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Abstract— An appropriate approximation model can signif-
icantly reduce the computational costs in model-based ap-
proaches. This paper aims to develop discrete-time models to
approximate distributed continuous-time nonlinear dynamical
systems, in which subsystems are physically coupled and can
receive information from their neighbors. To approximate such
a system, we present asynchronous Lebesgue approximation ap-
proach, where each subsystem is approximated by an individual
Lebesgue approximation model (LAM). Each LAM updates its
state, depending on its own state as well as the neighboring
states. Different LAMs execute asynchronously. The proposed
distributed LAM is cost-efficient because it can automatically
adjust its iteration frequency based on state’s variation. To show
stability of the distributed LAM, we construct a distributed
event-triggered feedback system and prove that it generates
the same state trajectories as the LAM with linear interpola-
tion. Through this specific distributed event-triggered system,
we show that the distributed LAM is uniformly ultimately
bounded. Finally, we carry out some simulations on a nonlinear
system to show the efficiency of the proposed method.

I. INTRODUCTION

System model always plays an important role in model-
based approaches [1]-[3]. Therefore, system modeling be-
comes a fundamental issue in control area, which receives
a lot of attentions from the community [4], [5]. It is known
that most of the physical systems are essentially continuous-
time, whereas discrete-time models are required in some
scenarios for prediction and planning, e.g., model-based path
planning [6] and model predictive control [7].

To accommodate the discrete-time scenarios, one tradi-
tional method is to discretize the continuous-time state with
a fixed period [8]. The advantage and disadvantage of peri-
odic discretization are both obvious. Certainly, the resulting
model is easy to design and analyze. The computation cost,
however, could be high because its iteration frequency keeps
constant no matter the rate of state change is high or low.
In other words, iterations have to take place even when
the state remains unchanged and, on the other hand, the
model state may not be able to track the continuous-time
state when it varies rapidly. Thus, a more flexible method
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is required, which is capable of dynamically adjusting its
iteration frequency.

One possible solution is the quantized state sys-
tem (QSS) [9], which discretizes the system along the state
axis instead of the time axis. The state value is confined
in a set with pre-defined state values. The work in [10]-
[13] improves the approach in [9] by solving the issue of
illegitimate models, and indicates that the QSS promises a
significant improvement of computational efficiency in real-
time simulations of large and complex systems, such as
power systems. However, all of this aforementioned work
only focuses on scalar systems with uniform quantizers
and did not provide systematic design methods to construct
stabilizing quantizers.

The Lebesgue approximation model (LAM) is an effi-
cient discretization method. To some extent, it is similar
to the quantized state system whose states are quantized.
The main difference is that the states of the LAM are
not pre-defined and the quantization size is not necessarily
uniform. It has been stated in [14] that the LAM of a single
system is equivalent to an event-triggered system with a
specific structure in terms of state trajectories, which greatly
facilitates the analysis and design of the LAM. Despite of
such a connection, it is important to note that the LAM is
essentially different from event-triggered system. The states
of the former evolve only based on the model itself and
they are predicted values of the actual continuous-time states
at certain time instants, whereas the states of the latter are
sampled values of the actual states. Due to its cost efficiency,
the LAM has been applied in many areas, e.g. fault diagnosis
[15] and model predictive control [16]. Nevertheless, to the
best of our knowledge, the development of distributed LAM
has not been studied yet, which inspires our present work.

Given a continuous-time distributed nonlinear system
composed of a number of connected subsystems (or called
“agents”) with information exchange through a communica-
tion network, the distributed LAM in this paper is developed
as follows: for each subsystem we develop an individual
LAM that involves its own state and the states of its neigh-
boring LAM. All LAMs iterates at an asynchronous manner.
The collection of the LAMs form the distributed LAM. To
analyze the stability of the resulting distributed LAM, we
construct a distributed event-triggered feedback system and
prove the equivalence between this system and the LAM. It is
shown that the constructed distributed event-triggered system
is uniformly ultimately bounded (UUB), which indicates
that the LAM is also UUB. The efficiency of the proposed
algorithm is exhibited through numerical simulations.



II. PROBLEM FORMULATION

In this paper, we consider a distributed nonlinear dy-
namical system which consists of M agents. Let M =
{1,2,--- , M} be the set of the agents. These agents are
physically coupled and this coupling is characterized by a
coupling graph which is defined as follows:

Definition 1: A graph ¥, = (M, =) is called a cou-
pling graph, where each node ¢ € M denotes an agent, the
ordered pair (edge) (4, j) in =, means that agent j is directly
driven by agent 1.

For notational convenience, we further present the follow-
ing notations:

D_,; & {j € M|(j,i) € Z.,} are the set of agents that
directly drive agent ¢;

D, £ {j € M|(i,j) € Z.,} are the set of agents which
are directly driven by agent i;

T; £ T;u{i} for any set T; € {D_,;, D;_,}. || represents
the number of elements in the set 7" for any 7" C M.

Based on the notations above, the dynamics of agent ¢ can
be described as follows:

&i(t) = filep_, (1), ui(t))
x;i(to) = X0

where z; € R” is the agent ¢’s state with initial value z; ¢,
u; € R™ denotes control input, zp . = {z;};ep > fi :
R"P-il x R™ — R" is a locally L1psch1tz function and
satisfies f;(0,0) = 0. Without loss of generality, we make
an assumption that the states and inputs of all agents in the
distributed NCS have the same dimensions. In fact, it is easy
to extend it to the case with different dimensions.

When we use the LAM to approximate the ith subsystem
in (1), it should have the following structure based on [14]:

)

Zi(ti k1) = Zi(tin)
R JilZp_, (tig), ui(tix))
D;(ip - : ’
+Di(ep, (tik) fi(@p_, (tig),uiltin))]]
@i(to) =T;0
o Di(&p_, (tix))
tz,k-‘rl = tz,k: + ||f1(§?ﬁal(tz,k) uz(tz,k))H
ti,O =tg,i=1,2,--- 7M
(2)

The continuous-time dynamics (1) is approximated by (2)
at time instants ¢; , with the Lebesgue state Z;(¢; ;) and
input w;(t; 1 ). Note that Z;(¢; ) is not a sampled value but a
predicted value of the continuous-time system’s state x;(t).
D; : RMP—il — RT denotes agent i’s quantization size
which depends on appropriate state values 5 (tix) =
{#;(tjx)}jep_,,- The function D;(-) is an important element
which helps determine when the next prediction takes place
and what the next predicted value is.

The model in equation (2) is far from enough to be
a satisfying approximation of the continuous-time model.
Notice that the progress of different LAMs in (2) is different
because of their aperiodic nature. It may take only a few
iterations for some LAMs to predict their states over a

long time horizon, while other LAMs are still predicting
states over a very short time window. Therefore, it is very
important to appropriately use the states of the neighboring
LAMs; Otherwise, for example, it may happen that at the kth
iteration the ith LAM uses the jth LAM’s predicted state
at time instant ¢; to predict its own state at t;j, while
t;k > t; k. Using the wrong states, the approximation may
deviate from the continuous-time system.

Given such a distributed approximation framework, this
paper investigates asynchronous iterations in the LAM for
nonlinear dynamical systems with appropriate scheduling
methods.

III. THE ASYNCHRONOUS LAM

This section will develop the distributed approximation
LAM with the right scheduling algorithm to approximate
the system described by (1). In our scheme, an LAM will
be established for each agent ¢ as indicated in (2), and these
established LAMs share the same coupling graph ¢,,, as the
agents in M do. Unlike the model designed for only a single
system, in the distributed LAM, the states and iteration time
instants depend not only on individual LAM’s sates but also
the states of those LAMs in the set D_,;.

The proposed algorithm is composed of two stages: pre-
diction and update. The ith LAM for agent ¢ predicts its
next Lebesgue state &;(t; i1 1) and next time instant ¢; ;.
Then these predicted time instants ¢; ;i will be transmitted
to its neighbors in D;_,. Let t* = min;ecaq{t; yit1}. After
the prediction stage, the ¢th LAM will update its Lebesgue
state if #; ;i1 = t* or it receives some “important” states
from other LAM j € D_,; at time instant ¢*. By “important”,
it means that those states will be used in the next prediction.
After that, those LAMs which have updated their states
will go to the next prediction stage, while the other LAMs
will hold.

More specifically, our distributed approximation algorithm
executes as follows: For j € M, if ¢; ;4 = t*, then the
jth LAM will update its state at time instant ¢* as it was
predicted; Also, the update in the jth LAM may trigger the
updates of its neighbors in D;_, at the same time instant ¢*,
based on the following condition:

il > () 3)

where 27_,; denotes the jth LAM’s Lebesgue state used by
the ith LAM in its latest prediction, () : R® — R is
a pre-defined function of z7_,;. Condition (3) implies that
the distance from the last used Lebesgue state to the latest
available state has exceeds a certain threshold. If (3) holds,
the ith LAM will update its state at time instant ¢t* following
the equations below:

|12 (tsk) —

tigivr =1t
Dj i = (tipivr — tip)Ifi(@p_, (tipe), wi(tipi)) ||
o) = )+ Dl GRS
“)



where D7, is the quantization size for updating when the
update is triggered by its neighbors. Dl*k is inferred from
the time difference between ¢* and ¢; ;:. It should be noted
that the ith LAM’s update will possibly trigger the updates
of its neighbors in D;_, in the same manner described by (4).

IV. STABILITY ANALYSIS

This section will study the stability of the distributed
LAM. Directly analyzing its stability seems difficult. As an
alternative, we first introduce a distributed event-triggered
feedback system and show its state trajectories are identical
to those of the distributed LAM. Consequently, we are able
to know the stability of the distributed LAM by studying the
equivalent distributed event-triggered system. In the LAM,
the states between Z;(t; i) and #;(t; yi41) are constructed
by linear interpolation (to simplify the notations, we drop
the index ¢ in k? if it is clear in context):

Zi(t) = Zi(tip) + f(@i(tig), wiltan))t —tik)  (5)
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Fig. 1. The equivalent event-triggered feedback system

The constructed distributed event-triggered feedback sys-
tem is shown in Fig. 1. It consists of M event-triggered sys-
tems and has the same coupling graph ¥, as the distributed
LAM. The open-loop plant is described as follows:

Xi(1) = vi(7)

Xi(T0) = Tip (6)
7o = to
where x; € R" and v; € R", 1 =1,2,--- , M are the states

and inputs of the plants, respectively. The feedback control

is generated as follows:

vi(1) = filxp.,, (Tik)  wi(Tik)), V7 € [Tk Tiks1) (1)

which is based on the latest sampled state values
Xp_,,(Tik) = {X;j(Tjx)}jep,,» vi(T) keeps constant be-
tween adjacent sampling instants 7; 5, and 7; 1.

For every system i, there are two classes of event sources:
inner event F;, and outer event F,,;. E;, is defined by

Ein : |Ixi(7) = xa(rip)ll = Dilxp_,, (rik)) — (8)
and we further define the inner triggering time instant:

Tilher = _inf {7 | Bin} ©)

Outer event E,,,; comes from the systems in D_,;, it happens
when both F; and E;_,;, Vj € D_,; take place:

Ej Ix; (1) = x5 (5,611 = Sjik

Ejni x5 (mi0) = Xjoall = ¥ (XG0)

(10)
(1)

where X7_,, denotes system j’s state used by system ¢ in
the current time interval. .S; , will be specified in the sequel.
Similarly, we define the outer triggering time instant:

out s —
T = min T, (12)
Z7k+1 JED*)L 5
and
Tik = inf {7‘ ‘ Ej and EJ_”}
T2>Tj k

If Eoy: from system j € D_,; does not happen, 7, = +00.
Note that 7%, and 774, are not the actuall saplpling
instant, but they together determine the next sampling instant.
The system will take the next sample at time instant 70}, | if
E,,;: happens earlier than F;,,; Otherwise, the next sampling

instant will be 7,%,,. It can be inferred that 773}, €

{r*, 400} with 7* £ min;ep{7/% ,, }. We merge the inner
event and outer event into one, i.e.,

Ei ||xi(7) = xa(Tar)] > Sik

where S; i switches between D;(xp_,(7i.x)) and D}, D7),
is defined as follows:

13)

D7y = (T — miw)lfilxp_, (Tik)s wilma))l| - (14)
S; k is defined as follows:
* out -~ pin
Si — i,k Tz7k+1 i,k+1 15
* { Dilxp.,,(rix)), else ()

where 7044 | < 7/% |, means the sampling will be triggered
by outer event, otherwise, it is triggered by inner event. Then
we are able to define the next sampling instant 7; ;1 as

Tierr = Inf {7 [ |[xi(7) = xa(miw)ll = Si}t  (16)
T>Tik

Remark 1: It should be noted that, in our framework, if

the outer event E,,; happens earlier than inner event E;,,

ie. T{j}iﬁ_l < T;'k41. then it will lead to the occurrence of

system sampling at 7%, because in this case, S;; = DJ,.



Meanwhile, 77} | <7, (Tik))
holds.

Next, we show the equivalence between the distributed
LAM and the distributed event-triggered feedback system.

Theorem 1: Consider the distributed LAM described by
(2) and (4) with linear interpolation (5)and the distributed
event-triggered feedback system described by (6), (7), and
(16). The state trajectories of these two systems are identical,
ie. x;(7) = 2;(t) and t = 7 for any ¢, 7 > to. Also, 7 =
ti,k, Vi € M, k> 0.
Proof. Mathematical induction method will be used. Note
that both the distributed LAM and the distributed event-
triggered system start at the same time instant ¢;9 =
Ti,0 = to and the same initial state £;0 = Xi0 = Ti0-
During the time interval [7; ¢, 7; 1), the feedback v;(7) =
Jilxp_,,(Ti0),ui(7i0)) keeps constant, then the state will
grow in a linear fashion, i.e.

Xi(T) = xi(7i0) + filxp_,, (Ti0), ui(Ti0)) (T

until

4y implies D}, < Di(xp_,

—7i0) (17)

[1xi(73,1) — xi(73,0)|| = Sio (18)

Since x;(t) is continuous, it follows from (17) that

Xi(TiJ) = Xi(Ti,0> + fi(X’D_,,;<Ti,O)7ui(Ti,O))(Ti,l - Ti,ol)g
Then (18) together with (19) yield that 9
Tia = Ti,0 + Si0
’ o filep,, (Ti0), wilTio) | 20)
xi(mit) = xi(7i0) + Sio filxp_,,(1i0), ui(Ti0))

1fi(xp_,, (Ti,0), wi(Ti0))l|

By comparing (20) with (2) and (4), we can find that (20)
is equivalent to (2) when S;o = D;(xp_,(7i,0)), and is
equivalent to (4) when S;o = D defined in (14). Note
that .S; ¢ is determined by (15), where TZ”{ is defined by (9),

i.e.,

Di(xp_,,(7i0))
1fi(xp_,, (Ti,0), wi(7i0)l|
Considering the prediction stage of the distributed LAM,
we are able to know that predicted time instant of the ith
LAM is equal to T}”}, and then ¢ = 7] holds. Consequently,
the switching mechanism of S; o is the same as the update
scheme of the distributed LAM depending on (2) or (4).
Comparing (17) with (5) and considering the continuity of
Z;(t) and x;(7), we conclude that &;(¢t) = x;(7) and t = 7
for any t,7 € [1:.0, Ti,1]-

Assume that Z;(t) = x;(7) and t = 7 holds for ¢,7 €
[7i.0,Ti,k] and t; ,, = 7; k. Following a similar analysis, we
can readily prove that ¢; ;11 = 7; k41, t = 7, and &;(t) =
Xi(7) hold for ¢,7 € [7; k., T k+1]. This completes the proof.
|

Assume that the state feedback control law takes the form
of u; = hi(xp_,). Then the corresponding closed-loop
continuous-time system is

&i(t) = fi(ep_, () hi(zp_,))
zi(to) = Ti0

T =Tio+ @1

(22)

We denote f{'(zp_,) £ fi(vp_, hi(zp_,)). f{'(0) = 0.
Consequently, f;(-,-) in the LAM and event-triggered system
will be replaced by ff'(&p_, (tix)) and f&(xp_,,(tik))
respectively. In the sequel, we will not distinguish 7; j
from t; , and use the notation X;(t) £ X(tik) for t €
[ti7k7ti7k+1). Let ez(t) £ Xz(t) — )A(Z(t) and €;j (t) £ Xj (t) —
Xj_; for j € D_,;, then the following inequalities hold:

llei (D] <Sik
lle; (O] <Sik + P (Xji)

for any t € [t; &, ti k+1)-

Assumption 1: Consider a distributed continuous-time
system described by (22). Assume that for any ¢ € M, there
exists a differentiable, positive-definite function V;(z;)
R™ — RY satisfying:

(23)

a;([faill) < Vi(z:) < @(|lw:]]) (24)
# (x5, —ep.,)
<-aillxill+ Y0 mlll+ D0 willell
(25)
and the following inequality holds:
o; — Wi‘Di_>| >0 (26)

where o, (-) and @;(-) are class K functions, oy, m; and y;
are some positive constants.

Theorem 2: If Assumption 1 holds, the proposed dis-
tributed LAM is uniformly ultimately bounded.
Proof. Now that it has been proved in Theorem 1 that
the distributed LAM and distributed event-triggered system
have identical state trajectories, we will demonstrate the
boundedness of Z(t) by investigating x(¢).

Let V(x) = > ;e aq Vi(xi), then we can readily obtain the
time derivative of V'():
aVilxi)
v 3 D) g ey
ieM 3)(1
< Y -alhll+ ¥ mili+ X wllell)
ieM JE€D,; J€D—,
<Y {-alhll+ X il
ieEM jGD—>i
+ /,[/iSi7k} + Z Mj(si,k + ’L/)(X;—m))}
jG’Dﬁi
< > {-alull+ X mll
1eEM JE,D*M
SIS SR
]Eﬁﬂq JED*N
= Z {_(Ui - 7Ti|DiHD||Xi ‘
iEM

+ i (|Dis | DY + | Dy [p™ %) }
(27)



where D{*** and ™% are the maximum values of
Di(xp_,,(tix)) and 9 (X;_,;), respectively. When

= i(o; — 7| D;s
iy D 1 (D, fymer < £XO TP o
with 0 < p; < 1, then
V < —(1 - pi)(oi — mi|Diss ) xll. (29)

Equation (28) together with (29) ensure that x(¢) is uni-
formly ultimately bounded [17, Theorem 4.18]. As a result,
the boundedness of &(t) is proved. This completes the proof.
|

V. SIMULATIONS

In this section we will carry out some simulations on
a nonlinear system to verify the developed algorithm. This
system consists of four agents described as follows:

T4(t) = a4x3(t) + b4.’b4(t)

with initial condition to = 0, 2(0) = [0.21 0.19 0.17 0.22]T,
a;, bj, 1 =1,2,3,4 are pre-known parameters.

For the above system, a distributed LAM will be estab-
lished to predict system’s states sporadically. In the algo-
rithm, the quantization size D;(-) and the threshold v (-) are
set as follows:

Dy =0.1-y/z?+23, Dy=0.1-\/2?+ 23
D3 =01-\/23 423, Ds=0.1-y/2%+ 22

¢(xZ—>1) =0.2- |xZ—)1|a w(ff—m) =0.1- |37>1k—>2‘
"/}(ISHS) =0.1- |ISH3|5 ¢($§H4) =0.1- |x§%4‘

Then the following two cases are both simulated:
Case 1:

(a1, a2,as3,a4) = (—0.95,0.23,—0.86,0.43)
(b1, ba, b3,bs) = (0.90,—0.31, —0.83, —0.6)
Case 2:
(a1, as,as,a4) = (—0.095,0.023, —0.086, 2.15)
(b1, ba, b3, by) = (0.090, —0.031, —0.083, —3.0)

Compared with Case 1, in Case 2 the dynamics of x1, 2, T3
are slowed down and that of z4 is speeded up. For compar-
ison purpose, we also present the simulation result using
centralized method provided by [14], where we use the
parameters in Case 2 and set D = max{D1, Dy, D3, D4}.

The simulation results are presented in Table II and Fig. 2—
5. Figs. 2 and 4 display the state trajectories generated by
the distributed LAM and the continuous-time system in Case
1 and 2, respectively. We found that the errors between
actual continuous-time states and the Lebesgue states are
very small, which means that the proposed algorithm has
excellent approximation performance.
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Fig. 3 and 5 plot the inter-iteration time intervals generated
by individual LAMs in Case 1 and Case 2, respectively. We
can see that compared with Case 1, the inter-iteration time
intervals for z;,z9,23 in Case 2 become much larger. It
means that the iteration frequency of =1, x2, x3 becomes low
because the dynamics of z1, x2, 23 in Case 2 are slower. On
the contrary, x4 in Fig. 5 is updated more frequent because
the dynamics of x4 in Case 2 is faster. By this fact, it
shows that the distributed LAM can update individual states
at different frequencies according to the individual dynamics.

Table II provides detailed data on the average inter-
iteration time intervals (unit: seconds) in three cases, includ-
ing the time intervals generated by the centralized LAM [14].
We can find that the average time intervals of LAMs 1-3 in
Case 2 are significantly longer than that in Case 1, which
is consistent with our observations from Fig. 3 and 5. We
found that although the dynamics of x4 becomes faster in
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Case 2, the related average time intervals of LAM 4 is still
longer than that in Case 1. This is because the updates of
Z4 triggered by s becomes fewer since the dynamics of
3 becomes slow. Also note that the centralized algorithm
updates much more frequently than the distributed algorithm.
All these results demonstrate that the proposed distributed
LAM can improve cost efficiency without degrading the
approximation performance.

VI. CONCLUSIONS

In this paper a discrete-time approximation method based
on the LAM has been proposed for a nonlinear dynamical
system, which is developed under a distributed framework.
The distributed LAM has been proved to be equivalent to
a specific distributed event-triggered feedback system in a
sense that they have identical state trajectories. Based on
the equivalent event-triggered feedback system, the stability

TABLE I
AVERAGE INTER-SAMPLING TIME INTERVAL

LAM, LAM> LAMsz LAM4
Case 1 1.1173 1.3072  0.7547  0.8929

Case 2 4.7059 8.5106  5.9701 1.0
Centralized Case [14] | 0.7143 0.7143 0.7143 0.7143

of the distributed LAM analyzed. Simulations show that the
proposed algorithm is computationally efficient.
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