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Abstract

Cave oxygen isotope (5'0) records have been important in characterizing Asian Monsoon variations on a wide range of
timescales. The climatic significance of the 8'0 proxy of the cave records and its main control factors, however, remain hotly
debated, especially with respect to annual to decadal timescales. In particular, while the spatial and intensity variations of
the Western Pacific Subtropical High (WPSH) affects the East Asian Monsoon remarkably on annual to decadal timescales,
cave records up to present do not show clear evidence of the WPSH signal. Here we report a new high-resolution (average
of 1.5 months) §'%0 record from Dongshiya Cave, Qinling Mountain, central China. The region is highly sensitive to vari-
ations in the position of the WPSH western boundary, which in turn regulates the alternation of dominant moisture sources
between the proximal Pacific Ocean and the remote Indian Ocean. Together with another cave record near the WPSH western
boundary, we established a new index to reconstruct variations of the WPSH western boundary over the past 200 years. Our
new data revealed two significant periodicities, 12 and 2—7 years respectively, that can be causally linked to solar and ENSO
variances correspondingly.
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1 Introduction

Speleothem oxygen isotope (8'%0) records have been widely
used to characterize Asian Monsoon (AM) variations on a
wide range of timescales from orbital (e.g., Cheng et al.
2006, 2009a, 2016; Wang et al. 2008; Cai et al. 2015) and
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‘amount effect’ on the basis of an inverse correlation with
the local-regional precipitation amount (e.g., Zhang et al.
2008; Zhao et al. 2015; Tan et al. 2009, 2011, 2014, 2015,
2016; Jiang et al. 2012; Goldsmith et al. 2017), or (b) the
‘circulation effect’, reflecting different moisture sources and
trajectories controlled by different modes of atmospheric
circulations (e.g., Tan 2009, 2011, 2013, 2016; Tan and Nan
2010; Dayem et al. 2010; Clemens et al. 2010; Pausata et al.
2011; Caley et al. 2014; Maher 2008).

The ‘amount effect’ interpretation of Chinese cave 8'%0
records is somewhat perplexing. Indeed, statistically signifi-
cant anti-correlations of speleothem 8'®0 values and instru-
mental rainfall amount or wet/dry indexes were observed
over the past ~60 years (e.g., Zhang et al. 2008; Zhao et al.
2015; Tan et al. 2009, 2016; Jiang et al. 2012; Li et al. 2017).
However, this apparent ‘amount effect’ is essentially dif-
ferent from the sensu-stricto amount effect which refers to
the observed decrease in rainfall 5'30 value with increased
rainfall amount in tropics where deep convection events pre-
vail (e.g., Dansgaard 1964; Rozanski et al. 1993). In the sub-
tropical AM region, the apparent ‘amount effect’ observed
for cave records is basically an overall negative correlation
between the precipitation 8'%0 and precipitation amount on
annual to decadal timescales, which may be largely con-
trolled by changes in moisture sources (e.g., Maher 2008;
Maher and Thompson 2012; Dayem et al. 2010; Clemens
et al. 2010), rather than the convectional amount effect
mechanism. For instance, in the Asian summer monsoon
fringe area (such as Wanxiang and Wuya caves), relatively
more precipitation in summer time will increase the amount
of precipitation with more negative '%0 value originated
from remote sources (Cheng et al. 2012), thus resulting in
more negative weighted mean annual 8'30 as seen in Chi-
nese cave records (e.g., Wang et al. 2001; Zhang et al. 2008;
Tan et al. 2014; Cheng et al. 2009a, 2016).

More broadly on millennial-orbital timescales, Chinese
cave records were commonly used as a proxy indicating the
AM intensity in general (Cheng et al. 2012). Yuan et al.
(2004) invoked the Rayleigh fractionation and suggested
that changes in the fraction of water vapor rained-out along
the moisture trajectory between tropical sources and the cave
site could account to first order for the observed variability
in the cave records. In addition, Cheng et al. (2009a, b) pro-
posed that changes in the fraction of low 8'¥0 monsoon rain-
fall (or essentially summer rainfall) in annual totals could
also explain the cave 830 records. Model studies actually
support, rather than contradict, these ideas, although some
of them emphasized the ‘upstream depletion’ instead of the
‘local depletion’ at cave site (e.g., Le Grande and Schmidt
2009; Pausata et al. 2011). In sum, for both model and obser-
vational results, the lower 8'%0 implies higher spatially inte-
grated monsoon rainfall between tropical monsoon sources
and cave sites, and vice versa (Cheng et al. 2016).
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Recently, Tan (2009, 2011, 2013, 2016) proposed a dis-
tinct ‘circulation effect’, which regards the Indian summer
monsoon (ISM) as the main driver, bringing the remote
moisture from the Indian Ocean to the monsoon region in
eastern China. This occurred at times when the Western
Pacific Subtropical High (WPSH) was weak and shifted
eastward, and the moisture is thus characterized by the com-
parably low 8'80 values, reflecting large Rayleigh distilla-
tion along a longer trajectory. In contrast, when the WPSH
strengthened and shifted westward, the East Asian summer
monsoon (EASM) delivers more proximal moisture from
the West Pacific Ocean and/or the South China Sea to east-
ern China, giving rise to higher precipitation 8'%0 values.
Indeed, the WPSH variability plays an important role in the
climate regime of the Asian-Pacific region (e.g., Nitta 1987;
Huang and Li 1989; Wu and Liu 2003; Wu et al. 2004; Wang
et al. 2000, 2013; Liu et al. 2001; Xie et al. 2009; Zhou et al.
2009; Cao et al. 2009, 2012, 2016). In particular, the posi-
tive atmosphere—ocean feedback (Wang et al. 2000, 2013;
Xie et al. 2009) and energy dispersion between the WPSH
and the Indo-Pacific warm pool (Nitta 1987; Huang and Li
1989) are interactively connected with the AM system (Wu
et al. 2004; Liu et al. 2001; Zhou et al. 2009; Cao et al. 2012,
2016; He and Zhou 2014, 2015a, b; He et al. 2015). As a
result, a strong WPSH at more southwestern location may
weaken the ISM over the Bay of Bengal, and strengthen the
EASM over the South China Sea and the Western North
Pacific, vice versa (e.g., Gong and Ho 2002; Zhou et al.
2009; Cao et al. 2012, 2016).

In order to gain further insights into the climate implica-
tion of cave 8'%0 records in the EASM region, the high-res-
olution records with precise age control covering the recent
decades are critical, because only these comparably young
and high-resolution records can be directly and precisely
compared to both instrumental data and meteorological
observations, including the variability of the WPSH. Here,
we present a high-resolution (~ 1.5 months) and well-dated
5'%0 speleothem record from Dongshiya cave, Luanchuan,
Henan Province, China, covering the last~200 years. The
cave is located in a key EASM area, close to the western
boundary of the WPSH (Fig. 1). This unique setting allows
us to test the ‘circulation effect’, because the precipitation
880 at this location is presumably much more sensitive to
the WPSH position (Zhao et al. 2014) and, thus, to changes
in the moisture sources and trajectories (the Indian Ocean
vs. the Pacific Ocean/South China Sea). We explore the con-
trolling factors of the §'%0 proxy on centennial to annual
scales in the EASM region by comparing our new data and
previous records from the region with instrumental data of
the WPSH. On the basis of the comparison, we then reveal
the WPSH variability over the last 200 years and the pos-
sible cause of it.
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Fig.1 Map of cave sites, moisture fluxes and geopotential heights.
Cave sites (circles and labels), moisture fluxes integrated from 1000
to 300 hPa and geopotential heights at 500 hPa for July—September
during 1948-1979 (a) and 1980-2016 (b), respectively. a Red star
shows Dongshiya Cave. Blue circles depict cave locations: Shihua
Cave (SH, Li et al. 2017), Xianglong Cave (XL, Tan et al. 2016),
Dongge Cave (DG, Zhao et al. 2015), Wuya Cave (WY, Tan et al.
2014), Yuhua Cave (YH, Jiang et al. 2012), Huangye Cave (HY, Tan
et al. 2011), Heshang Cave (HS, Hu et al. 2008), Wanxiang Cave

2 Geological setting and sample collection

Dongshiya (DSY) Cave (111°34'E, 33°46'N, 840 m a.s.l.)
and Jiguan Cave (900 m a.s.l.) (Fig. 1) are investigated in
this study. The two caves (~ 300 m away from each other) are
located in the Funiu Mountain in the eastern branch of the
Qinling Mountains, ~5 km southwest of Luanchuan, central
China. The host rock is the Cambrian limestone (Cai et al.

(WX, Zhang et al. 2008), and Xiaobailong Cave (XBL, Tan et al.
2016). Numbers in b show the confidence levels of correlation coef-
ficient between the cave 8'%0 records and the changes of the WPSH
western boundary (the WPSH data from NCCC: http://cmdp.ncc-
cma.net/Monitoring/cn_index_130.php) (e.g., Zhao 1999; Zhou et al.
2009). Moisture fluxes (kg m~' s~!) and geopotential heights (gpm)
are based on the monthly reanalyses data from the National Center
for Environmental Prediction (NCEP) and the National Center for
Atmospheric Research (NCAR)

2008). The site is sensitively affected by both EASM and
ISM with their relative strength linked closely to the position
and intensity of the WPSH (Zhao et al. 2014). Most of the
rainfall (~ 80%) in the area falls during the summer monsoon
season (May—October). Mean annual temperature and pre-
cipitation recorded by a meteorological station ~ 5 km from
the cave are 13.1 °C and 840 mm (1957-2014 AD), respec-
tively. The vegetation above the cave is deciduous broad
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leaf trees and shrubs. An active calcite stalagmite DSY 1201,
14.0 cm in height and 7.5 cm in diameter, formed ~45 m
behind the Dongshiya cave entrance. Another active cal-
cite stalagmite, DSY 1204, 60.9 cm in height and ~20.0 cm
in diameter, was found ~ 110 m behind the entrance. Both
samples were collected in April, 2012. Here we report the
stable isotope record from stalagmite DSY 1201, and use the
DSY 1204 record from the top 2.3 cm for a replication test.
In addition, a monitoring work was carried out in Jiguan
Cave from 2009 to 2017, which shows that the cave rela-
tive humidity was >90%, and cave air temperature was
16.0+2.0 °C (Sun 2017), close to the local mean annual air
temperature at cave site.

3 Analytical methods

3.1 %Th dating

A total of 28 subsamples were drilled from a cut and pol-
ished slab of DSY1201 using the carbide dental burrs with
diameters of 0.3—1.0 mm. The powdered subsamples were
239Th-dated using multi-collector inductively coupled
plasma mass spectrometry (Neptune Plus, Thermo-Scien-
tific) in the Isotope Laboratory of Xi’an Jiaotong University,
China. All errors are reported as 2c. Standard chemistry
procedures were used to separate U and Th (Edwards et al.
1987; Edwards 1988). A triple-spike (***Th-2*3U-23°U)
isotope dilution method was employed to correct for instru-
mental fractionation and determine U/Th isotopic ratios
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Fig.2 Depth-age models of DSY1201. a Results of visible layer
counting. The image 1 at the top right shows the polished slab of sta-
lagmite DSY1201 with lamina counting and subsample (micromill)
tracks (black and white lines). The images 2—4 at bottom left illustrate
annual laminae composed of paired dark compact and white porous
layers observed by transmitted light, epifluorescence and reflected
light, respectively. b Age model based on 2*°Th dates and visible
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and concentrations. The instrumentation, standardization,
and half-lives are reported in Cheng et al. (2000, 2013). All
U/Th isotopes were measured in peak-jumping mode on a
MasCom multiplier placed behind the retarding potential
quadrupole. We followed procedures to characterize the
multiplier similar to those described in Cheng et al. (2000).
Uncertainties in U/Th isotopic data were calculated offline,
including corrections for blanks, multiplier dark noise,
abundance sensitivity, and spike composition. 23°Th ages
were corrected using an initial >**Th/**?Th atomic ratio of
4.4422x%107°, a values for a material at secular equilib-
rium with the bulk earth ***Th/**U value of 3.8. The U and
Th decay constants are reported in Cheng et al. (2013).

3.2 Layer counting

The Dongshiya stalagmites consist of couplets of a dark
compact calcite (DCC) lamina, composed of micritic cal-
cite, and a white porous calcite (WPC) lamina, composed of
elongated columnar calcite (Fig. 2a) (cf. Genty and Quinif
1996; Frisia et al. 2000). The couplets, interpreted as annual
cycles that formed in response to changing water excess
(Genty and Quinif 1996; Mattey et al. 2008), were counted
using high-resolution images obtained by a Zeiss Axio-
Scope-Al microscope in the Isotope Laboratory of Xi’an
Jiaotong University. Couplets were counted six times by
different people along the growth axis (Fig. 2a), giving the
following results: 211, 204, 205, 201, 196 and 186 couplets,
respectively. The average is 201 + 16 (2c). This number is
consistent with the 2*°Th dating results within uncertainties
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annual layer counting statistics. Red line is the layer counting mean
with the uncertainty indicated by the blue envelope. The insert plot
shows the age model of stalagmite DSY1204 based on 2*°Th dates
and 8'80 correlations with the DSY1201record. The red and black
error bars, respectively, show layer counting and 2**Th dating results
errors (20)
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(Fig. 2b), confirming that the couplet is annual. The count-
ing results were applied to constrain the DSY 1201 depth-age
model accordingly (Fig. 2b).

3.3 Stable isotopes

Subsamples were micromilled perpendicularly to the exten-
sion axes of the stalagmites at 0.1 mm increment and ana-
lyzed using an on-line carbonate preparation system (Gas-
bench II) interfaced with an isotope ratio mass spectrometer
(DeltaP™* XL) at the University of Innsbruck. The long-term
reproducibility is 0.06%0 and 0.08%0 (1o) for §'°C and
580 analyses, respectively (Spotl and Vennemann 2003).
The spatial resolution at the top 10 mm was subsequently
increased to 25 um per sample, using a New Wave Research
Micromill, and these samples were measured on a Thermo
Scientific MAT 253 mass spectrometer coupled with an on-
line carbonate preparation device (Kiel IV) at the Isotope
Laboratory, Xi’an Jiaotong University. The typical analytical
error (1o) for '30 and 8'*C are 0.06%o and 0.03%o, respec-
tively (Li et al. 2017). A total of 1620 stable isotope data
were obtained, and the international standards TTB1 and
NBS18 were added to the analyses every 10-20 samples to
check the reproducibility. Results from both laboratories are
reported relative to the Vienna Pee Dee Belemnite (VPDB)
standard.

Monitoring works in Jiguan Cave include stable iso-
topes analyses of modern calcite and cave drip water every
2 months over the past 8 years (2009-2017), as well as anal-
yses of individual rainfall events. The results were reported
in Zhao et al. (2014) and Sun (2017).

4 Results

4.1 Assessment of isotopic equilibrium
during the calcite sample precipitation

Three methods were used to assess the isotopic equilibrium
condition during speleothem formation. First, the broad
resemblance of §'%0 records (Fig. 3) among the two stalag-
mites DSY 1201 and DSY 1204, as well as two previously
published 830 records from Dongshiya and Laomu caves
(Cai et al. 2008; Zhang et al. 2015) suggest that kinetic
fractionation is negligible (Hendy 1971; Wang et al. 2001;
Dorale and Liu 2009). Second, a comparison between §'*0
and 8'3C values along the growth axis of each speleothem
shows no significant correlation (r=0.022 for DSY1201)
(Fig. 3). Finally, the results of another ‘Hendy test’ show
that the 5'30 values remain virtually constant along eight
growth layers of DSY 1201 (Fig. 3). These lines of evidence
suggest that the two stalagmites formed at or sufficiently
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close to isotopic equilibrium (Hendy 1971). Therefore, the
isotope data primarily reflect the 8'30 value of meteoric
precipitation.

4.2 DSY oxygen isotope time series

The new DSY 8'80 records cover the last~200 years with an
average resolution of ~ 1.5 months (Fig. 3). The §'%0 values
range from —5.3 to — 10.6%o (average — 8.8%o), and 313C
varies from —5.6 to — 11.6%o (average —9.7%o). The DSY
record is characterized by a persistent decadal oscillation
over the last 200 years (Fig. 3). The 8'80 record also reveals
a progressively increasing trend, particularly after the late
1970s (Fig. 3). This trend has been previously documented
for the East Asian climate, particularly for the WPSH inten-
sity, size and location since the late 1970s (e.g., Gong and
Ho 2002; Zhou et al. 2009; He et al. 2015; Huang et al.
2016).

The very high growth rates (~0.67 +0.05 mm year™') of
the DSY stalagmite samples allow us to obtain an unprec-
edently high temporal resolution (seasonal to monthly)
record. The large amplitude of the §'®0 record is consistent
with the range of the modern calcite $'*0 values (- 5.0 to
—10.1%o0) as observed from our monitoring work between
2009 and 2017.

5 Discussion

5.1 Comparison between variances of the WPSH
and Chinese cave §'20 records

As summarized in a recent study by Li et al. (2017), sev-
eral high-resolution (better than 2-years) cave 8'*0 records
from different locations of the EASM region demonstrate
an increasing trend since the late 1970s, including Yuhua
(Jiang et al. 2012), Heshang (Hu et al. 2008), Wuya (Tan
et al. 2014), Xianglong (Tan et al. 2015) and Shihua (Li
et al. 2017) cave records from both North and South China
(Figs. 1, 4). Principal Component Analysis (PCA) of these
cave records reinforces the observation (Fig. 4). Neverthe-
less, the spatial pattern of summer rainfall between North
and South China is generally different as demonstrated by
both instrumental records and precipitation reconstructions
in the EASM region of eastern China (e.g., Tao and Chen
1987; Gong and Ho 2002; Ding et al. 2008; He et al. 2017).
Thus, there exists a paradox of a consistent trend in cave
records, but different summer rainfall amounts in other
observational/instrumental data between North and South
China.

Previous studies have shown that the WPSH intensifi-
cation and/or its westward extension since the late 1970s
have profoundly contributed to the decadal variability of the
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Fig.4 High-resolution speleothem 8'80 records from China over
the last century. All the selected records have resolutions higher
than 2 years. Red line (a) represents the Principal Component 1 of
the speleothem records. All time series are normalized to the stand-
ard Z-scores, using the software Origin Pro 2016 (http://www.origi
nlab.com/), in order to show variations. Black curves represent 5'%0
records from Wanxiang Cave (b) (Zhang et al. 2008), Shihua Cave
(c) (Li et al. 2017), Wuya Cave (d) (Tan et al. 2014), Dongshiya Cave
(e) (this study), Xianglong Cave (f) (Tan et al. 2016), Heshang Cave
(g) (Hu et al. 2008) and Yuhua Cave (h) (Jiang et al. 2012). Blue
arrows show the progressive westward shift of the WPSH since the
late 1970s

East Asian climate (e.g., Hu 1997; Wang et al. 2000, 2013;
Gong and Ho 2002; Zhou et al. 2009). Although the spatial
extent of the WPSH varies depending on its definition (e.g.,
Huang et al. 2016; He and Zhou 2015b; Yang et al. 2017),
it is generally accepted to use the contour line of 5880 geo-
potential meters (gpm) to define the spatial boundary of the
WPSH (Fig. 1), which is also routinely used by the National
Climate Center of China (NCCC). As such, the westernmost
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longitude of the western boundary of 5880 gpm was applied
in this study to define the western extent of the WPSH. On
the basis of this definition, the dramatic WPSH enhance-
ment since the late 1970s is mirrored by the increasing trend
in the cave 8'%0 records (Fig. 4). Statistical analyses also
show that the WPSH variations during the last ~ 60 years
are significantly correlated with a set of cave 8'%0 records,
such as Heshang (r=0.32, p <0.05), Xianglong (r=0.59,
p<0.001) (Fig. 5) and Dongshiya (r=0.46, p <0.001). This
is consistent with the aforementioned ‘circulation effect’
(Tan 2009, 2011, 2013, 2016), because WPSH variations
are strongly coupled with atmosphere circulation changes.
However, WPSH variations do not correlate significantly to
a set of other cave 8'30 records, such as Wanxiang (p>0.1),
Wuya (p>0.1), Huangye (p >0.1), Xiaobailong (p >0.1)
and Dongge (p>0.1), or show a rather weak correlation (at
low confidence levels) with the Yuhua (p <0.1) and Shihua
(p<0.1) records (Fig. 5).
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Fig.5 Comparison between changes of the WPSH western bound-
ary and Chinese cave 8'%0 records. Dotted curves represent the lon-
gitudes in variations of the WPSH western boundary (from NCCC
data). Dark curves represent records from Wanxiang (a) (Zhang et al.
2008), Dongge (b) (Zhao et al. 2015), Shihua (c) (Li et al. 2017),
Yuhua (d) (Jiang et al. 2012) and Heshang (e) (Hu et al. 2008) caves.
The blue curve represents the record from Xianglong Cave (f) (Tan
et al. 2016). Cave data were interpolated to 1-2 years in order to
compare with WPSH data except for Shihua and Xianglong records

A close look at the geographic locations of the caves
reveals that those cave records that highly correlate with
changes in the WPSH are from central China (Figs. 1, 5).
The ‘circulation effect’ therefore can well explain the cave
8'%0 records from the region where the alteration is consid-
erable between the two major summer monsoon moisture
sources (the Indian Ocean vs. the Pacific/South China Sea).
For example, the DSY Cave in the Qinlin region which is
geographically located between North and South China with
an annual precipitation of ~800 mm year™!, close to the
average in the EASM region of eastern China. In fact, it
was previously demonstrated that the precipitation 8'%0 in
the area appears to be more sensitive to changes in moisture
sources than precipitation amount (Zhao et al. 2014). This
is probably because annual precipitation amount in central
eastern China varies smaller than those in North and South
China, in accordance with the precipitation anomalies in
eastern China that tend to be have a pattern of ‘southern
flood and northern drought’ (and vice versa) or a ‘dipole
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that already have seasonal resolutions. Correlation coefficients (r)
are shown in each plot. The correlation coefficient value for the Shi-
hua record is 0.21 and 0.23 using the interpolating data and annual-
average data, respectively, and for the Xianglong record, r=0.52 and
0.59, respectively. The cave records without significant correlations
with the WPSH are not shown, including Xiaobailong (Tan et al.
2016) (r=0.33, p>0.1, n=15), Huangye (Tan et al. 2011) (r = —
0.07, p>0.1, n=33) and Wuya (Tan et al. 2014) (r = — 0.21, p>0.1,
n=45)
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structure’ (e.g., Tao and Chen 1987; Gong and Ho 2002;
Ding et al. 2008; He et al. 2017).

On the basis of the analysis of moisture fluxes derived
from the Pacific and Indian Oceans (Cao et al. 2012, 2016;
Tan 2009, 2011, 2013, 2016; Cao pers. comm.), cave 8'%0
records from coastal regions of southeastern China (such as
Yuhua Cave) may be dominantly controlled by the proxi-
mal Pacific/South China Sea moisture with little contribu-
tion from the moisture derived from the Indian Ocean. In
contrast, 5'20 records from western China, such as Xiaobai-
long, are dominantly controlled by moisture from the remote
Indian Ocean (Cai et al. 2015). In addition, the apparent
‘amount effect’ as mentioned above may sensitively affect
Wanxiang, Wuya, Huangye and likely Shihua §'%0 records,
and overwhelm the ‘circulation effect’ that is presumably
diminished due to their geographic locations with less or
negligible contributions from the Pacific moisture sources

(Fig. 1). Notably, these sites are located along the summer
monsoon fringe with lower annual precipitation, and thus
large variations in summer rainfall amount in the areas can
significantly bias the mean annual §'®0 value accordingly.
Indeed, the 8'30 records from Wanxiang (Zhang et al. 2008),
Wuya (Tan et al. 2014), Yuhua (Jiang et al. 2012), Huangye
(Tan et al. 2011), Xiaobailong (Tan et al. 2016) and Shihua
(Li et al. 2017) cave show a significant anti-correlation with
local annual precipitation amount, and/or summer precipita-
tion amount, as well as the dry/wet index established in the
corresponding areas.

5.2 Influence of the WPSH on precipitation §'20:
cave monitoring results

Associated with the intensity change, the WPSH western
boundary shifted dramatically from 2010 to 2011 from
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ing records in 2010 and 2011. 2 160°E—|
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103.3°E to 127.5°E, the second largest abrupt shift observed
during the last 20 years (after the largest one from 1998 to
1999). Our Jiguan Cave monitoring results show that §'*0
values of dripwater and modern calcite changed accord-
ingly (Fig. 6). Annual precipitations changed from ~ 1130 to
~950 mm from 2010 to 2011, whereas the weighted annual
8'%0 values change from — 7.6 to —8.5%o (Fig. 6). These
data show an opposite change as expected by the ‘amount
effect’, which supports our interpretation that the ‘circulation
effect’ is dominant at this site while the ‘amount effect’ is
suppressed (Zhao et al. 2014; Sun 2017).

In order to further explore the 8'%0 change, we ana-
lyzed the water vapor flux of the atmosphere in 2010 and
2011(Fig. 7b, c). The water vapor flux chart shows that the
atmospheric circulation system that drives the Pacific water
vapor in summer moved considerably westward in 2010,
bringing more moisture enriched in '*0 from proximal
oceans into the study area (Tan 2009, 2011, 2013, 2016),
as compared to 2011. This change is consistent with the
local precipitation 8'%0 data that record a weighted annual

40N

precipitation 8'30 value of —7.6%o in 2010, significantly
higher than in 2011 (— 8.5%0). Similarly, cave monitoring
data also show that 8'®0 values of dripwater and modern
calcite are higher in 2010 than in 2011 (Fig. 6).

5.3 Reconstructing the WPSH variability

Our analyses show clearly that the DSY 8'30 record does
not have a significant correlation with the mean annual
precipitation amount (r=0.13, p>0.1) or ‘amount effect’
(Fig. 8a), and instead, it highly correlates with variations in
the mean annual WPSH size (r=0.37, p <0.05), intensity
(r=0.42, p<0.01) and the location of the western bound-
ary (r = —0.46, p<0.001) (Fig. 8c), as well as the WPSH
variations in winter (r = —0.58, p <0.001) and summer (r
= —0.43, p<0.001) half year (Fig. 8b).

Our data shows that DSY and XL records correlate sig-
nificantly (r=0.4, p <0.001), and both correlate significantly
with the position of the western boundary of the WPSH
(r = —0.46 and — 0.59, respectively with p <0.001). This
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Fig.7 Moisture fluxes (kg m~! s™!) integrated from 1000 to 300 hPa
during the main rainy season (July—September) in 1948-2016 aver-
age (a), in 2010 (b) and in 2011 (c), respectively. Their anomalies
(kg m~! s71) associated with the 8'%0 of DSY (d) and XL (e) records,
the new reconstructed WPSH western boundary indexes (f) and the
NCCC WPSH western boundary longitude (*-1) (h). The difference
of the column-integrated water vapor flux averages between the 10
WPSH westward-anomaly years and the 10 WPSH eastward-anomaly

years (g). The water vapor flux divergence anomalies associated with
the NCCC WPSH western boundary longitude (*-1) (i). The water
vapor flux amount is depicted by color (increase with darkness) (a—c),
which is consistent with the vector change. Total atmospheric water
vapor fluxes are from monthly reanalysis data from the NCEP and
NCAR. The areas passing the significance test at the 95% and 99%
confidence levels are shown by shaded areas with light red and dark
red, respectively (d—i)
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implies that the westward extent of the WPSH would bring
in more (less) moisture from the Pacific/South China Sea
(the Indian Ocean) source, resulting in heavier (lighter) 830
of precipitation in DSY and XL cave sites, and vice versa.
Further analyses show that the column-integrated water
vapor fluxes regressed respectively onto the DSY (Fig. 7d),
XL (Fig. 7e) and the variance of the WPSH western bound-
ary (Fig. 7h, derived from NCCC data), exhibit a similar
anomalous pattern with significantly reduce of southwest
water vapor fluxes from the Indian Ocean into the EASM
region. Furthermore, using the NCCC WPSH western
boundary data with a criterion of 1 standard deviation, we
identified 10 years (1979, 1983, 1987, 1994, 1995, 1998,
2003, 2005, 2010 and 2016) when the WPSH extended sig-
nificantly westward and other 10 years (1952, 1957, 1967,
1968, 1971, 1974, 1975, 1976, 1989 and 2000) when the
WPSH retreated significantly eastward. The difference of the
column-integrated water vapor fluxes between the 10 year
averages when the WPSH extended westward and retreated
eastward (Fig. 7g) also demonstrates a similar pattern with

largely reduced southwest water vapor fluxes from the Indian
Ocean into the EASM region.

The strong correlation of DSY and XL records with the
WPSH and their conceivable causal linkage allow us to
establish a new WPSH index using the cave records. Our
WPSH index is constructed by the average of normalized
DSY and XL records for the time period of 1908-2009,
and the normalized DSY data for 1907-1812 (Fig. 9). The
new WPSH index correlates significantly to the annual (as
well as seasonal) variability of the WPSH western bound-
ary (r=0.61, p<0.001) (Figs. 9, 10). This reconstruction
extends the WPSH variation history further back in time
from the last~ 60 to 200 years. Our WPSH index mani-
fests a 200-year long-term decrease trend with a dramatic
weakening after 1970s, which is akin to the variance of the
large-scale Indo-Pacific sea level pressure gradient index
(ASLP, Vecchi et al. 2006) (Fig. 9). A suite of global cli-
mate model simulations revealed that the decrease trend
of the ASLP can be linked to the weakening of the tropical
Pacific circulation or the Walker Circulation (Vecchi et al.
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Luanchuan annual precipitation,
normalized WPSH indexes and
DSY1201 §'80 record. a The
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(blue bars) and 5 years running
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2006). Thus the observed covariance of the WPSH with
the ASLP implies that the tropical Pacific circulation or
the Walker Circulation changes may have dominated the
long-term variation of the WPSH. Intriguingly, in the same
climate models (Vecchi et al. 2006), the tropical Pacific
circulation trend was largely attributed to the global sur-
face warming or anthropogenic forcing (Held and Soden
2006). Indeed, our WPSH index shows a clear anomaly
after the ~ 1980s in the context of the last 200-year vari-
ations (Fig. 9b), which coincides with the global surface
temperature anomaly (Fig. 9¢) (e.g., Li et al. 2012; IPCC
2014).

5.4 Theinterdecadal oscillation of the WPSH

The interdecadal variability of the WPSH have received few
attentions, in comparison with its 2-7 year periodicity (Hu
1997; Sun et al. 2017), and the mechanism behind remains
unclear (Wang et al. 2013). Our high-resolution reconstruc-
tion of the WPSH extends the 60-year instrumental record
further back to the last 200 years (Figs. 10, 11), providing a

new insight into the interdecadal-interannual variability of
the WPSH. Our data show persistent ~ 12 and 2—7 year perio-
dicities (Fig. 12a) over the last 200 years, which agrees with
periodicities observed from the WPSH western boundary,
intensity and size data over the last~ 60 years (Fig. 12b—d),
but more robust. Clearly, these two periodicities corre-
spond respectively to one of major solar radiation cycles
(~ 12 years) and the El Nifio—Southern Oscillation (ENSO)
periodicity (2-7 years) (Fig. 12). Moreover, our analyses
also show that the WPSH index correlate significantly to
both the solar radiation (r=0.56, p <0.001) (Lean et al.
1995) and the Southern Oscillation Index (SOI) (r=0.22,
p <0.05) (Fig. 11). In addition, as paced presumably by the
persistent 12-year periodicity, the WPSH has intensified and
shifted westward since 2015 (data source: http://cmdp.ncc.
cma.gov.cn/cn/monitoring.htm), consistent with the sunspot
maximum in 2014 (data source: https://solarscience.msfc.
nasa.gov/predict.shtml) (Fig. 12).

The dynamic how solar irradiance modulates the Earth’s
climate, such as monsoons and the WPSH variability,
remains a complex issue (Gray et al. 2010; Van et al. 2004;

Fig.9 Reconstructed index

of the WPSH western bound-
ary and comparison with the
global temperature anoma-

lies and the Indo-Pacific sea
level pressure gradient index
(ASLP). a Normalized DSY
(dark blue) and XL (light blue)
8'30 records and their average
(black). b Reconstructed (black
line, this study) and original
(gray line, data from NCCC)
WPSH western boundary
records. ¢ The Global tempera-
ture anomaly in 1812-2009 (the
purple line in 18,121,980 from
Mann and Jones 2003; the red
line in 18,702,009 from the
National Oceanic for Atmos-
pheric Administration, https://
www.ncdc.noaa.gov/data-acces
s/marineocean-data). d The
S-years running average of the
ASLP (Vecchi et al. 2006). The
data are from observation (light
green) and Hadley Centre (dark
green) respectively (Basnett
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Meehl et al. 2009; White and Liu 2008). A number of stud-
ies (e.g., White et al. 1997; Meehl et al. 2009; Gray et al.
2010) have found clear evidences of the 9-13 year solar
cycle signal in sea surface temperature (SST) records glob-
ally, whereas the SST of the Indian, Pacific and Atlantic
oceans have been noted to have remarkably local or remote
effects on the WPSH strengthening (e.g., Nitta 1987; Huang
and Li 1989; Wang et al. 2000, 2013; Xie et al. 2009; Yang
et al. 2007; Zhou et al. 2009; He and Zhou 2014, 2015a, b;
He et al. 2017; Hong et al. 2014). It thus appears that the
solar irradiation change can affect the WPSH variability via
a positive atmosphere—ocean feedback. However, contro-
versies in the WPSH formation endures (e.g., Ye and Gao
1979; Ye and Wu 1998; Hoskins 1996; Huang et al. 2016;
He et al. 2015), and more observational and modeling stud-
ies are critically needed.

5.5 Possible physical processes of the WPSH

During the past two decades, a large number of researches
have been focused on the physical processes of the WPSH
variations, bringing up various propositions. A mechanism
so-called ‘Kelvin-wave-induced Ekman divergence’ was
proposed to explain the WPSH dynamics, which invokes
SST over the tropical Indian Ocean and tropical West Pacific
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Ocean (e.g., Wang et al. 2000, 2013; Xie et al. 2009; Wu
et al. 2010; He and Zhou 2014, 2015a, b; Hong et al. 2014).
Our WPSH reconstruction appears to correlate with the
tropical SST anomaly (SSTA) in the West Pacific Ocean
(r=0.57, p<0.001) and tropical Indian Oceans (r=0.56,
p<0.001) (Tierney et al. 2015) (Fig. 11). Recently, the warm
tropical Atlantic SST mode was considered to be able to
enhance the WPSH and shift it westward (Hong et al. 2014).
In addition, Sun et al. (2017) also suggested that the tropical
Atlantic SST acts as a key pacemaker of the western Pacific
decadal climate variability. Our WPSH reconstruction also
correlates with the tropical SSTA in the tropical Atlantic
(Tierney et al. 2015) (r=0.44, p <0.001) (Fig. 11), in line
with the interpretations.

On the other hand, the condensation heating released
by AM rainfall was viewed as an important feedback
affecting the WPSH (Hoskins 1996; Liu et al. 2001; Wu
and Liu 2003; Wu et al. 2004, 2009; He and Zhou 2014,
2015a, b; Chowdary et al. 2010; Xie et al. 2009). This
is consistent with many observations that show the wet
anomalies in the AM region occurred in accordance with
WPSH intensifications (Gong and Ho 2002; Chowdary
et al. 2010). Our WPSH index also shows a significant cor-
relation with rainfall anomaly in southern China (r=0.21,
p<0.001) (Fig. 11). In addition, during the peak years
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NCCC). ¢ The variability of the reconstructed WPSH western bound-
ary index (dark blue) in comparison with seasonal NCCC WPSH
western boundary variations (light blue). d The detrended recon-
structed WPSH index (dark blue) in comparison with detrended sea-
sonal NCCC WPSH western boundary variations (light blue)
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Fig. 11 Comparison of the reconstructed WPSH western bound-
ary index with other climate records. Red curve is the constructed
index (this study). Black curves from top to bottom are solar radia-
tion (Lean et al. 1995), three different tropical SSTA (Tierney et al.
2015), southern rainfall anomalies in the region of 21°N-30°N and
104°E-120°E (http://climexp.knmi.nl/select.cgi), Southern Oscilla-
tion Index (SOI) over in the last 100 years (1908-2009) (https://cruda
ta.uea.ac.uk/cru/data/pci.htm)

of solar irradiation, regions with enhanced precipitation
extends from the ISM domain to the West Pacific Warm
Pool (Van et al. 2004), coincided with AM rainfall anoma-
lies (~20% above normal) (Van and Meehl 2012). This
thermal-hydrological mode intensifies the WPSH via
the mechanism of a positive atmosphere—ocean feedback
(Wang et al. 2000, 2013; Xie et al. 2009; Yang et al. 2007;
Zhou et al. 2009; He and Zhou 2014, 2015a, b; He et al.
2017) and/or the energy dispersion (Nitta 1987; Huang and

Li 1989) between the WPSH and the Indo-Pacific Oceans
(Wu and Liu 2003; Wu et al. 2004; Liu et al. 2001; Lu
and Dong 2001; Cao et al. 2009, 2012, 2016). In sum, the
propositions of the tropical SST patterns and AM rainfall
feedback may explain at least some important aspects of
the physical process of the WPSH, but more modeling
and observational studies are critical to further assess the
role of the SST and AM rainfall feedback in amending
the WPSH.

6 Conclusions

The major factors controlling the 8'%0 of precipitation and
speleothem calcite on seasonal to multidecadal timescales
vary within the EASM region of eastern China. The Qinling
region in central China is unique and more sensitive to vari-
ations in the position of the western boundary of the WPSH,
which in turn regulates the alteration of moisture sources
from the proximal Pacific Ocean and remote Indian Ocean,
consistent with the ‘circulation effect’. On the other hand,
cave sites in other monsoon regions of China with dominant
moisture sources from either the Pacific or the Indian Ocean
are not significantly correlated with WPSH variations. For
instance, cave records close to the summer monsoon fringe
and near the coast of southeastern China show the evidence
of the apparent ‘amount effect’.

On the basis of the high-resolution DSY and XL cave
records and their strong correlations with the variations
of the WPSH western boundary, we extended the WPSH
variation history from instrumental records over the
last ~ 60 years further back in time to the last 200 years by
constructing a new WPSH index to indicate changes in the
WPSH western boundary. Our WPSH index shows a long-
term decrease over the last 200 years with a dramatic decline
since 1980s which may be linked to the tropical atmospheric
circulation weakening and/or anthropogenic forcing. The
WPSH variations also show two distinct periodicities, 12
and 2-7 years respectively, that can be causally linked to
the solar and ENSO variances correspondingly. Our work
demonstrates that the cave record can potentially extend
the high-resolution WPSH variation history much longer
than instrumental records, which opens the door to a more
precise and robust understanding of the climate dynamics
behind. In particular, the climate changes, including the
WPSH variability, were closely linked to both natural and
anthropogenic forcing. In this regard, the critical observation
was not our WPSH reconstruction over the last~60 years,
which is also observed in various instrumental records, but
rather the variability at earlier times and their relations with
other regional-global climate changes. The reconstructed
WPSH records establish the characters of natural climate
change beyond instrumental records, merely from which
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Fig. 12 Spectral analysis

results. a Power spectral 0.4

analysis result of the new

reconstructed WPSH index 0.3 4
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2013). b, ¢ and d Power spectral

analysis results of the NCCC 0.1+

WPSH western boundary, the
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0.1 0.2

0.3

Frequency

we may distinguish the trends and periodicities observed
in the last~ 60 years as clear anomalies or persistent natural
variations.
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