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Big imaging data is becoming more prominent in brain sciences across spatiotemporal scales and
phylogenies. We have developed a computational ecosystem that enables storage, visualization,
and analysis of these data in the cloud, thusfar spanning 20+ publications and 100+ terabytes in-
cluding nanoscale ultrastructure, microscale synaptogenetic diversity, and mesoscale whole brain
connectivity, making NeuroData the largest and most diverse open repository of brain data.

Recent developments in technology, such as high-throughput imaging and sequencing, enable experi-
mentalists to collect increasingly large, complex, and heterogeneous “big” data [1]. Any study includes
both raw data and metadata, potentially resulting in terabytes per day, eventually yielding petabytes
when aggregating across experiments and laboratories. These new experimental capabilities exceed
the scale or feature-set of existing software. For example, such data cannot be stored, processed, and
visualized on a laptop or workstation. Instead, big data require complex registration, processing, and
machine learning pipelines, to be stored on data centers and processed on high-performance and/or
cluster computers.

There is a natural inclination therefore to begin building custom, bespoke software solutions. Indeed,
many laboratories around the world have their own software stack and practices, maintained by ever
shifting graduate students or software engineers, using local hardware resources that must also be
maintained. This approach is diŻcult to translate to future experiments, individuals, or institutions. In
NeuroData’s first eŷorts in the Open Connectome Project (http://neurodata.io), we developed a
complex software stack to manage terascale spatial data for high-throughput electron microscopy [2].
This stack hosted our collaborators’ data from 2011 to 2015, but our academic development team
became overwhelmed as technology changed, features were added, and scale increased.

We therefore developed an open-source, community-built, software ecosystem deployed in the com-
mercial cloud. This required integrating multiple open-source projects and extending them for our
specific needs. As new scientific questions demand new features, we work with open-source develop-
ers spanning organizations and institutions, incorporating features into their tools or adding “plug-ins”
that we maintain (Figure 1).1 As new features were required to address our scientific questions, we
worked with the primary developers spanning organizations and institutions, and either incorporated
our features into their tools, or added “plug-ins” that we maintain.

Data visualization helps researchers evaluate sample preparation, quality assurance, image process-
ing, and annotation, and facilitates hypothesis generation and discovery [3]. Thus, NeuroData prior-
itizes visualization via a three-dimensional (3D) interactive Web application that connects to all data
sources, including raw image tiles oŷ the microscope, stages of transformation, and published anno-
tated stacks. Users zoom, rotate, and pan among multiple channels, canonical planes, and rendered
volumes. Scientists interact with volumetric structures to understand synapse morphology or sparse
protein expression. Several use cases illustrate how visualization enables scientific discovery.

Serial electron microscopy (EM) produces hundreds of terabytes of monochromatic image tiles [4].
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Their life-cycle includes storing raw images, stitching them into 3D volumes, correcting intensity aber-
rations, and extracting objects of interest, including neural processes and synapses. Fiji plugins and
other tools solve the stitching and registration problem [5].2 We built and modified tools for discovery
on registered and aligned data (Fig. 2, top left). For visualization, we built NeuroDataViz (NDViz) by
forking and extending Google’s NeuroGlancer, adding multi-channel overlays, data sources, and mi-
nor extensions to the WebGL core. We modified “distributed multi-grid” (DMG)—originally developed
for natural images and cosmology—to address intensity biases across images [6]. Finally, many neu-
roimaging voxels are 10x anisotropic. Rotating 3D annotations in space therefore produces a stair-step
look, which we mitigated by co-opting a mesh smoothing tool [7].
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Figure 1: Neurodata’s open-source software ecosystem.
Software projects that NeuroData develops and main-
tains have a gray border. Note that even those projects
heavily leverage open source packages. For example,
NDViz is a fork of Google’s Neuroglancer, and NDReg
uses SimpleITK for linear and aŻne pre-registration.

Conjugate array tomography identifies 20+ chan-
nels of protein expression in 3D, followed by serial
electron microscopy [11]. The life-cycle of these
data includes storing raw image tiles, registering
and stitching each channel into 3D volumes, co-
registering channels and modalities, and extract-
ing objects of interest. For data visualization, we
extended Render into the cloud. Render stores
and applies image transforms that describe how
volumes are assembled. Render does not pro-
vide algorithms, but stores their output to repro-
duce all pipeline stages on demand. Array to-
mography channels characterize protein expres-
sion co-registered to electron microscopy struc-
ture. Underlying data are stored as raw image
tiles. The top right image in Figure 2 is con-
structed on demand, which minimizes computa-
tion and data movement. Scientists can anno-
tate crude alignments, labeling neurons or synapses. Render carries these annotations forward into
improved future alignments. For this project, we extended NDViz and NeuroGlancer to support multi-
spectral images, using Render as a data source.

CLARITY is a method of making brain tissue transparent to enable estimating the brain-wide joint
statistics of multiple neurons [12]. CLARITY experiments collect data from multiple channels, includ-
ing background for registration, and a “signal” channel that exhibits protein expression localized to
a particular sub-population of neural cells. CLARITY Optimized Light-sheet Microscopy (COLM) can
accelerate data collection from clarified samples by several orders of magnitude while maintaining or
increasing quality and resolution, yielding multi-terabyte datasets [13]. After data are stitched together
with TeraStitcher [14], the volume is registered to an atlas to identify relative expression across brain
regions [15]. We built an open-source package, NDReg, implementing multiscale large deformation
diŷeomorphic metric mapping, a principled mathematical theory of nonlinear registration devised for
computational anatomy of magnetic resonance imaging data [16, 17]. This tool registers these multi-
terabyte images in under an hour on a workstation. NeuroData also built Web-accessible microservices
to enrich visualization. Our open-source service provides atlas metadata, allowing visualization tools
to dynamically display brain regions associated with images (Fig. 2, bottom).

At publication, image data enter an archival database that provides high-throughput access to volu-
metric data. Spatial databases serve multiple purposes. (1) They enable visualization over the Internet,
updating the screen at tens of frames per second. (2) They download resolutions and regions on de-
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Figure 2: Interactively visualizing brain volumes. (A) 3D volume of manual annotations intersecting a plane
of EM data [8] displayed over 2-dimensional image acquisition plane. (B) Multi-channel view comparing co-
registration of EM with multi-spectral light-microscopy protein expression [9]. Color blending facilitates visual-
izing multiple colors. Data accessed from Render. (C) CLARITY [10] coregistered to Allen reference atlas and
linked with metadata microservice that displays brain region names under cursor. Image data accessed from
bossDB and visualized using NDViz, after registration with NDReg. The cloud database, visualization, registra-
tion, and metadata let users navigate images by brain region.
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mand. (3) They provide data to analysis algorithms, such as computer vision that identifies neurons,
axons, and dendrites. NeuroData deploys the bossDB, developed for EM and co-registered functional
image and annotation data [18]. Based on the Open Connectome Project, bossDB provides spatial
databases as a service in the cloud. This software was developed at the JHU Applied Physics Labora-
tory under a partnership with the IARPA MICrONS program, and exemplifies avenues for growth and
support toward enabling community research.

NeuroData holds 100 public and private datasets, 200 teravoxels from 30 collaborators, making it
the world’s largest and most diverse public neuroscience data repository. We host approximately 140
teravoxels of public image data, from nanometer to millimeter scales (Table 1). Registered to these
databases, annotation datasets provide semantic objects for volumetric analysis. Thus, scientists can
investigate image quality from diŷerent technologies before deciding which ones to adopt. Moreover,
scientists can access and analyze disparate data with the same functionality and syntax, to develop
more coherent and comprehensive models of the function and dysfunction of nervous systems.

Table 1: Image Datasets in Open Connectome Project. Modalities: EM = Electron Microscopy, AT = Array To-
mography, Ophys = Optical Physiology, XCT = X-ray Micro Computational Tomography, LM = Light Microscopy,
CL = CLARITY, MR = Magnetic Resonance. Bits = number of bits representing image intensity per voxel. Proj
= number of databases in dataset. Ch = channels across dataset. T = timesteps across dataset. GV = approxi-
mate number of gigavoxels (109 voxels) across project. Total, 139,874 gigavoxels across 23 publications with 52
projects containing 527 channels. For references, licenses, and DOIs, https://neurodata.io.

Reference Modality Species Bits Proj Ch T GV

Bhatla EM C. elegans 8 1 2 1 226
Jarrell EM C. elegans 8 1 1 1 43
White EM C. elegans 8 1 1 1 28

Bumbarger EM P. pacificus 8 1 1 1 1672
Hildebrand EM D. rerio 8 1 1 1 26,869

Wanner EM D. rerio 8 1 1 1 1,108
Tobin EM D. melanogaster 8 1 1 1 55,113

Ohyama EM D. melanogaster 8 2 1 1 2,609
Takemura EM D. melanogaster 8 1 1 1 210

Bock EM M. musculus 8 1 1 1 20,102
Lee EM M. musculus 8 1 1 1 22,065

Kasthuri EM M. musculus 8 3 1 1 1,544
Harris EM R. rattus 8 3 3 1 19

Collman EM&AT M. musculus 8 2 26 1 46
Bloss AT M. musculus 8 1 3 1 493

Weiler AT M. musculus 16 12 288 1 215
Micheva AT M. musculus 16 1 26 1 25

Dyer XCT M. musculus 8 1 1 1 3
Kutten CLARITY M. musculus 16 12 23 1 7,191
Branch iDISCO M. musculus 16 1 1 1 5

Vladimirov Ophys D. rerio 16 1 1 100 9
Randlett LM D. rerio 16 1 138 1 16
Amunts MR H. sapiens 8 1 1 1 262
Grabner MR H. sapiens 16 1 3 1 <1

Totals – – – 52 527 – 139,874
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Notes

1 Including https://github.com/jhuapl-boss, https://github.com/neurodata/ndpush, https://github.com/neurodata/
ndwebtools, https://github.com/neurodata/ndpull, https://github.com/saalfeldlab/render, https://opensource.
google.com/projects/neuroglancer, http://abria.github.io/TeraStitcher/, https://github.com/neurodata/
ndreg, http://catmaid.org, https://github.com/neurodata/ndviz, https://github.com/iscoe/substrate, http:
//www.simpleitk.org/ https://github.com/neurodata/ndmesh, https://github.com/mkazhdan/DMG, https://github.
com/neurodata/R-RerF, https://github.com/neurodata/MGC, and https://github.com/neurodata/LOL.

2https://github.com/khaledkhairy/EM_aligner and https://github.com/billkarsh/Alignment_Projects
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