cheng et al. 2012), thus resulting in 
more negative weighted mean annual δ18O as seen in Chi-
nese cave records (e.g., Wang et al. 2001; Zhang et al. 2008; 
Tan et al. 2014; Cheng et al. 2009a, 2016).

More broadly on millennial–orbital timescales, Chinese 
cave records were commonly used as a proxy indicating the 
AM intensity in general (Cheng et al. 2012). Yuan et al. 
(2004) invoked the Rayleigh fractionation and suggested 
that changes in the fraction of water vapor rained-out along 
the moisture trajectory between tropical sources and the cave 
site could account to first order for the observed variability 
in the cave records. In addition, Cheng et al. (2009a, b) pro-
posed that changes in the fraction of low δ18O monsoon rain-
fall (or essentially summer rainfall) in annual totals could 
also explain the cave δ18O records. Model studies actually 
support, rather than contradict, these ideas, although some 
of them emphasized the ‘upstream depletion’ instead of the 
‘local depletion’ at cave site (e.g., Le Grande and Schmidt 
2009; Pausata et al. 2011). In sum, for both model and obser-
vational results, the lower δ18O implies higher spatially inte-
grated monsoon rainfall between tropical monsoon sources 
and cave sites, and vice versa (Cheng et al. 2016).

Recently, Tan (2009, 2011, 2013, 2016) proposed a dis-
tinct ‘circulation effect’, which regards the Indian summer 
monsoon (ISM) as the main driver, bringing the remote 
moisture from the Indian Ocean to the monsoon region in 
eastern China. This occurred at times when the Western 
Pacific Subtropical High (WPSH) was weak and shifted 
eastward, and the moisture is thus characterized by the com-
parably low δ18O values, reflecting large Rayleigh distilla-
tion along a longer trajectory. In contrast, when the WPSH 
strengthened and shifted westward, the East Asian summer 
monsoon (EASM) delivers more proximal moisture from 
the West Pacific Ocean and/or the South China Sea to east-
ern China, giving rise to higher precipitation δ18O values. 
Indeed, the WPSH variability plays an important role in the 
climate regime of the Asian-Pacific region (e.g., Nitta 1987; 
Huang and Li 1989; Wu and Liu 2003; Wu et al. 2004; Wang 
et al. 2000, 2013; Liu et al. 2001; Xie et al. 2009; Zhou et al. 
2009; Cao et al. 2009, 2012, 2016). In particular, the posi-
tive atmosphere–ocean feedback (Wang et al. 2000, 2013; 
Xie et al. 2009) and energy dispersion between the WPSH 
and the Indo-Pacific warm pool (Nitta 1987; Huang and Li 
1989) are interactively connected with the AM system (Wu 
et al. 2004; Liu et al. 2001; Zhou et al. 2009; Cao et al. 2012, 
2016; He and Zhou 2014, 2015a, b; He et al. 2015). As a 
result, a strong WPSH at more southwestern location may 
weaken the ISM over the Bay of Bengal, and strengthen the 
EASM over the South China Sea and the Western North 
Pacific, vice versa (e.g., Gong and Ho 2002; Zhou et al. 
2009; Cao et al. 2012, 2016).

In order to gain further insights into the climate implica-
tion of cave δ18O records in the EASM region, the high-res-
olution records with precise age control covering the recent 
decades are critical, because only these comparably young 
and high-resolution records can be directly and precisely 
compared to both instrumental data and meteorological 
observations, including the variability of the WPSH. Here, 
we present a high-resolution (~ 1.5 months) and well-dated 
δ18O speleothem record from Dongshiya cave, Luanchuan, 
Henan Province, China, covering the last ~ 200 years. The 
cave is located in a key EASM area, close to the western 
boundary of the WPSH (Fig. 1). This unique setting allows 
us to test the ‘circulation effect’, because the precipitation 
δ18O at this location is presumably much more sensitive to 
the WPSH position (Zhao et al. 2014) and, thus, to changes 
in the moisture sources and trajectories (the Indian Ocean 
vs. the Pacific Ocean/South China Sea). We explore the con-
trolling factors of the δ18O proxy on centennial to annual 
scales in the EASM region by comparing our new data and 
previous records from the region with instrumental data of 
the WPSH. On the basis of the comparison, we then reveal 
the WPSH variability over the last 200 years and the pos-
sible cause of it.
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2 � Geological setting and sample collection

Dongshiya (DSY) Cave (111°34′E, 33°46′N, 840 m a.s.l.) 
and Jiguan Cave (900 m a.s.l.) (Fig. 1) are investigated in 
this study. The two caves (~ 300 m away from each other) are 
located in the Funiu Mountain in the eastern branch of the 
Qinling Mountains, ~ 5 km southwest of Luanchuan, central 
China. The host rock is the Cambrian limestone (Cai et al. 

2008). The site is sensitively affected by both EASM and 
ISM with their relative strength linked closely to the position 
and intensity of the WPSH (Zhao et al. 2014). Most of the 
rainfall (~ 80%) in the area falls during the summer monsoon 
season (May–October). Mean annual temperature and pre-
cipitation recorded by a meteorological station ~ 5 km from 
the cave are 13.1 °C and 840 mm (1957–2014 AD), respec-
tively. The vegetation above the cave is deciduous broad 

Fig. 1   Map of cave sites, moisture fluxes and geopotential heights. 
Cave sites (circles and labels), moisture fluxes integrated from 1000 
to 300 hPa and geopotential heights at 500 hPa for July–September 
during 1948–1979 (a) and 1980–2016 (b), respectively. a Red star 
shows Dongshiya Cave. Blue circles depict cave locations: Shihua 
Cave (SH, Li et  al. 2017), Xianglong Cave (XL, Tan et  al. 2016), 
Dongge Cave (DG, Zhao et  al. 2015), Wuya Cave (WY, Tan et  al. 
2014), Yuhua Cave (YH, Jiang et al. 2012), Huangye Cave (HY, Tan 
et  al. 2011), Heshang Cave (HS, Hu et  al. 2008), Wanxiang Cave 

(WX, Zhang et  al. 2008), and Xiaobailong Cave (XBL, Tan et  al. 
2016). Numbers in b show the confidence levels of correlation coef-
ficient between the cave δ18O records and the changes of the WPSH 
western boundary (the WPSH data from NCCC: http://cmdp.ncc-
cma.net/Monit​oring​/cn_index​_130.php) (e.g., Zhao 1999; Zhou et al. 
2009). Moisture fluxes (kg m−1  s−1) and geopotential heights (gpm) 
are based on the monthly reanalyses data from the National Center 
for Environmental Prediction (NCEP) and the National Center for 
Atmospheric Research (NCAR)

http://cmdp.ncc-cma.net/Monitoring/cn_index_130.php
http://cmdp.ncc-cma.net/Monitoring/cn_index_130.php
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leaf trees and shrubs. An active calcite stalagmite DSY1201, 
14.0 cm in height and 7.5 cm in diameter, formed ~ 45 m 
behind the Dongshiya cave entrance. Another active cal-
cite stalagmite, DSY1204, 60.9 cm in height and ~ 20.0 cm 
in diameter, was found ~ 110 m behind the entrance. Both 
samples were collected in April, 2012. Here we report the 
stable isotope record from stalagmite DSY1201, and use the 
DSY1204 record from the top 2.3 cm for a replication test. 
In addition, a monitoring work was carried out in Jiguan 
Cave from 2009 to 2017, which shows that the cave rela-
tive humidity was > 90%, and cave air temperature was 
16.0 ± 2.0 °C (Sun 2017), close to the local mean annual air 
temperature at cave site.

3 � Analytical methods

3.1 � 230Th dating

A total of 28 subsamples were drilled from a cut and pol-
ished slab of DSY1201 using the carbide dental burrs with 
diameters of 0.3–1.0 mm. The powdered subsamples were 
230Th-dated using multi-collector inductively coupled 
plasma mass spectrometry (Neptune Plus, Thermo-Scien-
tific) in the Isotope Laboratory of Xi’an Jiaotong University, 
China. All errors are reported as 2σ. Standard chemistry 
procedures were used to separate U and Th (Edwards et al. 
1987; Edwards 1988). A triple-spike (229Th–233U–236U) 
isotope dilution method was employed to correct for instru-
mental fractionation and determine U/Th isotopic ratios 

and concentrations. The instrumentation, standardization, 
and half-lives are reported in Cheng et al. (2000, 2013). All 
U/Th isotopes were measured in peak-jumping mode on a 
MasCom multiplier placed behind the retarding potential 
quadrupole. We followed procedures to characterize the 
multiplier similar to those described in Cheng et al. (2000). 
Uncertainties in U/Th isotopic data were calculated offline, 
including corrections for blanks, multiplier dark noise, 
abundance sensitivity, and spike composition. 230Th ages 
were corrected using an initial 230Th/232Th atomic ratio of 
4.4 ± 2.2 × 10−6, a values for a material at secular equilib-
rium with the bulk earth 232Th/238U value of 3.8. The U and 
Th decay constants are reported in Cheng et al. (2013).

3.2 � Layer counting

The Dongshiya stalagmites consist of couplets of a dark 
compact calcite (DCC) lamina, composed of micritic cal-
cite, and a white porous calcite (WPC) lamina, composed of 
elongated columnar calcite (Fig. 2a) (cf. Genty and Quinif 
1996; Frisia et al. 2000). The couplets, interpreted as annual 
cycles that formed in response to changing water excess 
(Genty and Quinif 1996; Mattey et al. 2008), were counted 
using high-resolution images obtained by a Zeiss Axio-
Scope-A1 microscope in the Isotope Laboratory of Xi’an 
Jiaotong University. Couplets were counted six times by 
different people along the growth axis (Fig. 2a), giving the 
following results: 211, 204, 205, 201, 196 and 186 couplets, 
respectively. The average is 201 ± 16 (2σ). This number is 
consistent with the 230Th dating results within uncertainties 

Fig. 2   Depth-age models of DSY1201. a Results of visible layer 
counting. The image 1 at the top right shows the polished slab of sta-
lagmite DSY1201 with lamina counting and subsample (micromill) 
tracks (black and white lines). The images 2–4 at bottom left illustrate 
annual laminae composed of paired dark compact and white porous 
layers observed by transmitted light, epifluorescence and reflected 
light, respectively. b Age model based on 230Th dates and visible 

annual layer counting statistics. Red line is the layer counting mean 
with the uncertainty indicated by the blue envelope. The insert plot 
shows the age model of stalagmite DSY1204 based on 230Th dates 
and δ18O correlations with the DSY1201record. The red and black 
error bars, respectively, show layer counting and 230Th dating results 
errors (2σ)
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(Fig. 2b), confirming that the couplet is annual. The count-
ing results were applied to constrain the DSY1201 depth-age 
model accordingly (Fig. 2b).

3.3 � Stable isotopes

Subsamples were micromilled perpendicularly to the exten-
sion axes of the stalagmites at 0.1 mm increment and ana-
lyzed using an on-line carbonate preparation system (Gas-
bench II) interfaced with an isotope ratio mass spectrometer 
(Deltaplus XL) at the University of Innsbruck. The long-term 
reproducibility is 0.06‰ and 0.08‰ (1σ) for δ13C and 
δ18O analyses, respectively (Spötl and Vennemann 2003). 
The spatial resolution at the top 10 mm was subsequently 
increased to 25 µm per sample, using a New Wave Research 
Micromill, and these samples were measured on a Thermo 
Scientific MAT 253 mass spectrometer coupled with an on-
line carbonate preparation device (Kiel IV) at the Isotope 
Laboratory, Xi’an Jiaotong University. The typical analytical 
error (1σ) for δ18O and δ13C are 0.06‰ and 0.03‰, respec-
tively (Li et al. 2017). A total of 1620 stable isotope data 
were obtained, and the international standards TTB1 and 
NBS18 were added to the analyses every 10–20 samples to 
check the reproducibility. Results from both laboratories are 
reported relative to the Vienna Pee Dee Belemnite (VPDB) 
standard.

Monitoring works in Jiguan Cave include stable iso-
topes analyses of modern calcite and cave drip water every 
2 months over the past 8 years (2009–2017), as well as anal-
yses of individual rainfall events. The results were reported 
in Zhao et al. (2014) and Sun (2017).

4 � Results

4.1 � Assessment of isotopic equilibrium 
during the calcite sample precipitation

Three methods were used to assess the isotopic equilibrium 
condition during speleothem formation. First, the broad 
resemblance of δ18O records (Fig. 3) among the two stalag-
mites DSY1201 and DSY1204, as well as two previously 
published δ18O records from Dongshiya and Laomu caves 
(Cai et al. 2008; Zhang et al. 2015) suggest that kinetic 
fractionation is negligible (Hendy 1971; Wang et al. 2001; 
Dorale and Liu 2009). Second, a comparison between δ18O 
and δ13C values along the growth axis of each speleothem 
shows no significant correlation (r = 0.022 for DSY1201) 
(Fig. 3). Finally, the results of another ‘Hendy test’ show 
that the δ18O values remain virtually constant along eight 
growth layers of DSY1201 (Fig. 3). These lines of evidence 
suggest that the two stalagmites formed at or sufficiently 

Fig. 3   Hendy test results. a 
δ18O measurements along the 
same growth layer at eight dif-
ferent depths (left panel) and the 
plot of δ18O vs. δ13C for coeval 
subsamples (right panel). The 
δ18O values in the same layer 
are virtually identical, and there 
are no significant correlations 
observed between δ18O and 
δ13C for coeval subsamples. b 
The comparison shows that the 
correlation between DSY1201 
δ18O and δ13C is insignificant. 
c The comparison demonstrates 
a robust replication between 
DSY1201 (blue) and DSY1204 
(red) δ18O time series



3746	 J. Zhao et al.

1 3

close to isotopic equilibrium (Hendy 1971). Therefore, the 
isotope data primarily reflect the δ18O value of meteoric 
precipitation.

4.2 � DSY oxygen isotope time series

The new DSY δ18O records cover the last ~ 200 years with an 
average resolution of ~ 1.5 months (Fig. 3). The δ18O values 
range from − 5.3 to − 10.6‰ (average − 8.8‰), and δ13C 
varies from − 5.6 to − 11.6‰ (average − 9.7‰). The DSY 
record is characterized by a persistent decadal oscillation 
over the last 200 years (Fig. 3). The δ18O record also reveals 
a progressively increasing trend, particularly after the late 
1970s (Fig. 3). This trend has been previously documented 
for the East Asian climate, particularly for the WPSH inten-
sity, size and location since the late 1970s (e.g., Gong and 
Ho 2002; Zhou et al. 2009; He et al. 2015; Huang et al. 
2016).

The very high growth rates (~ 0.67 ± 0.05 mm year−1) of 
the DSY stalagmite samples allow us to obtain an unprec-
edently high temporal resolution (seasonal to monthly) 
record. The large amplitude of the δ18O record is consistent 
with the range of the modern calcite δ18O values (− 5.0 to 
− 10.1‰) as observed from our monitoring work between 
2009 and 2017.

5 � Discussion

5.1 � Comparison between variances of the WPSH 
and Chinese cave δ18O records

As summarized in a recent study by Li et al. (2017), sev-
eral high-resolution (better than 2-years) cave δ18O records 
from different locations of the EASM region demonstrate 
an increasing trend since the late 1970s, including Yuhua 
(Jiang et al. 2012), Heshang (Hu et al. 2008), Wuya (Tan 
et al. 2014), Xianglong (Tan et al. 2015) and Shihua (Li 
et al. 2017) cave records from both North and South China 
(Figs. 1, 4). Principal Component Analysis (PCA) of these 
cave records reinforces the observation (Fig. 4). Neverthe-
less, the spatial pattern of summer rainfall between North 
and South China is generally different as demonstrated by 
both instrumental records and precipitation reconstructions 
in the EASM region of eastern China (e.g., Tao and Chen 
1987; Gong and Ho 2002; Ding et al. 2008; He et al. 2017). 
Thus, there exists a paradox of a consistent trend in cave 
records, but different summer rainfall amounts in other 
observational/instrumental data between North and South 
China.

Previous studies have shown that the WPSH intensifi-
cation and/or its westward extension since the late 1970s 
have profoundly contributed to the decadal variability of the 

East Asian climate (e.g., Hu 1997; Wang et al. 2000, 2013; 
Gong and Ho 2002; Zhou et al. 2009). Although the spatial 
extent of the WPSH varies depending on its definition (e.g., 
Huang et al. 2016; He and Zhou 2015b; Yang et al. 2017), 
it is generally accepted to use the contour line of 5880 geo-
potential meters (gpm) to define the spatial boundary of the 
WPSH (Fig. 1), which is also routinely used by the National 
Climate Center of China (NCCC). As such, the westernmost 

Fig. 4   High-resolution speleothem δ18O records from China over 
the last century. All the selected records have resolutions higher 
than 2  years. Red line (a) represents the Principal Component 1 of 
the speleothem records. All time series are normalized to the stand-
ard Z-scores, using the software Origin Pro 2016 (http://www.origi​
nlab.com/), in order to show variations. Black curves represent δ18O 
records from Wanxiang Cave (b) (Zhang et  al. 2008), Shihua Cave 
(c) (Li et al. 2017), Wuya Cave (d) (Tan et al. 2014), Dongshiya Cave 
(e) (this study), Xianglong Cave (f) (Tan et al. 2016), Heshang Cave 
(g) (Hu et  al. 2008) and Yuhua Cave (h) (Jiang et  al. 2012). Blue 
arrows show the progressive westward shift of the WPSH since the 
late 1970s

http://www.originlab.com/
http://www.originlab.com/
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longitude of the western boundary of 5880 gpm was applied 
in this study to define the western extent of the WPSH. On 
the basis of this definition, the dramatic WPSH enhance-
ment since the late 1970s is mirrored by the increasing trend 
in the cave δ18O records (Fig. 4). Statistical analyses also 
show that the WPSH variations during the last ~ 60 years 
are significantly correlated with a set of cave δ18O records, 
such as Heshang (r = 0.32, p < 0.05), Xianglong (r = 0.59, 
p < 0.001) (Fig. 5) and Dongshiya (r = 0.46, p < 0.001). This 
is consistent with the aforementioned ‘circulation effect’ 
(Tan 2009, 2011, 2013, 2016), because WPSH variations 
are strongly coupled with atmosphere circulation changes. 
However, WPSH variations do not correlate significantly to 
a set of other cave δ18O records, such as Wanxiang (p > 0.1), 
Wuya (p > 0.1), Huangye (p > 0.1), Xiaobailong (p > 0.1) 
and Dongge (p > 0.1), or show a rather weak correlation (at 
low confidence levels) with the Yuhua (p < 0.1) and Shihua 
(p < 0.1) records (Fig. 5).

A close look at the geographic locations of the caves 
reveals that those cave records that highly correlate with 
changes in the WPSH are from central China (Figs. 1, 5). 
The ‘circulation effect’ therefore can well explain the cave 
δ18O records from the region where the alteration is consid-
erable between the two major summer monsoon moisture 
sources (the Indian Ocean vs. the Pacific/South China Sea). 
For example, the DSY Cave in the Qinlin region which is 
geographically located between North and South China with 
an annual precipitation of ~ 800 mm year−1, close to the 
average in the EASM region of eastern China. In fact, it 
was previously demonstrated that the precipitation δ18O in 
the area appears to be more sensitive to changes in moisture 
sources than precipitation amount (Zhao et al. 2014). This 
is probably because annual precipitation amount in central 
eastern China varies smaller than those in North and South 
China, in accordance with the precipitation anomalies in 
eastern China that tend to be have a pattern of ‘southern 
flood and northern drought’ (and vice versa) or a ‘dipole 

Fig. 5   Comparison between changes of the WPSH western bound-
ary and Chinese cave δ18O records. Dotted curves represent the lon-
gitudes in variations of the WPSH western boundary (from NCCC 
data). Dark curves represent records from Wanxiang (a) (Zhang et al. 
2008), Dongge (b) (Zhao et  al. 2015), Shihua (c) (Li et  al. 2017), 
Yuhua (d) (Jiang et al. 2012) and Heshang (e) (Hu et al. 2008) caves. 
The blue curve represents the record from Xianglong Cave (f) (Tan 
et  al. 2016). Cave data were interpolated to 1–2  years in order to 
compare with WPSH data except for Shihua and Xianglong records 

that already have seasonal resolutions. Correlation coefficients (r) 
are shown in each plot. The correlation coefficient value for the Shi-
hua record is 0.21 and 0.23 using the interpolating data and annual-
average data, respectively, and for the Xianglong record, r = 0.52 and 
0.59, respectively. The cave records without significant correlations 
with the WPSH are not shown, including Xiaobailong (Tan et  al. 
2016) (r = 0.33, p > 0.1, n = 15), Huangye (Tan et  al. 2011) (r =  − 
0.07, p > 0.1, n = 33) and Wuya (Tan et al. 2014) (r = − 0.21, p > 0.1, 
n = 45)
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structure’ (e.g., Tao and Chen 1987; Gong and Ho 2002; 
Ding et al. 2008; He et al. 2017).

On the basis of the analysis of moisture fluxes derived 
from the Pacific and Indian Oceans (Cao et al. 2012, 2016; 
Tan 2009, 2011, 2013, 2016; Cao pers. comm.), cave δ18O 
records from coastal regions of southeastern China (such as 
Yuhua Cave) may be dominantly controlled by the proxi-
mal Pacific/South China Sea moisture with little contribu-
tion from the moisture derived from the Indian Ocean. In 
contrast, δ18O records from western China, such as Xiaobai-
long, are dominantly controlled by moisture from the remote 
Indian Ocean (Cai et al. 2015). In addition, the apparent 
‘amount effect’ as mentioned above may sensitively affect 
Wanxiang, Wuya, Huangye and likely Shihua δ18O records, 
and overwhelm the ‘circulation effect’ that is presumably 
diminished due to their geographic locations with less or 
negligible contributions from the Pacific moisture sources 

(Fig. 1). Notably, these sites are located along the summer 
monsoon fringe with lower annual precipitation, and thus 
large variations in summer rainfall amount in the areas can 
significantly bias the mean annual δ18O value accordingly. 
Indeed, the δ18O records from Wanxiang (Zhang et al. 2008), 
Wuya (Tan et al. 2014), Yuhua (Jiang et al. 2012), Huangye 
(Tan et al. 2011), Xiaobailong (Tan et al. 2016) and Shihua 
(Li et al. 2017) cave show a significant anti-correlation with 
local annual precipitation amount, and/or summer precipita-
tion amount, as well as the dry/wet index established in the 
corresponding areas.

5.2 � Influence of the WPSH on precipitation δ18O: 
cave monitoring results

Associated with the intensity change, the WPSH western 
boundary shifted dramatically from 2010 to 2011 from 

Fig. 6   Comparison of the 
WPSH index and cave monitor-
ing records in 2010 and 2011. 
Horizontal lines show annual 
average values. The plots from 
the top to bottom are the WPSH 
western boundary index, the 
WPSH size index, the WPSH 
intensity index (the WPSH data 
from NCCC) (e.g., Zhao 1999; 
Zhou et al. 2009), the annually 
weighted precipitation δ18O 
at the study area, drip water 
δ18O and calcite δ18O from the 
monitoring cave, and rainfall at 
the study area, respectively (the 
cave monitoring data from Zhao 
et al. 2014; Sun 2017)
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103.3°E to 127.5°E, the second largest abrupt shift observed 
during the last 20 years (after the largest one from 1998 to 
1999). Our Jiguan Cave monitoring results show that δ18O 
values of dripwater and modern calcite changed accord-
ingly (Fig. 6). Annual precipitations changed from ~ 1130 to 
~ 950 mm from 2010 to 2011, whereas the weighted annual 
δ18O values change from − 7.6 to − 8.5‰ (Fig. 6). These 
data show an opposite change as expected by the ‘amount 
effect’, which supports our interpretation that the ‘circulation 
effect’ is dominant at this site while the ‘amount effect’ is 
suppressed (Zhao et al. 2014; Sun 2017).

In order to further explore the δ18O change, we ana-
lyzed the water vapor flux of the atmosphere in 2010 and 
2011(Fig. 7b, c). The water vapor flux chart shows that the 
atmospheric circulation system that drives the Pacific water 
vapor in summer moved considerably westward in 2010, 
bringing more moisture enriched in 18O from proximal 
oceans into the study area (Tan 2009, 2011, 2013, 2016), 
as compared to 2011. This change is consistent with the 
local precipitation δ18O data that record a weighted annual 

precipitation δ18O value of − 7.6‰ in 2010, significantly 
higher than in 2011 (− 8.5‰). Similarly, cave monitoring 
data also show that δ18O values of dripwater and modern 
calcite are higher in 2010 than in 2011 (Fig. 6).

5.3 � Reconstructing the WPSH variability

Our analyses show clearly that the DSY δ18O record does 
not have a significant correlation with the mean annual 
precipitation amount (r = 0.13, p > 0.1) or ‘amount effect’ 
(Fig. 8a), and instead, it highly correlates with variations in 
the mean annual WPSH size (r = 0.37, p < 0.05), intensity 
(r = 0.42, p < 0.01) and the location of the western bound-
ary (r = − 0.46, p < 0.001) (Fig. 8c), as well as the WPSH 
variations in winter (r = − 0.58, p < 0.001) and summer (r 
= − 0.43, p < 0.001) half year (Fig. 8b).

Our data shows that DSY and XL records correlate sig-
nificantly (r = 0.4, p < 0.001), and both correlate significantly 
with the position of the western boundary of the WPSH 
(r = − 0.46 and − 0.59, respectively with p < 0.001). This 

Fig. 7   Moisture fluxes (kg m−1 s−1) integrated from 1000 to 300 hPa 
during the main rainy season (July–September) in 1948–2016 aver-
age (a), in 2010 (b) and in 2011 (c), respectively. Their anomalies 
(kg m−1 s−1) associated with the δ18O of DSY (d) and XL (e) records, 
the new reconstructed WPSH western boundary indexes (f) and the 
NCCC WPSH western boundary longitude (*-1) (h). The difference 
of the column-integrated water vapor flux averages between the 10 
WPSH westward-anomaly years and the 10 WPSH eastward-anomaly 

years (g). The water vapor flux divergence anomalies associated with 
the NCCC WPSH western boundary longitude (*-1) (i). The water 
vapor flux amount is depicted by color (increase with darkness) (a–c), 
which is consistent with the vector change. Total atmospheric water 
vapor fluxes are from monthly reanalysis data from the NCEP and 
NCAR. The areas passing the significance test at the 95% and 99% 
confidence levels are shown by shaded areas with light red and dark 
red, respectively (d–i)
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implies that the westward extent of the WPSH would bring 
in more (less) moisture from the Pacific/South China Sea 
(the Indian Ocean) source, resulting in heavier (lighter) δ18O 
of precipitation in DSY and XL cave sites, and vice versa. 
Further analyses show that the column-integrated water 
vapor fluxes regressed respectively onto the DSY (Fig. 7d), 
XL (Fig. 7e) and the variance of the WPSH western bound-
ary (Fig. 7h, derived from NCCC data), exhibit a similar 
anomalous pattern with significantly reduce of southwest 
water vapor fluxes from the Indian Ocean into the EASM 
region. Furthermore, using the NCCC WPSH western 
boundary data with a criterion of 1 standard deviation, we 
identified 10 years (1979, 1983, 1987, 1994, 1995, 1998, 
2003, 2005, 2010 and 2016) when the WPSH extended sig-
nificantly westward and other 10 years (1952, 1957, 1967, 
1968, 1971, 1974, 1975, 1976, 1989 and 2000) when the 
WPSH retreated significantly eastward. The difference of the 
column-integrated water vapor fluxes between the 10 year 
averages when the WPSH extended westward and retreated 
eastward (Fig. 7g) also demonstrates a similar pattern with 

largely reduced southwest water vapor fluxes from the Indian 
Ocean into the EASM region.

The strong correlation of DSY and XL records with the 
WPSH and their conceivable causal linkage allow us to 
establish a new WPSH index using the cave records. Our 
WPSH index is constructed by the average of normalized 
DSY and XL records for the time period of 1908–2009, 
and the normalized DSY data for 1907–1812 (Fig. 9). The 
new WPSH index correlates significantly to the annual (as 
well as seasonal) variability of the WPSH western bound-
ary (r = 0.61, p < 0.001) (Figs. 9, 10). This reconstruction 
extends the WPSH variation history further back in time 
from the last ~ 60 to 200 years. Our WPSH index mani-
fests a 200-year long-term decrease trend with a dramatic 
weakening after 1970s, which is akin to the variance of the 
large-scale Indo-Pacific sea level pressure gradient index 
(ΔSLP, Vecchi et al. 2006) (Fig. 9). A suite of global cli-
mate model simulations revealed that the decrease trend 
of the ΔSLP can be linked to the weakening of the tropical 
Pacific circulation or the Walker Circulation (Vecchi et al. 

Fig. 8   Comparison between 
Luanchuan annual precipitation, 
normalized WPSH indexes and 
DSY1201 δ18O record. a The 
Luanchuan annual precipitation 
(blue bars) and 5 years running 
average (red line). b The nor-
malized WPSH western bound-
aries in May–October (dotted 
light blue line) and November–
April (next year) (dotted dark 
blue line). c The 5 years run-
ning averages of the normalized 
WPSH western boundary (dark 
blue line), size (light blue line) 
and intensity indexes (blue line) 
(the WPSH data from NCCC: 
http://cmdp.ncc-cma.net/Monit​
oring​/cn_index​_130.php) (e.g., 
Zhao 1999; Zhou et al. 2009). 
d The DSY1201 δ18O record, 
interpolated to 1 year resolution 
for the comparison with the 
WPSH index, and the 5-year 
running averages of it (thick 
black lines)

http://cmdp.ncc-cma.net/Monitoring/cn_index_130.php
http://cmdp.ncc-cma.net/Monitoring/cn_index_130.php
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2006). Thus the observed covariance of the WPSH with 
the ΔSLP implies that the tropical Pacific circulation or 
the Walker Circulation changes may have dominated the 
long-term variation of the WPSH. Intriguingly, in the same 
climate models (Vecchi et al. 2006), the tropical Pacific 
circulation trend was largely attributed to the global sur-
face warming or anthropogenic forcing (Held and Soden 
2006). Indeed, our WPSH index shows a clear anomaly 
after the ~ 1980s in the context of the last 200-year vari-
ations (Fig. 9b), which coincides with the global surface 
temperature anomaly (Fig. 9c) (e.g., Li et al. 2012; IPCC 
2014).

5.4 � The interdecadal oscillation of the WPSH

The interdecadal variability of the WPSH have received few 
attentions, in comparison with its 2–7 year periodicity (Hu 
1997; Sun et al. 2017), and the mechanism behind remains 
unclear (Wang et al. 2013). Our high-resolution reconstruc-
tion of the WPSH extends the 60-year instrumental record 
further back to the last 200 years (Figs. 10, 11), providing a 

new insight into the interdecadal–interannual variability of 
the WPSH. Our data show persistent ~ 12 and 2–7 year perio-
dicities (Fig. 12a) over the last 200 years, which agrees with 
periodicities observed from the WPSH western boundary, 
intensity and size data over the last ~ 60 years (Fig. 12b–d), 
but more robust. Clearly, these two periodicities corre-
spond respectively to one of major solar radiation cycles 
(~ 12 years) and the El Niño–Southern Oscillation (ENSO) 
periodicity (2–7 years) (Fig. 12). Moreover, our analyses 
also show that the WPSH index correlate significantly to 
both the solar radiation (r = 0.56, p < 0.001) (Lean et al. 
1995) and the Southern Oscillation Index (SOI) (r = 0.22, 
p < 0.05) (Fig. 11). In addition, as paced presumably by the 
persistent 12-year periodicity, the WPSH has intensified and 
shifted westward since 2015 (data source: http://cmdp.ncc.
cma.gov.cn/cn/monit​oring​.htm), consistent with the sunspot 
maximum in 2014 (data source: https​://solar​scien​ce.msfc.
nasa.gov/predi​ct.shtml​) (Fig. 12).

The dynamic how solar irradiance modulates the Earth’s 
climate, such as monsoons and the WPSH variability, 
remains a complex issue (Gray et al. 2010; Van et al. 2004; 

Fig. 9   Reconstructed index 
of the WPSH western bound-
ary and comparison with the 
global temperature anoma-
lies and the Indo-Pacific sea 
level pressure gradient index 
(ΔSLP). a Normalized DSY 
(dark blue) and XL (light blue) 
δ18O records and their average 
(black). b Reconstructed (black 
line, this study) and original 
(gray line, data from NCCC) 
WPSH western boundary 
records. c The Global tempera-
ture anomaly in 1812–2009 (the 
purple line in 18,121,980 from 
Mann and Jones 2003; the red 
line in 18,702,009 from the 
National Oceanic for Atmos-
pheric Administration, https​://
www.ncdc.noaa.gov/data-acces​
s/marin​eocea​n-data). d The 
5-years running average of the 
ΔSLP (Vecchi et al. 2006). The 
data are from observation (light 
green) and Hadley Centre (dark 
green) respectively (Basnett 
and Parker 1997; Kaplan et al. 
2000). The dotted lines show 
the decrease trend

http://cmdp.ncc.cma.gov.cn/cn/monitoring.htm
http://cmdp.ncc.cma.gov.cn/cn/monitoring.htm
https://solarscience.msfc.nasa.gov/predict.shtml
https://solarscience.msfc.nasa.gov/predict.shtml
https://www.ncdc.noaa.gov/data-access/marineocean-data
https://www.ncdc.noaa.gov/data-access/marineocean-data
https://www.ncdc.noaa.gov/data-access/marineocean-data
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Meehl et al. 2009; White and Liu 2008). A number of stud-
ies (e.g., White et al. 1997; Meehl et al. 2009; Gray et al. 
2010) have found clear evidences of the 9–13 year solar 
cycle signal in sea surface temperature (SST) records glob-
ally, whereas the SST of the Indian, Pacific and Atlantic 
oceans have been noted to have remarkably local or remote 
effects on the WPSH strengthening (e.g., Nitta 1987; Huang 
and Li 1989; Wang et al. 2000, 2013; Xie et al. 2009; Yang 
et al. 2007; Zhou et al. 2009; He and Zhou 2014, 2015a, b; 
He et al. 2017; Hong et al. 2014). It thus appears that the 
solar irradiation change can affect the WPSH variability via 
a positive atmosphere–ocean feedback. However, contro-
versies in the WPSH formation endures (e.g., Ye and Gao 
1979; Ye and Wu 1998; Hoskins 1996; Huang et al. 2016; 
He et al. 2015), and more observational and modeling stud-
ies are critically needed.

5.5 � Possible physical processes of the WPSH

During the past two decades, a large number of researches 
have been focused on the physical processes of the WPSH 
variations, bringing up various propositions. A mechanism 
so-called ‘Kelvin-wave-induced Ekman divergence’ was 
proposed to explain the WPSH dynamics, which invokes 
SST over the tropical Indian Ocean and tropical West Pacific 

Ocean (e.g., Wang et al. 2000, 2013; Xie et al. 2009; Wu 
et al. 2010; He and Zhou 2014, 2015a, b; Hong et al. 2014). 
Our WPSH reconstruction appears to correlate with the 
tropical SST anomaly (SSTA) in the West Pacific Ocean 
(r = 0.57, p < 0.001) and tropical Indian Oceans (r = 0.56, 
p < 0.001) (Tierney et al. 2015) (Fig. 11). Recently, the warm 
tropical Atlantic SST mode was considered to be able to 
enhance the WPSH and shift it westward (Hong et al. 2014). 
In addition, Sun et al. (2017) also suggested that the tropical 
Atlantic SST acts as a key pacemaker of the western Pacific 
decadal climate variability. Our WPSH reconstruction also 
correlates with the tropical SSTA in the tropical Atlantic 
(Tierney et al. 2015) (r = 0.44, p < 0.001) (Fig. 11), in line 
with the interpretations.

On the other hand, the condensation heating released 
by AM rainfall was viewed as an important feedback 
affecting the WPSH (Hoskins 1996; Liu et al. 2001; Wu 
and Liu 2003; Wu et al. 2004, 2009; He and Zhou 2014, 
2015a, b; Chowdary et al. 2010; Xie et al. 2009). This 
is consistent with many observations that show the wet 
anomalies in the AM region occurred in accordance with 
WPSH intensifications (Gong and Ho 2002; Chowdary 
et al. 2010). Our WPSH index also shows a significant cor-
relation with rainfall anomaly in southern China (r = 0.21, 
p < 0.001) (Fig. 11). In addition, during the peak years 

Fig. 10   Seasonal variability of the WPSH western boundary. a The 
NCCC WPSH western boundary variability in summer (dark blue) in 
comparison with those in other seasons (light blue), and the standard 
deviations (STD) of those in different seasons (the right plot). b The 
variability of the mean annual WPSH western boundary (dark blue) 
in comparison with the seasonal variations (light blue) (data from 

NCCC). c The variability of the reconstructed WPSH western bound-
ary index (dark blue) in comparison with seasonal NCCC WPSH 
western boundary variations (light blue). d The detrended recon-
structed WPSH index (dark blue) in comparison with detrended sea-
sonal NCCC WPSH western boundary variations (light blue)
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of solar irradiation, regions with enhanced precipitation 
extends from the ISM domain to the West Pacific Warm 
Pool (Van et al. 2004), coincided with AM rainfall anoma-
lies (~ 20% above normal) (Van and Meehl 2012). This 
thermal–hydrological mode intensifies the WPSH via 
the mechanism of a positive atmosphere–ocean feedback 
(Wang et al. 2000, 2013; Xie et al. 2009; Yang et al. 2007; 
Zhou et al. 2009; He and Zhou 2014, 2015a, b; He et al. 
2017) and/or the energy dispersion (Nitta 1987; Huang and 

Li 1989) between the WPSH and the Indo-Pacific Oceans 
(Wu and Liu 2003; Wu et al. 2004; Liu et al. 2001; Lu 
and Dong 2001; Cao et al. 2009, 2012, 2016). In sum, the 
propositions of the tropical SST patterns and AM rainfall 
feedback may explain at least some important aspects of 
the physical process of the WPSH, but more modeling 
and observational studies are critical to further assess the 
role of the SST and AM rainfall feedback in amending 
the WPSH.

6 � Conclusions

The major factors controlling the δ18O of precipitation and 
speleothem calcite on seasonal to multidecadal timescales 
vary within the EASM region of eastern China. The Qinling 
region in central China is unique and more sensitive to vari-
ations in the position of the western boundary of the WPSH, 
which in turn regulates the alteration of moisture sources 
from the proximal Pacific Ocean and remote Indian Ocean, 
consistent with the ‘circulation effect’. On the other hand, 
cave sites in other monsoon regions of China with dominant 
moisture sources from either the Pacific or the Indian Ocean 
are not significantly correlated with WPSH variations. For 
instance, cave records close to the summer monsoon fringe 
and near the coast of southeastern China show the evidence 
of the apparent ‘amount effect’.

On the basis of the high-resolution DSY and XL cave 
records and their strong correlations with the variations 
of the WPSH western boundary, we extended the WPSH 
variation history from instrumental records over the 
last ~ 60 years further back in time to the last 200 years by 
constructing a new WPSH index to indicate changes in the 
WPSH western boundary. Our WPSH index shows a long-
term decrease over the last 200 years with a dramatic decline 
since 1980s which may be linked to the tropical atmospheric 
circulation weakening and/or anthropogenic forcing. The 
WPSH variations also show two distinct periodicities, 12 
and 2–7 years respectively, that can be causally linked to 
the solar and ENSO variances correspondingly. Our work 
demonstrates that the cave record can potentially extend 
the high-resolution WPSH variation history much longer 
than instrumental records, which opens the door to a more 
precise and robust understanding of the climate dynamics 
behind. In particular, the climate changes, including the 
WPSH variability, were closely linked to both natural and 
anthropogenic forcing. In this regard, the critical observation 
was not our WPSH reconstruction over the last ~ 60 years, 
which is also observed in various instrumental records, but 
rather the variability at earlier times and their relations with 
other regional–global climate changes. The reconstructed 
WPSH records establish the characters of natural climate 
change beyond instrumental records, merely from which 

Fig. 11   Comparison of the reconstructed WPSH western bound-
ary index with other climate records. Red curve is the constructed 
index (this study). Black curves from top to bottom are solar radia-
tion (Lean et al. 1995), three different tropical SSTA (Tierney et al. 
2015), southern rainfall anomalies in the region of 21°N–30°N and 
104°E–120°E (http://clime​xp.knmi.nl/selec​t.cgi), Southern Oscilla-
tion Index (SOI) over in the last 100 years (1908–2009) (https​://cruda​
ta.uea.ac.uk/cru/data/pci.htm)

http://climexp.knmi.nl/select.cgi
https://crudata.uea.ac.uk/cru/data/pci.htm
https://crudata.uea.ac.uk/cru/data/pci.htm
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we may distinguish the trends and periodicities observed 
in the last ~ 60 years as clear anomalies or persistent natural 
variations.
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