
GreenDataFlow: Minimizing the Energy Footprint
of Global Data Movement

MD S Q Zulkar Nine1, Luigi Di Tacchio1, Asif Imran1, Tevfik Kosar1, M. Fatih Bulut2, Jinho Hwang2

1Department of Computer Science and Engineering, University at Buffalo, Buffalo, New York
2IBM TJ Watson Research Center, Yorktown Heights, New York

Email: {mdsqzulk, luigidit, asifimra, tkosar}@buffalo.edu, {mfbulut, jinho}@us.ibm.com

Abstract—The global data movement over Internet has an
estimated energy footprint of 100 terawatt hours per year, costing
the world economy billions of dollars. The networking infras-
tructure together with source and destination nodes involved
in the data transfer contribute to overall energy consumption.
Although considerable amount of research has rendered power
management techniques for the networking infrastructure, there
has not been much prior work focusing on energy-aware data
transfer solutions for minimizing the power consumed at the
end-systems. In this paper, we introduce a novel application-
layer solution based on historical analysis and real-time tuning
called GreenDataFlow, which aims to achieve high data transfer
throughput while keeping the energy consumption at the minimal
levels. GreenDataFlow supports service level agreements (SLAs)
which give the service providers and the consumers the ability to
fine tune their goals and priorities in this optimization process.
Our experimental results show that GreenDataFlow outperforms
the closest competing state-of-the art solution in this area 50% for
energy saving and 2.5× for the achieved end-to-end performance.

I. INTRODUCTION

The era of artificial intelligence (AI) has made data the
most important resource, in turn the efficient data handling
is the key to use compute, network, and storage resources
more effectively. Not like compute and storage resources,
the network resource needs more sophisticated control as it
involves the end-to-end efficiency. The annual data transfer
rate over global IP networks has already exceeded zettabyte
scale [46]. The energy footprint of this global data movement
is estimated at more than 100 terawatt hours per year at the
current rate, costing more than 20 billion US dollars annually
to the world economy in addition to the environmental side
effects [19], [24], [36], [39], [46]. This fact has resulted in
considerable amount of work focusing on power management
and energy efficiency in hardware and software systems [9],
[13], [14], [25], [27], [32], [41], [42], [44], [47], [52] as well
as on power-aware networking [6], [18], [20], [21], [28], [36].

Majority of the existing work on power-aware networking
focuses on reducing the power consumption on networking
devices (e.g., routers, switches, and hubs). Gupta et al. [24]
were amongst the earliest researchers to advocate conserving
energy in the networking infrastructure. They suggested differ-
ent techniques such as putting idle sub-components (e.g., line
cards) to sleep [23], which were later extended by other re-
searchers. Nedevshi et al. proposed adapting the rate at which
switches forward packets depending on the traffic [38]. IEEE
Energy Efficient Ethernet Task Force proposed the 802.3az

standards [1] for making Ethernet cards more energy efficient.
They defined a new power state called Low-Power Idle (LPI)
that puts the Ethernet card to low power mode when there
is no network traffic. Other related research in power-aware
networking has focused on architectures with programmable
switches [22], switching layers that can incorporate different
policies [30], and power-aware network protocols for energy
efficiency in network routing [10].

The existing approaches suffer from the following draw-
backs: (1) the solution is too costly (e.g., replacing all switches
with energy efficient ones); (2) the solution is unpractical in the
short term (e.g., replacing TCP with a more energy-efficient
version); (3) the solution penalizes performance while increas-
ing energy efficiency (e.g., sleeping some components while
not in use). In this paper, we propose an application-layer
solution called GreenDataFlow which is low cost, very easy
and practical to deploy, and does not penalize the performance
while increasing energy efficiency. With the added benefits and
simplicity to adopt, service providers can directly benefit from
GreenDataFlow as they can offer it as-a-service in their cloud
platforms, while making sure that the SLA requirements of
customers are satisfied using our SLA-based algorithms.

GreenDataFlow provides novel two-phase dynamic opti-
mization models to minimize energy and increase throughput
at the same time. It is based on mathematical modeling
with offline knowledge discovery and adaptive online decision
making. During the offline analysis phase, we analyze histor-
ical transfer logs to perform knowledge discovery about the
characteristics of the past transfers with similar requirements.
During the online phase, we use the discovered knowledge
from the offline analysis along with real-time investigation
of the network condition to optimize the protocol parameters
for both minimal energy consumption and maximum transfer
throughput. Our models use historical knowledge about the
network and data to reduce the real-time investigation over-
head while ensuring near optimal results for each transfer.
Specifically our contributions in this paper are as follows:

1) GreenDataFlow minimizes the energy footprint of big
data transfers by operating in the application-layer, with-
out any need to change the existing infrastructure nor the
low-level networking stack, which makes its integration
to existing applications easier.

2) GreenDataFlow integrates knowledge-based offline anal-
ysis with real-time tuning to achieve close-to-optimal

2018 IEEE International Conference on Big Data (Big Data)

978-1-5386-5035-6/18/$31.00 ©2018 IEEE 335



0
30

200

400

600

5

800

T
h
ro

u
g
h
p
u
t 
(M

b
p
s) 1000

2010

1200

Parallelism

1400

Concurrency

15
1020

25
30

200

400

600

800

1000

1200

(a) Achieved Throughput for different cc and p

400

600

30

800

1000

1200

E
n
e
rg

y 
(J

o
u
le

)

1400

5 25

1600

1800

10 20

ParallelismConcurrency

15 1520 1025 530

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

(b) Energy Consumption for different cc and p

Figure 1: Achieved throughput and energy consumption of a single transfer under different parameter combination. Surface
interpolation is perform using piece-wise cubic spline.

data transfer throughput while reducing energy con-
sumption.

3) GreenDataFlow applies adaptive tuning in real-time and
uses pre-computed mathematical optimization based de-
cisions to provide faster convergence toward maximally
achievable throughput.

4) Our experimental results show that GreenDataFlow out-
performs the closest competing solution in this area up to
50% for energy saving and up to 2.5× for the achieved
end-to-end performance. When we compare it with
baseline cases (without any optimization), the energy
savings go up to 80% and performance improvement
reaches 10×.

The rest of the paper is organized as follows: Section II
provides background information and gives a formal definition
of the problem; Sections III and IV present our novel two-
phase dynamic optimization models; Section V evaluates our
models; Section VI describes the related work in this field;
and Section VII concludes the paper.

II. BACKGROUND AND PROBLEM DEFINITION

Large-scale data transfers can have suboptimal performance
and high energy footprint in a long RTT WAN network due
to the protocol inefficiencies. Changing the protocol stack
requires low-level updates, and its adaptation by large-scale
needs considerable time and effort. Therefore, application level
solutions are more lucrative and easy to deploy in the user
space. Application level data transfer protocol parameters (i.e.,
concurrency, parallelism, pipelining) can be tuned to increase
the data transfer throughput and decrease the energy footprint
significantly. Figure 1 shows the throughput and energy con-
sumption of a single transfer under different parameters. A
short description of these parameters is given below.

Concurrency (cc) controls the number of server processes
where each process can transfer an individual file. It can
accelerate the transfer throughput when a large number of
files need to be transferred. Each server process can transfer a
different portion of a file in parallel. We define the number of
parallel streams for each process as Parallelism (p). Increasing
number of parallel data streams can increase the achievable
throughput for large files. However, excessive use of streams
may lead to packet loss and force TCP to initiate slow-start

phase that may lead to severe throughput loss. Control channel
idleness is a significant bottleneck in transferring a large
number of files. After each file transfer, the server process
sends an acknowledgment to initiate the next file transfer. This
acknowledgment can take at least one Round-Trip-Time (RTT)
between each file transfer. It may hurt the overall throughput
of a dataset containing a large number of small files in a long
RTT network. This issue can be solved by queuing multiple
file transfer requests without waiting for the acknowledgments.
We define the size of the outstanding file transfer request queue
as Pipelining (pp).

Energy consumption is a major concern in data centers and
end-systems that perform large-scale data transfers. Minimiz-
ing the energy consumption can reduce the data center oper-
ating cost while utilizing the network bandwidth efficiently.
Energy-efficiency can be achieved through optimal hardware
resource (e.g.,CPU, memory, disk and NIC) scheduling to the
data transfer tasks. Over-provisioning of the compute resources
can increase the energy cost. On the other hand, the under-
provisioning can reduce the data transfer rate and takes more
time to finish transfer job. As the resources are occupied for a
longer period of time, the energy consumption could be higher
than optimal solution while provides a low data transfer rate.

There is a trade-off between performance and energy con-
straints. A data center administrator has an immediate incen-
tive to optimize the energy consumption as it is directly related
to the operating cost. However, end users might want the
freedom to choose from a different range of services. A service
provider can advertise energy constraint solutions with a lower
price tag. In this work, we introduce easy to describe energy-
aware Service Layer Agreement (SLA) categories that a user
or an administrator can initiate. SLA is a contract between the
user and the service provider on service quality and specific
rights of both parties. It may include the description of services
agreed to be provided, monitoring and reporting of quality of
service (QoS) matrices. For energy efficient transfers, SLA
space can be sub-divided into two main categories:
(1) TYPE - T: A user may need a throughput guarantee

(e.g., throughput sensitive transfers, deadline-aware transfers).
In this case, the service provider can choose an energy efficient
solution without violating the throughput SLA. Therefore, the
optimization problem can be expressed as :

336



minimize
{parameters,resources}

(E)

subject to. Tact ≥ Tsla

(1)

Where Tact is the achieved throughput and Tsla is the
throughput guarantee that the user wants.

(2) TYPE - E: A user might want to limit energy
consumption to reduce the data transfer cost and ask for
the best possible transfer rate. Therefore, actual energy con-
sumption (Eact) can be constrained by energy consumption
limit specified in SLA, (Esla). The optimization problem is to
maximize throughput, T under a specified energy constraint
and can be expressed as:

maximize
{parameters,resources}

∫ τf

τs

T

subject to. Eact ≤ Esla.
(2)

In this paper, we apply our optimizations to GridFTP [33]
which is based on TCP. GridFTP is widely used in the
scientific community, and it supports easy tuning of parameters
such as parallelism, concurrency, and pipelining.

III. SOLVING OPTIMIZATION PROBLEM

The optimization problems defined in Section II require
accurate modeling of throughput and energy consumption.
Therefore, we need to know the impact of application level
parameters and compute resource allocations on both energy
consumption and throughput. We can express both throughput
and energy consumption as a function of application level
parameters and allocated compute resources.

T = f1(data, net, cc, p, pp, µcpu, µmem, µdisk, µnic)

E = f2(data, net, cc, p, pp, µcpu, µmem, µdisk, µnic)
(3)

Where data is dataset, net is network, µcpu, µmem,µdisk, and
µnic are CPU, memory, disk and NIC allocations.

To understand these relationships in Equation 3, we can
record throughput and energy consumption of a data transfer
that is performed with different parameters, resource alloca-
tions and then use these data to fit a regression or interpolation
model. However, this simplistic approach has four significant
drawbacks - (1) The collected synthetic data might not be
representative of the real-world scenario. (2) Other contending
traffic in the same network can impact the data transfer.
Therefore, we need to model their impact as well. (3) Alan
et al. [3] show that the parameters can have a different
effect on throughput and energy when data transfer requests
are different. For example, small file transfers require high
concurrency and pipelining to achieve high throughput. On the
other hand, large files require high parallelism to achieve high
throughput. Therefore, clustering is necessary to group similar
file transfers first. (4) We need to select a proper regression
or interpolation model based on the behavior of the data.

We decided to use historical data transfer logs to address
the drawback (1). Then we perform clustering on these logs
to group the similar transfers. After that, we use a proper

interpolation model on each log cluster. Then we solve the
optimization problem. Steps and the design choices are ex-
plained below.
Step 1 – Storing Historical Logs: Historical data transfer
logs are collected periodically and stored in a log server. These
logs collect information about the network characteristics (e.g.,
round trip time, buffer size, queuing delay, packet loss rate),
application level parameters (cc, p, pp), end-system resource
allocation information (e.g., CPU, memory, NIC), dataset
information (e.g., size, number of files/objects), energy-related
information (e.g., CPU utilization, memory utilization, NIC
card utilization, disk I/O utilization). These logs provide
insight to optimize transfers energy-efficiently under different
circumstances.
Step 2 – External Load Modeling: In a shared network
environment, the data transfer task has to compete with other
contending transfers. Contending transfers can be a mixture of
known incoming/outgoing streams in both source/destination
and completely unknown transfers. We can define the through-
put of the known transfers as Text kn and the throughput of
the unknown transfers as Text unk. Some bandwidth might
be wasted by TCP congestion (δcongst). However, the optimal
number of streams can offset congestion loss significantly. We
can say that the entire bandwidth of the link is the sum of the
achieved throughput of our data transfer task Tact, all other
known, unknown transfers, and the bandwidth wasted due to
congestion and slow start. Therefore, we can model bandwidth.

BW = Tact +
∑

Text kn +
∑

Text unk +
∑

δcongst
(4)

We can estimate δcongestion from the round trip time and
queuing delay of the network. We can also determine the
combined throughput of known transfers. Therefore, from
Equation (4), we can get a rough estimate of the combined
throughput of the unknown external traffic.
Step 3 – Clustering historical logs: As we are using the
historical logs, categorizing logs into groups based on their
similarity would provide us a more structured view of the log
information. After analyzing the logs, we can see that the log
metadata (e.g., dataset information, network characteristics,
external load condition) are responsible for performance and
energy consumption variability in different transfers using the
same parameters and resources. We also notice that some log
metadata have direct precedence over others. For example,
source and destination information and network characteristics
have more impact on performance and energy consumption
variability compared to the dataset information. Therefore, we
can see an explicit hierarchy in clustering. The high-level clus-
ters (Tier-1) are based on source, destination and connecting
network. Each of these clusters can be sub-divided into more
clusters based on dataset information (Tier-2). Each Tier-2
cluster can be sub-divided using external load information, and
so on. To meet this requirement, we use a modified version of
Hierarchical Agglomerative Clustering [37] which can cluster
logs in a bottom-up manner. We set the log metadata hierarchy

337



as explained earlier. The clustering algorithm initially treats
each log entry as a singleton cluster and starts merging them
based on last tier log metadata. Then the formed clusters are
merged again based on second to the last tier log metadata,
and it continues until it reaches the Tier-1.
Step 4 – Interpolation and optimization: We are interested
to find the relationship expressed in Equation 3 for each cluster
from Step-3. Historical logs might not have log information for
all the parameters and resource allocations. We need an inter-
polation technique to model the relationships so that we can
predict the performance, energy consumption of parameters
and resource allocations those are not present in the historical
logs. After analyzing the historical logs, we can see that both
relations are strictly non-linear and follow a continuous cubic
pattern. Therefore, we modeled both throughput and energy
using piece-wise cubic spline interpolation (Figure 1). This
technique stitches multiple cubic functions with smoothness
guarantee up to the second derivative. All the continuity con-
straints and the smoothness constraints are linear. Therefore,
the coefficients can be computed by solving the system of
linear equations. This interpolation has some explicit benefits.
If we choose the optimal parameters from the historical logs
without any interpolation, there is a good chance that the his-
torical logs do not have the parameters optimal for the transfer.
Interpolation can predict the parameters those are not present
in the historical logs. We have used 70% logs to perform the
interpolation and the rest of the 30% logs are test the prediction
of the interpolation method. We used standard Root Mean
Squared Error (RMSE). This interpolation can achieve 93%
accuracy. Now we can model throughput and energy using
the parameters and resource allocation (Equation 3). We used
a Matlab solver to compute optimal parameters and resource
allocations.

IV. MODEL DESIGN
In our proposed models, we considered two crucial design

challenges: (1) Optimization from Section III can introduce
overhead when we solve it during the transfer; (2) Network
condition might change during the transfer, and initial pa-
rameter choices and resource allocation might become sub-
optimal. To address these issues, we decided to perform
the optimization offline. So that the user can access the
precomputed parameters and resource allocation to perform
the transfer. We also propose a dynamic tuning of the transfer
adapt to the real-time network conditions. These two design
choices are explained below.

A. Offline Optimization

Precomputing the constrained optimization (detailed in Sec-
tion III) during offline phase can have two major benefits: (1)
it eliminates any real-time latency for optimal parameters, and
(2) these precomputed results can be reused for many subse-
quent transfers, which can effectively amortize the initial cost
of analysis. As the user can put constraints over throughput
or energy consumption, during the offline phase, we would
have to solve the optimization problem for all possible SLA

Algorithm 1: Dynamic Tuning
// Application level parameter: params;

Resource allocation: res; Data
transfer request: req; Network status:
net status; Network delay, δ

1 Periodically check:
2 if SLA type == ’Energy Constraint’ then
3 if instantaneous power consumption is higher than

SLA then
4 if High queuing delay: fairness_control()
5 else
6 opportunistic_decrease(SLA)
7 params, res ←

get_precomputed_results(req, net status,
δ, SLA)

8 update_resource_groups(res)
9 Perform rest of the transfer with new parameters

10 else if SLA type == ’Throughput Guarantee’ then
11 if Throughput is less than SLA then
12 if High queuing delay: fairness_control()
13 else
14 opportunistic_increase(SLA)
15 params, res ←

get_precomputed_results(req, net status,
δ, SLA)

16 update_resource_groups(res)
17 Perform rest of the transfer with new parameters
18 check_stream_perf()
19 redistribute_pipelining()

Algorithm 2: Stream Fairness Control Algorithm
// Queuing delay: Qrtt

1 procedure back_off_control()
2 Qrtt ← measure_queuing_delay()
3 pkt loss rate ← get_packet_loss_rate()
4 if Qrtt ≪ Qrtt.expected) : pp ← pp− 1
5 else: pp← pp+ 1

6 if pkt loss rate ≪ pkt loss rate.threshold :
cc← cc− 1

7 else: cc← cc+ 1

values of throughput or energy or power, which is not feasible.
We observed that, when two SLA values are close, they
produce similar solutions. Therefore, instead of solving the
optimization problem for all possible SLA values we partition
the SLA feasible region based on historical log data and solve
one optimization problem for each partition. For example, a
transfer takes minimum 600 Joules to perform the task, and the
maximum throughput can be achieved with 1000 Joules. Based
on historical logs we can partition this into three regions,
(1) 600 - 750 (Joules), (2) 751 - 850 (Joules), and 850-1000
(Joules). Service provider can advertise these SLA partitions
with associated price tag. This approach can give us a constant
number of SLA levels for both achievable throughput and
energy consumption. The pre-computed optimization result for
each cluster is stored in a hash table. The key is the cluster
name and values are a vector of all parameter values and
resource allocations. We can access these results through a

338



function called get_precomputed_results(key) from
the hash table.

B. Dynamic Tuning

Dynamic tuning is the real-time monitoring of the health of
the data transfers, simultaneously it controls the aggressiveness
of the protocol (maintains fairness), while ensuring strict SLA
requirement. As we have two different categories of SLAs,
we need two different strategies as well. However, the core
control is mostly similar. An overview of the tuning module
for different SLAs is introduced in Algorithm 1.
SLA – Energy Constraint (Lines 2-9) : Energy consumption
of a transfer increases for the following reasons: (1) extra
work due to excessive retransmission when packet loss or
congestion increases, (2) over-provisioning of compute re-
sources. When instantaneous power consumption goes higher,
dynamic tuning checks RTT and queuing delay to detect
congestion. If delay is detected, then it immediately initiates
a sub-routine called fairness_control() (Explained in
Algorithm 2). This sub-routine reduces the parameter values to
ensure fairness among the users during congestion. It measures
queuing delay and packet loss rate. When queuing delay is
higher than expected, it reduces parallelism value by one as
a congestion avoidance measure. However, packet loss has
more severe consequences. Therefore, when it detects packet
loss, it decreases the concurrency value by one. On the other
hand, When queuing delay is reasonable, the high energy
consumption might be due to resource over-provisioning. It
checks the remaining data to be transferred, network condition,
and SLA. Then it uses get_precomputed_results()
function to get new allocation from offline optimization and
update resource allocation (Lines 7-8). In a congested link,
SLA violation might occur during the data transfer. To com-
pensate for the violation, we can decrease the SLA energy
constraint to a lower value whenever it is possible. We
introduce opportunistic_decrese() of SLA (Line 6).
It monitors the network conditions, external loads and asks the
offline optimization module for parameters and allocations that
can guarantee the decreased SLA. This decreased SLA ensures
enough buffer efficiency for any previous or upcoming SLA
violation due to congestion.
SLA – Throughput Guarantee (Lines 10-17) : The ma-
jor reason for throughput SLA violation is the conges-
tion and under provisioning of resources. When it de-
tects throughput is less than the SLA, it immediately
checks for congestion. If congestion is detected, it initi-
ates fairness_control() to dynamically tune param-
eters (same as Energy constraint SLA) (Line 12). Oth-
erwise, it asks offline_optimization for new re-
source allocation to resolve under-provisioning using function
get_precomputed_results() (Line 15). In an uncon-
gested link, it can provide continuous throughput guaran-
tee. However, a congested link may force the transfer to
reduce the parameters (ensure fairness) that directly impact the
throughput. opportunistic_increase() compensates

Specifications IBM IDCN XSEDE
Bandwidth (GBps) 1 10

RTT (ms) 65 40
Buffer size (MB) 8 32

File system Lustre
Cores 2 16

Memory (GB) 2 32
Table I: System and network specification of test sites

this inevitable throughput drop with a new throughput goal
that is higher than SLA (Line 14). During uncongested time
interval, the dynamic tuning module will ask offline analysis
module to provide parameters that can achieve new SLA goal.
We also introduce a buffer capacity of achievable throughput
higher than SLA. This buffer size is based on historical
data analysis. Opportunistic increase function tries to fill this
buffer, whenever it senses available throughput. This buffer
pro-actively offsets any future throughput degradation.

V. EVALUATION

We performed experiments on WAN links between IBM
datacenters located in Washington, D.C. and San Jose, CA. We
also used XSEDE, a production level high-speed computing
infrastructure for scientific computations. An overview of
systems and network information is provided in Table I. We
collected historical log data over two weeks of time from
transfers performed in IBM datacenters. To measured energy
consumption we used Intel Running Average Power Limit
(RAPL) model in all our experiments. It is highly reliable
and uses hardware counters to measure energy consumption.

We compared our model with many existing data transfer
solutions. However, there has been done very little work
on energy efficient data transfer optimization. We evaluate
our model against the model proposed by Alan et. al. [3],
globus-url-copy (guc) [16], Globus Online (GO) [11],
scp, SFTP, Rsync, Rclone [43], and CloudFuse [12]. Alan
et al. provide a High Throughput Energy-Efficient Algorithm
(HTEE) that uses a heuristics based approach. It starts with one
channel and periodically increases it by two until it reaches
to a user-defined limit. Then it computes energy efficiency
for each level and picks the best one. This periodic additive
increase is slow. Globus-url-copy and Globus Online are
GridFTP based data transfer tools to achieve high performance
during transfer. However, they are not energy optimized tools.
Scp and SFTP are widely used secure file transfer tools.
Rsync and Rclone are high-performance data synchronization
applications. CloudFuse provides cloud-based Managed File
Transfer (MFT) service and offers migration, sync and other
file management capabilities to the end users.

A. Comparison with Other Solutions

Figure 2 shows an elaborate experimentation and per-
formance analysis of different state-of-the-art solutions and
our proposed approach. Most of the models do not support
SLA. Therefore, to make comparison fair we set the SLA of
our model in two extreme cases - (1) Maximum achievable

339



 0

 200

 400

 600

 800

 1000

 1200

guc
G
O

scp
SFTP

Rclone

Rsync

CloudFuse

Alan et al.

G
DF(M

axTh)

G
DF(M

inPow
)

T
h

ro
u

g
h

p
u

t 
(M

b
p

s
)

(a) Achieved throughput (medium files)

 0

 100

 200

 300

 400

 500

guc
G
O

scp
SFTP

Rclone

Rsync

CloudFuse

Alan et al.

G
DF(M

axTH)

G
DF(M

inPow
)

E
n

e
rg

y
 (

J
o

u
le

 p
e

r 
G

B
 d

a
ta

)

Source
Destination

(b) Energy consumption (medium files)

 0

 2

 4

 6

 8

 10

 12

guc
G
O

scp
SFTP

Rclone

Rsync

CloudFuse

Alan et al.

G
DF(M

axTH)

G
DF(M

inPow
)

T
h

ro
u

g
h

p
u

t 
(M

b
p

s
)/

 J
o

u
le

(c) Throughput efficiency (medium files)

Figure 2: Achievable throughput and corresponding energy consumption of different optimization objectives.

throughput (MaxTh) and (2) Minimum possible energy con-
sumption (MinPow). To test the efficiency of different types
of file transfers, we tested all data transfer solutions for small
(1 - 5MB), medium (100 - 500MB), and large (1 - 4GB) files.

Figure 2 (d-f) contain performance comparison for medium
files. We compared achieved throughput, energy consumption,
and the throughput efficiency (achieved throughput per unit
energy). As we can see off-the-shelf tools like scp and SFTP
perform poorly due to single data channel allocation and
control channel inefficiency. Their energy consumption is
also high because low throughput transfer needs more time
to finish and longer time of execution increases the static
power component (power consumption when the resource is
idle and waiting). Similarly, globus-url-copy (guc),
a GridFTP based tool, also performs poorly with base-line
parameter settings (cc = 1 & p = 1). Globus Online is a
statically tuned cloud service that uses GridFTP protocol. Due
to the use of multiple streams, we observe that it can reach up
to 2× performance improvement compare to scp, SFTP, and
guc. However, it consumes 2× more energy. The reason is
the sub-optimal parameter choice. Moreover, there is no way
to limit the resource utilization as well.
Rclone and Rsync are file sync tools. By default,

Rclone uses 4 parallel data connections to transfer a single
file. We observe that it can achieve similar performance as GO.
However, there is no way to make any dynamic adjustment
to parallel connections. We see an unusually high energy
consumption at the destination due to sync operation.

CloudFuse achieves slightly better performance than guc. It
consumes slightly less energy compared to Rsync and guc.
As we see in the Figure 2, Alan et al. model performs much
better than the solutions discussed above since it initiates an
online parameter search. However, there is no real-time control
over parameters. Therefore, when external traffic changes,
those parameters may become sub-optimal. And additive pa-
rameter search may take a toll on the achieved throughput.
However, due to the search for energy-efficient parameters, it
can manage to keep energy consumption less than the other
approaches mentioned above.

Both of GreenDataFlow algorithms (MaxTh and MinPow)
outperform all the listed solutions. MaxTh provides 6×
throughput performance improvement over the baseline perfor-
mance of globus-url-copy and almost 2× improvement

over the closest competitor Alan et al. model due to the
historical analysis and real-time tuning of the parameters. As
it achieves high throughput, the execution time reduces as
well which reduces the static power consumption along with
constrained resource scheduling in end-systems. MinPow is
aimed to decrease the total energy consumption. It consumes
8× less energy than the energy-hungry rclone and almost
36% less energy than the closest competitor Alan et al. due
to optimal resource scheduling.

B. SLA-based Performance Analysis

Figure 3 shows the performance for different SLA levels.
It can be seen that SLA violations are rare unless there exist
over-subscription of throughput or severe capacity reduction
for a long period. Most of the cases in Type-T SLA (Figure 3
(a-c)), our model can achieve performance higher than the
SLA, due to the opportunistic_increase() strategy.
It also keeps the resource utilization manageable by putting a
dynamic restriction on usage. SLA violation error is ranged
from 3% to 6%. For energy constrained (Type-E) SLA, we
observed the SLA violation occurs due to heavy congestion
which forces retransmission and initiates slow start phase.
Moreover, excessive concurrent processes can consume extra
power while congesting the network. As our model cautiously
monitors and budgets the required future energy usage, it can
achieve high accuracy in SLA commitment.

VI. RELATED WORK

The work on network throughput optimization focuses on
tuning transfer parameters such as parallelism, pipelining,
concurrency and buffer size. The first attempts to improve
the data transfer throughput at the application layer were
made through buffer size tuning. Various dynamic and static
methods were proposed to optimize the buffer size [29], [40],
[45]. However, Lu et al. [35] showed that parallel streams
could achieve a better throughput than buffer size tuning
and then several others [5], [26], [49] proposed throughput
optimization solutions by means of tuning parallel streams.
Another transfer parameter used for throughput optimization
was pipelining, which helped in improving the performance
of transferring a large number of small files [8], [15], [17].
Liu et al. [34] optimized network throughput by concurrently
opening multiple transfer sessions and transferring multiple

340



 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

800
1000

1100
1300

A
c
h

ie
v
e
d

 T
h

ro
u

g
h

p
u

t 
(M

b
p

s
)

SLA - Throughput Guarantee (Mbps)

(a) Achieved Throughput (SLA Type-T)

 350

 400

 450

 500

 550

 600

 650

 700

800
1000

1100
1300

E
n

e
rg

y
 (

J
o

u
le

)

SLA - Throughput Guarantee (Mbps)

(b) Energy Consumption (SLA Type-T)

 90

 92

 94

 96

 98

 100

800
1000

1100
1300

A
c
c
u

ra
c
y
 (

%
)

SLA - Throughput Guarantee (Mbps)

(c) SLA Accuracy (SLA Type-T)

 700

 800

 900

 1000

 1100

 1200

 1300

400
450

500
600

T
h

ro
u

g
h

p
u

t 
(M

b
p

s
)

SLA - Energy Constraint (Joule)

(d) Achieved Throughput (SLA Type-E)

 300

 350

 400

 450

 500

 550

 600

400
450

500
600

E
n

e
rg

y
 (

J
o

u
le

)
SLA - Energy Constraint (Joule)

(e) Energy Consumption (SLA Type-E)

 90

 92

 94

 96

 98

 100

400
450

500
600

A
c
c
u

ra
c
y
 (

%
)

SLA - Throughput Guarantee (Mbps)

(f) SLA Accuracy (SLA Type-E)

Figure 3: Achieved throughput, energy consumption and SLA commitment accuracy for different SLA types. (a-c) SLA with
throughput guarantee, (d-f) SLA with energy constraint, and (g-i) SLA with power constraint.

files concurrently. They proposed increasing the number of
concurrent data transfer channels until the network perfor-
mance degrades. Globus Online [4] offers fire-and-forget file
transfers through thin clients over the Internet. It partitions files
based on file size and transfers each partition using partition-
specific protocol parameters. However, the protocol tuning
Globus Online performs is non-adaptive; it does not change
depending on network conditions and transfer performance.

The work on power-aware networking focuses on saving
energy in the networking devices. Gupta et al. [24] were
among the earliest researchers to advocate conserving energy
in networks. They suggested techniques such as putting idle
sub-components (i.e., line cards, etc.) to sleep [23], which were
later extended by other researchers. S. Nedevshi et al. [38]
proposed adapting the rate at which switches forward packets
depending on the traffic load. IEEE Energy Efficient Ethernet
task force proposed the 802.3az standards [1] to make ethernet
cards more energy efficient. They defined a new power state
called low power idle (LPI) that puts the ethernet card to
low power mode when there is no network traffic. Other
related research in power-aware networking has focused on
architectures with programmable switches [22] and switching
layers that can incorporate different policies [30]. Barford
et al. proposed power-aware network protocols for energy-
efficiency in network design and routing [10]. Bertozzi et
al. [7] investigated the energy trade-off in networking as a
function of the TCP receive buffer size and show that the
TCP buffering mechanisms can be exploited to significantly
increase the energy efficiency of the transport layer with
minimum performance overheads.

Several highly-accurate predictive models [31], [50], [51]
were developed which require as few as three sampling
points to provide accurate predictions for the parallel streams
giving the highest transfer throughput for the wired networks.

Yildirim et al. analyzed the combined effect of parallelism
and concurrency on data transfer throughput [48]. Alan et al.
explored the impact of parallelism and concurrency on end-
to-end data transfer throughput versus energy consumption in
WAN networks using precalculated values for these parameters
and proposed a heuristic approach to improve them [2], [3].

VII. CONCLUSION

In this paper, we introduced a novel set of data transfer
algorithms (collectively called GreenDataFlow) based on his-
torical analysis and real-time tuning, which can achieve high
data transfer throughput while keeping the energy consumption
during the transfers at the minimal levels. GreenDataFlow
supports service level agreements (SLAs) which give the ser-
vice providers and the consumers the ability to fine tune their
goals in this optimization process. Our experimental results
show that GreenDataFlow outperforms existing solutions in
this area both in terms of energy saving and the achieved end-
to-end performance. Considering the massive energy footprint
of global data movement, our presented GreenDataFlow tech-
niques have a great potential to decrease this footprint and
contribute to the efforts of achieving greener Internet.

ACKNOWLEDGEMENTS

This project is in part sponsored by the National Science
Foundation (NSF) under award numbers OAC-1724898 and
OAC-1842054, and by IBM Research under award number
OCR-W1771224. This work also used the Extreme Science
and Engineering Discovery Environment (XSEDE), which is
supported by NSF grant number ACI-1548562.

REFERENCES

[1] IEEE energy efficient ethernet standards.
10.1109/IEEESTD.2010.5621025, Oct. 2010.

341



[2] I. Alan, E. Arslan, and T. Kosar. Energy-performance trade-offs in data
transfer tuning at the end-systems. Sustainable Computing: Informatics
and Systems, 4(4):318–329, 2014.

[3] I. Alan, E. Arslan, and T. Kosar. Power-aware data scheduling al-
gorithms. In Proceedings of IEEE/ACM Supercomputing Conference
(SC15), November 2015.

[4] B. Allen, J. Bresnahan, L. Childers, I. Foster, G. Kandaswamy, R. Ket-
timuthu, J. Kordas, M. Link, S. Martin, K. Pickett, and S. Tuecke.
Software as a service for data scientists. Communications of the ACM,
55:2:81–88, 2012.

[5] E. Altman and D. Barman. Parallel tcp sockets: Simple model,
throughput and validation. In Proceedings of IEEE INFOCOM, 2006.

[6] G. Ananthanarayanan and R. Katz. Greening the switch. In In
Proceedings of HotPower, December 2008.

[7] D. Bertozzi, A. Raghunathan, L. Benini, and S. Ravi. Transport
protocol optimization for energy efficient wireless embedded systems.
In Proceedings of the conference on Design, Automation and Test in
Europe-Volume 1, page 10706. IEEE Computer Society, 2003.

[8] J. Bresnahan, M. Link, R. Kettimuthu, D. Fraser, and I. Foster. Gridftp
pipelining. In Proceedings of TeraGrid, 2007.

[9] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a framework for
architectural-level power analysis and optimizations. In Proceedings
of the 27th annual international symposium on Computer architecture,
ISCA ’00, pages 83–94, New York, NY, USA, 2000. ACM.

[10] J. Chabarek, J. Sommers, P. Barford, C. Estan, D. Tsiang, and S. Wright.
Power awareness in network design and routing. In In Proceedings of
IEEE INFOCOM, April, 2008.

[11] K. Chard, I. Foster, and S. Tuecke. Globus: Research data management
as service and platform. In Proceedings of the Practice and Experience
in Advanced Research Computing 2017 on Sustainability, Success and
Impact, page 26. ACM, 2017.

[12] Why cloudfuze: Quickly connect with powerful providers like
google drive, dropbox, or box from a single screen and login.
https://www.cloudfuze.com/why-cloudfuze/, 2016.

[13] D. Economou, S. Rivoire, C. Kozyrakis, and P. Ranganathan. Full-
system power analysis and modeling for server environments. In Proc.
of Workshop on Modeling, Benchmarking, and Simulation, 2006.

[14] X. Fan, W.-D. Weber, and L. A. Barroso. Power provisioning for
a warehouse-sized computer. ACM SIGARCH Computer Architecture
News, 35(2):13–23, 2007.

[15] K. Farkas, P. Huang, B. Krishnamurthy, Y. Zhang, and J. Padhye.
Impact of tcp variants on http performance. Proceedings of High Speed
Networking, 2, 2002.

[16] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure
toolkit. The International Journal of Supercomputer Applications and
High Performance Computing, 11(2):115–128, 1997.

[17] N. Freed. SMTP service extension for command pipelining.
http://tools.ietf.org/html/rfc2920.

[18] W. Fu and T. Song. A frequency adjustment architecture for energy
efficient router. ACM SIGCOMM Computer Communication Review,
42(4):107–108, 2012.

[19] P. X. Gao, A. R. Curtis, B. Wong, and S. Keshav. It’s not easy being
green. ACM SIGCOMM Computer Communication Review, 42(4):211–
222, 2012.

[20] E. Goma, M. C. A. L. Toledo, N. Laoutaris, D. Kosti, P. Rodriguez,
R. Stanojev, and P. Y. Valent?n. Insomnia in the access or how to curb
access network related energy consumption. In In Proceedings of ACM
SIGCOMM 2011.

[21] A. Greenberg, J. Hamilton, D. Maltz, and P. Patel. The cost of a cloud:
Research problems in data center networks. In In ACM SIGCOMM
CCR, January 2009.

[22] A. Greenberg, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta.
Towards a next generation data center architecture: Scalability and
commoditization. In In ACM PRESTO, pages 5762, 2008.

[23] M. Gupta and S. Singh. Energy conservation with low power modes in
ethernet lan environments. In IEEE INFOCOM (MiniSymposium) 2007.

[24] M. Gupta and S. Singh. Greening of the internet. In ACM SIGCOMM,
pages 1926, 2003.

[25] S. Gurumurthi, A. Sivasubramaniam, M. J. Irwin, N. Vijaykrishnan, and
M. Kandemir. Using complete machine simulation for software power
estimation: The softwatt approach. In Prpc. of 8th High-Performance
Computer Architecture Symp., pages 141–150, 2002.

[26] T. J. Hacker, B. D. Noble, and B. D. Atley. Adaptive data block
scheduling for parallel streams. In Proceedings of HPDC ’05, pages
265–275. ACM/IEEE, July 2005.

[27] K. Hasebe, T. Niwa, A. Sugiki, and K. Kato. Power-saving in large-scale
storage systems with data migration. In IEEE CloudCom 2010.

[28] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma,
S. Banerjee, and N. McKeown. Elastictree: Saving energy in data center
networks. In Proceedings of NSDI 2010.

[29] M. Jain, R. S. Prasad, and C. Dovrolis. The tcp bandwidth-delay product
revisited: network buffering, cross traffic, and socket buffer auto-sizing.
2003.

[30] D. A. Joseph, A. Tavakoli, and I. Stoica. A policy-aware switching layer
for data centers. In SIGCOMM CCR 38(4):5162, 2008.

[31] J. Kim, E. Yildirim, and T. Kosar. A highly-accurate and low-overhead
prediction model for transfer throughput optimization. In Proc. of DISCS
Workshop, November 2012.

[32] R. Koller, A. Verma, and A. Neogi. Wattapp: an application aware power
meter for shared data centers. In Proceedings of the 7th international
conference on Autonomic computing, pages 31–40. ACM, 2010.

[33] W. Liu, B. Tieman, R. Kettimuthu, and I. Foster. A data transfer
framework for large-scale science experiments. In Proceedings of the
19th ACM International Symposium on High Performance Distributed
Computing, HPDC ’10, pages 717–724. ACM, 2010.

[34] W. Liu, B. Tieman, R. Kettimuthu, and I. Foster. A data transfer
framework for large-scale science experiments. In Proceedings of DIDC
Workshop, 2010.

[35] D. Lu, Y. Qiao, P. A. Dinda, and F. E. Bustamante. Modeling and
taming parallel tcp on the wide area network. In Parallel and Distributed
Processing Symposium, 2005. Proceedings. 19th IEEE International,
pages 68b–68b. IEEE, 2005.

[36] P. Mahadevan, P. Sharma, S. Banerjee, and P. Ranganathan. A power
benchmarking framework for network devices. In In Proceedings of
IFIP Networking, May 2009.

[37] F. Murtagh and P. Legendre. Wards hierarchical agglomerative clustering
method: which algorithms implement wards criterion? Journal of
classification, 31(3):274–295, 2014.

[38] S. Nedevschi, L. Popa, G. Iannaccone, S. Ratnasamy, and D. Wether-all.
Reducing network energy consumption via rate-adaptation and sleeping.
In Proceedings Of NSDI, April 2008.

[39] U. of Minnesota. Minnesota internet traffic studies (mints), 2012.
[40] R. S. Prasad, M. Jain, and C. Dovrolis. Socket buffer auto-sizing for

high-performance data transfers. Journal of GRID computing, 1(4):361–
376, 2003.

[41] A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and B. Maggs. Cutting
the electric bill for internet-scale systems. In ACM SIGCOMM computer
communication review, volume 39, pages 123–134. ACM, 2009.

[42] F. Rawson and I. Austin. Mempower: A simple memory power analysis
tool set. IBM Austin Research Laboratory, 2004.

[43] Rclone-rsync for cloud storage. https://rclone.org/commands/rclone sync/,
2017.

[44] S. Rivoire, P. Ranganathan, and C. Kozyrakis. A comparison of high-
level full-system power models. HotPower, 8:3–3, 2008.

[45] J. Semke, J. Mahdavi, and M. Mathis. Automatic tcp buffer tuning. ACM
SIGCOMM Computer Communication Review, 28(4):315–323, 1998.

[46] C. Systems. Visual networking index: Forecast and methodology, 2015–
2020, June 2016.

[47] S. V. Vrbsky, M. Galloway, R. Carr, R. Nori, and D. Grubic. Decreasing
power consumption with energy efficient data aware strategies. FGCS,
29(5):1152–1163, 2013.

[48] E. Yildirim, E. Arslan, J. Kim, and T. Kosar. Application-level
optimization of big data transfers through pipelining, parallelism and
concurrency. IEEE Transactions on Cloud Computing (TCC), 4(1):63–
75, 2016.

[49] E. Yildirim, D. Yin, and T. Kosar. Balancing tcp buffer vs parallel
streams in application level throughput optimization. In Proceedings of
DADC Workshop, 2009.

[50] E. Yildirim, D. Yin, and T. Kosar. Prediction of optimal parallelism
level in wide area data transfers. IEEE Transactions on Parallel and
Distributed Systems, 22(12), 2011.

[51] D. Yin, E. Yildirim, and T. Kosar. A data throughput prediction and
optimization service for widely distributed many-task computing. IEEE
Transactions on Parallel and Distributed Systems, 22(6), 2011.

[52] J. Zedlewski, S. Sobti, N. Garg, F. Zheng, A. Krishnamurthy, and R. Y.
Wang. Modeling hard-disk power consumption. In FAST 2003.

342


