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Abstract— An appropriate approximation model can signif-
icantly reduce the computational costs in model-based ap-
proaches. This paper aims to develop discrete-time models to
approximate distributed continuous-time nonlinear dynamical
systems, in which subsystems are physically coupled and can
receive information from their neighbors. To approximate such
a system, we present asynchronous Lebesgue approximation ap-
proach, where each subsystem is approximated by an individual
Lebesgue approximation model (LAM). Each LAM updates its
state, depending on its own state as well as the neighboring
states. Different LAMs execute asynchronously. The proposed
distributed LAM is cost-efficient because it can automatically
adjust its iteration frequency based on state’s variation. To show
stability of the distributed LAM, we construct a distributed
event-triggered feedback system and prove that it generates
the same state trajectories as the LAM with linear interpola-
tion. Through this specific distributed event-triggered system,
we show that the distributed LAM is uniformly ultimately
bounded. Finally, we carry out some simulations on a nonlinear
system to show the efficiency of the proposed method.

I. INTRODUCTION

System model always plays an important role in model-

based approaches [1]–[3]. Therefore, system modeling be-

comes a fundamental issue in control area, which receives

a lot of attentions from the community [4], [5]. It is known

that most of the physical systems are essentially continuous-

time, whereas discrete-time models are required in some

scenarios for prediction and planning, e.g., model-based path

planning [6] and model predictive control [7].

To accommodate the discrete-time scenarios, one tradi-

tional method is to discretize the continuous-time state with

a fixed period [8]. The advantage and disadvantage of peri-

odic discretization are both obvious. Certainly, the resulting

model is easy to design and analyze. The computation cost,

however, could be high because its iteration frequency keeps

constant no matter the rate of state change is high or low.

In other words, iterations have to take place even when

the state remains unchanged and, on the other hand, the

model state may not be able to track the continuous-time

state when it varies rapidly. Thus, a more flexible method
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is required, which is capable of dynamically adjusting its

iteration frequency.

One possible solution is the quantized state sys-

tem (QSS) [9], which discretizes the system along the state

axis instead of the time axis. The state value is confined

in a set with pre-defined state values. The work in [10]–

[13] improves the approach in [9] by solving the issue of

illegitimate models, and indicates that the QSS promises a

significant improvement of computational efficiency in real-

time simulations of large and complex systems, such as

power systems. However, all of this aforementioned work

only focuses on scalar systems with uniform quantizers

and did not provide systematic design methods to construct

stabilizing quantizers.

The Lebesgue approximation model (LAM) is an effi-

cient discretization method. To some extent, it is similar

to the quantized state system whose states are quantized.

The main difference is that the states of the LAM are

not pre-defined and the quantization size is not necessarily

uniform. It has been stated in [14] that the LAM of a single

system is equivalent to an event-triggered system with a

specific structure in terms of state trajectories, which greatly

facilitates the analysis and design of the LAM. Despite of

such a connection, it is important to note that the LAM is

essentially different from event-triggered system. The states

of the former evolve only based on the model itself and

they are predicted values of the actual continuous-time states

at certain time instants, whereas the states of the latter are

sampled values of the actual states. Due to its cost efficiency,

the LAM has been applied in many areas, e.g. fault diagnosis

[15] and model predictive control [16]. Nevertheless, to the

best of our knowledge, the development of distributed LAM

has not been studied yet, which inspires our present work.

Given a continuous-time distributed nonlinear system

composed of a number of connected subsystems (or called

“agents”) with information exchange through a communica-

tion network, the distributed LAM in this paper is developed

as follows: for each subsystem we develop an individual

LAM that involves its own state and the states of its neigh-

boring LAM. All LAMs iterates at an asynchronous manner.

The collection of the LAMs form the distributed LAM. To

analyze the stability of the resulting distributed LAM, we

construct a distributed event-triggered feedback system and

prove the equivalence between this system and the LAM. It is

shown that the constructed distributed event-triggered system

is uniformly ultimately bounded (UUB), which indicates

that the LAM is also UUB. The efficiency of the proposed

algorithm is exhibited through numerical simulations.



II. PROBLEM FORMULATION

In this paper, we consider a distributed nonlinear dy-

namical system which consists of M agents. Let M =
{1, 2, · · · ,M} be the set of the agents. These agents are

physically coupled and this coupling is characterized by a

coupling graph which is defined as follows:

Definition 1: A graph Gcp = (M, Ξcp) is called a cou-

pling graph, where each node i ∈ M denotes an agent, the

ordered pair (edge) (i, j) in Ξcp means that agent j is directly

driven by agent i.

For notational convenience, we further present the follow-

ing notations:

D→i , {j ∈ M|(j, i) ∈ Ξcp} are the set of agents that

directly drive agent i;

Di→ , {j ∈ M|(i, j) ∈ Ξcp} are the set of agents which

are directly driven by agent i;

Ῡi , Υi∪{i} for any set Υi ∈ {D→i,Di→}. |Υ | represents

the number of elements in the set Υ for any Υ ⊆ M.

Based on the notations above, the dynamics of agent i can

be described as follows:

ẋi(t) = fi(xD̄→i
(t), ui(t))

xi(t0) = xi,0
(1)

where xi ∈ R
n is the agent i’s state with initial value xi,0,

ui ∈ R
m denotes control input, xD̄→i

= {xj}j∈D̄→i
, fi :

R
n|D̄→i| × R

m → R
n is a locally Lipschitz function and

satisfies fi(0, 0) = 0. Without loss of generality, we make

an assumption that the states and inputs of all agents in the

distributed NCS have the same dimensions. In fact, it is easy

to extend it to the case with different dimensions.

When we use the LAM to approximate the ith subsystem

in (1), it should have the following structure based on [14]:

x̂i(ti,k+1) = x̂i(ti,k)

+Di(x̂D̄→i
(ti,k))

fi(x̂D̄→i
(ti,k), ui(ti,k))

||fi(x̂D̄→i
(ti,k), ui(ti,k))||

x̂i(t0) = xi,0

ti,k+1 = ti,k +
Di(x̂D̄→i

(ti,k))

||fi(x̂D̄→i
(ti,k), ui(ti,k))||

ti,0 = t0, i = 1, 2, · · · ,M
(2)

The continuous-time dynamics (1) is approximated by (2)

at time instants ti,k with the Lebesgue state x̂i(ti,k) and

input ui(ti,k). Note that x̂i(ti,k) is not a sampled value but a

predicted value of the continuous-time system’s state xi(t).
Di : R

n|D̄→i| → R
+ denotes agent i’s quantization size

which depends on appropriate state values x̂D̄→i
(ti,k) =

{x̂j(tj,k)}j∈D̄→i
. The function Di(·) is an important element

which helps determine when the next prediction takes place

and what the next predicted value is.

The model in equation (2) is far from enough to be

a satisfying approximation of the continuous-time model.

Notice that the progress of different LAMs in (2) is different

because of their aperiodic nature. It may take only a few

iterations for some LAMs to predict their states over a

long time horizon, while other LAMs are still predicting

states over a very short time window. Therefore, it is very

important to appropriately use the states of the neighboring

LAMs; Otherwise, for example, it may happen that at the kth

iteration the ith LAM uses the jth LAM’s predicted state

at time instant tj,k to predict its own state at ti,k, while

tj,k ≫ ti,k. Using the wrong states, the approximation may

deviate from the continuous-time system.

Given such a distributed approximation framework, this

paper investigates asynchronous iterations in the LAM for

nonlinear dynamical systems with appropriate scheduling

methods.

III. THE ASYNCHRONOUS LAM

This section will develop the distributed approximation

LAM with the right scheduling algorithm to approximate

the system described by (1). In our scheme, an LAM will

be established for each agent i as indicated in (2), and these

established LAMs share the same coupling graph Gcp as the

agents in M do. Unlike the model designed for only a single

system, in the distributed LAM, the states and iteration time

instants depend not only on individual LAM’s sates but also

the states of those LAMs in the set D→i.

The proposed algorithm is composed of two stages: pre-

diction and update. The ith LAM for agent i predicts its

next Lebesgue state x̂i(ti,ki+1) and next time instant ti,ki+1.

Then these predicted time instants ti,ki+1 will be transmitted

to its neighbors in Di→. Let t∗ = mini∈M{ti,ki+1}. After

the prediction stage, the ith LAM will update its Lebesgue

state if ti,ki+1 = t∗ or it receives some “important” states

from other LAM j ∈ D→i at time instant t∗. By “important”,

it means that those states will be used in the next prediction.

After that, those LAMs which have updated their states

will go to the next prediction stage, while the other LAMs

will hold.

More specifically, our distributed approximation algorithm

executes as follows: For j ∈ M, if tj,kj+1 = t∗, then the

jth LAM will update its state at time instant t∗ as it was

predicted; Also, the update in the jth LAM may trigger the

updates of its neighbors in Dj→ at the same time instant t∗,

based on the following condition:

||x̂j(tj,k)− x∗j→i|| ≥ ψ(x∗j→i) (3)

where x∗j→i denotes the jth LAM’s Lebesgue state used by

the ith LAM in its latest prediction, ψ(·) : R
n → R is

a pre-defined function of x∗j→i. Condition (3) implies that

the distance from the last used Lebesgue state to the latest

available state has exceeds a certain threshold. If (3) holds,

the ith LAM will update its state at time instant t∗ following

the equations below:

ti,ki+1 = t∗

D∗
i,ki = (ti,ki+1 − ti,ki)||fi(x̂D̄→i

(ti,ki), ui(ti,ki))||

x̂i(ti,ki+1) = x̂i(ti,ki) +D∗
i,ki

fi(x̂D̄→i
(ti,ki), ui(ti,ki))

||fi(x̂D̄→i
(ti,ki), ui(ti,ki))||

(4)



where D∗
i,ki is the quantization size for updating when the

update is triggered by its neighbors. D∗
i,ki is inferred from

the time difference between t∗ and ti,ki . It should be noted

that the ith LAM’s update will possibly trigger the updates

of its neighbors in Di→ in the same manner described by (4).

IV. STABILITY ANALYSIS

This section will study the stability of the distributed

LAM. Directly analyzing its stability seems difficult. As an

alternative, we first introduce a distributed event-triggered

feedback system and show its state trajectories are identical

to those of the distributed LAM. Consequently, we are able

to know the stability of the distributed LAM by studying the

equivalent distributed event-triggered system. In the LAM,

the states between x̂i(ti,ki) and x̂i(ti,ki+1) are constructed

by linear interpolation (to simplify the notations, we drop

the index i in ki if it is clear in context):

x̂i(t) = x̂i(ti,k) + f(x̂i(ti,k), ui(ti,k))(t− ti,k) (5)

ZOH
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Fig. 1. The equivalent event-triggered feedback system

The constructed distributed event-triggered feedback sys-

tem is shown in Fig. 1. It consists of M event-triggered sys-

tems and has the same coupling graph Gcp as the distributed

LAM. The open-loop plant is described as follows:

χ̇i(τ) = vi(τ)

χi(τ0) = xi,0

τ0 = t0

(6)

where χi ∈ R
n and vi ∈ R

n, i = 1, 2, · · · ,M are the states

and inputs of the plants, respectively. The feedback control

is generated as follows:

vi(τ) = fi(χD̄→i
(τi,k), ui(τi,k)), ∀τ ∈ [τi,k, τi,k+1) (7)

which is based on the latest sampled state values

χD̄→i
(τi,k) = {χj(τj,k)}j∈D̄→i

, vi(τ) keeps constant be-

tween adjacent sampling instants τi,k and τi,k+1.

For every system i, there are two classes of event sources:

inner event Ein and outer event Eout. Ein is defined by

Ein : ||χi(τ)− χi(τi,k)|| ≥ Di(χD̄→i
(τi,k)) (8)

and we further define the inner triggering time instant:

τ ini,k+1 = inf
τ≥τi,k

{τ | Ein} (9)

Outer event Eout comes from the systems in D→i, it happens

when both Ej and Ej→i, ∀j ∈ D→i take place:

Ej : ||χj(τ)− χj(τj,k)|| ≥ Sj,k (10)

Ej→i : ||χj(τj,k)− χ∗
j→i|| ≥ ψ(χ∗

j→i) (11)

where χ∗
j→i denotes system j’s state used by system i in

the current time interval. Sj,k will be specified in the sequel.

Similarly, we define the outer triggering time instant:

τouti,k+1 = min
j∈D→i

τ̄j,k (12)

and

τ̄j,k = inf
τ≥τj,k

{τ | Ej and Ej→i}

If Eout from system j ∈ D→i does not happen, τ̄j,k = +∞.

Note that τ ini,k+1
and τouti,k+1

are not the actual sampling

instant, but they together determine the next sampling instant.

The system will take the next sample at time instant τouti,k+1
if

Eout happens earlier than Ein; Otherwise, the next sampling

instant will be τ ini,k+1
. It can be inferred that τouti,k+1

∈

{τ∗,+∞} with τ∗ , mini∈M{τ ini,k+1
}. We merge the inner

event and outer event into one, i.e.,

Ei : ||χi(τ)− χi(τi,k)|| ≥ Si,k (13)

where Si,k switches between Di(χD̄→i
(τi,k)) and D∗

i,k, D∗
i,k

is defined as follows:

D∗
i,k = (τ∗k+1 − τi,k)||fi(χD̄→i

(τi,k), ui(τi,k))|| (14)

Si,k is defined as follows:

Si,k =

{

D∗
i,k, τouti,k+1

< τ ini,k+1

Di(χD̄→i
(τi,k)), else

(15)

where τouti,k+1
< τ ini,k+1

means the sampling will be triggered

by outer event, otherwise, it is triggered by inner event. Then

we are able to define the next sampling instant τi,k+1 as

τi,k+1 = inf
τ≥τi,k

{τ | ||χi(τ)− χi(τi,k)|| ≥ Si,k} (16)

Remark 1: It should be noted that, in our framework, if

the outer event Eout happens earlier than inner event Ein,

i.e. τouti,k+1
< τ ini,k+1

, then it will lead to the occurrence of

system sampling at τ∗, because in this case, Si,k = D∗
i,k.



Meanwhile, τouti,k+1
< τ ini,k+1

implies D∗
i,k < Di(χD̄→i

(τi,k))
holds.

Next, we show the equivalence between the distributed

LAM and the distributed event-triggered feedback system.

Theorem 1: Consider the distributed LAM described by

(2) and (4) with linear interpolation (5)and the distributed

event-triggered feedback system described by (6), (7), and

(16). The state trajectories of these two systems are identical,

i.e. χi(τ) ≡ x̂i(t) and t ≡ τ for any t, τ ≥ t0. Also, τi,k =
ti,k, ∀i ∈ M, k ≥ 0.

Proof. Mathematical induction method will be used. Note

that both the distributed LAM and the distributed event-

triggered system start at the same time instant ti,0 =
τi,0 = t0 and the same initial state x̂i,0 = χi,0 = xi,0.

During the time interval [τi,0, τi,1), the feedback vi(τ) =
fi(χD̄→i

(τi,0), ui(τi,0)) keeps constant, then the state will

grow in a linear fashion, i.e.

χi(τ) = χi(τi,0) + fi(χD̄→i
(τi,0), ui(τi,0))(τ − τi,0) (17)

until

||χi(τi,1)− χi(τi,0)|| = Si,0 (18)

Since χi(t) is continuous, it follows from (17) that

χi(τi,1) = χi(τi,0) + fi(χD̄→i
(τi,0), ui(τi,0))(τi,1 − τi,0)

(19)

Then (18) together with (19) yield that

τi,1 = τi,0 +
Si,0

||fi(χD̄→i
(τi,0), ui(τi,0))||

χi(τi,1) = χi(τi,0) + Si,0

fi(χD̄→i
(τi,0), ui(τi,0))

||fi(χD̄→i
(τi,0), ui(τi,0))||

(20)

By comparing (20) with (2) and (4), we can find that (20)

is equivalent to (2) when Si,0 = Di(χD̄→i
(τi,0)), and is

equivalent to (4) when Si,0 = D∗
i,0 defined in (14). Note

that Si,0 is determined by (15), where τ ini,1 is defined by (9),

i.e.,

τ ini,1 = τi,0 +
Di(χD̄→i

(τi,0))

||fi(χD̄→i
(τi,0), ui(τi,0))||

(21)

Considering the prediction stage of the distributed LAM,

we are able to know that predicted time instant of the ith

LAM is equal to τ ini,1, and then t∗1 = τ∗1 holds. Consequently,

the switching mechanism of Si,0 is the same as the update

scheme of the distributed LAM depending on (2) or (4).

Comparing (17) with (5) and considering the continuity of

x̂i(t) and χi(τ), we conclude that x̂i(t) = χi(τ) and t = τ

for any t, τ ∈ [τi,0, τi,1].
Assume that x̂i(t) = χi(τ) and t = τ holds for t, τ ∈

[τi,0, τi,k] and ti,k = τi,k. Following a similar analysis, we

can readily prove that ti,k+1 = τi,k+1, t = τ , and x̂i(t) =
χi(τ) hold for t, τ ∈ [τi,k, τi,k+1]. This completes the proof.

�

Assume that the state feedback control law takes the form

of ui = hi(xD̄→i
). Then the corresponding closed-loop

continuous-time system is

ẋi(t) = fi(xD̄→i
(t), hi(xD̄→i

))

xi(t0) = xi,0
(22)

We denote f cli (xD̄→i
) , fi(xD̄→i

, hi(xD̄→i
)), f cli (0) = 0.

Consequently, fi(·, ·) in the LAM and event-triggered system

will be replaced by f cli (x̂D̄→i
(ti,k)) and f cli (χD̄→i

(ti,k))
respectively. In the sequel, we will not distinguish τi,k
from ti,k, and use the notation χ̂i(t) , χ(ti,k) for t ∈
[ti,k, ti,k+1). Let ei(t) , χi(t)− χ̂i(t) and ej(t) , χj(t)−
χ∗
j→i for j ∈ D→i, then the following inequalities hold:

||ei(t)|| ≤Si,k

||ej(t)|| ≤Si,k + ψ(χ∗
j→i)

(23)

for any t ∈ [ti,k, ti,k+1).
Assumption 1: Consider a distributed continuous-time

system described by (22). Assume that for any i ∈ M, there

exists a differentiable, positive-definite function Vi(xi) :
R

n → R
+ satisfying:

αi(||xi||) ≤ Vi(xi) ≤ αi(||xi||) (24)

∂Vi(χi)

∂χi

f cli (χD̄→i
− eD̄→i

)

≤ −σi||χi||+
∑

j∈D→i

πj ||χj ||+
∑

j∈D̄→i

µj ||ej ||

(25)

and the following inequality holds:

σi − πi|Di→| > 0 (26)

where αi(·) and αi(·) are class K functions, σi, πi and µi

are some positive constants.

Theorem 2: If Assumption 1 holds, the proposed dis-

tributed LAM is uniformly ultimately bounded.

Proof. Now that it has been proved in Theorem 1 that

the distributed LAM and distributed event-triggered system

have identical state trajectories, we will demonstrate the

boundedness of x̂(t) by investigating χ(t).
Let V (χ) =

∑

i∈M Vi(χi), then we can readily obtain the

time derivative of V (χ):

V̇ =
∑

i∈M

∂Vi(χi)

∂χi

f cli (χD̄→i
− eD̄→i

)

≤
∑

i∈M

{

− σi||χi||+
∑

j∈D→i

πj ||χj ||+
∑

j∈D̄→i

µj ||ej ||
}

<
∑

i∈M

{

− σi||χi||+
∑

j∈D→i

πj ||χj ||

+ µiSi,k +
∑

j∈D→i

µj(Si,k + ψ(χ∗
j→i))

}

≤
∑

i∈M

{

− σi||χi||+
∑

j∈D→i

πj ||χj ||

+
∑

j∈D̄→i

µjD
max
j +

∑

j∈D→i

µjψ
max

}

=
∑

i∈M

{−(σi − πi|Di→|)||χi||

+ µi(|D̄i→|Dmax
i + |Di→|ψmax)}

(27)



where Dmax
i and ψmax are the maximum values of

Di(χD̄→i
(ti,k)) and ψ(χ∗

j→i), respectively. When

|D̄i→|Dmax
i + |Di→|ψmax ≤

ρi(σi − πi|Di→|)

µi

||χi|| (28)

with 0 < ρi < 1, then

V̇ ≤ −(1− ρi)(σi − πi|Di→|)||χi||. (29)

Equation (28) together with (29) ensure that χ(t) is uni-

formly ultimately bounded [17, Theorem 4.18]. As a result,

the boundedness of x̂(t) is proved. This completes the proof.

�

V. SIMULATIONS

In this section we will carry out some simulations on

a nonlinear system to verify the developed algorithm. This

system consists of four agents described as follows:



















ẋ1(t) = a1x1(t) + b1 tan(x4(t))

ẋ2(t) = a2x
2
1(t) + b2x2(t)

ẋ3(t) = a3
√

x2(t) + b3x3(t)

ẋ4(t) = a4x3(t) + b4x4(t)

with initial condition t0 = 0, x(0) = [0.21 0.19 0.17 0.22]T,

ai, bi, i = 1, 2, 3, 4 are pre-known parameters.

For the above system, a distributed LAM will be estab-

lished to predict system’s states sporadically. In the algo-

rithm, the quantization size Di(·) and the threshold ψ(·) are

set as follows:

D1 = 0.1 ·
√

x21 + x24, D2 = 0.1 ·
√

x21 + x22

D3 = 0.1 ·
√

x22 + x23, D4 = 0.1 ·
√

x23 + x24

ψ(x∗4→1) = 0.2 · |x∗4→1|, ψ(x∗1→2) = 0.1 · |x∗1→2|

ψ(x∗2→3) = 0.1 · |x∗2→3|, ψ(x∗3→4) = 0.1 · |x∗3→4|

Then the following two cases are both simulated:

Case 1:

(a1, a2, a3, a4) = (−0.95, 0.23,−0.86, 0.43)

(b1, b2, b3, b4) = (0.90,−0.31,−0.83,−0.6)

Case 2:

(a1, a2, a3, a4) = (−0.095, 0.023,−0.086, 2.15)

(b1, b2, b3, b4) = (0.090,−0.031,−0.083,−3.0)

Compared with Case 1, in Case 2 the dynamics of x1, x2, x3
are slowed down and that of x4 is speeded up. For compar-

ison purpose, we also present the simulation result using

centralized method provided by [14], where we use the

parameters in Case 2 and set D = max{D1, D2, D3, D4}.

The simulation results are presented in Table II and Fig. 2–

5. Figs. 2 and 4 display the state trajectories generated by

the distributed LAM and the continuous-time system in Case

1 and 2, respectively. We found that the errors between

actual continuous-time states and the Lebesgue states are

very small, which means that the proposed algorithm has

excellent approximation performance.
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Fig. 2. Case 1: State trajectories generated by distributed LAM and
continuous-time system
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Fig. 3. Case 1: Inter-sampling time intervals

Fig. 3 and 5 plot the inter-iteration time intervals generated

by individual LAMs in Case 1 and Case 2, respectively. We

can see that compared with Case 1, the inter-iteration time

intervals for x1, x2, x3 in Case 2 become much larger. It

means that the iteration frequency of x1, x2, x3 becomes low

because the dynamics of x1, x2, x3 in Case 2 are slower. On

the contrary, x4 in Fig. 5 is updated more frequent because

the dynamics of x4 in Case 2 is faster. By this fact, it

shows that the distributed LAM can update individual states

at different frequencies according to the individual dynamics.

Table II provides detailed data on the average inter-

iteration time intervals (unit: seconds) in three cases, includ-

ing the time intervals generated by the centralized LAM [14].

We can find that the average time intervals of LAMs 1-3 in

Case 2 are significantly longer than that in Case 1, which

is consistent with our observations from Fig. 3 and 5. We

found that although the dynamics of x4 becomes faster in
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Fig. 4. Case 2: State trajectories generated by distributed LAM and
continuous-time system
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Fig. 5. Case 2: Inter-sampling time intervals

Case 2, the related average time intervals of LAM 4 is still

longer than that in Case 1. This is because the updates of

x̂4 triggered by x̂3 becomes fewer since the dynamics of

x3 becomes slow. Also note that the centralized algorithm

updates much more frequently than the distributed algorithm.

All these results demonstrate that the proposed distributed

LAM can improve cost efficiency without degrading the

approximation performance.

VI. CONCLUSIONS

In this paper a discrete-time approximation method based

on the LAM has been proposed for a nonlinear dynamical

system, which is developed under a distributed framework.

The distributed LAM has been proved to be equivalent to

a specific distributed event-triggered feedback system in a

sense that they have identical state trajectories. Based on

the equivalent event-triggered feedback system, the stability

TABLE I

AVERAGE INTER-SAMPLING TIME INTERVAL

LAM1 LAM2 LAM3 LAM4

Case 1 1.1173 1.3072 0.7547 0.8929

Case 2 4.7059 8.5106 5.9701 1.0

Centralized Case [14] 0.7143 0.7143 0.7143 0.7143

of the distributed LAM analyzed. Simulations show that the

proposed algorithm is computationally efficient.
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