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Abstract—In parallel with big data processing and analysis
dominating the usage of distributed and cloud infrastructures,
the demand for distributed metadata access and transfer has
increased. In many application domains, the volume of data
generated exceeds petabytes, while the corresponding meta-
data amounts to terabytes or even more. In this paper, we
propose a novel solution for efficient and scalable metadata
access for distributed applications across wide-area networks,
dubbed SMURE. Our solution combines novel pipelining and
concurrent transfer mechanisms with reliability, provides dis-
tributed continuum caching and prefetching strategies to sidestep
fetching latency, and achieves scalable and high-performance
metadata fetch/prefetch services in the cloud. We also study the
phenomenon of semantic locality in real trace logs which is not
well utilized in metadata access prediction. We implement our
predictor based on this observation and compare it with three
existing state-of-the-art prefetch schemes on Yahoo! Hadoop au-
dit traces. By effectively caching and prefetching metadata based
on the access patterns, our continuum caching and prefetching
mechanism greatly improves local cache hit rate and reduces the
average fetching latency. We replayed approximately 20 Million
metadata access operations from real audit traces, in which our
system achieved 80% accuracy during prefetch prediction and
reduced the average fetch latency 50% compared to the state-of-
the-art mechanisms.

Keywords-Metadata access, semantic locality, prefetching, con-
tinuum caching, scalability, efficiency.

1. INTRODUCTION

We are witnessing a new era that offers new opportunities
to conduct data-intensive scientific research with the help of
recent advancements in computational, storage, and network
technologies. With the rapid deployment of distributed infras-
tructures and the collaborations between different organiza-
tions, it is feasible and promising to run scientific applications
on these large-scale geo-distributed infrastructures. More re-
cently, with numerous growth of Internet of Things (IoT) [1]
devices (e.g., sensors, smartphones, smart vehicles, and smart
homes, etc) connecting to the world, a paradigm shift from
cloud to edge computing sparks the new needs and require-
ments in the field of cloud computing and distributed appli-
cations. In many application domains including environmental
and coastal hazard prediction, climate modeling, high-energy
physics, astronomy, and genome mapping, the volume of data
generated already exceeds petabytes, while the corresponding
metadata amounts to terabytes or even more [2]. According to
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Fig. 1: Client devices fetch/prefetch metadata of interest in
WAN via SMURF’s distributed continuum cache and semantic
prefetch mechanism.

Roselli [3]’s study, more than 50% of all I/O operations are due
to metadata-intensive computing and the requests to read file
attributes dominate in all workloads. Metadata transferring is
extremely latency sensitive due to user experience and critical
business operations: Google reported 20% revenue loss due to
a specific experiment that increased the time to display search
results by as little as 500 milliseconds; and Amazon reported
a 1% sales decrease for an additional delay of as little as 100
milliseconds [4].

Unfortunately, most of the existing studies have focused on
efficient and scalable transfer of large-scale data, and there
has been little work focusing on the optimization of remote
access and transferring of metadata [5] in wide-area net-
works. Considering wide-area network latency, the frequency
of revalidation of metadata, and the rapid growth of IoT, an
efficient and scalable metadata access and transfer mechanism
is demanded and becomes a cornerstone of modern distributed
IT infrastructures.

Semantic locality is a high-level abstraction of data access
sequence locality, which is an extension to data spatial and
temporal localities. Semantic locality potentially exists and
can be captured when data access sequence is totally random,
the frequency of duplicated data access is once or rare, or
when a data access sequence is interleaved with large enough
amount of “noisy neighbors”. Especially, applications follow
the convention to manage files under semantic folders and
paths. Zhu et al [6] studies one of the most popular web-based
version control hosting service Github and shows that the



common semantic folders: lib, src, test, doc, and examples
are among top twenty most commonly used folders across
140,000 Github projects which suggests that different projects
tend to follow a convention to create their folders and organize
their files.

In this paper, we present a novel metadata access and
retrieval system built on the distributed continuum caching
and prefetching architecture to effectively fetch, prefetch, and
cache metadata on different hierarchical layers (as shown in
Figure 1) between clients and remote IO servers in WAN. The
main contributions of this paper include:

¢ Design and implementation of an efficient and scalable
metadata access and transferring technique for millions
of metadata instances and records over WAN.
Design and implementation of a distributed continuum
caching and prefetching technique to sidestep metadata
access and transfer latency in WAN.
A solution that can work for heterogeneous metadata
sources not just specific for any protocol.
A study of the phenomenon of semantic locality in
real system traces and development of a novel semantic
locality prefetch scheme.
Comparison of four different prefetch predictors (our
semantic locality prefetch predictor and three state-of-
the-art predictors, namely, NEXUS, AMP and FARMER)
and the legacy LRU cache on the Yahoo HDFS traces.
The rest of the paper is organized as follows: Section II
outlines existing relevant algorithms to provide a background
for existing metadata prefetch schemes; Section III describes
our proposed system architecture and discusses its design
issues; Section IV presents the simulation methodology and
performance evaluations; and Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

Metadata prefetching prediction [7]-[9] studies the history
access sequence to predict the request patterns with different
methodologies. NEXUS [8] applies a weighted-group-based
prefetching algorithm for prediction. A weighted directed
graph will be built on the fly when the metadata server (MDS)
receives requests from clients. For a given request, NEXUS
looks up the graph to predict top-k vertices with the largest
edge weight as the best prefetching candidates. Experiments
show that their prefetching prediction can effectively reduce
clients’ average response time with a reasonable overhead.

FARMER [10] further investigates how a request’s attribute
information affects the file successor probability. Authors
statistically analyze the average probabilities for different
trace sequences. Then they apply a linear combination model
to consider the joint effect of the history access sequence
and the semantic attributes of requests. FARMER builds a
relationship graph between predecessor and successors in a
certain size history window which is similar to NEXUS. It
applies Integrated Path Algorithm (IPA) to detect the semantic
attributes correlation between predecessor and each successor.
The best prefetching accuracy that FARMER achieves is 64%,
where NEXUS can achieve only 43%.
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Fig. 2: High-level overview of SMURF’s metadata fetching
and prefetching services between edge server and cloud.

AMP [9] uses a different approach to predict the request
patterns based on the studies of history access sequence.
Authors apply N-gram [11] model which has been widely used
in natural language processing to train the prediction model
in a quasi-online fashion. Authors state that 3-gram with up
to 6 prefetching items can give the best hit ratio with less
computational overhead. The experiments show that AMP can
outperform NEXUS by 4% on hit ratio and reduce the average
response time by 8%.

III. SYSTEM ARCHITECTURE

In this section, we introduce the SMURF architecture,
discuss each functional component of the system, and outline
the details of the workflows in the system.

A. SMURF Overview

SMUREF consists of a hierarchical architecture (as shown
in Figure 2) with two major components: (1) a centralized
cloud cluster with the scalable fetch/prefetch services pro-
vides the universal pipelining and concurrent metadata transfer
mechanisms with reliability; (2) the distributed continuum
caching and smart prefetching strategies have been deployed
on edge/fog nodes in clients’ nearby network.

B. Fetch/Prefetch Services

Cloud transfers the large-scale metadata using concurrency
and pipelining by the instances of fetch/prefetch services run-
ning across machines in WAN. The details of sub-components
and features are described below.

1) Metadata Transferring via a Cluster of Fetch/Prefetch
Services: A fetch/prefetch service keeps at most one singleton
connection to the remote server and only serves one request.
With N services running in the cluster, the cloud establishes NV
TCP connections to remote servers and transfers /N metadata
requests concurrently. Cloud controls the concurrency level by
managing the number of active services. When cloud deploys
services across M machines, the cloud service can transfer
N metadata requests from M machines which exceed the
limitation and bottleneck of a single machine and tolerate
(M — 1) machine failures.



2) Universal Transferring Stream: We designed and imple-
mented the universal transferring stream to retrieve metadata
of interest from heterogenous IO servers using pipelining,
where the pipeline capacity defines the maximum number of
C messages to be continuously sent over one TCP connection
without waiting for the acknowledgement of previous requests.
One request is organized as a chain of ordered pairs {cmd,
parser}, where each protocol cmd is associated with a pre-
defined parser. One request transferr is successful as long as
all protocol commands have been sent and parsed correctly.
Otherwise, this request will be regarded as a failure, and
it will be either re-transferred or skipped according to the
result of parser. Our protocol parser library supports FTP [12],
SFTP [13], GRIDFTP [14], and IRODS [15].

3) Edge Server’s Request and Response Multiplexing: We
design and implement a wait-and-notify queue to efficiently
send and receive messages between edge server and cloud.
Multiple worker threads of an edge/fog server can enqueue
the requests and wait for the notification of completion concur-
rently. Moreover, the deduplication of sending similar requests
is executed on the edge/fog server to reduce the usage of WAN
bandwidth and alleviate the overload of cloud. The queue
can be configured to be “nowait” mode, thus threads will
not wait for the completion of requests. This mode has been
widely used in the prefetching work. The mechanism of wait-
and-notify queue exhibits the high performance in multiple
threading environment: message sending and receiving are
designed to be interleaved between multiple threads.

4) Publish/Subscribe Metadata Updates: 1If the metadata
has been updated in local, cloud can automatically publish the
updated metadata to all edge servers which have fetched this
metadata before.

C. Distributed Continuum Caching and Prefetching

The system consists of the distributed continuum cache
layers-{1,2,3} in Figure 1, where the less amount of metadata
with higher popularity will be cached closer to the clients. The
prefetch predictors can be installed on the edge/fog nodes with
the judicious parameters to retrieve the locality metadata into
each layer’s local cache. One edge server can fetch/prefetch
metadata from the optional fog node’s local cache, which
can be denoted as Figge/{Peqge}. The fog node sends the
cached metadata back to the edge server or forward the cache
miss fetch request Foqg. and prefetch requests {Peqqe} to
the cloud. The cache miss fetch request Fiq4. can cause
the fog node’s prefetch framework (more details in III-D)
to consult its prefetch predictor on the aggressive prefetch
{Pfoq}. The overlapping prefetch requests between {Peqqe}
and {Pj,,} requests will be de-duplicated by the wait-notify
queue (discussed in III-B3) to reduce WAN bandwidth usages
and alleviate the cloud overload and the fog node will send
back the edge server’s requested prefetch metadata {P.q4c}
upon the completion.

D. Prefetch Framework

Each request will be sent to the prefetch predictor to analyze
and build a prefetch correlation relationship. When a request
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causes a local cache miss, the prefetch framework will consult
the prefetch predictor for the potential prefetching files. The
prefetch framework checks whether each prefetch candidate
exists in the current local cache,. If there is a cache miss on this
candidate, the prefetch framework will pack a prefetch request
with the information of this file (e.g., file path and priority) and
then send it to the cloud. One prefetch request with a higher
priority will preempt the lower priority request on the available
prefetch services. The framework maintains the counters in
LRU cache to denote how many cache misses happening
on one file path, since the essence of Least Recent Used
cache replacement algorithm is based on temporal locality and
the cache miss information of the coldest file path need be
replaced and cached out to reflect the temporal access locality
and also reduce the memory usage.

E. Semantic Locality Prefetch Predictor

We designed and implemented a novel prefetch predictor
based on the directory semantic locality. First of all, we
will describe the workflow of semantic locality predictor and
then we discuss the reason that semantic locality predictor is
applicable for some types of real workloads. When a request
on a file path f causes a local cache miss, predictor will check
whether its parent file path f,, object is cached or not. (i) If
the parent file path object has not been cached, then predictor
will create an object of this parent file path and put it into
the local cache by setting the value of the counter to 1. If
parent file path object has been cached, then semantic locality
predictor will read cache miss counter from the parent file
path object and increase it by 1. If this cache miss counter
exceeds threshold 7', predictor will decide to prefetch metadata
of parent file path f, and sibling file paths {fs;} under the
parent file path. (ii) Otherwise, predictor will iterate the list
of metadata of each subfile path fs; in the cache and send
the prefetch requests of all cache missed subfile paths.On the
semantic directory tree structure', semantic locality predictor
can effectively match the pattern of workload, where most
of subfiles under a common hotspot parent file path will be
randomly accessed once or very few times. When data access
sequence does not show the behavior of strong locality under
a common file path, semantic locality predictor can set higher
threshold to effectively prevent redundant miss-prefetching.

IV. EVALUATION

A. Experiment Testbed and Traces

We conduct our experiments over Yahoo! Hadoop grid trace
logs from Yahoo! Webscope dataset [16]. This trace consists of
continuous daily metadata operations of Hadoop name node
throughout the year of 2010. Geographical locations of the
servers used in our experiments and the network specifications
between them are presented in Figure 3.

'We define semantic directory tree as a storage system that organizes files
into a logical file namespace.
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Fig. 3: Experiment’s network map and specifications.

1) Partial Trace File System Directory Tree Reconstruction:
In trace logs, file path f always associates with types of
operations, e.g., open, ls, delete, etc. Metadata read operations
are directory tree idempotent® (e.g., open and ls) and will not
change the directory tree structure on trace file system. The
write operations (e.g., rename, delete) can change trace file
system directory tree dynamically. Yahoo! Webscope dataset
encrypts each segment of the file path into 28 bytes string.
Thus the approximate directory tree size of each Hadoop trace
log on disk will be more than 200GB. Considering multiple log
files in the trace, a very large disk capacity is needed to extract
and analyze all at once. Hence, we decided to reconstruct trace
file system directory tree partially. In this partial directory
tree Tpqrtial, W extract file path fi;5; from each listStatus
command and collect its sibling subfiles { fs,p} from open, [s,
rename and mkdirs commands, which can be expressed in
Tpartial = { fiist} U{ fsup}. This is the approximate emulation
of trace file system directory tree structure in our prediction
experiments, since the prefetch candidates of Farmer, Nexus
and AMP are from the set of listStatus file paths. And our
directory locality semantic predictor can potentially prefetch
the sibling files of listStatus operation that have been con-
structed in the partial directory tree structure.

B. Scalability of Fetch/Prefetch Services

To emulate concurrent metadata transferring performance
from remote servers, we turn off the caching and prefetching
effects in the testbed, and then we continuously send a large
number of requests from the client to the cloud and evaluate
the latency distribution with the different number of fetching
services. In Figure 4, with more number of services in the
cloud, most of the requests can be done concurrently and
the latency of each request is almost the same. Figure 5
demonstrates the scalability of prefetching services. We sent
10,000 and 100,000 prefetch requests and calculated the total
prefetching elapse time on the edge server. With 85 prefetch
services, the total latency of 100,000 prefetching requests can
be completed within 60 seconds (0.6 millisecond per request

2We define directory tree idempotent operation as a metadata operation
that can be executed once or repeatedly without mutating the parent and
subfiles tree structure .
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Fig. 5: Scalability of SMUREF prefetch services.

on average) nearly 11 times faster than the prefetching with
five prefetch services.

C. Performance of the Hierarchical Layers

In hierarchical caching, the client sends fetching requests to
the nearby edge server and the edge server acts as a middle
caching and prefetching layer between client and cloud. We
use the abbreviation term “EC” to stand for this and the “EFC”
for the extra fog node between an edge server and cloud.

1) Cache Hit Rate: Figure 6(a) compares the cache hit
rate between LRU cache and different prefetching schemes. In
Figure 6(a), it is apparent that our directory locality scheme
(denoted as “DLS”) outperforms all other schemes on cache
hit rate. It can achieve around 80%+ on all individual Hadoop
audit logs because directory locality scheme can successfully
capture the access pattern of “listStatus” operation in Yahoo!
Webscope Hadoop audit log. AMP is another prediction
scheme with high prediction rate which can achieve around
65%+ prediction rate. We also found that the cache hit
rates of Nexus and Farmer are almost the same as that of
LRU cache, since the prefetching candidates suggested by
the prediction schemes of Nexus and Farmer are all from
the history requests, while the Hadoop audit log exhibits a
very skew popularity access in “listStatus” metadata operation.
Most of “listStatus” operations just execute on a file path once
or in rare times, which inevitably cause the low prediction
rate of prediction schemes which are based on history access
sequence. We also evaluated the cache hit rate performance
with the different cache sizes. The experimental results show
that there is no obvious performance enhancement with the
increasing cache size (10%, 20% and 30%) when the prefetch
scheme prediction rate is low.

2) Average Fetch Latency: We conducted experiments to
measure the accumulated overhead of metadata transferring in
the hierarchical layers without any cache and prefetch installed
and represent them in three horizontal lines in Figure 6(b).
The prefetching scheme with higher prediction rate can greatly



reduce the average fetch latency, since most of metadata can
be accessed locally. Nexus and Farmer’s average latencies are
above the the bar. We think that is due to two factos: 1) RTT
between client and remote IO server is around 32 milliseconds,
while the accumulated RTT of EFC is above 40 milliseconds;
2) Nexus and Farmer predication rates are the same as that
of LRU cache but the overhead of constructing and updating
the relation graph in Nexus and Farmer prefetch schemes is
not ignorable. In the setting of EFC, the deployment of a
fog node is necessary in the scenario that the capacity of the
computation and cache size on the edge server is limited. By
simulating this scenario, we limit the cache size of edge node
to 10%, and set the cache size of the fog node to 30% of
the total number of “listStatus” metadata operations. In EFC
hierarchical layers, DLS still outperforms all other schemes.

V. CONCLUSION AND FUTURE WORK

We have presented an efficient metadata prefetching and
caching system, called SMUREF, and conducted experiments
with a large amount of metadata requests using the real system
traces (Yahoo! Hadoop) in WAN. Our experimental results
show that SMURF can achieve 80% accurate prediction rate
on “listStatus” metadata operation and reduce the average
fetch latency up to 50% compared to other state-of-the-art
mechanisms. SMURF’s continuum caching and prefetching
mechanism retrieves necessary enough popularity metadata
closer to the location of clients, and it is friendly to IoT
networks, where IoT devices with limited computing and
storage capabilities can always access metadata locally from
the proximity edge/fog compute nodes.
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