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ABSTRACT
Within host-parasite communities, viral co-circulation and co-infections of hosts are the norm, yet studies of significant
emerging zoonoses tend to focus on a single parasite species within the host. Using a multiplexed paramyxovirus
bead-based PCR on urine samples from Australian flying foxes, we show that multi-viral shedding from flying fox
populations is common. We detected up to nine bat paramyxoviruses shed synchronously. Multi-viral shedding
infrequently coalesced into an extreme, brief and spatially restricted shedding pulse, coinciding with peak spillover of
Hendra virus, an emerging fatal zoonotic pathogen of high interest. Such extreme pulses of multi-viral shedding could
easily be missed during routine surveillance yet have potentially serious consequences for spillover of novel
pathogens to humans and domestic animal hosts. We also detected co-occurrence patterns suggestive of the
presence of interactions among viruses, such as facilitation and cross-immunity. We propose that multiple viruses may
be interacting, influencing the shedding and spillover of zoonotic pathogens. Understanding these interactions in the
context of broader scale drivers, such as habitat loss, may help predict shedding pulses of Hendra virus and other fatal
zoonoses.
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Introduction

Natural systems comprise complex host-parasite com-
munities, with individuals normally co-infected with
multiple macro and microparasite species [1]. Co-
infecting pathogens can influence exposure [2], infec-
tiousness [3–5], susceptibility to, and mortality from
[6,7], other pathogens [8,9]. Yet, despite the ubiquity
of co-infections, research remains biased towards
single host–single parasite frameworks. Studies that
recognize the multivariate nature of parasite commu-
nities often focus on interactions across broad taxo-
nomic groups (e.g. helminth-viral or bacterial-viral
co-infection [10]) or on infection with multiple strains
of a single viral species [11]. With a few exceptions (e.g.
HIV [12], some respiratory viruses [13] and avian
influenza [14]), co-infection studies of interactions
among and within viral families are rare. While this
has been, in part, due to technical challenges in the

past, the advance of highly multiplexed approaches
and discovery-driven tools is opening up opportunities
to enter into this important field of research.

Bats are hosts to some of the most significant emer-
ging zoonoses, including Ebola, Marburg, SARS,
Nipah, and Hendra viruses [15], yet the incidence of
viral co-infections in bats is poorly understood.
Cross-species transmission (spillover) of viruses from
bats to other mammals occurs worldwide [16]. If
viral co-infections influence or reflect variation in
host exposure, infectiousness, or susceptibility as in
other host-parasite systems, moving beyond studies
of single-pathogen-single host dynamics to viral com-
munity dynamics could progress our understanding
of transmission and spillover of bat pathogens.

Hendra virus (HeV; Family Paramyxoviridae, Sub-
family: Orthoparamyxovirinae, Genus Henipavirus) in
Australian flying foxes is a well-studied model system

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group, on behalf of Shanghai Shangyixun Cultural Communication Co., Ltd
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

CONTACT Alison J. Peel a.peel@griffith.edu.au Environmental Futures Research Institute, Griffith University, Nathan, Queensland, 4111 Australia
Supplemental data for this article can be accessed doi:10.1080/22221751.2019.1661217

Emerging Microbes & Infections
2019, VOL. 8
https://doi.org/10.1080/22221751.2019.1661217

http://crossmark.crossref.org/dialog/?doi=10.1080/22221751.2019.1661217&domain=pdf&date_stamp=2019-09-06
http://orcid.org/0000-0003-3538-3550
http://orcid.org/0000-0003-0377-2463
http://orcid.org/0000-0002-4671-7002
http://orcid.org/0000-0003-2752-0535
http://orcid.org/0000-0002-3493-0412
http://orcid.org/0000-0002-3338-6590
http://orcid.org/0000-0001-7131-3301
http://creativecommons.org/licenses/by/4.0/
mailto:a.peel@griffith.edu.au
https://doi.org/10.1080/22221751.2019.1661217
http://www.iom3.org/
http://www.tandfonline.com


for understanding bat virus transmission and spillover
globally [17]. While it appears not to result in any ill-
health for bat hosts, HeV infection is fatal for horses
and humans[18]. The virus is known to circulate
widely in Australian flying foxes [19], with black
flying foxes (Pteropus alecto) and spectacled flying
foxes (P. conspicillatus) considered the primary reser-
voir hosts [20,21]. Viral shedding is primarily via
urine [20], and fatal spillover to horses tends to be
associated with seasonal “pulses” of viral shedding
from bat populations [19]. Environmental drivers of
transmission are also expected to play a role in HeV
shedding and spillover. For example, viral survival is
prolonged in winter periods [22], and HeV prevalence
in flying foxes and spillover to horses has been associ-
ated with cold, dry seasonal conditions [23,24] and
nectar scarcity [25] in the subtropics. Despite these
recent advances in understanding, interactions
among landscape-scale and roost-scale drivers of
HeV transmission remain unclear [26] and spillover
from bats to horses remains difficult to predict.

Research on bat viruses in Australia has largely
focused on HeV, yet a diverse community of other
viruses has been detected [27–32] (Table 1), with little
knowledge about their transmission dynamics, host
range or zoonotic potential. The likelihood of a bat
being infected with each of these viruses is likely
influenced not only by host ecology and specific
immune responses to each viral species, but also by
potential facilitative or antagonistic interactions
between pairs of viruses within the broader viral com-
munity [8]. Examining the spatiotemporal patterns of
viral co-occurrence within populations (co-circulation)
and within individual hosts (co-infection) is likely to
provide much-needed further insights into underlying
processes driving viral community dynamics.

Theoretical predictions of viral community
dynamics at the population level have rarely been
tested with empirical data (but see, [35]), and certainly
not among bat viral communities. Here, we examine
synchronies in virus shedding from flying fox popu-
lations sampled over time and space and compare
rates of viral co-detection at the sample and roost-
level. Specifically, we use Markov Random Fields to
(1) detect patterns of paramyxovirus co-occurrence in

Australian flying foxes and (2) test whether these
patterns can be explained by positive or negative
virus-virus interactions or regional environmental con-
ditions. Ultimately, we aim to assess whether the better
understanding of viral community interactions and
dynamics can elucidate drivers of viral dynamics and
spillover.

Materials and methods

Sample collection

Between November 2010 and November 2012, urine
samples were collected at flying fox roost sites in
Queensland (QLD) and Victoria (VIC) as previously
described [19,36] (Figure 1, Table S1). At the time of
sampling, the QLD roost sites (Boonah and Cedar
Grove) generally contained mixed roosts of black
flying foxes (P. alecto) and grey-headed flying foxes
(P. poliocephalus), with occasional small numbers
(<0.5%) of little red flying foxes (P. scapulatus),
whereas, in VIC (Geelong), one single species roost
of grey-headed flying foxes was sampled (Table S1).
Animal ethics and related approvals are detailed in
the original studies [19,36]. Briefly, each sampling ses-
sion comprised placing either ten (QLD) or four (VIC)
3.6 m x 2.6 m plastic sheets underneath occupied trees
within each roost, typically pre-dusk. The following
morning at dawn, up to five urine samples were col-
lected from discrete areas of each sheet to minimize
the likelihood that an individual bat contributed to
multiple pools. Up to 30 samples were collected during
each sampling session. It is likely that multiple flying
foxes contributed to each sample.

Sample analyses

To provide information on the possible presence of
multiple viral species in each sampling session, viral
RNA in the under-roost urine samples was amplified
and tested using multiplex fluid bead assay using pri-
mers specific to each of 11 known bat paramyxoviruses,
as previously described (See Supplementary methods
and Table S2; [37]). This assay was developed based
on the known sequences of the viruses included in

Table 1. Details of known flying fox paramyxoviruses included in this study.
Genus Species Abbreviation Known to occur in Australia Reference

Henipavirus Cedar CedV Yes [28]
Henipavirus Hendra HeV Yes [18]
Henipavirus Nipah NiV No [33]
Pararubulavirus Menangle MenV Yes [32]
Pararubulavirus Teviot TevPV Yes [27]
Pararubulavirus Tioman TiV No [34]
Unclassified Geelong GeePV Yes Unpublished. High sequence similarity to Alston virus [31]
Unclassified Grove GroPV Yes [27]
Unclassified Hervey HerPV Yes [27]
Unclassified Yarra Bend YBPV Yes Unpublished
Unclassified Yeppoon YepPV Yes [27]

Emerging Microbes & Infections 1315



the panel and primers and probes were tested to
exclude the possibility of any cross PCR amplification
with any other viral member of the whole panel.
Based on prior analyses [37], we defined a urine sample
positive for the target viral RNA when the Median Flu-
orescence Intensity (MFI) was greater than 400 fluor-
escence units.

Estimating viral co-occurrence probabilities

Co-occurrence analyses (such as Markov Random Fields
[38,39]) test whether a species’ occurrence covaries with
occurrences of other species, which makes them particu-
larly well-suited to quantifying the drivers of community
composition [40–42]. Pairwise co-occurrence probabil-
ities may be important precursors for, or indicators of,
biotic interactions such as cross-immunity-induced com-
petition and immunosuppression-related facilitation
[43–45]. Applied to viruses, co-occurrence analyses can
also highlight species that respond similarly to underpin-
ning environmental conditions and demographic
dynamics, but independent of interactions among virus
species [41]. Markov Random Fields represent pairwise
conditional dependencies (here referred to as

“interactions”) among co-occurring species in an undir-
ected graphical network. A key advantage of Markov
RandomFields is that they represent undirected relation-
ships, allowing inference on how interactions between
two species are conditional on their respective relation-
shipswith all other species. This represents a step forward
compared to competingmethods, many of which require
comparisons to unrealistic null models and do not ade-
quately account for indirect relationships [46,47].

We estimated Markov Random Field networks
using viral presence/absence data at two levels of data
aggregation. Firstly, we considered the sample level,
with each pooled sample comprising 10–20 discrete
urine droplets collected from a discrete area on a
sheet placed underneath roosting bats (N = 1131).
While it is probable that multiple individuals contribu-
ted to each urine sample collected, for this under-roost
urine collection approach, this aggregation level best
approximates urine samples collected at the individual
level. Secondly, we considered the session level, repre-
senting an aggregation of presence/absence data from
all samples tested within each sampling session (N =
98). This session-level aggregation approximates the
observed presence-absence of viruses in populations
at a given time. We compared the direction of Markov
Random Field coefficients for all pairs of virus species
across hierarchical levels of data aggregation and gen-
erated inferences about possible co-infection/co-circu-
lation of bat-borne viruses. Differences in viral pair
associations between sample and session levels may
reflect signatures of co-infection (viral co-occurrence
within a host) versus co-circulation (viral co-occur-
rence within populations) and may be useful for gener-
ating insights into viral-species or host interactions.
We used functions in the rosalia R package to estimate
viral co-occurrences, as this package offers Maximum
Likelihood utilities to solve small Markov Random
Field networks (up to ∼ 20 species) and can approxi-
mate the network’s gradient for communities with lar-
ger numbers of species [48].

Exploring environmental affinities of viruses
using logistic regressions

We supplemented Markov Random Field analyses by
fitting generalized linear models (GLM; specifying a
binomial error and logit link function) using viral
presence/absence vectors from the session level (N =
98) to quantify associations between virus occurrence
probabilities and biotic and abiotic covariates. Three
abiotic covariates were included based on previous
research showing that time-lagged variables describ-
ing vegetation and climate within the foraging radius
of roosting sites (∼20 km) are drivers of flying fox
ecology [25,49] and virus survival in the environment
[22]. The abiotic covariates include mean Normalized
Difference Vegetation Index (NDVI) within 20 km

Figure 1. Map showing sampling sites in Queensland and Vic-
toria, as well as species distributions for Pteropus alecto (dark
grey) and P. poliocephalus (light grey). The distributions of
these species overlap in southeast Queensland and northeast
New South Wales (medium grey). Inset shows the location of
the study area within Australia.
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over the preceding 3 months, mean precipitation in
the preceding month, and mean water vapour
pressure on the day of sampling. We included both
presence/absence and counts (a coarse proxy of rela-
tive abundance) of roosting bat species as biotic cov-
ariates because a previous study found relative bat
abundance to be associated with HeV shedding in
bat populations [23]. We also accounted for temporal
variation across the three sampling years by including
year as a categorical covariate. Starting with full
models that included all the aforementioned covari-
ates, we used backward stepwise variable selection
to reduce the parameter space and eliminate covari-
ates that did not improve model fit (e.g. inclusion
of the covariates did not significantly improve fit
based on an analysis of deviance). GLM fits and step-
wise model selection were carried out using functions
in the base R software.

Results

Multiple paramyxoviruses are co-circulating in
Australian flying foxes across broad
spatiotemporal scales

In total, we recorded nine viral species (out of 11 targeted
species) from 1,131 pooled under-roost urine samples,
rendering 12,441 unique observations of virus presence
or absence over 98 sampling sessions based on MFI
values. RNA fromall nine viruseswas detected fromBoo-
nah (N = 320 samples) (Figure S1), with 8/9 detected
within weeks of a HeV spillover (fatal transmission
event from a flying fox to a horse) associated with this
roost. With a smaller sample size (N = 129 samples),
only three viruses were detected at Cedar Grove
(MenV, GroPV and TevPV). Despite extensive sampling
(N = 682 samples over a 20-month period), only five
viruseswere detected at the southernmost site inGeelong,
Victoria (GeePV, YBPV, TevPV, CedV, YepPV; Figure
S1). Tioman virus and NiV were not detected. Hendra
virus detection sensitivity differed in the multiplexed
fluid-based assay compared to a quantitative RT-PCR
(RT-qPCR) HeV assay (reported in [19]). Of 63 samples
that were positive in the RT-qPCR assay, only 14 were
positive in the multiplexed fluid-based assay. However,
there was a highly significant linear relationship between
natural log transformedMFI (lnMFI) andCt values, indi-
cating that viruses present in low viral loads were likely
undetected by the multiplexed fluid-based assay (Figure
S2). We therefore acknowledge that detections here are
underestimates of true shedding.

Viral detections were highly spatially and
temporally clustered

Each virus generally circulated at low or undetectable
levels (e.g. HeV was only detected in 5/25 months
and HerPV in 3/25 months surveyed; Figure 2) and

overall viral prevalence was <5% for all viral species
(Figure S3). Viral detections occurred most commonly
within “pulses” of multi-species viral shedding over
multiple consecutive months as well as intermittently
in isolation from other viruses (Figures 2, S4). A par-
ticularly high peak in virus shedding was observed in
Boonah in winter 2011 (Figures 2, S4): viral RNA
was detected from up to 6 unique viruses per sample
(mean of 1.8). In QLD, detections peaked between
June and October (centred around July-August, though
this was overwhelmingly driven by winter 2011),
whereas the peak was later (July-November) and less
pronounced in VIC (Figure S5). Some viruses
(TevPV, YBPV) were detected across all seasons,
whereas HerPV was only detected in winter.

Viral co-occurrence patterns suggest potential
facilitation and cross-neutralisation

Two viruses (CedV and GeePV) were included in co-
occurrence analyses as predictors rather than as
response variables, as these viruses were rare (N = 4
and N = 9 total detections, respectively), and as such
would be difficult to estimate accurately. For the
remaining seven viruses, we detected a number of
well-supported, mainly positive, conditional associ-
ations among viruses at the sample and session levels
(Figure 3). At the sample level, TevPV showed the
strongest pairwise and highest mean interaction coeffi-
cients, suggesting that detection of TevPV within a
sample consistently increased the likelihood of co-
detection of other viruses (Figure 3 and Figure S6).
HeV and YepPV were strongly negatively associated
with each other at the sample level, with no co-detec-
tions in the same samples and only two co-detections
within the same sessions (Figure 3).

Some virus pairs were positively associated at all
hierarchical levels of analysis, but the strength of
those associations varied across levels. For example,
HeV and GroPV were highly likely to be detected in
the same sessions but were less frequently co-detected
in the same samples (Figure 4, left panel). The strong
positive interaction at the highly aggregated session
level alongside weaker positive interaction at the
sample level (which more closely resembles individual
infection status) may be indicative of co-circulation of
the two viruses associated with shared drivers of
environmental or temporal affinities. In this case, syn-
chronous drivers of transmission at the population
level would drive increased likelihood of co-detection
within samples by chance, producing the weaker
sample-level interactions. Conversely, TevPV showed
no signal of association with either HeV or YepPV at
the session level, but on those occasions when they
did co-occur, TevPV was highly likely to be detected
within the same samples as either HeV or YepPV
(Figure 4, right panel, Figure S7). This could reflect
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co-infection within individual bats or co-circulation
among individuals roosting in immediate proximity,
so that they contribute urine to the same pool. Interest-
ingly, there was also no association between HeV and
YepPV at the session level, but a strong negative associ-
ation between them at the sample level (Figure 4, left
panel). This potentially suggests that individuals
infected with TevPV are likely to be co-infected with
either HeV or YepPV, but not both. These processes
could be acting at an individual level, reflecting
within-host viral competition mediated by cross-reac-
tivity, or at a species level, reflecting host-specificity.

Viruses shared similar environmental affinities

Although virus detections were fairly sparse, the clus-
tered nature of detections provided additional infor-
mation about whether shared environmental
associations can explain co-occurrence at the session
level. The detection of four (TevPV, YepPV, GroPV,
YBPV) viruses was negatively associated with the rela-
tive abundance of grey-headed flying foxes (Table 2).
Two of these viruses (TevPV and GroPV) were also
positively associated with the relative abundance of
black flying foxes. The negative associations between
viral detections and either rainfall in the preceding

month and/or water vapour pressure for all viruses
except HerPV may reflect more frequent detections
of these viruses during dry winter months. We ident-
ified significant negative associations between average
NDVI and detection of YepPV and GroPV. Shedding
of TevPV, GroPV, HeV and YBPV was significantly
higher in 2011 compared with 2010. No effect of
species was observed when flying fox species pres-
ence/absence data were used (Tables S3–S4).

Discussion

High-prevalence shedding of HeV from flying foxes
[19] and unprecedented numbers of HeV spillovers
to horses [17] were observed in the Austral winter of
2011. Alongside this, yet undetected at the time, we
show that there was a synchronous shedding “pulse”
of multiple bat paramyxoviruses.

We show that, while mean viral prevalence is low,
multi-viral shedding from flying fox populations is
common. Multi-viral shedding infrequently coalesces
into an extreme, brief and spatially restricted shedding
pulse, with potential consequences for spillover of mul-
tiple pathogens to humans and domestic animal hosts.
In addition to HeV, one other virus detected here
(MenPV) is known to be zoonotic [32]. However, the

Figure 2. Average number of viral detections per urine sample for nine paramyxoviruses (colours) from two flying fox roosts in
Queensland (QLD) and one in Victoria (VIC) in different months. Some months comprise multiple sampling events (see Table
S1). In QLD, dates prior to June 2011 represent sampling from Cedar Grove, and after this date, sampling continued from the nearby,
newly formed Boonah roost. * = sampled but no detections, blanks = not sampled. Grey numbers represent sample sizes. QLD sites
contained a mix of black flying foxes (P. alecto), grey-headed flying foxes (P. poliocephalus) and occasional small numbers (<0.5%) of
little red flying foxes (P. scapulatus), whereas VIC contained only P. poliocephalus.
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zoonotic potential ofmost of the other viruses is yet to be
characterized. Beyond this, the distribution, dynamics
and spillover potential of the broader viral community
in Australian flying foxes is otherwise largely unknown.
Improved understanding will arise via broadening the
scope of spatiotemporal bat viral studies beyond single
viruses and through further investigation of the large
number of undiagnosed encephalitic deaths in domestic
animals, for example, horses showing clinical signs con-
sistent with HeV but that test HeV-negative [50].

The infrequent and spatially restricted nature of
these intense pulses indicates they occur in response
to complex ecological or epidemiological drivers,
potentially over multi-year time scales. Longitudinal
surveillance with short sampling intervals is required
to fully elucidate these drivers, as studies undertaken
for 1-2 years at a time (matching grant and student
funding cycles) risk missing these intense pulses, and
thereby underestimating their importance in driving
spillover. Similarly, short-duration pulses may go
unobserved or underestimated with infrequent
sampling intervals, or during spillover-response
sampling of wildlife hosts, which often begins months
after the original spillover into human or animal popu-
lations has occurred [51]. More data are required to
statistically derive ideal sampling frequency and dur-
ation, however, given the observed patterns here and
a 2-7 year duration of climatic cycles [52], sampling
at least every 1-2 months over at least 2 years would
be required to more confidently elucidate drivers of
transmission.

Previous studies have reported detection of multiple
viruses in individual or pooled samples from bats
[27,52–54]. These co-detections are often reported as
incidental findings. We demonstrate that investigation
of the spatiotemporal patterns of co-occurrence of
these viruses within populations (co-circulation) and
within hosts (co-infection) can likely provide insight
into unobserved interactions between viruses and
their hosts, and among virus pairs. Understanding

Figure 3. Viral occurrence and interaction coefficients at the
sample (top) and session (bottom) level. Colours represent pre-
dicted interactions from a Markov Random Fields model fit with-
out any additional covariates. Positive interactions are in blue;
negative interactions in red. Values on the diagonal (with black
borders) represent the number of single detections observed
for each of seven paramyxoviruses (virus abbreviations as per
Table 1). Off-diagonal values represent the total number of co-
detections observed for each virus pair. Note that values do not
add to totals in headings (the total number of samples = 1,131,
or total number of sessions = 98), as some samples/sessions
exhibited co-detections of RNA for three or more viruses.
Note, correlations represent regression coefficients for a virus’
log-odds and therefore are not restricted to [0, 1].

Table 2. Results from stepwise regression to quantify associations between virus occurrence probabilities and biotic covariates (BFF
(Pteropus alecto, Black flying fox), GHFF (P. poliocephalus, Grey-headed flying fox) and LRFF (Little red flying fox, P. scapulatus)) and
abiotic covariates (mean Normalized Difference Vegetation Index (NDVI) within 20 km over the preceding 3 months, average
precipitation in the preceding month, and average water vapour pressure, and year). Virus abbreviations as per Table 1.

TevPV YepPV GroPV HeV MenV HerPV† YBPV

Intercept −7.38 *** −13.25 *** −21.23 −6.92 *** −20.07 −57.7 −5.73 ***
Avg precipitation (1mo) −2.72 *** −4.55 ** – −3.32 * 0.97 * −19.78 −0.95
Vapour pressure – – −0.6 * – −1.45 ** −3.22 −0.74 *
Avg NDVI (3mo) – −2.26 * −1.47 * – – – –
BFF 0.94 *** 1.64 1.19 * – – – –
GHFF −1.59 *** −6.61 *** −2.69 ** – −1.05 −24.55 −1.22 **
LRFF – – −115.85 – −114.68 – –
Year 2011 2.71 *** – 1.58 * 2.35 ** – – 0.9 *
Year 2012 – – – – – 11.78 –
Location VIC – – −20.4 −18.85 −20.86 – 1.12

Table shows final terms after backward stepwise selection, along with their coefficients and significance (*p < 0.05; **p < 0.001; ***p < 0.0001). – represents
that the term was not included in the final model. Note that coefficients are from a binary logistic regression and can be interpreted as effects on a virus’ log
odds of detection. For year and location, 2010 and Queensland represent the reference category, respectively. Colour scale ranges from dark blue (strong
positive effect size) to dark red (strong negative effect size). †Poor model fit.
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these interactions requires an ecological framework.
For example, viral diversity and abundance within
and among hosts are expected to be governed by the
fundamental processes of ecological drift, dispersal,
selection, and speciation [8,55]. Drift drives increased
diversity (though more so in hosts with limited disper-
sal); dispersal can drive increased transmission, coexis-
tence and co-infection rates [8] and selection can drive
viral community structure, particularly during periods
of resource limitation.

Conditions at particular roosts at a given time may
provide insight into broader drivers. For example, the
detection of high-prevalence shedding of eight unique
viruses from the Boonah roost in 2011 within weeks
of an associated HeV spillover to a nearby horse
suggests localized environmental conditions forcing
multi-viral transmission or perhaps driving immune
compromise and shedding from persistently infected
individuals [26]. While 1–2 HeV spillovers had been
detected annually since 2006, this case near Boonah
was one of 18 spillovers detected in an unprecedented
12-week period in the winter of 2011 (Figure S8).
This event, and a localized peak of four spillovers
(including three in four weeks) in southeast Queens-
land and northeast New South Wales in 2017, are
hypothesized to be linked to habitat loss and climatic
events, where a steep rise in the southern oscillation
index results in an acute food shortage for flying
foxes [56]. The processes linking flying fox food

shortages and HeV spillovers could also drive multi-
viral spillover. However, more work is needed to
define the mechanisms.

Most viral-viral interactions were positive, suggesting
a greater frequency of facilitative than competitive inter-
actions. Similarly, we speculate here that comparing the
magnitudes of interaction coefficients across sampling
levels provides further insight into the interactions
within virus pairs – though future studies could use
simulation models to explore these interaction types
theoretically. For example, two endemic viruses that
are never co-detected within an individual as a result
of competitive interactions and/or cross-immunity
would be expected to show a strong negative interaction
coefficient at the sample level (as seen with HeV and
YepPV). The theoretical expectation is for these viruses
to show competitive, out-of-sync dynamics [11,57],
however, how this manifests as a session level corre-
lation may depend on prevalence and the relative influ-
ence of broader environmental drivers of transmission.
Conversely, the frequent co-detection of a pair of viruses
within a single individual (as a result of facilitation and
cross-enhancement of infection) would result in a strong
positive coefficient at the sample level (as observed
between TevPV andHeV/YepPV). In this situation, syn-
chronized dynamics with other viruses would be
expected at a session level, though the strength of the
interaction coefficient may also depend on viral preva-
lence (11). The frequent sample level co-detection of

Figure 4. Difference in sample- and session-level viral interaction coefficients from a Maximum Likelihood Markov Random Fields
model. Virus pairs were divided into those where the interaction coefficient was higher at the session level than sample level (inclin-
ing slope, left plot) and vice versa. The grey dotted line at zero divides the plot into positive pairwise interactions (top) and negative
pairwise interactions (bottom). Steep downward slopes (sample interaction >> session interaction) are consistent with co-infection
or facilitation. Steep upward slopes are consistent with co-circulation, with the exception of HeV-YepPV, which showed strong nega-
tive interactions within samples (indicative of competition). In the colour scale, darker colours represent a greater absolute differ-
ence between sheet and sample level coefficients. Virus pairs with thicker lines are discussed in more detail in the text. Virus
abbreviations as per Table 1.
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TevPV with all other viruses (highest median interaction
coefficients) suggests it may play a central role in driving
co-infections, potentially through immunosuppression
or perhaps through activation of latent infections, as
has been observed in herpesvirus co-infections [58].
Alternatively, a recent study has demonstrated that
interactions between glycoproteins in HeV-NiV co-
infections may promote viral entry and, perhaps,
increase viral loads [59]. Further empirical and model-
ling studies are warranted to assess whether this
approach could contribute to improved spillover
predictions.

While data presented here suggest facilitative and
competitive interactions among viruses, the interpret-
ations are speculative. Larger sample sizes or simu-
lation studies are required to test these predictions
rigorously. In particular, samples collected from indi-
vidual bats in the wild, along with experimental infec-
tion studies, are required to specifically investigate
interactions among multiple pathogens. Additionally,
here we consider only known paramyxoviruses.
Unknown paramyxoviruses and other viral families
likely also contribute to viral community interactions
– future metagenomic studies to identify the broader
viral community would be valuable, though specific
viral PCRs and serological studies will be required to
study the population dynamics and interactions of
each virus over space and time. Here, samples were
from urine collected from plastic sheets placed under
bat roosts, making it likely that multiple bats, often of
more than one species, contributed to each sample
[60]. Similarly, bat roost counts used in this study are
approximates only; detailed roost counts and under-
standing of species, age and sex roosting structures
are required to fully understand the population-level
drivers of co-circulation. Moreover, whilst the multi-
plexed fluid-based assay used here has comparable sen-
sitivity to RT-qPCR assays on control samples [37], the
reduced sensitivity of HeV in field samples, where mul-
tiple viruses may be present and competing for
reagents within the one sample warrants further inves-
tigation with specific assays and incorporation into
models. Regardless, the reduced assay sensitivity indi-
cates that detections here likely represent viruses pre-
sent in high viral titres, and therefore that the
shedding pulse is an underestimate of the total viral
load. Finally, more detailed data would be necessary
to better disentangle biotic interactions among viruses
from coincidental responses to variable environmental
conditions, since both of these drivers can result in very
similar co-occurrence patterns [45].

Our understanding of the known and unknown
community of bat viruses (including in families other
than paramyxoviruses) and their interactions is cur-
rently limited. Here, we show that multiple paramyxo-
viruses, including HeV, are synchronously shed in
intense pulses from bats in Australia, but more in-

depth study is necessary to quantify the exact nature
and direction of interactions between specific pairs of
viruses. These results are likely to be relevant globally
and suggest that understanding the underlying and
interacting mechanisms driving total viral load in bat
populations is critical to predict and manage emerging
viruses in bats and facilitate more rapid and cost-effec-
tive responses in the event of their spillover. Integrated,
multidisciplinary studies, incorporating the ecology of
the host and its entire community of pathogens, are
essential to tackle these complex biological interactions
and fully understand the dynamics of these emerging
infections.
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