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ABSTRACT

Data collection often involves the partial measurement of a larger
system. A common example arises in collecting network data: we
often obtain network datasets by recording all of the interactions
among a small set of core nodes, so that we end up with a measure-
ment of the network consisting of these core nodes along with a
potentially much larger set of fringe nodes that have links to the
core. Given the ubiquity of this process for assembling network data,
it is crucial to understand the role of such a “core-fringe” structure.

Here we study how the inclusion of fringe nodes affects the
standard task of network link prediction. One might initially think
the inclusion of any additional data is useful, and hence that it
should be beneficial to include all fringe nodes that are available.
However, we find that this is not true; in fact, there is substantial
variability in the value of the fringe nodes for prediction. Once an
algorithm is selected, in some datasets, including any additional
data from the fringe can actually hurt prediction performance; in
other datasets, including some amount of fringe information is
useful before prediction performance saturates or even declines;
and in further cases, including the entire fringe leads to the best
performance. While such variety might seem surprising, we show
that these behaviors are exhibited by simple random graph models.
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1 INTRODUCTION

In a wide range of data analysis problems, the underlying data typ-
ically comes from partial measurement of a larger system. This is a
ubiquitous issue in the study of networks, where the network we
are analyzing is almost always embedded in some larger surround-
ing network [17, 20, 21]. Such considerations apply to systems at all
scales. For example, when studying the communication network of
an organization, we can potentially gain additional information if
we know the structure of employee interactions with people outside
the organization as well [32]. A similar issue applies to large-scale
systems. If we are analyzing the links within a large online social
network, or the call traffic data from a large telecommunications
provider, we could benefit from knowing the interactions that mem-
bers of these systems have with individuals who are not part of the
platform, or who do not receive service from the provider.
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Figure 1: Core-fringe structure. (Left) Illustrative network
with labeled core-fringe structure (core nodes in green and
fringe nodes in orange). We observe all of the links involving
core nodes (in green). Each edge is between two core nodes or
between one core and one fringe node. (Right) Core-fringe
structure in the Enron email network, which results from
data collection—the core nodes in green correspond to the
roughly 150 accounts whose emails were released as part of a
federal investigation [19]. Here, the number of fringe nodes
is orders of magnitude larger than the number of core nodes.

Network data can therefore be viewed as having a core-fringe
structure (following the terminology of our previous work [6]): we
collect data by measuring all of the interactions involving a core set
of nodes, and in the process we also learn about the core’s interac-
tion with a typically larger set of additional nodes—the fringe—that
does not directly belong to the measured system. Figure 1 illustrates
the basic structure schematically and also in a typical real-life sce-
nario: If we collect a dataset by measuring all email communication
to and from the executives of a company (the core), then the data
will also include links to people outside this set with whom mem-
bers of the core exchanged email (the fringe).! We thus have two
kinds of links: links between two members of the core, and links
between a member of the core and a member of the fringe. Links
between fringe members are not visible, even though we are aware
of both fringe nodes through their interactions with the core.

Despite the fundamental role of core-fringe structure in network
data and a long history of awareness of this issue in the social
sciences [21], there has been little systematic attention paid to its
implications in basic network inference tasks. If we are trying to
predict network structure on a measured set of core nodes, what
is the best way to make use of the fringe? Is it even clear that
incorporating the fringe nodes will help? To study these questions,
it is important to have a concrete task on the network where notions
of performance as a function of available data are precise.

The present work: Core-fringe link prediction. In this paper,
we study the role of core-fringe structure through one of the stan-
dard network inference problems: link prediction [24, 26]. Link

!This distinction between core and fringe is fundamentally driven by measurement of
the available data; we have measured all interactions involving members of the core,
and this brings the fringe indirectly into the data. As such, it is distinct from work on
the core-periphery structure of networks, which typically refers to settings in which the
core and periphery both fully belong to the measured network, and the distinction is in
the level of centrality or status that the core has relative to the periphery [7, 16, 31, 37].
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prediction is a problem in which the goal is to predict the presence
of unseen links in a network. Links may be unseen for a variety
of reasons, depending on the application—we may have observed
the network up to a certain point in time and want to forecast new
links, or we may have collected a subset of the links and want to
know which additional ones are present.

Abstractly, we will think of the link prediction problem as op-
erating on a graph G = (V, E) whose edges are divided into a set
of observed edges and a set of unseen edges. From the network
structure on the observed edges, we would like to predict the pres-
ence of the unseen edges as accurately as possible. A large range of
heuristics have been proposed for this problem, many of them based
on the empirical principle that nodes with neighbors in common
are generally more likely to be connected by a link [24, 26, 28].

The issue of core-fringe structure shows up starkly in the link
prediction problem. Suppose the graph G has nodes that are divided
into a core set C and a fringe set F, and our goal is to predict unseen
links between pairs of nodes in the core. One option would be to
perform this task using only the portion of G induced on the core
nodes. But we could also perform the task using larger amounts
of G by taking the union of the core nodes with any subset of the
fringe, or with all of the fringe. The key question is how much of the
fringe we should include if our goal is to maximize performance on
the core; existing work provides little guidance about this question.
How much do fringe nodes help in link prediction? We ex-
plore this question in a broad collection of network datasets derived
from email, telecommunication, and online social networks. For con-
creteness, our most basic formulation draws on common-neighbor
heuristics to answer the following version of the link prediction
question: given two pairs of nodes drawn from the core, {u, v} and
{w, z}, which pair is more likely to be connected by a link? (In our
evaluation framework, we will focus on cases in which exactly one
of these pairs is truly connected by a link, thus yielding a setting
with a clear correct answer.) To answer this question, we could
use information about the common neighbors that {u, v} and {w, z}
have only in the core, or also in any subset of the fringe. How
much fringe information should we use, if we want to maximize
our probability of getting the correct answer?

It would be natural to suspect that using all available data, i.e.,
including all of the fringe nodes, would maximize performance.
What we find, however, is a wide range of behaviors. In some of our
domains—particularly the social-networking data—link prediction
performance increases monotonically in the amount of fringe data
used, though with diminishing returns as we incorporate the entire
fringe. In the other domains, however, we find a number of instances
where using an intermediate level of fringe, i.e., a proper subset of
the fringe nodes, yields a performance that dominates the option
of including all of the fringe or none of it. And there are also cases
where prediction is best when we ignore the fringe entirely. Given
that proper subsets of the fringe can yield better performance than
either extreme, we also consider the process of selecting a subset of
the fringe; in particular, we study different natural orderings of the
fringe nodes and then select a subset by searching over prefixes of
these orderings.

To try understanding this diversity of results, we turn to basic
random graph models, adapting them to capture the problem of
link prediction in the presence of core-fringe structure. We find
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that simple models are rich enough to display the same diversity
of behaviors in performance, where the optimal amount of fringe
might be all, some, enough, or none. More specifically, we ana-
lyze the signal-to-noise ratio for our basic link prediction primitive
in two heavily-studied network models: stochastic block models
(SBMs), in which random edges are added with different probabili-
ties between a set of planted clusters [1, 2, 10, 27]; and small-world
lattice models, in which nodes are embedded in a lattice, and links
between nodes are added with probability decaying as a power of
the distance [18, 35]. We prove that there are instances of the SBM
with certain linking probabilities in which the signal-to-noise ratio
is optimized by including all the fringe, enough of the fringe, or
none of the fringe. For small-world lattice models, we find in the
most basic formulation that the signal-to-noise ratio is optimized
by including an intermediate amount of fringe: essentially, if the
core is a bounded geometric region in the lattice, then the optimal
strategy for link prediction is to include the fringe in a larger region
that extends out from the core; but if we grow this region too far
then performance will decline.

The analysis of these models provides us with some qualitative
higher-level insight into the role of fringe nodes in link prediction.
In particular, the analysis can be roughly summarized as follows: the
fringe nodes that are most well-connected to the core are providing
valuable predictive signal without significantly increasing the noise;
but as we continue including fringe nodes that are less and less
well-connected to the core, the signal decreases much faster than
the noise, and eventually the further fringe nodes are primarily
adding noise in a way that hurts prediction performance.

More broadly, the results here indicate that the question of how
to handle core-fringe structure in network prediction problems is a
rich subject for investigation, and an important one given how com-
mon this structure is in network data collection. An implication of
both our empirical and theoretical results is that it can be important
for problems such as link prediction to measure performance with
varying amounts of additional data, and to accurately evaluate the
extent to which this additional data is primarily adding signal or
noise to the underlying decision problem.

Finally, software and data associated with this paper are available
at https://github.com/arbenson/cflp.

2 EMPIRICAL NETWORK ANALYSIS

We first empirically study how including fringe nodes can affect
link prediction on a number of datasets. While we might guess that
any additional data we can gather would be useful for prediction,
we see that this is not the case. In different datasets, incorporating
all, none, some, or enough fringe data leads to the best performance.
We then show in Section 3 that this variability is also exhibited in
the behavior of simple random graph models.

Evaluating link prediction with core-fringe structure. There
are several ways to evaluate link prediction performance [24, 26].
We set up the prediction task in a natural way that is also amenable
to theoretical analysis in Section 3. We assume that we have a graph
G = (V, E) with a known set of core nodes C C V and fringe nodes
F =V — C. The edge set is partitioned into E™™ and E't, where
E™st is a subset of the edges that connect two nodes in the core
C. The form of Etest depends on the dataset, which we describe in


https://github.com/arbenson/cflp

the following sections. In general, our core-fringe link prediction
evaluation is based on how well we can predict elements of E%5t
given the graph Gtain = (v, gtrain),

Our atomic prediction task considers two pairs of nodes {u, v}
and {w, z} such that (i) all four nodes are in the core (i.e., u,v,w,z €
C); (ii) neither pair is an edge in E™™; (iii) the edge (u,v) is a
positive sample, meaning that (u,v) € E'!; and (iv) the edge
(w, z) is a negative sample, meaning that (w, z) ¢ E*t, We use an
algorithm that takes as input G and outputs a score function
s(x,y) for any pair of nodes x, y € C; the algorithm then predicts
that the pair of nodes with the higher score is more likely to be
in the test set. Thus, the algorithm makes a correct prediction if
s(u,v) > s(w, z). We sample many such 4-tuples of nodes uniformly
at random and measure the fraction of correct predictions.

We evaluate two score functions that are common heuristics for
link prediction [24]. The first is the number of common neighbors:

s(x,y) = [N(x) N N(y)l, ¢Y)

where N(z) is the set of neighbors of node z in the graph. The
second is the Jaccard similarity of the neighbor sets:

_ING) N N@)I
IN(x) UN(y)I"

We choose these score functions for a few reasons. First, they are
flexible enough to be feasibly deployed even if only minimal in-
formation about the fringe is available; more generally, their ro-
bustness has motivated their use as heuristics in practice [14, 15]
and throughout the line of research on link prediction [24]. Second,
they are amenable to analysis: we can explain some of our results
by analyzing the common neighbors heuristic on random graph
models, and they are rich enough to expose a complex landscape of
behavior. This is sufficient for the present study, but it would be in-
teresting to examine more sophisticated link prediction algorithms
in our core-fringe framework as well.

We parameterize the training data by how much fringe informa-
tion is included. To do this, we construct a nested sequence of sets of
vertices, each of which induces a set of training edges. Specifically,
the initial set of vertices is the core, and we continue to add fringe
nodes to construct a nested sequence of vertices:

s(x,y) )

C=VWcWVc---CVp=V. 3)

The nested sequence of vertex sets then induces a nested sequence
of edges that are the training data for the link prediction algorithm;
for a value of d between 0 and D, we write

Efiram = {(u,v) € E | u,v € V;} N ET0, 4)
From Egs. (3) and (4), Egain c ng:iln, and Egain = Etrain The

parameterization of the vertex sets will depend on the dataset,
and we examine multiple sequences {V;} to study how different
interpretations of the fringe give varying outcomes. Our main point
of study is link prediction performance as a function of d.

2.1 Email networks

Our first set of experiments analyzes email networks. The core
nodes in these datasets are members of some organization, and the
fringe nodes are those outside of the organization that communi-
cate with those in the core. We use four email networks; in each,
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Table 1: Summary statistics of email datasets.

#core #fringe # core-core # core-fringe
Dataset nodes  nodes edges edges
email-Enron 148 18,444 1,344 41,883
email-Avocado 256 27,988 7,416 50,048
email-Eu 1,218 200,372 16,064 303,793
email-W3C 1,995 18,086 1,777 30,097
email-Enron-1 37 7,511 86 11,862
email-Enron-2 37 6,440 81 10,648
email-Enron-3 37 6,379 80 10,390
email-Enron-4 37 6,587 95 10,987

the nodes are email addresses, and the time that an edge formed is
given by the timestamp of the first email between two nodes. For
simplicity, we consider all graphs to be undirected, even though
there is natural directionality in the links. Thus, each dataset is a
simple, undirected graph, where each edge has a timestamp and
each node is labeled as core or fringe. The four datasets are (i) ermail-
Enron: the network in Figure 1, where the core nodes correspond to
accounts whose emails were released as part of a federal investiga-
tion [6, 19]; (ii) email-Avocado: the email network of a now-defunct
company, where the core nodes are employees (we removed ac-
counts associated with non-people, such as conference rooms).?
(iii) email-Eu: a network that consists of emails involving members
of a European research institution, where the core nodes are the
institution’s members [23, 36]; and (iv) email-W3C: a network from
W3C email threads, where core nodes are those addresses with a
w3.org domain [6, 9]. Table 1 provides basic summary statistics.

An entire email network dataset is a graph G = (V, E), where
C C V is a set of core nodes, and each edge e € E is associated
with a timestamp t.. Here, our test set is derived from the temporal
information. Let t* be the 80th percentile of timestamps on edges
between core nodes. Our test set of edges is the final 20% of edges
between core nodes that appear in the dataset:

E'' = ((u,v) € E | u,v € Cand o) 2 t7)

(©)

The training set is then given by edges appearing before t*, i.e., the
edges appearing in the first 80% of time spanned by the data:

(6)

Fringe ordering. Next, we form the nested sequence of train-
ing set edges (Eq. (4)) by sequentially increasing the amount of
fringe information (Eq. (3)). Recall that Etglraln is simply the set of

E" = ((u,0) € E | t(y, ) < t*).

edges in E'™™ in which both end points are in the vertex set V.

To build {V,;}, we start with Vy = C, the core set, and then add the
fringe nodes one by one in order of decreasing degree in the graph
Gfrain — (v Etrainy By definition, fringe nodes cannot link between
themselves, so this ordering is equivalent to adding fringe nodes
in order of the number of core nodes to which they connect. For
purposes of comparison, we also evaluate this ordering relative to
a uniformly random ordering of the fringe nodes. To summarize,
given an ordering o of the fringe nodes F, we create a nested se-
quence of node sets V; = CU {01, ...,04} in two ways: (i) Most
connected: o is the ordering of nodes in the fringe F by decreasing

Zhttps://catalog.ldc.upenn.edu/LDC2015T03
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Figure 2: Link prediction performance of the Common Neighbors (top) and Jaccard similarity (bottom) score functions on
four email networks as a function of d, the number of fringe nodes included. Two orderings of fringe nodes are considered:
one by the most connections to the core (red) and one random (blue). A circle marks the best performance. There is a striking
variety in how the fringe affects performance. In some cases, we should ignore the fringe entirely (C); in others, performance

increases with the size of the fringe (F, H); and in still others, some intermediate amount of fringe is optimal (E, G).
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Figure 3: Link prediction performance experiments analogous to those in Figure 2 but on four subsets of email-Enron. In most
cases, including some interior amount of fringe nodes—between 10 and a few hundred—yields the optimal performance.

degree in the graph induced by E™ (Eq. (6)); and (ii) Random: ¢
is a random ordering of the nodes in F.

Link prediction. We use the most connected and random ordering
to predict links in the test set of edges, as described at the beginning
of Section 2. Recall that we needed a set of candidate comparisons
between two potential edges (one of which does appear in the
test). We guess that the pair of nodes with the larger number of
common neighbors or larger Jaccard similarity score will be the set
that appears in the test set. We sample 10 - |E*5t| pairs from Etest
(allowing for repeats) and combine each of them with two nodes
selected uniformly at random that never form an edge. Prediction
performance is measured in terms of the fraction of correct guesses
as a function of d, the number of fringe nodes included. This entire
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procedure is repeated 10 times (with 10 different sets of random
samples) and the mean accuracy is reported in Figure 2.

The results exhibit a wide variety of behavior. In some cases,
performance tends to increase monotonically with the number of
fringe nodes (Figures 2F and 2H). In one case, we achieve optimal
performance by ignoring the fringe entirely (Figure 2C). In yet
another case, some interior amount of fringe is optimal before pre-
diction performance degrades (Figure 2E). In several cases, we see a
saturation effect, where performance flattens as we increase more
fringe nodes (e.g., Figures 2A and 2D). This is partly a consequence
of how we ordered the fringe—nodes included towards the end of
the sequence are less connected and thus have relatively less impact
on the score functions. In these cases, one practical consequence is



Table 2: Summary statistics of telecommunications datasets.
Core nodes are participants in the Reality Mining study.

# core #fringe # core-core # core-fringe
Dataset nodes nodes edges edges
call-Reality 91 8,927 127 10,512
text-Reality 91 1,087 32 1,920

that we could ignore large amounts of the data and get roughly the
same performance, which would save computation time. In another
case, the first few hundred most connected fringe nodes leads to
worse performance, but eventually having enough fringe improves
performance (Figure 2B). Finally, there are also cases where the
optimal performance over d is better for a random ordering of the
fringe than for the most connected ordering (Figures 2D and 2G).
We repeated the same set of experiments on subgraphs of email-
Enron by partitioning the core set of nodes C into four groups to
induce four different datasets. In each dataset, the other members
of the core are removed from the graph entirely (the bottom part
of Table 1 lists basic summary statistics). The results in Figure 3
provide further evidence that it is a priori unclear how much fringe
information one should include to achieve the best performance.
In nearly all cases, the optimal performance when including fringe
nodes in order of connectedness is somewhere between 10 and a
few hundred nodes, out of a total of several thousand. And we again
see that including initial fringe information by connectedness has
worse performance than ignoring the fringe entirely, until even-
tually incorporating enough fringe information provides enough
signal to improve prediction performance (Figures 3C and 3D).

2.2 Telecommunications networks

Next, we study telecommunications datasets from cell phone usage
amongst individuals participating in the Reality Mining project [12].
This project recorded cell phone activity of students and faculty in
the MIT Media Laboratory, including calls and SMS texts between
phone numbers. We consider the participants (more, specifically,
their phone numbers) as the core nodes in our network. Edges
are phone calls or SMS texts between two people, some of which
are fringe nodes corresponding to people who were not recruited
for the experiment. We process the data in the same way as for
email networks—directionality was removed and the edges are
accompanied by the earliest timestamp of communication between
the two nodes. We study two datasets: (i) call-Reality: the network
of phone calls [6, 12]; and (ii) text-Reality: the network of SMS
texts [6, 12]. Table 2 provides some basic summary statistics.
Fringe ordering. The structure of these networks is the same as
the email networks—the dataset is a recording of the interactions
of a small set of core nodes with a larger set of fringe nodes. We use
the same two orderings—most connected to core and random—as
we did for the email datasets. Thus, the nested sequence of node
sets {V;} is again constructed by adding one node at a time.

Link prediction. Figure 4 shows the link prediction performance
on the telecommunications datasets. With the Common Neighbors
score function, we again find that the optimal amount of fringe is
a small fraction of the entire dataset—around 100 of nearly 9,000
nodes in call-Reality (Figure 4A) and around 10 of over 1,000 nodes
in text-Reality (Figure 4B). The performance of the Jaccard similarity
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Figure 4: Link prediction performance in the telecommu-
nications datasets as a function of d, the number of fringe
nodes used for prediction. Circles mark the largest value.
With the Common Neighbors score function, a small num-
ber of fringe nodes is optimal for these datasets.
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also has an interior optimum for the call-Reality dataset, although
the optimum size here is larger—around half of the nodes.

Prediction performance with the fringe nodes ordered by con-
nectedness to the core is in general quite erratic for the call-Reality
dataset. This is additional evidence that the fringe nodes can be a
noisy source of information. For instance, just including the first
fringe node results in a noticeable drop in prediction performance
for both the Common Neighbors and Jaccard score functions.

2.3 Online social networks

We now turn to links in an online social network of bloggers from
the LiveJournal community [25]. Edges are derived from users list-
ing friends in their profile (here, we consider all links as undirected).
Users also list their geographic location, and for the purposes of this
study, we have restricted the dataset to users reporting locations
in the United States and Puerto Rico. For each user, we have both
their territory of residence (one of the 50 U.S. states, Washington
D.C., or Puerto Rico; henceforth simply referred to as “state”) as
well as their county of residence, when applicable.

Table 3: Summary statistics of LiveJournal networks. The
sets of core nodes are users in particular states or counties.

#core #fringe # core-core # core-fringe

Dataset nodes  nodes edges edges
Wisconsin 16,842 58,965 48,078 87,723
Texas 65,617 155,357 256,174 312,746
New York 82,275 208,516 281,981 477,845
California 152,171 244,605 712,803 722,835

Marathon 223 1,032 390 1,363

Eau Claire 295 1,392 252 1,635
Dane 2,281 15,580 5,192 21,156
Milwaukee 3,743 19,934 10,750 30,955
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Figure 5: Link prediction performance of the Common Neighbors (top) and Jaccard similarity (bottom) score functions on four
LiveJournal datasets where the core consists of users in a state. Performance is measured as a function of d, the number of
fringe states included for prediction (for four different orderings of the fringe). The most connected ordering performs the

best, monotonically increases with d, and saturates when d > 20.
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a Wisconsin county and the fringe is the rest of the

state. Performance is measured as a function of d, the number of fringe counties included for prediction. The most connected
ordering performs the best, and performance with this ordering quickly saturates.

We construct core-fringe networks in two ways. First, we form
a core from all user residing in a given state S. The core-fringe
network then consists of all friendships where at least one node
is in state S. We construct four such networks, using the states
Wisconsin, Texas, California, and New York. Second, we form a core
from users residing in a county and construct a core-fringe network
in the same way, but we only consider friendships amongst users in
the state containing the county. We construct four such networks,
using Marathon, Eau Claire, Dane, and Milwaukee counties (all in
Wisconsin). Table 3 lists summary statistics of the datasets.

Unlike the email and telecommunications networks, we do not
have timestamps on the edges. We instead construct E't from a
random sample of 20% of the edges between core nodes, i.e., from
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{(u,v) € E | u,v € C}, and set Er3in = E_ Etest, Predicting on such
held out test sets is used for predicting missing links [8, 13]; here,
we use it for link prediction, as is standard practice [26].

Fringe ordering. We again incorporate fringe nodes from a nested
sequence of node sets {V;}, where V; C V3,1 and V = C, the
set of core nodes. The nested sequence of training sets is then
Etdrain = {(u,v) € E™" | 4 ¢ € V;}. With email and telecom-
munications, we considered fringe nodes one by one to form the
sequence {Vy;}. For LiveJournal, each successive node set instead
corresponds to adding all nodes in a state or a county. For the cores
constructed from users in a state (Wisconsin, Texas, New York, or
California), we form orderings o of the remaining states in four
ways: (i) Most connected: o is the ordering of states by decreasing



number of links to the core state; (ii) Most users: o is the ordering
by decreasing number of users; (iii) Proximity: o is the ordering of
states by closest proximity to the core state (measured by great-
circle distance between geographic centers); and (iv) Random: o is
a random ordering of the states.

Let Us be the users in state S. The sequence of vertex sets is all

users in the core and first d states in the ordering ¢. Formally, V; =
cu (U‘ilem)A For networks whose core are users in a Wisconsin
county, we use the same orderings, except we order counties instead
of states and the fringe is only counties in Wisconsin.
Link prediction. We measure the mean prediction performance
over 10 random trials as a function of the number d of fringe states
or counties included in the training data. When states form the
core, prediction performance is largely consistent (Figure 5). For
both score functions, ordering by number of connections tends to
perform the best, with a rapid performance increase from approxi-
mately the first 10 states and then saturation with a slow monotonic
increase. The prediction by states with the most users performs
nearly the same for the three largest states (Texas, New York, and
California; Fiugres 5B to 5D). In Wisconsin and New York, ordering
by proximity shows a steep rise in performance for the first few
states but then levels off (Figures 5A, 5C, 5E and 5G). On the other
hand, in California and Texas, ordering by proximity performs
roughly as well as a random ordering.

The networks where the cores are users from counties in Wiscon-
sin have similar characteristics to the networks where the cores are
users from particular states (Figure 6). The ordering by county with
the most connections performs the best. Prediction performance
quickly saturates in the two larger counties (Figures 6C and 6D),
and the proximity ordering can be good in some cases (Figure 6A).
Summary. Usually, collecting additional data is thought to im-
prove performance in machine learning. Here we have seen that
this is not the case in some networks with core-fringe structure. In
fact, including additional fringe information can affect link predic-
tion performance in a number of ways. In some cases, it is indeed
true that additional fringe always helps, which was largely the case
with LiveJournal (Figure 5). In one email network, including any
fringe data hurt performance (Figure 2C). And yet in other cases,
some intermediate amount of fringe data gave the best performance
(Figures 4A and 4B; Figure 3). We also observed saturation in link
prediction performance as we increased the fringe size (Figure 6)
and that sometimes we need enough fringe before prediction be-
comes better than incorporating no fringe at all (Figures 2B and
3C). While this landscape is complex, we show in the next section
how these behaviors can emerge in simple random graph models.

3 RANDOM GRAPH MODEL ANALYSIS

We now turn to the question of why link prediction in core-fringe
networks exhibits such a wide variation in performance. To gain
insight into this question, we analyze the link prediction problem
on basic random graph models that have been adapted to contain
core-fringe structure.

Recall how our link prediction problem is evaluated: we are
given two pairs {u, v} and {w, z}; our algorithm predicts which of
the two candidate edges is the one that appears in the data through
a score function; and the values of the score function (and hence
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the predictions) can change based on the inclusion of fringe nodes.
In a random graph model, we can think about using the same score
functions for the candidate edges (u,v) and (w, z), but now the
score functions and the existence of edges are random variables.
As we will show, the signal-to-noise ratio of the difference in score
functions is a key statistic to optimize in order to make the most
accurate predictions, and this can vary in different ways when
including fringe nodes.

The signal-to-noise ratio (SNR). Suppose our data is generated
by a random graph model and that the indicator random variables
X,Y € {0, 1} correspond to the existence of two candidate edges
{u, v} and {w, z}, respectively, where nodes u, v, w, and z are dis-
tinct and chosen uniformly at random amongst a set of core nodes.
Without loss of generality, we assume that Pr[X] > Pr[Y] so that
(u,v) is more likely to appear.

We would like our algorithm to predict that the edge {u, v} is the
one that exists, since this is the more likely edge (by assumption).
However, our algorithm does not observe X and Y directly; instead,
it sees proxy measurements ()2 R f/), which are themselves random
variables. These proxy measurements correspond to the score func-
tion used by the algorithm; in this section, we focus on the number
of common neighbors score. Our algorithm will (correctly) predict
that edge {u, v} is more likely if and only if X > Y.

Furthermore, the proxy measurements are parameterized by
the amount of fringe information we have. Following our previous
notation, we call these random variables X, 4 and ?d- These variables
represent the same measurements as X and Y (such as the number
of common neighbors), just on a set of graphs parameterized by
the amount of fringe information d.

Our goal is to optimize the amount of fringe to get the most
accurate predictions. Formally, if we let Zz = X, — Yy, this means:

maxjimize Pr[X; > V)] = max‘iimize Pr[Z; > 0].

We assume that we have access to E[Z;] and V[Z;] for all values
of d. Our approach will be to maximize the signal-to-noise ratio
(SNR) statistic of Zy, i.e.,
maximize -Zdl 2 SNR[Z,].
d V(Zal

We motivate this approach as follows. Absent any additional infor-
mation beyond the expectation and variance, we must use some
concentration inequality. Under the reasonable assumption that
E[Z4] > 0 (which we later show holds in our models), the proper in-

equality is Cantelli’s: Pr[Z; > 0] > 1— V[Zjl]][JrZE[]Zd]Z = lig]ﬁ[[fg]z.
Thus, the lower bound on correctly choosing X is monotonically
increasing in the SNR of our proxy measurement. Using this prob-
abilistic framework, we can now see how some of the empirical

behaviors in Section 2 might arise.

3.1 Stochastic block models

In the stochastic block model, the nodes are partitioned into K
blocks, and for parameters P; j (with 1 < i,j < K), each node in
block i is connected to each node in block j independently with
probability P; ;. (Since our graphs are undirected, P; ; = Pj,;.) In
our core-fringe model here, K = 4, the core corresponds to blocks
1 and 2, and the fringe corresponds to blocks 3 and 4. This model
turns out to be flexible enough to demonstrate a wide range of



behaviors observed in Section 2. We use the following notation for
block probabilities:
pqrs
p=lar] Q

Our assumptions on the probabilities are that ¢ < p and s < r. We
also assume that the first two blocks each contain n, nodes and
that the last two blocks each contain ny nodes.

We further assume we are given samples of four distinct nodes u,
v, w, and z chosen uniformly at random from the core blocks such
that u, v, and w are in block 1 and z is in block 2. Following our
notation above, let X be the random variable that (u, v) is an edge
and Y be the random variable that (w, z) is an edge (Pr[X] > Pr[Y]
since p > g). Our proxy measurements X and Y are the number
of common neighbors of candidate edges {u,v} and {w, z}. Our
algorithm will correctly predict that (u, v) is more likely if X > ¥.

Our proxy measurements are parameterized by the amount of
fringe information that they incorporate. Here, we arbitrarily or-
der the nodes in the two equi-sized fringe blocks and say that the
random variable X; is the number of common neighbors between
nodes u and v when including the first d nodes in both fringe blocks.
Similarly, the random variable Y is the number of common neigh-
bors of nodes w and z. By independence of the edge probabilities,
some straightforward calculations show that

E[X;] = 2(ne — 1)p? + dr? + ds®, B[Y;] = 2(nc — 1)pq + 2drs
V[Xg] = 2(ne — Dp?(1 - p?) + drP(1 —r?) + ds?(1 — s?)
V[Yd] = 2(nc — 1)pq(1 — pq) + 2drs(1 —rs).

With no fringe information, it is immediate that the SNR is positive,
ie, SNR[Zo] > 0: E[Xg — Yo] = 2(nc — 1)p[p —q] > Oasp > q. I
the two fringe blocks connect to the two core blocks with equal
probability, then the SNR with no fringe is optimal.

LEMMA 3.1 (NO-FRINGE OPTIMALITY). Ifr = s in the core-fringe
SBM, then SNR[Z4] decreases monotonically in d.

PrOOF. When r = s, by independence of Xy and Yy,
E[Zo] = BE[Xy — Y] = 2(nc — 1)p? + dr? + ds® — 2(n. — 1)pq — 2drs
= 2(ne = 1)p* - 2(nc — 1)pq = E[Xy - o),
and V[Z,] = V[X,] + V[¥;] > V[Xo] + V[Yo] = V[Z]. O

This result is intuitive. If the two fringe blocks connect to the core
nodes with equal probability, then the node pairs (u, v) and (w, z)
receive additional extra common neighbors according to exactly the
same distributions. Thus, these fringe nodes provide noise but no
signal. We confirm this result numerically with parameter settings
p=0.5,g=0.3,5s=r=0.2,and n, = 10 (Figure 7A). Indeed, the
SNR monotonically decreases as we include more fringe.

In Section 2, we saw cases where including any additional fringe
information always helped. The following lemma shows that we
can set parameters in our core-fringe SBM such that including any
additional fringe information always increases the SNR.

LEMMA 3.2 (ALL-FRINGE OPTIMALITY). Letr > 0,s = 0 and 4(n¢ —
1)(p? - p*) > 1 in the core-fringe SBM. Then SNR[Z;] monotonically
increases in d and limg_,., SNR[Z;] = oo.
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Figure 7: SNR for the difference in the common neighbors
in our stochastic block model of core-fringe structure with
n¢ = 10. (A) When the fringe blocks have equal probability of
connecting to the two core blocks (r = s), the SNR decreases
monotonically with fringe size by Lemma 3.1. When fringe
blocks only connect to one of the core blocks (s = 0.0), the
SNR increases monotonically with fringe size Lemma 3.2. (B)
For an intermediate parameter setting, including the fringe
hurts the SNR until enough fringe is included, at which
point the SNR increases monotonically (Lemma 3.3).

Proor. We have that
SNR[Zd] — z(nc_l)P(P_q)+dr2 .
V2(ne—1)(p?(1-p?)+pq(1-pq)) +dr?(1-r?)
We can treat this function as continuous in d. Then
dr?

limg e SNR[Zg] = limg o dr2(1-r2) -

Similarly, we can compute the derivative with respect to d:

PNTZa]- 11" TTZa]

V([Z4]

D.SNR[Z,] =

The derivative is positive provided that r?V[Z;] > %rz(l —-r?),
which is true if V[Zj] > % since V[Zy] is monotonically increasing
in d. We have that

VIZo] = 2(ne = )(P* (1 - p*) +pq(1 = pg)) > 2(ne = (p” — p*).
Thus, the result holds provided 4(n. — 1)(p? — p*) > 1. O

The result is again intuitive. By setting s = 0, the pair of nodes
in different blocks (w and z) get no additional common neighbors
from the fringe, whereas the pair of nodes in the same block (u
and v) get additional common neighbors. This should only help
our prediction performance, which is why the SNR monotonically
increases. We confirm this result numerically (Figure 7A), where
we use the same parameters as the experiment described above. We
can also check that the conditions of Lemma 3.2 are met: n, = 10
and p = 0.5, s0 4(n. — 1)(p? — p*) = 6.75 > 1.

The SBM can also exhibit additional behaviors that we observed
in Section 2. For example, with the email-Enron-4 dataset, predic-
tion performance initially decreased as we included more fringe
and then began to increase (Figures 3D and 3H). The following
lemma says that the core-fringe SBM can capture this behavior.

LEmMMA 3.3 (ENOUGH-FRINGE OPTIMALITY). Let p, q, and r be
given. Then there exists a value of s in the core-fringe SBM such that
SNR[Z,] initially decreases and then increases without bound.

Proor. To simplify notation, consider the following constants:
a =E[Z] = 2(nc = 1)(p* = pq). p = (r = )%, y = V[Zo] = 2(nc —
1)[p*(1-p?)+pq(1-pg)], and § = r?(1-r?) +s*(1-s%)+2rs(1-rs).



With this notation, SNR[Z;] = (a + fd)/ \/)Téd Treating this as
a continuous function in d, the derivative is: %SNR[Zd] = (—ad+
2Py + péd)/(2(y + 5d)3/2). For any s, we can choose a sufficiently
large D such that the derivative is positive when d > D, meaning

that SNR[Z,] is increasing. Furthermore, SNR[Z;] grows as o(Vd).

It is easy to check that the derivative also has at most one root,
do = a/f—-2y /5. We claim that dy can be made as large as desired. By
setting s sufficiently close to r, f approaches 0, while § is bounded
away from 0. The remaining terms are positive constants. Finally,

when d = 0, the value of the derivative is (—a6 + 28y)/(2y%/?).

Again, we can make s sufficiently close to r so that § approaches 0
and the derivative is negative at d = 0. Therefore, there exists an s
such that its derivative has one root dy > 1, SNR[Z;] decreases for
small enough d and eventually increases without bound. o

By setting ne = 10, p = 0.5,¢ = 0.3,r = 0.2, and s = 0.1, we see
the behavior described by Lemma 3.3—the SNR initially decreases

with additional fringe but then increases monotonically (Figure 7B).

By extending the SBM to include a third fringe block, we can also
have a case where an intermediate amount of core is optimal. We
argue informally as follows. We begin with a setup as in Lemma 3.2,
where s = 0. Including all of the fringe available in these blocks is
optimal. We then add a third fringe block that connects with equal
probability to the two core blocks. By the arguments in Lemma 3.1,
this only hurts the SNR. Thus, it is optimal to include two of the
three fringe blocks, which is an intermediate amount of fringe.

3.2 Small-world lattice models

In the one-dimensional small-world lattice model [18], there is a
node for each integer in Z and a parameter a > 0. The probability
that edge (i, j) exists is

Pr[(i,j) € E] = ®)

We start with a core of size 2¢ + 1, centered around 0: V) = C =
{—c,...,c}. We then sample two nodes v and w such that

T=il= t\""

©

In our language at the beginning of Section 3, X is still the random
variable that edge (u, v) exists and Y is the random variable that
edge (w, z) exists. By our assumptions and Eq. (8), we know that
Pr[X] > Pr[Y]. However, we will again assume that we are only
given access to the number of common neighbors through the proxy

u=-c<v<w<c=zand2<v-u<z-—w.

random variables X and Y.

Our parameterization of the proxy measurements are a distance d
that we examine beyond the core. Specifically, the nested sequence
of vertex sets that incorporate fringe information is given by V; =
{—(c+4d),...,c+d}, and our proxy measurements are

)Zd ={s € V4 | (u,s) and (v, s) are edges}|
Y7 =1{s € V4 | (w,s) and (z, s) are edges}|.

We will analyze the random variable Z; = X - Y . We correctly
predict that (u, v) is more likely than (w, z) to exist if Z; > 0. As
argued above, our goal is to find a d that maximizes SNR[Z;].

We focus our analysis on the case of & = 1 in Eq. (8). Let A be
the indicator random variable that node s is a common neighbor
of nodes u and v, for s € Z\{u, v}, and let Bg be the indicator
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random variable that node s is a common neighbor of w and z, for
s € Z\{w, z}. Since u = —c and z = c, our proxy measurements are

Xa = Z; (c+d) As + Zs——c+1A5 + Zs o41 A (10)

Yd - Zs c+1 (l 1)

Define the independent indicator random variables Is , and Js, ,
where Pr[Is , = 1] = 1/(s(s + r)) and Pr[jS r= 1] =1/(s(r —s)).
Now we can re-write the expressions for X and Yy as follows:

(c+1)

s——(c+d) Bs + z“g;w+l Bs +

Xg=30  Lou+ X000 o + 200 oo (12)
Vg =28 Lozmw + S0 g ooy + 22 sz (13)
The expectations are given by
E[@FZZIIW Zc+dvm Zvulm
E[Yq] = 22, m + 2 m + X s(z—lw—s)'

With these expressions, we can now analyze how Z; behaves
as we vary d. The following lemma establishes that Z; converges
to a positive value. Later, we use this to show that the SNR also
converges to a positive value.

LemMA 3.4. limy_, E[Z4] =Z* > 0.

PROOF Let a = v — u. Then limy_,, E[)A(d] =232, ﬁ +

Zs 1 s(a 5 = 2((a+1)+y(a) +2y)/a=22¢(a)+1/a+2y)/a,

where /(-) is the digamma function. Similarly, if b = z — w, then

dlim E[Y;] = 2(2y/(b) + 1/b + 2y)/b.

Thus, Z* = limg_, e, E[)A(d] - E[f/d] exists, and Z* > 0 if and only if
b(y(a) +1/(2a) +y) —a(y(b) +1/(2b) +y) >0 (14)

Recall that by Eq. (9), 2 < a < b. Numerically, Eq. (14) holds for
(a,b) = (2,3). Since the left-hand-side monotonically increases in
b, this inequality holds for a = 2.

Now assume b > a > 3. The Puiseux series expansion of ¢ at
oo gives (x) + 1/(2x) € log(x) = m
show that b(log(a) — 1/96) + (b — a)y > a(log(b) + 1/180), or that
0.99blog(a) + y > 1.01alog(b), which holds for b > a > 3. O

Thus, it is sufficient to

The next theorem shows that the signal-to-noise ratio converges
to a positive value. Thus, by measuring enough fringe, our proxy
measurements are at least providing the correct direction of in-
formation. However, the SNR converges, so at some point, our

information saturates.
THEOREM 3.5 (SNR SATURATION). limy_,., SNR[Z;] = §* > 0.

Proor. By Lemma 3.4, E[Z;] converges to a positive value. Thus,
it is sufficient to show that V[Z;] converges. Following Eq. (12),

- - 1 1
V[chx;l Is,v—u] - Z?;l V[Is,v—u] - Ziozl s(s+o—u) - (s(s+v—u))?
by independence, and converges. O
The random variable Wy, ; = Zgry—Zq = ZI]:Z:” Ik o—u =

Ik, z—w Will be useful for our subsequent analysis. This is the ad-
ditional measurement available to us if we measured at distance
d + ] instead of d. The next lemma says that, as we increase d, the
expectation of Wy 1 goes to zero faster than its variance.
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Figure 8: Saturation and interior optima of the SNR the one-
dimensional small-world lattice model. Nodes v and w are
sampled from {u =
The random variable Z; is the difference in the number
of common neighbors of {u,v} and {w,z} on the node set
{=(c+d),...,c+d}. Since SNR[Z;] > SNR[Z)], an intermedi-
ate amount of fringe produces the optimal SNR (Corollary
3.8); these optima are circled in black. The SNR converges by

Theorem 3.5, and we indeed see the consequent saturation.

—C,...,c=z}with2 < v—-u < z-w.

LeEmMa 3.6. For any J, limgy_,, E[Wg ;1/V[Wy 5] = 0.

PRrROOF. Let a = v — u and b = z — w. By independence,

T
= Spa sty = 0y ).
Forlarge enoughd, VIWy, /1 = X0 wear tectvny~ ey
TeErayy Which is O(zk=4 17k, .

The next theorem now shows that in the one-dimensional lattice
model, the signal-to-noise ratio eventually begins to decrease. This
means that at some point, the noise overwhelms the signal. Thus,
it will never be best to gather as much fringe as possible.

THEOREM 3.7. There exists a D for which SNR[Zp] > SNR[Zp+ ]
foranyj > 0.

Proor. We have that SNR[Z;] > SNR[Z,, ;] if and only if

E[Z4] E[Za+Was1,5] E[Z4)?

VVIZa] © V[ Za+Wair j] ViZa] V[Wai, ;]

The second inequality above comes from squaring both sides of
the first inequality; both terms in the first inequality are positive
for large enough d by Lemma 3.4, so we can keep the direction of
the inequality. By Theorem 3.5, the left-hand-side of the inequality
converges to a positive constant. We claim that the right-hand-side
converges to 0.

By Lemma 3.4, E[Z;] converges, so it must be bounded by
a positive constant constant. Furthermore, since Zg,; = Zg +
Wy41,j> we have that E[Wg, ;] — 0. Combining these results,
2B[Z4]E[Wz1,;] + E[Wai1,j)* = O(E[Wys4,;]), and we have that
E[Wg41,;1/V[Wg44,j] — 0 by Lemma 3.6. O

A consequence of this theorem is that if the SNR initially in-
creases, then an intermediate amount of fringe is optimal. The
reason is that the SNR initially increases but at some point begins

2B[Z4)E[Wai1 j1+EB[Waiy ;1
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to decrease monotonically (Theorem 3.7) before converging to a
positive value (Theorem 3.5). We formalize this as follows.

COROLLARY 3.8 (INTERMEDIATE-FRINGE OPTIMALITY). If SNR[Z)]
SNR([Z;], then d* = arg maxy SNR[Z,] satisfies 0 < d* < oo.

Numerically, SNR[Zy] < SNR[Z;] in several cases (Figure 8). In
this experiment, we fix c = 10 and w = 1 (so z—w = 9) and vary the
amount of fringe from 0 to 12 nodes on either end of the core. We
also vary v so that v —u € {2,3,4,5, 6}. We observe two phenomena
consistent with our theory. First, by Corollary 3.8, an intermediate
amount of fringe information should be optimal; indeed, this is the
case. Second, by Theorem 3.5, the SNR converges, indicating that
saturation should kick in at some finite fringe size. This is true in
our experiments, where saturation occurs after around d = 8.

4 DISCUSSION

Link prediction is a cornerstone problem in network science [24, 26],
and the models for prediction include those that are mechanistic [5],
statistical [8], or implicitly captured by a principled heuristic [3, 4].
The major difference in our work is that we explicitly study the
consequences of a common dataset collection process that results in
core-fringe structure. Most related to our analysis of random graph
models are theoretical justifications of principled heuristics such
as the number of common neighbors in latent space models [34]
and in general stochastic block models [33].

The core-fringe structure that we study can be interpreted as an
extreme case of core-periphery structure in complex networks [7,
16, 31, 37]. In more classical social and economic network analy-
sis, core-periphery structure is a consequence of differential sta-
tus [11, 22]. In this paper, the structure emerges from data collection
mechanisms, which raises new research questions of the kind that
we have addressed. However, our results hint that periphery nodes
could also be noisy sources of information and possibly warrant
omission in standard link prediction. Our fringe measurements can
also be viewed as adding noisy training data, which is related to
training data augmentation methods [29, 30].

Conventional machine learning wisdom says that more data
generally helps make better predictions. We showed that this is
far from true in the common problem of network link prediction,
where additional data comes from observing how some core set
of nodes interacts with the rest of the world, inducing core-fringe
structure. Our empirical results show that the inclusion of additional
fringe information leads to substantial variability in prediction
performance with common link prediction heuristics. We observed
cases where fringe information is (i) always harmful, (ii) always
beneficial, (iii) beneficial only up to a certain amount of collection,
and (iv) beneficial only with enough collection.

At first glance, this variability seems difficult to characterize.
However, we showed that these behaviors arise in some simple
graph models—namely, the stochastic block model and the one-
dimensional small-world lattice model—by interpreting the benefit
of the fringe information as changing the signal-to-noise ratio in
our prediction problem. Our datasets are certainly more complex
than these models, but our analysis suggests that variability in
prediction performance when incorporating fringe data is much
more plausible than one might initially suspect. Even when fringe



data is available in network analysis, we must be careful how we
incorporate this data into the prediction models we build.
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