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Abstract
A linear program with linear complementarity constraints (LPCC) requires the mini-
mization of a linear objective over a set of linear constraints together with additional
linear complementarity constraints. This class has emerged as a modeling paradigm
for a broad collection of problems, including bilevel programs, Stackelberg games,
inverse quadratic programs, and problems involving equilibrium constraints. The pres-
ence of the complementarity constraints results in a nonconvex optimization problem.
We develop a branch-and-cut algorithm to find a global optimum for this class of
optimization problems, where we branch directly on complementarities. We develop
branching rules and feasibility recovery procedures and demonstrate their compu-
tational effectiveness in a comparison with CPLEX. The implementation builds on
CPLEX through the use of callback routines. The computational results show that our
approach is a strong alternative to constructing an integer programming formulation
using big-M terms to represent bounds for variables, with testing conducted on general
LPCCs as well as on instances generated from bilevel programs with convex quadratic
lower level problems.
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268 B. Yu et al.

1 Introduction

A linear program with linear complementarity constraints (LPCC), which minimizes
a linear objective function over a set of linear constraints with additional linear com-
plementarity constraints, is a non-convex, disjunctive optimization problem. In Sect.
1.1, we present the mathematical formulation of the general LPCC we use throughout
this paper. In Sect. 1.2, various existing algorithms designed for solving LPCCs are
reviewed. Most of these existing methods are only able to obtain a stationary solution
and incapable of ascertaining the quality of the solution. This is the major drawback
for the existing solvers. In this paper, we mainly focus on finding the globally optimal
solution of an LPCC, and we achieve this goal through two steps:

Step 1 Study various valid constraints by exploiting the complementarity constraints
directly, and evaluate the benefit of these constraints on the value of the linear
relaxation of the LPCC.We have previously discussed valid constraints for the
LPCC in [49], and we briefly recap these constraints in Sect. 2.2.

Step 2 Propose a branch-and-cut algorithm toglobally solve theLPCCproblem,where
cuts are derived fromvarious valid constraints studied inStep 1 andbranching is
imposed on the complementarity constraints. A general LPCC solver has been
developed based on this branch-and-cut approach, and it is able to compete
with the existing MIP-based solvers like CPLEX.

The branch-and-cut algorithm is introduced in Sect. 1.3, where we also outline the
rest of the paper.

1.1 Statement of the problem

We consider a general formulation of the LPCC in the form suggested by Pang and
Fukushima [52]. Given vectors and matrices: c ∈ R

n , d ∈ R
m , b ∈ R

k , q ∈ R
m ,

A ∈ R
k×n , B ∈ R

k×m , N ∈ R
m×n and M ∈ R

m×m , the LPCC is to find (x, y, w) ∈
R
n × R

m × R
m in order to solve to global optimality

minimize
(x,y,w)

cT x + dT y

subject to Ax + By ≥ b
x ≥ 0

and 0 ≤ y ⊥ w := q + Nx + My ≥ 0

(1)

where a ⊥ b denotes perpendicularity between vectors a and b, i.e., aT b = 0.Without
the orthogonality condition y ⊥ w, the LPCC is a linear program (LP). The global
resolution of the LPCCmeans the generation of a certificate showing that the problem
is in one of its 3 possible states: (a) it is infeasible, (b) it is feasible but unbounded
below, or (c) it attains a finite optimal solution.Note that problem (1) is equivalent to 2m

linear programs obtained by making each possible assignment for the complementary
variables: either yi = 0 or wi = 0 for each i = 1, . . . ,m; hence, it is not possible for
an LPCC to have a finite optimal value that is not attained.
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Solving linear programs with complementarity constraints... 269

If the feasible regions for y and w are bounded then there exist diagonal matrices
Θ y and Θw with diagonal entries θ

y
i and θw

i and problem (1) can be formulated as a
mixed integer program:

minimize
(x,y,z)

cT x + dT y

subject to Ax + By ≥ b
x ≥ 0
0 ≤ y ≤ Θ yz
0 ≤ q + Nx + My ≤ Θw(1 − z)

and z ∈ {0, 1}m

(2)

The obvious drawback of this formulation is that in order to find θ
y
i and θw

i we
need to compute valid upper bounds of yi and wi , not to mention such upper bounds
may not exist if the feasible regions for y and/or w are unbounded. To avoid this
drawback, in this paper, we present a branch-and-cut algorithm which branches on the
complementarity constraint directly. Previous work on branching on complementarity
constraints includes [11,17,30].

Problem (1) generalizes the standard linear complementarity problem (LCP) [14]:
0 ≤ y ⊥ q + My ≥ 0, so the LPCC is NP-Hard. Moreover, affine variational
constraints also lead to the problem (1) [46]. Applications of the LPCC are surveyed
in [33]. Among these applications, complementarity constraints play three principal
roles during the modelling process:

1. Modelling KKT optimality conditions that must be satisfied by some of the
variables. Such applications include hierarchical optimization such as Stack-
elberg games [55], inverse convex quadratic programs, indefinite quadratic
programs [27,31], and cross-validated support vector regression [42,43].

2. Modelling equilibrium constraints. See for example the texts [19,46], the survey
article [51], or a recent paper onmarket equilibrium in electric powermarkets [24].

3. Modelling certain logical conditions that are required by some practical optimiza-
tion problems. Such applications include non-convex piecewise linear optimiza-
tion, quantile minimization [53], and �0-minimization [13,21].

1.2 Previous work on solving LPCCs

Research on algorithms for solving an LPCC can be divided into two main areas:
one concerns the development of globally convergent algorithms with a guarantee
of finding a suitable stationary point; the other concerns the development of exact
algorithms for global resolution of an LPCC. See the survey [39] for a more detailed
review.

It is noted that the methods which are able to solve a general LCP can also be
extended to solve an LPCC by using the so called sequential LCP Method. Such a
procedure can be found in detail in [40]. A complementary pivoting algorithm for
an LPCC is an extension of a pivoting algorithm for LCP which handles linear com-
plementarity constraints just as the classic simplex algorithm for linear programs.
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270 B. Yu et al.

Such algorithms usually perform in this way: start from a feasible solution, maintain
feasibility for all iterations and try to improve the objective function. Under certain
constraint qualifications, these methods guarantee convergence to a certain stationary
solution. The references [20,26,36] study and implement this type of method to solve
the general LPCC. Another way to get a stationary point is through a so called regular-
ization framework [54]: construct a sequence of relaxed problems controlled by some
parameter, then obtain a sequence of solutions which converge to a stationary point
when the parameter goes to the limit. Each regularized relaxed problem is solved by an
NLP based algorithm such as an interior point method. One method of regularization
is to introduce a positive parameter φ and relax the complementarity constraints in
problem (1) using either {y, w ≥ 0, yTw ≤ φ} or some other approach [13,21]. An
alternative is to put a penalty for violation of the complementarity constraints into
the objective, and gradually update the penalty to infinity [44]. A homotopy method
has also been proposed [57]. The obvious drawback of these methods is that they are
incapable of ascertaining the quality of the computed solution.

The methods for global resolution of an LPCC are mainly based on an enumerative
scheme. Several branch-and-bound methods have been proposed for solving an LPCC
derived from a bilevel linear program. Bard and Moore [10] proposed a pure branch-
and-bound method for solving bilevel linear programs. Hansen et al. [29] enhance
this branch-and-bound scheme by exploiting the necessary optimality condition of
the inner problem. As opposed to a branch-and-bound method, the references [34,38]
study alternative ways to solve an LPCC by using a cutting plane method. Audet
et al. [6] proposed a branch-and-cut algorithm for solving bilevel linear programs.
An RLT method for finding a feasible solution to a problem with both binary and
complementarity constraints is proposed in [24]. It follows from the results of [8]
that an LPCC can be lifted to an equivalent convex optimization problem so it can in
principle be solved globally using a convex optimization algorithm; the drawback to
this approach is that the convexity is over the cone of completely positive matrices
which is hard to work with computationally.

It is noted that most of the existing methods for global resolution of the LPCC pre-
sume the LPCC has a finite optimal value, and this limitation was not resolved until the
paper [32]. In that paper, the authors proposed a minimax integer programming for-
mulation of the LPCC, and solve this system using a Benders decomposition method.
The method was extended to quadratic programs with complementarity constraints
in [7]. A branching scheme for determining boundedness of the optimal value of a
linear program with a bilinear objective function was proposed in [5].

The success of the Benders decomposition method [7,32] heavily depends on a
so called sparsification process. If the sparsification process is not successful, in the
worst case it will be necessary to check every piece of the LPCC. In this paper, we
alternatively use a specialized branch-and-cut scheme which is a more systematic
enumerative process to get the global resolution of the LPCC, and our algorithm is
also able to characterize infeasible and unbounded LPCC problems as well as solve
problems with finite optimal value. Moreover we also discuss various valid constraints
for the LPCC by exploiting the complementarity structure; this topic has not been fully
exploited in the literature for studying the LPCC.
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Solving linear programs with complementarity constraints... 271

The complementarity structure of an LPCC can be generalized to SOS1 constraints,
a type of special ordered set constraint requiring that at most one of a set of vari-
ables is nonzero. Recent work on branch-and-cut approaches to problems with SOS1
constraints include [18,22]. De Farias et al. [18] considered problems where all the
coefficients are nonnegative and their emphasis is on possible families of cutting
planes using a sequential lifting procedure. Fischer and Pfetsch [22] emphasize cuts
and branching techniques for problems with overlapping SOS1 constraints, that is,
sets of complementarity constraints that have variables in common; this structure can
be represented with conflict graphs and can be exploited in the derivation of valid
cutting planes and in the construction of sophisticated branching rules building on the
ideas of Beale and Tomlin [11]. In our formulation, each variable appears in at most
one complementarity constraint, so the nice techniques of Fischer and Pfetsch would
not be helpful.

1.3 LPCC using branch-and-cut

In this paper, we propose a branch-and-cut algorithm for solving the general LPCC
problem (1). In Sect. 2, we describe the preprocessing phase of our algorithm: in
Sect. 2.1, a heuristic feasibility recovery procedure is developed to recover a feasible
solution of the LPCC which provides a valid upper bound of the LPCC; and in Sect.
2.2, the strategy of generating and selecting from various types of cutting planes we
studied in [49] is discussed, which could sharpen the LP relaxation and improve the
initial lower bound of LPCC. In Sect. 3, we present the second phase of our algorithm:
branch-and-bound. Various node selection strategies and branching complementarity
selection strategies are discussed in Sects. 3.1 and 3.2. Our proposed algorithm is able
to characterize infeasible and unbounded LPCC problems as well as solve problems
with finite optimal value. The algorithm is summarized in Sect. 4. In Sect. 5, we
show the computational results of our branch-and-cut algorithm on solving randomly
generated LPCC instances.

In theMIP formulation (2), the binary vector z is only used tomodel the complemen-
tary relationship of the LPCC, and except for the complementarity constraints it does
not interact with x and y at all. This observation motivates us to enforce the comple-
mentarities through a specialized branching scheme, i.e., branch on complementarities
directly without introducing the binary vector z. This kind of specialized branching
approach has been studied to solve several problems such as generalized assignment
problems [16], nonconvex quadratic programs [56], nonconvex piecewise linear opti-
mization problems [41], and problemswith overlapping SOS1 constraints [18,22]. The
obvious advantage of using a specialized branching approach for solving the LPCC is
that we no longer need θ in the formulation, and therefore this approach is also appli-
cable for the case when y or w is unbounded. In fact, even if we know such a θ exists,
the cost of computing a valid θ could be very expensive especially when m is very
large. Moreover, introducing the binary vector z will lead to an increase in both the
number of variables and the number of constraints, and these Big-M type constraints
are usually not tight which will lead to a number of violated complementarities in the
solution of the relaxation.
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272 B. Yu et al.

2 Preprocessing phase

When the initial LP relaxation is bounded below, the preprocessing phase will be
invoked, consisting of a feasibility recovery process and a cutting plane selection
and management process. The feasibility recovery process may provide a valid upper
bound for the LPCC, while the cutting plane selection and management process may
provide a better lower bound for the LPCC.Both processesmay provide a good starting
point for the second phase of our algorithm: branch-and-bound.

2.1 LPCC feasibility recovery

Finding a good feasible solution to an LPCC is an essential component of our branch-
and-cut algorithm for globally resolving the LPCC. A good upper bound can help
prune nodes quickly, and avoid unnecessary branching. Notice that here we assume
the initial LP relaxation is boundedwhenwe apply our feasibility recovery procedures.
Our feasibility recovery procedures have some similarities to feasibility pumps forMIP
and MINLP [23].

For ease of discussion, we first introduce some notation and definitions.

Definition 1 Given any binary vector zwith dimensionm, we define the linear program
LPCC(z) as follows:

minimize
(x,y)

cT x + dT y

subject to Ax + By ≥ b
x ≥ 0
0 ≤ y
0 ≤ q + Nx + My
0 ≥ yi if zi = 0
0 ≥ (q + Nx + My)i if zi = 1.

(3)

LPCC(z) is a so-called piece of the LPCC corresponding to the binary vector z.

Definition 2 The feasibility gap of the piece of an LPCC corresponding to the binary
vector z, denoted by FG-LPCC(z), is the optimal value of the following linear program:

minimize
(x,y,w)

(1 − z)T y + zTw

subject to Ax + By ≥ b
x ≥ 0
0 ≤ y
0 ≤ w := q + Nx + My

(4)

where 1 is the vector with all components equal to 1.

Based on the above two definitions, it is obvious that the following proposition is true:

Proposition 1 LPCC(z) is feasible if and only if FG-LPCC(z) = 0
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Definition 3 Binary vectors z and z′ are adjacent if there is exactly one component
that is different between z and z′.

Definition 4 If binary vectors z and z′ are adjacent and FG-LPCC(z)< FG-LPCC(z′),
then Δz = z − z′ is a feasibility gap descent direction for z′.

Just like mixed integer programs, it is often a good idea to recover a feasible solu-
tion based on the LP relaxation solution. The most intuitive recovery process is to
round the LP relaxation solution into a solution that satisfies all the complementarity
constraints. We use this rounding procedure to initialize a new local search feasibility
recovery process, detailed in Procedure 1. Notice that we define search breadth as
the number of candidates that we are going to select from binary vectors which are
adjacent to the initial z∗, and search depth as the maximum number of iterations
that we are going to perform for each candidate. We can set search breadth and
search depth to control the local search process. The proposed local search procedure
can be used to find a feasible solution, although the quality of the recovered feasible
solution is not guaranteed. We use optimality based bound tightening [28,47,58] to
resolve this issue, refining the local search feasibility recovery procedure through
the addition of the constraints lbsearch ≤ cT x + dT y ≤ ubsearch to (4) when
computing the feasibility gap. Procedure 2 describes this refined feasibility recov-
ery procedure. We will demonstrate the computational results of our proposed local
search feasibility recovery process in Sect. 5. See Fischer and Pfetsch [22] for primal
heuristics that can be used when a variable appears in more than one complementarity
constraint.

2.2 Cutting plane generation and selection

The second key step in our preprocessing phase is the generation and selection of
cutting planes. We have discussed various valid linear constraints and second order
cone constraints that can be used to tighten the initial relaxation of LPCC in [49],
and have shown the computational results of these valid constraints individually. As
important as finding these cutting planes is the selection of the cuts that actually
should be added to the initial LP relaxation. In this section, we will describe our
detailed procedure to generate and select our cutting planes. Note that we will only
add cutting planes at the root node, and perform the generation of each type of cut in
rounds and in the following order:

– Disjunctive cuts and Simple cuts
– Bound cuts
– Linear cuts derived from second order cone constraints

We use the computational results with these cutting planes in [49] to guide the
cut generation process. The details of generation and selection rule are described as
follows.
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274 B. Yu et al.

input : the LP relaxation solution of the original LPCC: x∗, y∗, w∗, search depth parameter depth,
search breadth parameter breadth

output: recovered feasible LPCC solution or failed to recover the solution

Initialization: Set binary vector z∗ = 0;
for i ← 1 to m do

if y∗
i < w∗

i then z∗i =0;
else z∗i =1;

end
Solve (4) to get FG-LPCC(z∗);
if FG-LPCC(z∗)==0 then

solve LPCC(z∗), and return the optimal solution to LPCC(z∗);
end
else

let A(z∗) denote the set of binary vectors that are adjacent to z∗;
foreach z ∈ A(z∗) do

solve (4) to get FG-LPCC(z);
insert z into a sorted queue Q with nondecreasing order on FG-LPCC(z);

end
Let rb = 0;
while Q is not empty and rb ≤ breadth do

rb = rb + 1;
pop the top element z̄ in Q, and delete this element from Q;
let z = z̄ and rd = 0;
while there exists any feasibility gap descent direction Δz for z and rd ≤ depth do

pick a feasibility gap descent direction Δz;
z = z + Δz;
rd = rd + 1;

end
if FG-LPCC(z)==0 then

solve LPCC(z), and return the optimal solution to LPCC(z);
end

end
end
return feasibility recovery failed;

Procedure 1: Local search feasibility recovery process

2.2.1 Disjunctive cuts and simple cuts

These cuts exploit the disjunctive constraints: for each i , either yi ≤ 0 or wi ≤ 0. The
solution to the LP relaxation typically violates a number of these disjunctions, and
disjunctive cuts can either be generated by solving a supplemental linear program, or
by examining the optimal tableau for the LP relaxation. Based on our computational
experience, it seems that general disjunctive cuts and simple cuts [4,6,9] are theweakest
cuts among our three type of cutting planes, but they are the cheapest to generate.
Therefore we generate this type of cut first. The solving time of CPLEX for our test
instances became worse when we added all of the generated disjunctive cuts or simple
cuts to the root node even though the value of the initial LP relaxation was improved by
these cuts, because the initial LP became too large. Moreover, due also to the high cost
of generating general disjunctive cuts, we only generate 	m/100
 rounds of general
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input : the known valid upper bound of LPCC ubinitial , parameter searchGapmin
output: refined feasible LPCC solution or failed to refine the known feasible solution

Initialization: Set lbsearch =optimal value of the LP relaxation of LPCC and ubsearch = ubinitial ;
add lbsearch ≤ cT x + dT y ≤ ubsearch into (4);
while ubsearch − lbsearch > searchGapmin do

solve LP relaxation of LPCC with constraints lbsearch ≤ cT x + dT y ≤ ubsearch ;
apply Procedure 1 to recover a feasible solution;
if recovery process succeed then

update the refined feasible solution with recovered solution;
update ubsearch with the newly recovered solution;
ubsearch = (lbsearch + ubsearch)/2;

end
else

lbsearch = (lbsearch + ubsearch)/2;
end

end
if refined feasible solution has been updated then

return refined feasible solution
end
else

return feasibility refinement failed
end

Procedure 2: Refined local search feasibility recovery process

disjunctive cuts and for each round we only generate at most 3 general disjunctive cuts
instead of generating disjunctive cuts for each violated complementarity constraint.

The values of yiwi in the optimal solution to the LP relaxation are sorted in
nonascending order and we select complementarity constraints with index that cor-
responds to the largest three products. After each round of generating cuts, we will
remove every cut whose corresponding slack variable is basic in the relaxed LP, in
order is to keep the size of the relaxed LP small. After generating the general disjunc-
tive cuts, 	m/10
 rounds of simple cuts will be added. Since a simple cut is derived
from the simplex tableau with almost no cost, we will generate simple cuts for every
violated complementarity constraint in each round, and also remove every cut whose
corresponding slack variable is basic in the relaxed LP after each round of generating
cuts.

2.2.2 Bound cuts

Upper bounds uy
i and uw

i on yi and wi can be used in the bound cut

uw
i yi + uy

i wi ≤ uw
i u

y
i (5)

for any pair of complementary variables yi and wi . Strengthening the upper bounds
seems very important for the branch-and-bound routine of CPLEX for solving our
instances, and the bound cuts also improve the initial lower bound dramatically. How-
ever, the major drawback of bound cuts is that they are very expensive to generate,
especially when m, the number of complementarity constraints, is very large. There-
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276 B. Yu et al.

fore, we will only compute bounds for at most 5 pairs of complementary variables,
and the selection of these complementary variables is the same as the selection of
complementarity constraints to generate disjunctive cuts. An upper bound uy

i for yi
can be found by solving the linear program

uy
i = max(x,y,w) yi

subject to Ax + By ≥ b
x ≥ 0
0 ≤ y ≤ uy

0 ≤ q + Nx + My = w ≤ uw

cT x + dT y ≤ ub
uw
j y j + uy

jw j ≤ uw
j u

y
j ∀ j with known bounds uy

j , u
w
j

(6)

where ub is a known upper bound on the optimal value of the LPCC. A similar LP
can be constructed to get bounds on w.

We also investigated improving the bound cuts by splitting the variables. In partic-
ular, two versions of problem (6) could be solved, one with the additional constraint
yk = 0 and the other with the additional constraintwk = 0, for some index k �= i . The
maximumof the optimal values of these two problems could potentially improve on the
initial upper bound. For our test instances, the additional computational work involved
in computing these improved bounds did not improve the overall computational time,
so this splitting is not included in our results.

2.2.3 Linear cuts from second order cone constraints

Based on the computational results of [49], cuts derived from a certain second order
cone constraint can significantly improve the initial lower bound of our instances
with relatively low generating cost compared to bound cuts when n << m, provided
M is positive semidefinite. These cuts arise from linearizing the term yT Nx , using
McCormick inequalities [48] to tighten the linearization, and handling the yT My
term appropriately. Details can be found in [50]. The constraints can be tightened by
refining bounds. We did not use these cuts in the computational results reported in this
paper, because of difficulties with ensuring M was regarded as numerically positive
semidefinite by CPLEX.

2.3 Overall flow of the preprocessor

The preprocessor consists of the following steps:

1. Apply the feasibility recovery routine to recover a feasible solution.
2. Generate 	m/100
 rounds of general disjunctive cuts.
3. Generate 	m/10
 rounds of simple cuts.
4. Apply 4 bound refinements and generate bound cuts.

We apply Procedures 1 and 2 as the default feasibility recovery procedure due to run
time considerations. Other feasibility recovery procedures and refinements can also
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be invoked if required for solving special classes of problems. The number of rounds
for generating each type of cutting plane can be modified by changing the parameter
settings. The current setting is based on the computational experience in [49].

An additional preprocessing procedure undertaken at each node is the complemen-
tary variable fixing process, which is detailed in Sect. 3.3.

3 Branch-and-bound phase

The branch-and-bound routine needs to be invoked to solve the problem exactly if
the initial LP relaxation is unbounded or the preprocessing phase is unable to close
100% of the gap for the bounded case. The branching is imposed on the complemen-
tarity constraint directly, and two subproblems (nodes) will be generated by enforcing
either side of the pair of complementary variables to its lower bound zero. Just like a
branch-and-bound based MIP solver, there are two key ingredients in our branch-and-
bound routine: branching complementarity selection and node selection. Branching
complementarity selection is the procedure to select the complementarity constraint
to be branched on, and it is the same as the “variable selection” in mixed integer pro-
gramming. In Sect. 3.1, we present our branching strategy which is based on the ideas
of three classic branching rules and also some new proposed ideas designed for the
LPCC problem. Node selection is the procedure to select the next subproblem from
the node tree to be processed. In Sect. 3.2, we will present and compare different node
selection strategies. Besides these two key ingredients, in Sect. 3.3 we will describe
the node pre-solving procedure used in our algorithm to pre-process the nodes during
the branch-and-bound process. The general branch-and-bound routine for handling
the bounded case and unbounded case of LPCC are described in Sects. 4.1 and 4.2
respectively.

3.1 Branching complementarity selection

The branching rule is the key ingredient of any branch-and-bound algorithm. Good
branching strategies are extremely important in practice for solving mixed integer
programs, although currently there is no existing theoretical best branching strategy.
We will first present three classic branching strategies for solving mixed integer pro-
grams that have been studied in the literature. The reader can refer to Linderoth and
Savelsbergh [45], Fügenschuh and Martin [25] and Achterberg et al [2] for a com-
prehensive study of branch-and-bound strategies for mixed integer programming. We
will present our branching strategy based on the ideas of these branching strategies.
The computational results that compare various branching strategies will be shown in
Sect. 5.

We first give some definitions related to our branching routine for the LPCC prob-
lem. For easy discussion, if the LP relaxation of the LPCC is unbounded below, we
represent its lower bound as −∞. Suppose that we have an LPCC problem Q and the
set I is the index set of complementarity constraints. If the current solution to the LP
relaxation of Q is not a feasible solution to LPCC (for the unbounded case,we consider
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an unbounded ray of the LP relaxation instead of solution to the LP relaxation), then
we can pick an index i ∈ I with yiwi > 0 and obtain two subproblems (nodes): one
by adding the constraint yi ≤ 0 (named the left child node, denoted by Qy

i ) and one
by adding the constraint wi ≤ 0 (named the right child node, denoted by Qw

i ). We
refer to this as branching on complementarity i . For the bounded case, if we denote
the objective value of the LP relaxation of Q as cQ and the objective value of the
LP relaxation of its two child nodes as cQy

i
and cQw

i
respectively, then the objective

value changes caused by branching on the i th complementarity are Δ
y
i = cQy

i
− cQ

and Δw
i = cQw

i
− cQ . We usually use the improvement of objective value of the LP

relaxation to measure the quality of branching on the i th complementarity. Our imple-
mentation supports fixing multiple complementarity constraints at one time, but by
default we will only select to branch on one complementarity. Based on the results of
testing our instances and the computational results of solving various MIP problems
in the literature, multiple way branching is rarely better than two way branching.

input : the LP relaxation solution of the current processing node Q or the unbounded ray to the LP
relaxation if the LP relaxation is unbounded: x∗, y∗, w∗

output: the selected branching index i ∈ I of a complementarity constraint

1. Let Ĩ = { j ∈ I | y∗
j w∗

j > 0} denote the index set of violated
complementarity constraints.

2. Compute a branching score s j ∈ R
+ for all candidates j ∈ Ĩ .

3. Select the selected branching index i ∈ Ĩ with si = maxk∈ Ĩ {sk }.
Return selected branching index i .

Procedure 3: Generic complementarity selection procedure

The generic procedure for selecting the branching complementarity can be
described in Procedure 3. The score function in Step 2 of this procedure needs to
evaluate the two child nodes that could be generated by the branching, and map these
two effectiveness values onto a single score value. Different choices for the effective-
ness values are given later. Suppose qy and qw are the effectiveness values of the two
child nodes generated by a branching. In the literature, the score function usually has
one of the following forms:

score(qy, qw) = (1 − μ) · min{qy, qw} + μ · max{qy, qw} (7)

or
score(qy, qw) = max{qy, ε} · max{qw, ε} (8)

Here μ is a number between 0 and 1, and it is usually an empirically determined
constant or a dynamic parameter adjusted through the course of branching process.
We chose ε = 10−6 to enable the comparison when either qy or qw is zero. Based
on the computational experience in [1], the product form is superior to the weighted
sum form for solving MIP problems. Therefore, in our algorithm, we chose to use the
product form to map the effectiveness values from two child nodes onto a single value.
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In the followingwewill present three classic branching strategies for solving anMIP
in terms of our branching on complementarity scheme: Strong Branching (apparently
originally developed in the work leading up to [3]), Pseudocost Branching [12] and
Inference Branching [1]. In fact, all of these branching routines are just variants of
Procedure 3 with different score functions.

3.1.1 Strong branching

The idea of Strong Branching [3] is to test the branching candidates by temporarily
enforcing either side of a complementarity constraint and solving the resulting LP
relaxation to a certain level, then select the one that can lead to the largest lower bound
improvement. Full Strong Branching will compute Δ

y
i and Δw

i for each branching
complementarity candidate i ∈ Ĩ , and use the score(Δy

i , Δw
i ) as the effectiveness

values in the form of either (7) or (8) as its score function. Full Strong Branching can
be seen as the locally best branching strategy in terms of lower bound improvement.
However the computational cost of Full Strong Branching is very high, since in order
to evaluate the score function for each complementarity candidate, we need to solve
two resulting LP relaxations to optimality. There are usually two ways to speed up
Full Strong Branching: one is to only test a subset of the candidate set instead of
considering all the candidates, and another is to perform a limited number of simplex
iterations and estimate the objective value change based on that. In our branch-and-
bound algorithm,we have implemented theFull StrongBranching routine, and alsowe
adopt the former idea to speed up the Full Strong Branching: as long as the objective
value of LP relaxation of either side of the child nodes hits some threshold, we will
select this branching candidate and exit the selection routine; we set the median value
of the lower bound of unsolved nodes in the current search tree as this threshold.

A version of strong branching was used by Fischer and Pfetsch [22] in their branch-
and-cut approach for problems with overlapping SOS1 constraints.

3.1.2 Pseudocost branching

Pseudocost Branching [12] uses the branching history to estimate the two objective
changes of the child nodes without actually solving them. In other words, Pseudocost
Branching is a branching rule based on the historical performance of complementarity
branching on complementarities which have already been branched. Let ς

y
i and ςw

i
be the objective gain per unit change at node Q after branching on complementarity
i by enforcing yi or wi to zero, that is

ς
y
i = Δ

y
i

y∗
i

and ςw
i = Δw

i

w∗
i

(9)

where y∗
i and w∗

i are the violation of complementarity i corresponding to the LP
relaxation solution of Q. Let σ

y
i denote the sum of ς

y
i over all the processed nodes

where complementarity i has been selected as the branching complementarity and
resulting child node Qy

i has been solved and was feasible. Let ηy
i denote the number
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of these problems, and define σw
i and ηw

i in the same way for the other side of the
complementarity. Then the pseudocost of branching on complementarity i can be
calculated as the arithmetic mean of objective gain per unit change:

Ψ
y
i = σ

y
i

η
y
i

and Ψ w
i = σw

i

ηw
i

(10)

Therefore given the violated complementarity i corresponding to the LP relaxation of
Q, it is reasonable to useΨ

y
i · y∗

i andΨ w
i ·w∗

i to estimateΔ
y
i andΔw

i respectively. We
call the branching rule that uses the score function score(Ψ y

i · y∗
i , Ψ w

i ·w∗
i ) in step 2 of

Procedure 3 as Pseudocost Branching. Notice that at the beginning of the branch-and-
bound procedure, the pseudocost is uninitialized for all the complementarities. One
way to handle a complementarity with an uninitialized pseudocost is to replace its
pseudocost with the average of the pseudocosts of the complementaries whose pseu-
docosts have been initialized, and set the pseudocost as 1 if all the complementarities
are uninitialized. Applying strong branching to the nodes whose tree depth level is less
than a given level is another way to initialize the pseudocosts. More recently, Achter-
berg et al [2] proposed a more general pseudocost initialization method, and named
the corresponding branching rule as Reliability Branching. In our implementation, we
include the pseudocost as part of our branching score, and we choose to apply strong
branching to nodes whose tree depth level is less than 7 to initialize the pseudocost.

3.1.3 Inference branching

The branching decision of strong branching and pseudocost branching are both based
on the change of objective value of the LP relaxation, while Inference Branching [1] is
quite different from the above two branching strategies. Inference Branching checks
the impact of branching on changing the bounds of other variables. As with pseudo-
costs, historical information is typically used to estimate the deductions on bounds of
the variables, and the inference value can be calculated as the arithmetic mean of the
number of bound deductions. The domain propagation process is a node pre-solving
process to detect the bound change of the variables and is discussed in Sect. 3.3. In our
implementation, we use a similar idea to inference branching: instead of evaluating the
inference value, we estimate the complementarity satisfaction level after branching on
a complementarity, leading to the quantity sSLi below.

3.1.4 Hybrid branching strategy for the LPCC (bounded case)

Our branching strategy for the bounded case combines the ideas of the above three
classic branching strategies, and additionally we also include some new score values
into our branching score function which are specialized for the LPCC problem.

In our implementation, the default branching strategy will apply the full strong
branching strategy for the nodes whose depth level are no larger then 7. The reason for
doing that is because it is usually quite important to make the right branching decision
at the beginning, and also we can use strong branching to initialize the pseudocosts
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and another score value that we will propose next. For the nodes whose tree depth
are larger than 7, we will use a weighted sum formula to combine four score values
for each violated complementarity. Among these four score values, two of them are
only based on the current node Q, and the other two are based on historical branching
information. For the violated complementarity i , these four score values are listed as
follows:

1. sV L
i : score of Violation Level. Suppose y∗

i and w∗
i are the violation of comple-

mentarity i corresponding to the LP relaxation of Q, then we define

sV L
i =

√
y∗
i · w∗

i

2. sED
i : score of Euclidean Distances from the LP relaxation solution of Q to the two
hyperplanes corresponding to yi = 0 andwi = 0. Recall that since y∗

i ·w∗
i > 0, we

can represent the complementary variables yi and wi with the non-basic variables
in the optimal simplex tableau of Q

yi = y∗
i −

∑
j∈N B

ayij ξ j (11)

wi = w∗
i −

∑
j∈N B

awi
j ξ j (12)

We use the Euclidean distance from the LP relaxation solution to the two hyper-
planes

∑
j∈N B

ayij ξ j = y∗
i and

∑
j∈N B

awi
j ξ j = w∗

i

to define sED
i as follows:

sED
i =

√
y∗
i · w∗

i√‖ayi‖ · ‖awi‖

3. sPCi : score of Pseudo Cost. We use the following small modification to the pseud-
cost calculation of Sect. 3.1.2:

sPCi =
√
max{Ψ y

i · y∗
i , ε} · max{Ψ w

i · w∗
i , ε}

4. sSLi : score of complementarity Satisfaction Level. We define the complementarity
satisfaction level as the proportion of the satisfied complementarities correspond-
ing to the LP relaxation solution of the child node after branching. Intuitively we
want to select a branching complementarity that will lead to more satisfied com-
plementarities. To estimate this complementarity satisfaction level, we collected
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the historical information to compute the average complementarity satisfaction
level for both sides of the complementarity

Φ
y
i = ϕ

y
i

η
y
i

and Φw
i = ϕw

i

ηw
i

Here ϕ
y
i is the sum of the proportion of complementarity satisfaction levels over

all the prior nodes, where complementarity i has been selected as the branching
complementarity, and η

y
i is the total number of these nodes. We define ϕw

i and ηw
i

to be the analogous value for the other side of complementarity. Then the score of
the complementarity Satisfaction Level can be calculated as

sSLi =
√

Φ
y
i · Φw

i

We scale the score vectors using their 2-norms, and the following formula is the
branching score function that we used to evaluate the score for each violated comple-
mentarity:

si = ωV L

(
sV L
i

‖sV L‖

)
+ ωED

(
sED
i

‖sED‖

)
+ ωPC

(
sPCi

‖sPC‖

)
+ ωSL

(
sSLi

‖sSL‖

)
(13)

By default, the weight is set as ωV L = 1, ωED = 0.5, ωPC = 0.25 and ωSL = 0.5.
Note that setting different weights for each score value will lead to different branching
behaviour. In Sect. 5.2, we will show the computational results of solving our LPCC
instances with different weights of the score value.

3.1.5 Hybrid branching strategy for LPCC (unbounded case)

Our branching strategy for the unbounded case is slightly simpler than the one for the
bounded case. We will still apply full strong branching to the nodes whose tree depth
level is no larger than 7. However, for the remaining unbounded nodes we will only
use sV L

i as the branching score to make the branching decision.

3.2 Node selection

In addition to selecting which complementarity to branch on, another question is
which subproblem (node) we should pick to process. There are two major criteria for
selecting the next subproblem to be processed.

1. Finding feasible LPCC solutions to improve the upper bound of the LPCC problem
which leads to pruning the nodes by bounding, leading to a Depth First Search
strategy.

2. Improving the lower bound as fast as possible, leading to a Best-Bound strategy.
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In our implementation of the branch-and-bound routine we use a Best-Bound strat-
egy to select the next node to be processed, since we want to solve the problem to
optimality as fast as possible. Notice that for the Best-Bound, it is possible that there
are several nodes with the same lower bound. For that case, we will select the most
recently generated node as the next node to be processed.

3.3 Node pre-solving

The major task of our node pre-solving procedure is to tighten the domains of com-
plementary variables yi and wi and try to fix the complementary variables. In order
to facilitate the discussion, here we can assume that each ξi in (11) and (12) is a non-
negative variable with zero lower bound. Therefore we have the following result: if
ayij ≤ 0,∀ j ∈ N B, thenwe have yi ≥ ŷi , and thereforewi = 0; if awi

j ≤ 0,∀ j ∈ N B,
thenwehavewi ≥ ŵi , and therefore yi = 0.This complementary variable fixing check
is performed before we branch on the complementarity constraint.

4 General scheme of the branch-and-cut algorithm for solving LPCC

The preprocessing routines are only invoked if the the initial LP relaxation of the
LPCC has a bounded optimal value; we refer to this as the “bounded case”. If the initial
relaxation does not have a finite optimal value then we are in the “unbounded case”.
For the bounded case, the preprocessing procedure is applied first to tighten the initial
LP relaxation, then the branch-and-bound routine is invoked to solve the LPCC to
optimality; for the unbounded case, we will only apply the branch-and-bound routine,
which gives unbounded nodes higher priority than bounded nodes. A flow diagram of
the overall algorithm is given in Fig. 1. The initialization step 0 sets the upper bound
z̄ = +∞, the lower bound z = −∞, the unbounded node list L̄ = ∅, and the bounded
node list L = ∅. If the LP relaxation of the initial problem is feasible then the initial
problem is added to L or L̄ in box 1, as appropriate. Boxes 2, 4, 6, 8, 10, 12, and 14
corresponding to the bounded case are the subject of Sect. 4.1, with the unbounded
case boxes 3, 5, 7, 9, and 11 explained in Sect. 4.2. Box 13 is discussed in Sect. 4.3.

4.1 Overall flow of branch-and-bound for LPCC (bounded case)

In the bounded case, the algorithm is quite similar to the branch-and-bound routine for
a mixed integer program. If it is determined in box 1 that the initial LP relaxation is
bounded then we implement a more detailed preprocessing step in box 2, as discussed
in Sect. 2. In box 4, we apply Best-Bound to pick the next node LPCCi from L to
be processed and delete LPCCi from L . The node presolving procedure from Sect.
3.3 is implemented in box 6. The branching strategy of Sect. 3.1.4 is used in box 8 to
select branching complementarity j . Fathoming and pruning is performed in box 10
as follows:

Fathoming and pruning Generate two child nodes by enforcing either y j = 0 or
w j = 0 and solve LP relaxations. For each child node:
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Start 0. Initialization

2. Preprocess 1. Check status of initial LP
relaxation.

4. Select node for bounded case 3. Is L̄ = ∅?

6. Apply node presolving procedure 5. Select node for unbounded case

8. Branching complementar-
ity selection for bounded case

7. Branching complementar-
ity selection for unbounded case

10. Fathoming and pruning for bounded case 9. Fathoming and pruning for unbounded case

12. Update lower bound z 11. Unbounded feasible ray
found?

14. Is |z̄ − z| <gap or L = ∅? 13. Termination

Return

finite
lower bound

infeasible

unbounded lower bound

yes

no

no

yes

yes
no

Fig. 1 Flow chart of branch-and-bound procedure

1. If LP relaxation solution is feasible in LPCC with objective z∗ then delete
child node. Set z̄ ← min{z̄, z∗}.

2. If LP relaxation is feasible with objective z∗ < z̄ then set the lower bound
of child node as z∗ and add child node to L .

3. If LP relaxation feasible with objective z∗ ≥ z̄ or infeasible then delete child
node.

The lower bound is updated in box 12. The procedure is terminated in box 14 if there
are no more nodes in the set L or if the gap between the upper and lower bound is
sufficiently small.

4.2 Overall flow of branch-and-bound for LPCC (unbounded case)

The branch-and-bound routines for solving mixed integer programs in existing MIP
solvers like CPLEX usually assume the initial LP relaxation is bounded below. Even
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if the initial LP relaxation is unbounded, it is still treated as bounded below by adding
an objective lower bound constraint with a very large negative number (−1020) as
its lower bound. However, our branch-and-bound routine for handling the unbounded
case of the LPCC is quite different. If the LP relaxation of a node is unbounded, we
will treat this node as an unbounded node and add it to the unbounded node list. If the
unbounded node list is non-empty, our branch-and-bound routine will always process
a node in the unbounded node list first. Notice that when we find an unbounded ray
that satisfies all the complementarities, we need to check whether this is a feasible ray
to the LPCC. The LPCC is feasible with unbounded objective value if and only if we
find an unbounded feasible ray to the LPCC.

If the set L̄ of unbounded nodes is empty in box 3 then we return to the bounded
case in box 4, constructing an appropriate lower bound z. In box 5, we select the node
LPCCi that is the most recently generated from L̄ to be processed and delete LPCCi

from L̄ . The branching strategy of Sect. 3.1.5 is used in box 7 to select branching
complementarity j . Fathoming and pruning for an unbounded node is performed in
box 9 as follows:

Fathoming and pruning Generate two child nodes by enforcing either y j = 0 or
w j = 0 and solve LP relaxations. For each child node:

1. If LP relaxation solution is feasible in LPCC with objective z∗ then delete
child node. Set z̄ ← min{z̄, z∗}.

2. If LP relaxation is feasible with objective z∗ < z̄ then set the lower bound
of child node as z∗ and add child node to the bounded node list L .

3. If LP relaxation feasible with objective z∗ ≥ z̄ or infeasible then delete child
node.

4. If LP relaxation is unbounded and the unbounded ray is not a feasible ray to
LPCC then add this child node to the unbounded node list L̄ .

5. If LP relaxation is unbounded and the piece of LPCC corresponding to that
ray is feasible then the LPCC is unbounded.

If an unbounded piece is found in box 11 then the algorithm can be terminated;
otherwise we loop back to box 3.

4.3 The complete overall scheme

A flow chart of the algorithm is exhibited in Fig. 1. Each of the three possible problem
states can be returned in the termination box 13. If an unbounded feasible ray to the
LPCC is found then the LPCC is feasible with unbounded objective value. If the LPCC
is not unbounded and an LPCC feasible solution is found then the LPCC attains a finite
optimal solution with optimal objective z̄. Otherwise, the problem is infeasible.

5 Computational results

In this section, wewill present the computational results of using our proposed branch-
and-cut algorithm to solve various LPCC instances. All procedures and algorithms are
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developed in the C language with the CPLEX callable library, and all LPs and convex
quadratic constraint programs are solved using CPLEX 12.6.2. We implement our
algorithm through the addition of callback routines to CPLEX. As an alternative to our
approach, CPLEXallows themodeling of complementarity constraints through the use
of indicator constraints; we compare the computational performance of our algorithm
with that of using default CPLEX 12.6.2 to solve indicator constraint formulations of
these LPCC instances, with our preprocessor used for both approaches. Except for a
few preliminary tests discussed in Sect. 5.2, all the computational testing is performed
on a Mac Pro with 6 dual processor Intel Xeon E5 cores and 16GB of memory. Our
branch-and-cut routine uses just one thread, while the default CPLEX 12.6.2 indicator
constraint formulation can use all 12 available threads. The relative gap for optimality
is 10−6, here the relative gap is defined as upperbound−lowerbound

max(1,|lowerbound|) . This is smaller than

CPLEX’s default MIP relative gap optimality tolerance of 10−4; many of the optimal
values are non-integral, so we found a tolerance of 10−4 to be insufficiently accurate.
The tolerance of complementarity is 10−6, i.e., either yi orwi for i = 1, . . . ,m should
be less than 10−6 for any feasible LPCC solution. All runtimes are reported in seconds.

We used three sets of test instances. The first set consists of 60 LPCC instances
with n = 2 and between 100 and 200 complementarities. The generation scheme for
these problems and computational results can be found in “Appendix A”, with the
results discussed in Sects. 5.1 and 5.2. The second set of test instances are LPCC
formulations of bilevel programs, where the lower level problem is a convex quadratic
program; the formulation and results are presented in Sect. 5.3, with more extensive
results in “Appendix B”. The final set of results in Sect. 5.4 are for inverse quadratic
programming problems, with detailed results in “Appendix C”.

Source code and test instances can be found online at https://github.com/mitchjrpi/
LPCCbnc Also included with the source code is a Makefile. A user needs to have
access to CPLEX in order to be able to compile the code. Generators for the bilevel
and inverse QP problems can be found on the website; the generator uses AMPL to
construct the instances.

5.1 Computational results of the feasibility recovery process

We will first apply the local search feasibility recovery process (procedure 1); if this
procedure successfully recovers a feasible solution, then the refinement procedure
(Procedure 2) will be applied to refine that feasible solution. We set the depth parame-
ter as 5 and breadth parameter asm, i.e. the number of complementarities, in Procedure
1. Table 1 summarizes the feasibility recovery result of the 60 LPCC instances. The
computational results show that our proposed feasibility recovery procedures can suc-
cessfully recover a feasible solution for all of the 60 LPCC instances with very good
quality. For most instances, the recovered feasible solution is in fact an optimal solu-
tion. Note that as m increases, the feasibility recovery processing time increases as
well. Therefore in practice, as a preprocessing procedure, we need to control the depth
and breadth parameters in procedure 2 to reduce the time spent on the feasibility
recovery procedure.

123

Author's personal copy

https://github.com/mitchjrpi/LPCCbnc
https://github.com/mitchjrpi/LPCCbnc


Solving linear programs with complementarity constraints... 287

Table 1 Average computational results of feasibility recovery with n = 2, k = 20. The column “average

gap” is calculated as
LBrecovered−LPCCopt

L PCCopt
. Detailed results can be found in Table 5 in “Appendix A”

m RankM Average gap (%) Optimal found out of 10

100 30 0.09 5

100 60 0.22 2

150 30 0.0 10

150 100 0.06 3

200 30 0.0 10

200 120 0.07 2

Table 2 Comparison of geometric means of solving time, using our four different branching rules and using
default CPLEX

m T imeR1 (s) T imeR2 (s) T imeR3 (s) T imeR4 (s) T imeCPLEX (s)

100 19.185 18.790 18.805 18.917 38.021

150 75.213 73.623 76.071 74.285 1688.160

200 308.293 296.663 287.232 291.057 5043.017

5.2 Computational results of branch-and-cut algorithm

In this section, we will show the computational results of using our proposed branch-
and-cut algorithm to solve the 60 LPCC instances with finite global optimal values
from “Appendix A”.

We conducted preliminary experiments with 4 different weight settings of increas-
ing sophistication to choose a score function (13). Each rule is a refinement of the
previous one, and led to improvement on the largest instances tested:

R1: ωV L = 1, ωED = 0, ωPC = 0 and ωSL = 0;
R2: ωV L = 1, ωED = 0.5, ωPC = 0 and ωSL = 0.5;
R3: ωV L = 1, ωED = 0.5, ωPC = 0.25 and ωSL = 0.5;
R4: ωV L = 1,ωED = 0.5,ωPC = 0.25 andωSL = 0.5 and apply strong branching

rule to the node whose tree depth is less or equal to 7.

These resultswere obtained usingCPLEX11.4 using a single core ofAMDPhenom
II X4 955 CPU @ 3.2GHZ, 4GB memory and are contained in Tables 2 and 3. All
four rules required far fewer nodes than default CPLEX. Based on these results, R4
is the best branching rule in terms of the number of nodes. Since in terms of solving
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Table 3 Comparison of geometricmeans of number of nodes in branch-and-cut tree, using our four different
branching rules and using default CPLEX

m NodeR1 NodeR2 NodeR3 NodeR4 NodeCPLEX

100 213 215 212 196 39114

150 831 863 848 757 1078311

200 3408 3301 3161 2837 1494577
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Fig. 2 Scatter plots for CPU time (seconds) for solution of LPCCs. Horizontal axis is time for the default
CPLEX indicator constraint solver, vertical axis is time for our branch and cut algorithm. Processing times
excluded. a All 60 instances. b 37 LPCCs where default CPLEX MIP required no more than 30 s

time, these 4 routines are quite close, we chose R4 as our default branch-and-bound
routine.

All remaining results in the paper were obtained using CPLEX 12.6.2 with detailed
results contained in Table 6 in “Appendix A”. A scatter plot of the CPU time for
solving the instances is given in Fig. 2. Performance profiles [15] are given in Fig. 3.
The preprocessing times have been excluded from these plots. All the LPCC instances
can be solved by our algorithmwithin 30min, with 90% of them (54/60) solved within
150 s. Each instance requires considerably less processing time with our algorithm
than with default CPLEX. Notice that default CPLEX is only able to solve 42 of the 60
instances within 3600 s. In particular, it is unable to solve 11 of our 20 LPCC instances
when m = 200 within this time limit.

The determination of a valid disjunctive cut or bound cut requires the solution of a
linear programming problem. The parameter choices given in Sect. 2.2 result in 0.3m
disjunctive cuts, approximately 5m simple cuts, and 15 bound cuts for each instance.
We also experimentedwith not adding cutting planes in the preprocessor, inwhich case
both codes performed slightly worse for the larger instances (a difference of perhaps
10% in average runtime for our branch-and-cut code).
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Fig. 3 Performance profile for CPU time (seconds) for solution of 60 LPCCs (preprocessing time excluded).
Vertical axis is the number of instances. Horizontal axis is ratio of time required by the given algorithm to
the time required by the better algorithm. a Linear scale. b Log scale

5.3 Bilevel test problems

We further tested our algorithm on bilevel problems of the form

minx,v cT x + dT v

subject to Ax + Bv ≥ b
0 ≤ v ≤ u
x ∈ argminx { 12 xT Qx + vT x : Hx ≥ g, x ≥ 0}

(14)

where Q is positive semidefinite. The variables v are first stage variables, with the sec-
ond stage variables x chosen to optimize a convex quadratic subproblem that depends
on v. Both sets of variables appear in the linear objective. In addition, the first and
second stage variables must satisfy the linking constraint Ax + Bv ≥ b. By introduc-
ing KKT multipliers y and λ for the constraints in the subproblem, we can model this
problem equivalently as the LPCC

minx,v,y,λ,w cT x + dT v

subject to Ax + Bv ≥ b
Qx + v − HT y − λ = 0
0 ≤ v ≤ u
0 ≤ λ ⊥ x ≥ 0
0 ≤ y ⊥ w := Hx − g ≥ 0,
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a problem equivalent to one in our standard form (1). The relationship between the
dimensions in (1) and the dimensions of the variables and constraints in (14) is as
follows:

Dimensions

(1) (14)

m dimension(g) + dimension(v)
n 2 × dimension(v)
k dimension(b) + 3 × dimension(v)

Thus, the number of complementarity constraints is equal to the sum of the dimensions
of g and v.

In our experiments, all parameters in b, c, d, g, A, B, and H were uniformly
generated in the interval (0, 1). The matrix Q was equal to the matrix product LLT ,
where the number of columns in L is equal to the required rank of Q and each entry in L
is chosen uniformly from the interval (− 1, 1). Each entry of uwas equal to 1. Repeated
problem dimensions in the table correspond to different instances. The dimension of
g varied from 50 to 200, the dimension of v and x varied from 50 to 100, the number
of complementarity constraints varied from 100 to 250, the dimension of b varied
from 25 to 100, and the rank of Q varied between 0.5 of the dimension of v and the
dimension of v. Problem data for the 90 bilevel test instances can be found in Tables 7
and 8.

We gave each algorithm a time limit of 3600 s in addition to the preprocessing time.
Detailed performance data can be found in Tables 9 and 10. Our algorithm was able
to solve all 63 instances with dimension of v equal to 50, 16/24 of the instances with
the dimension of v equal to 75, and 3/3 of the instances with the dimension of v equal
to 100. The corresponding numbers for the default CPLEX indicator constraint code
were 56/63, 2/24, and 1/3. Our algorithm was considerably faster than default CPLEX
indicator constraint code on every instance. Further, it had a smaller final gap than
default CPLEX indicator constraint code for each instance where neither code could
solve the problem. There was no instance that could be solved by default CPLEX
indicator constraint code which could not also be solved by our algorithm. A scatter
plot of the CPU time for solving the instances (ignoring the common preprocessing
time) is given in Fig. 4 and a performance profile is in Fig. 5.

The instances become more difficult as the dimensions of v, b, and g increase,
as might be expected. The instances also become more difficult as the rank of Q
increases. Table 4 contains averages of solution times over these different parameters
for the instances with the dimension of v equal to 50.

The parameter choices given in Sect. 2.2 result in 0.3m disjunctive cuts, approx-
imately 3m simple cuts, and 15 bound cuts for each instance. Also as in Sect. 5.2,
we experimented with not adding cutting planes in the preprocessor. Both codes per-
formed similarly to their respective performance with the preprocessor. Thus, based
on the results in this section and Sect. 5.2, our default implementation is to generate
cutting planes in the preprocessor.
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Fig. 4 Scatter plots for CPU time (seconds) for solution of LPCCs based on bilevel instances Horizontal
axis is time for default CPLEX indicator constraint solver, vertical axis is time for our branch-and-cut solver.
Processing times excluded. a All 90 instances. b 63 instances with n = 50
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Fig. 5 Performance profile with linear scale for CPU time (seconds) for solution of LPCCs based on bilevel
instances (preprocessing time excluded). Vertical axis is the number of instances. Horizontal axis is ratio
of time required by the given algorithm to the time required by the better algorithm. a All 90 instances. b
63 instances with n = 50

5.4 Inverse quadratic programs

Jara-Moroni et al. [37] presented a DC method for finding local optima for LPCCs
arising from inverse quadratic programs [33]. The problem of interest has the form

minx,b,c ||(x, b, c) − (x̄, b̄, c̄)||1
s.t. x ∈ argminy{ 12 yT Qy + cT y : Ay ≥ b}

(x, b, c) ∈ P
(15)
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Table 4 Average performance on bilevel instances with 50 first stage variables. Each column contains
results from all 63 instances. Each average is taken over instances where the other parameters are varied

Dimension of g Dimension of b Rank of Q

Dim Time # Instances Dim Time # Instances Rank Time # Instances

50 12.76 16 25 39.98 16 25 19.94 31

100 30.29 15 50 51.06 16 50 161.66 32

150 41.91 16 75 15.11 16

200 266.45 16 100 259.57 15

where x̄ , b̄, and c̄ are observations of the parameters and solution of a quadratic
program and P is a polyhedron. The objective is to find (x, b, c) close to the observed
values where x does solve the lower level quadratic program. In our computational
testing, we varied the number of rows m̃ and columns ñ of A between 100 and 400
and between 5 and 90, respectively; the dimensions of all other vectors and matrices
are determined by the dimensions of A. When the matrix Q is positive definite, the
inverse QP is equivalent to the following LPCC:

minx,b,c,zx ,zb,zc,λ 1T zx + 1T zb + 1T zc

s.t. Qx + c − AT λ = 0
x + zx ≥ x̄, −x + zx ≥ −x̄
b + zb ≥ b̄, −b + zb ≥ −b̄
c + zc ≥ c̄, −c + zc ≥ −c̄
(x, b, c) ∈ P
0 ≤ λ ⊥ w := Ax − b ≥ 0

(16)

where λ is the vector of KKT variables for the inner QP, the variables zx , zb, zc are
used to represent the L1 objective function in (15), and 1 represents a vector of ones
of an appropriate dimension.

The instances in [37] were generated in MATLAB, whereas our instances were
generated using AMPL. Nonetheless, we closely followed their procedures except for
the generation of Q. Our matrix Q ∈ R

ñ×ñ was formed as the product MMT , where
M ∈ R

ñ×ñ was a square matrix with exactly three nonzeroes per row, with diagonal
entries uniformly distributed between 0.5 and 1 and two off-diagonal entries uniformly
distributed between 0 and 1; this results in a positive definite matrix Q, with about 9
entries per rowon average (similar to the number of nonzeroes in a rowof Q from [37]).
Other parameters were generated as in [37]: the matrix A ∈ R

m̃×ñ has an average of
approximately 10 nonzero entries per row which are uniformly distributed between 0
and 1; a vector x̃ ∈ R

ñ has components distributed as Normal(0,1); vectors λ̂ ∈ R
m̃

and ŵ ∈ R
m̃ have components uniformly distributed between 0 and 10; a binary

vector v ∈ B
m̃ is generated and λ̃ ∈ R

m̃ and w̃ ∈ R
m̃ are constructed as the Hadamard

products λ̃ := λ̂ • v and w̃ := ŵ • (1− v); vectors b̃ ∈ R
m̃ and c̃ ∈ R

ñ are defined as
b̃ := Ax̃ − w̃ and c̃ = AT λ̃ − Qx̃ ; vectors x̄ ∈ R

ñ , b̄ ∈ R
m̃ , and c̄ ∈ R

ñ are obtained
by perturbing x̃ , b̃, and c̃ respectively, using Normal (0,1) noise; the polyhedron P
is constructed as a box using simple bounds −ux1 ≤ x ≤ ux1, −ub1 ≤ b ≤ ub1,
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Fig. 6 Scatter plots for CPU
time (seconds) for solution of
inverse quadratic programs.
Horizontal axis is time for
CPLEX MIP called from AMPL
and run on a single thread,
vertical axis is time for our
branch and cut algorithm

ou
r 
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CPLEX MIP 3600.00

3600.0

−uc1 ≤ c ≤ uc1 with ux = 10max{|x̃i |}, ub = 10max{|b̃i |}, uc = 10max{|c̃i |};
finally, upper bounds are also imposed onλwith uλ = 10max{|λ̃i |}. The point (x̃, b̃, c̃)
with λ̃ is feasible in the resulting problem instances of (16).

It is easy to generate explicit upper bounds on w = Ax − b from the upper bounds
on x and b. Also, explicit upper bounds on λ are imposed following [37]. Thus, this
problemcanbe formulated directly as amixed integer programof the form (2). Because
of this observation, our comparisons in this section are somewhat different from the
previous experiments. In particular, we make the following two changes:

– Since bounds are already available, we do not use the cutting plane generation
features of the preprocessor.

– We compare our LPCC branch-and-cut code with the CPLEXMIP solver invoked
from AMPL, run with a single thread.

Our testbed consisted of 5 sets of 5 instances: (m̃, ñ) equal to (100, 75), (120, 90),
(150, 20), (200, 15), and (400, 5). A scatter plot of the results can be found in Fig. 6
and performance profiles can be found in Fig. 7. Detailed computational results are
contained in the Appendix, in Table 11. Our algorithm was able to solve 23 of the 25
instances within the 3600 s time limit; the corresponding figure for CPLEX was 18
out of 25. There was only one instance where CPLEX outperformed our code. Our
algorithm solved 20 of the 25 instances within 360 s, while CPLEX only solved 6 of
the instances within this time window.

6 Conclusions

The optimal solution to a linear program with complementarity constraints can in
principle be found directly using CPLEX. However, far better performance can often
be obtained by adding good cutting planes, by incorporating a specialized feasibility
recovery routine, and especially by designing good branching routines. Our compu-
tational results demonstrate that our code is at least an order of magnitude faster than
a default version of CPLEX, at least for our test set of instances. It is able to solve
instances with up to 400 complementarity constraints in reasonable amounts of time,
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Fig. 7 Performance profile for CPU time (seconds) for solution of 25 inverse quadratic programs. Vertical
axis is the number of instances. Horizontal axis is ratio of time required by the given algorithm to the time
required by the better algorithm. Time limit 3600 s. a Linear scale. b Log scale

and can reliably solve instances with 100 complementarity constraints in less than a
minute.

A LPCC test instances

See Tables 5 and 6.
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Table 6 Performance data for the 60 instances. The final gap obtained by default CPLEX is indicated for
the 18 instances it didn’t solve (DNF) within the time limit of 3600 s

# m Rank Dense Preprocess time Our algorithm Default CPLEX indicator constraint

Time Nodes Time Nodes %Gap

1 100 30 70 5.93 1.19 404 7.04 2704

2 100 30 70 4.71 5.70 4340 DNF 6572052 0.485

3 100 30 70 9.35 0.61 260 4.98 1775

4 100 30 70 1.79 0.13 38 1.70 185

5 100 30 70 4.80 0.46 210 4.18 1330

6 100 30 20 1.02 0.02 18 0.73 43

7 100 30 20 4.52 0.24 44 0.81 103

8 100 30 20 5.55 0.55 224 5.24 3305

9 100 30 20 3.56 0.08 32 1.04 204

10 100 30 20 0.81 0.10 30 1.16 208

11 100 60 70 1.30 0.24 88 7.08 3940

12 100 60 70 6.38 0.73 588 384.44 353435

13 100 60 70 1.21 0.10 20 1.09 49

14 100 60 70 1.21 1.06 534 9.32 4671

15 100 60 70 7.25 3.69 1322 DNF 9693517 0.125

16 100 60 20 5.29 1.01 444 2.91 907

17 100 60 20 6.02 2.06 1324 7.47 5723

18 100 60 20 1.21 0.35 206 5.55 2672

19 100 60 20 4.76 0.37 194 3.73 1011

20 100 60 20 1.00 0.37 226 2.83 708

Means 3.88 0.95 527

21 150 30 70 24.66 2.40 448 15.58 3307

22 150 30 70 23.08 0.96 124 4.27 0

23 150 30 70 5.11 0.16 56 4.58 211

24 150 30 70 24.49 0.61 98 8.52 2163

25 150 30 70 24.69 6.17 942 685.24 207429

26 150 30 20 3.68 0.20 92 3.27 232

27 150 30 20 16.81 0.20 32 2.76 124

28 150 30 20 18.82 0.36 78 3.62 370

29 150 30 20 14.23 1.60 188 7.03 1256

30 150 30 20 18.49 3.70 682 22.30 10877

31 150 100 70 26.75 101.60 28538 DNF 13175000 0.146

32 150 100 70 4.86 0.54 192 6.31 580

33 150 100 70 27.11 29.50 8744 DNF 2323005 0.114

34 150 100 70 14.16 132.03 32124 DNF 1674151 0.206

35 150 100 70 5.21 10.90 2888 DNF 2443005 0.272

36 150 100 20 4.42 16.12 4602 DNF 15955452 0.437

37 150 100 20 22.16 15.45 3064 2338.14 845218
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Table 6 continued

# m Rank Dense Preprocess time Our algorithm Default CPLEX indicator constraint

Time Nodes Time Nodes %Gap

38 150 100 20 4.84 2.32 584 11.66 1427

39 150 100 20 22.38 4.84 976 19.74 4403

40 150 100 20 23.75 32.48 10376 2063.57 1202357

Means 15.49 16.53 4249

41 200 30 70 126.63 1546.32 181008 DNF 1368269 0.612

42 200 30 70 12.97 0.22 38 5.50 0

43 200 30 70 76.18 1.19 66 8.43 189

44 200 30 70 15.66 1.48 262 29.50 3328

45 200 30 70 14.40 0.33 64 5.77 0

46 200 30 20 44.60 0.85 42 5.51 0

47 200 30 20 49.62 1.17 120 15.08 1714

48 200 30 20 58.34 22.07 930 1538.63 405689

49 200 30 20 39.58 0.69 48 5.75 0

50 200 30 20 48.30 2.80 196 19.23 2749

51 200 120 70 13.90 176.16 27046 DNF 748850 0.292

52 200 120 70 14.87 319.53 53786 DNF 635814 0.048

53 200 120 70 15.17 25.74 5014 DNF 1721873 0.036

54 200 120 70 13.97 47.07 7736 DNF 1350106 0.028

55 200 120 70 87.88 86.08 8646 DNF 4416595 0.168

56 200 120 20 14.61 283.36 42010 DNF 1371796 0.248

57 200 120 20 82.14 1017.50 97688 DNF 651199 0.736

58 200 120 20 12.90 11.19 1834 DNF 1233196 0.160

59 200 120 20 14.43 31.69 5188 DNF 856913 0.101

60 200 120 20 13.87 491.75 85978 DNF 710977 0.278

Means 58.50 203.36 25885

In order to test the effectiveness of different type of valid constraints, a series of
LPCC instances was randomly generated, and Procedure 4 gives a detailed description
of the generator.

Remark 1 In the initialization step of the procedure, n is the dimension of x variable;
m is the dimension of y variable; k is the dimension of b; rankM is the rank of matrix
M ; dense is the density of generated matrices; we assume all instances have the non-
negativity constraint x ≥ 0 which are not included in the constraint Ax + By ≥ b;
step 1 and step 2 are used to generate a feasible LPCC solution; step 8 is to generate
matrix M to be a non-symmetric positive semidefinite matrix with rank rankM .

We generated 60 LPCC instanceswith 100, 150, 200 complementaries, 20 instances
of each size, and with the same parameter, we randomly generated 5 instances. For
CPLEX solving LPCC instances, we used indicator constraints in CPLEX C callable
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input : n,m,k,rankM ,dense
output: vector c,d,b,q; matrix A,B,N ,M

1: generate n dimension vector x̄ with value between 0 and 10, integer;

2: generate m dimension vector ȳ with value between 0 and 10, integer if index <
m

3
; 0 otherwise;

3: generate n dimension vector c with value between 0 and 10, integer;
4: generate m dimension vector d with value between 0 and 10, integer;
5: generate k × n matrix A with value between -5 and 6, integer, and the matrix density is dense;
6: generate k × m matrix B with value between -5 and 6, integer, and the matrix density is dense;
7: generate m × n matrix N with value between -5 and 6, integer, and the matrix density is dense;
8: generate m × rankM matrix L with value between -5 and 6, integer, and the matrix density is
dense; generate m × m upper triangular matrix ΔM with value between -2 and 2, integer; Let
m × m matrix M = LLT + ΔM − ΔMT ;
9: generate k dimension vector Δb with value between 1 and 11, integer; let k dimension vector
b = Ax̄ + B ȳ − Δb;

10: generate m dimension vector Δq with value 0 if index <
2m

3
; integer between 1 and 11

otherwise; let m dimension vector q = −N x̄ − Mȳ + Δq;

Procedure 4: LPCC instances generator

library [35] to formulate the complementarity constraints, and the CPLEX setting is
default. The time limit for CPLEX is 3600 s. Notice that default CPLEX is unable to
solve most of our LPCC instances when m = 200 within 3600 s.

Table 5 contains objective function value information for the 60 instances, including
the effectiveness of the preprocessing routines. Table 6 contains performance data.

B Bilevel test instances

See Tables 7, 8, 9, and 10.
Our code solved all 63 of the instances with dimension of v equal to 50 and 18/35

of the larger instances. With extended time, default CPLEX was able to solve all but
one problem with n = 50; it still has a gap of 16.56% for problem 60 after more than
7200 s of wall clock time and 47304 s of processor time. It solved just 6/35 of the
larger instances. Run time information can be found in Tables 9 and 10.
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Table 7 Values of bilevel instances with dimension of v equal to 50

# Dimensions Rank(Q) LP relaxation Preprocess lower bound Optimal value %Gap shrunk

v b g

1 50 25 50 25 0.644247 0.67043 0.708016 41.06

2 50 25 50 25 0.691488 0.742312 0.817536 40.32

3 50 25 100 25 0.758156 0.853512 0.90403 65.37

4 50 25 100 25 0.508003 0.719332 1.030281 40.46

5 50 25 150 25 0.634865 0.768284 0.930512 45.13

6 50 25 150 25 0.746323 0.939574 1.179523 44.61

7 50 25 200 25 0.834849 0.882683 0.983496 32.18

8 50 25 200 25 0.552456 0.742789 1.113869 33.90

9 50 50 50 25 0.74926 0.833068 0.974266 37.25

10 50 50 50 25 0.596532 0.680096 0.777676 46.13

11 50 50 100 25 0.74352 0.85814 1.025396 40.66

12 50 50 100 25 0.713623 0.897497 1.007106 62.65

13 50 50 150 25 0.734739 0.788571 0.884411 35.97

14 50 50 150 25 0.521193 0.682435 0.990508 34.36

15 50 50 200 25 0.754768 0.782534 0.783561 96.43

16 50 50 200 25 0.754747 0.847708 1.054281 31.04

17 50 75 50 25 0.649778 0.773429 0.945024 41.88

18 50 75 50 25 0.607476 0.880724 1.046959 62.17

19 50 75 100 25 0.720769 0.812158 0.971363 36.47

20 50 75 100 25 0.529814 0.667117 0.949297 32.73

21 50 75 150 25 0.909594 0.93072 0.933821 87.20

22 50 75 150 25 0.710307 0.836857 1.103089 32.22

23 50 75 200 25 0.718915 0.979733 1.326493 42.93

24 50 75 200 25 0.794803 0.916565 0.950861 78.02

25 50 100 50 25 0.766494 0.894661 1.086423 40.06

26 50 100 50 25 0.485909 0.627154 0.962494 29.64

27 50 100 100 25 0.767284 0.838957 0.95196 38.81

28 50 100 150 25 0.578038 0.699594 0.793066 56.53

29 50 100 150 25 0.713984 0.743964 0.760946 63.84

30 50 100 200 25 0.616827 0.867557 1.064487 56.01

31 50 100 200 25 0.651844 0.751472 0.793559 70.30

32 50 25 50 50 0.644746 0.770222 0.897356 49.67

33 50 25 50 50 0.602 0.759655 0.928742 48.25

34 50 25 100 50 0.660691 0.816037 1.03487 41.52

35 50 25 100 50 0.578159 0.804343 1.031041 49.94

36 50 25 150 50 0.69423 0.856205 1.065649 43.61

37 50 25 150 50 0.790053 0.903077 1.01511 50.22

38 50 25 200 50 0.619887 0.766884 0.977958 41.05

39 50 25 200 50 0.661197 0.876876 1.104905 48.61

123

Author's personal copy



302 B. Yu et al.

Table 7 continued

# Dimensions Rank(Q) LP relaxation Preprocess lower bound Optimal value %Gap shrunk

v b g

40 50 50 50 50 0.57275 0.793187 1.07134 44.21

41 50 50 50 50 0.54549 0.696252 0.886063 44.27

42 50 50 100 50 0.656456 0.837083 1.073918 43.27

43 50 50 100 50 0.75742 0.844813 0.963771 42.35

44 50 50 150 50 0.67609 0.907669 1.180604 45.90

45 50 50 150 50 0.671718 0.897607 1.117394 50.68

46 50 50 200 50 0.664089 0.816423 1.043968 40.10

47 50 50 200 50 0.571399 0.856775 1.074 56.78

48 50 75 50 50 0.514044 0.699661 0.899591 48.14

49 50 75 50 50 0.647895 0.741642 0.978757 28.33

50 50 75 100 50 0.623007 0.861603 1.058687 54.76

51 50 75 100 50 0.607434 0.803321 0.940491 58.81

52 50 75 150 50 0.742589 1.022707 1.157709 67.48

53 50 75 150 50 0.706354 0.844787 0.980656 50.47

54 50 75 200 50 0.719345 0.877183 1.064428 45.74

55 50 75 200 50 0.690228 0.845069 0.968196 55.70

56 50 100 50 50 0.642142 0.838403 1.021128 51.79

57 50 100 50 50 0.530841 0.864219 1.13489 55.19

58 50 100 100 50 0.647984 0.832686 1.119443 39.18

59 50 100 100 50 0.70828 0.925214 1.182871 45.71

60 50 100 150 50 0.544611 0.755445 1.086004 38.94

61 50 100 150 50 0.71695 0.891654 0.996318 62.54

62 50 100 200 50 0.48787 0.771204 1.251992 37.08

63 50 100 200 50 0.64742 0.812777 0.970732 51.14
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Table 8 Values of bilevel instances with larger dimensions of v. The final gaps obtained by each code are
indicated for the instances it did not solve

# Dimensions Rank(Q) LP
relaxation

Preprocess
lower
bound

Optimal
value

%Gap
shrunk

Final % gaps

v b g CPLEX Our code

64 75 25 50 50 0.70269 0.796622 1.015407 30.04 5.42

65 75 25 50 50 0.523934 0.662829 0.925725 34.57 Solved

66 75 25100 50 0.590782 0.727175 1.04984 29.71 17.98

67 75 25100 50 0.619884 0.743261 1.056703 28.24 18.16

68 75 50 50 50 0.561663 0.78647 1.011143 50.01 Solved

69 75 50 50 50 0.560373 0.695674 0.980867 32.18 19.20

70 75 50100 50 0.801978 0.889381 1.041901 36.43 Solved

71 75 50100 50 0.754207 0.881563 0.959749 61.96 Solved

72 75 75 50 50 0.700723 0.815533 1.026476 35.24 7.71

73 75 75 50 50 0.601257 0.699462 0.930676 29.81 6.95

74 75 75100 50 0.346691 0.519392 0.86743 33.16 29.05

75 75 75100 50 0.594098 0.738111 1.094845 28.76 25.26

76100 25 50 50 0.882787 0.94306 0.992266 55.05 Solved

77100 25 50 50 0.567423 0.613049 0.732117 27.70 3.08

78100 25 75 50 0.603912 0.639672 0.842811 14.97 20.18

79 75 25 50 75 0.475835 0.699877 No UB 5.19

80 75 25 50 75 0.524895 0.732925 0.98902 44.82 7.86

81 75 25100 75 0.603074 0.783103 16.26 12.05

82 75 25100 75 0.512566 0.680474 16.44 12.09

83 75 50 50 75 0.546256 0.697274 1.092166 27.66 25.04

84 75 50 50 75 0.519369 0.68752 18.61 10.53

85 75 50100 75 0.508331 0.6817 22.22 5.29

86 75 50100 75 0.619981 0.80781 16.37 4.28

87 75 75 50 75 0.485787 0.630083 27.69 13.95

88 75 75 50 75 0.553843 0.737812 7.31 7.04

89 75 75100 75 0.416464 0.615691 18.33 13.76

90 75 75100 75 0.63856 0.783523 1.02771 37.25 Solved
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Table 9 Performance on bilevel instances with dimension of v equal to 50

# Dimensions Rank(Q) Preprocess time Our code Default CPLEX

v b g Time Nodes Time Nodes

1 50 25 50 25 4.03 0.53 152 3.52 1395

2 50 25 50 25 2.51 3.66 834 28.79 8785

3 50 25 100 25 5.50 1.13 154 36.29 21962

4 50 25 100 25 7.06 11.90 2706 364.99 512865

5 50 25 150 25 10.10 4.31 974 39.37 20765

6 50 25 150 25 14.56 16.56 4622 1072.49 966602

7 50 25 200 25 19.37 9.09 2284 706.38 463141

8 50 25 200 25 25.27 116.34 16582 444.74 245964

Means 11.05 20.44 3538 337.07 280184

9 50 50 50 25 2.86 1.75 308 5.17 1897

10 50 50 50 25 3.89 2.68 872 43.18 22949

11 50 50 100 25 5.86 5.53 1118 22.96 12752

12 50 50 100 25 7.83 1.61 222 39.19 26333

13 50 50 150 25 11.11 6.04 1356 84.34 38741

14 50 50 150 25 13.93 16.21 3194 216.39 136792

15 50 50 200 25 7.85 0.01 2 0.46 0

16 50 50 200 25 19.89 38.52 8810 1966.71 1297588

Means 9.15 9.04 1985 297.30 192131

17 50 75 50 25 3.68 3.07 652 8.96 7615

18 50 75 50 25 3.11 3.07 672 78.15 64029

19 50 75 100 25 8.48 9.26 2748 217.66 192307

20 50 75 100 25 8.81 12.40 3996 1035.67 833881

21 50 75 150 25 5.71 0.04 14 0.43 0

22 50 75 150 25 16.55 21.92 3628 3143.11 2896080

23 50 75 200 25 21.39 17.50 2552 2861.97 1606015

24 50 75 200 25 21.42 6.18 692 26.36 6211

Means 11.14 9.18 1869 921.54 700767

25 50 100 50 25 4.52 8.85 1636 59.19 46175

26 50 100 50 25 5.36 9.94 2614 234.31 224258

27 50 100 100 25 5.81 5.98 716 49.56 31727

28 50 100 150 25 13.10 27.25 4164 148.25 45614

29 50 100 150 25 8.00 0.97 42 9.44 2528

30 50 100 200 25 23.57 48.67 10332 3046.81 1566417

31 50 100 200 25 13.62 8.13 824 299.12 135438

Means 10.57 15.68 2904 549.53 293165

32 50 25 50 50 2.92 5.96 1556 64.01 36311

33 50 25 50 50 2.70 7.72 2560 70.79 55449

34 50 25 100 50 7.66 46.89 12238 112.51 56827

35 50 25 100 50 8.15 29.99 5240 840.10 686855
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Table 9 continued

# Dimensions Rank(Q) Preprocess time Our code Default CPLEX

v b g Time Nodes Time Nodes

36 50 25 150 50 14.20 34.38 7064 ≥ 3600 2042811

37 50 25 150 50 9.58 20.46 5170 255.14 74572

38 50 25 200 50 17.34 161.83 34378 ≥ 3600 2001153

39 50 25 200 50 18.56 168.98 39694 ≥ 3600 3371704

Means 10.14 59.53 13488

40 50 50 50 50 3.41 51.01 20124 283.70 277842

41 50 50 50 50 3.61 9.07 2420 93.89 79268

42 50 50 100 50 7.53 29.02 7926 ≥ 3600 4014451

43 50 50 100 50 7.43 13.78 4422 208.67 71494

44 50 50 150 50 13.48 96.14 14774 361.15 223345

45 50 50 150 50 15.29 153.99 21876 581.26 360898

46 50 50 200 50 17.46 248.31 48162 1008.91 465121

47 50 50 200 50 25.74 143.38 26886 1165.71 648962

Means 11.74 93.09 18324

48 50 75 50 50 3.48 9.82 3334 43.88 23923

49 50 75 50 50 3.67 22.58 6612 131.80 87870

50 50 75 100 50 9.70 14.07 2166 28.00 8436

51 50 75 100 50 7.12 4.84 662 101.97 46016

52 50 75 150 50 13.43 2.39 232 3.83 926

53 50 75 150 50 12.51 32.03 5386 178.99 118337

54 50 75 200 50 21.96 56.51 5864 1881.67 904828

55 50 75 200 50 21.35 26.14 4890 194.52 64333

Means 11.65 21.05 3643

56 50 100 50 50 4.87 13.45 3284 272.87 190537

57 50 100 50 50 5.85 51.07 19014 ≥ 3600 30944839

58 50 100 100 50 8.08 120.59 33178 2334.10 1597429

59 50 100 100 50 9.86 147.33 28058 2008.30 1283510

60 50 100 150 50 16.61 218.98 48542 ≥ 3600 3310389

61 50 100 150 50 11.40 18.82 2662 46.03 13536

62 50 100 200 50 21.63 3122.24 323810 ≥ 3600 13525363

63 50 100 200 50 22.05 91.29 9660 353.94 122675

Means 12.54 472.97 58526
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Table 10 Performance on bilevel instances with larger dimensions of v

# Dimensions Rank(Q) Preprocess time Our code Default CPLEX

v b g Time Nodes Time Nodes

64 75 25 50 50 11.47 290.70 75616 ≥ 3600 12455384

65 75 25 50 50 7.73 299.37 68770 ≥ 3600 17447435

66 75 25 100 50 20.20 396.67 86638 ≥ 3600 14159416

67 75 25 100 50 16.82 934.03 159358 ≥ 3600 7263261

Means 14.06 480.19 97596

68 75 50 50 50 12.75 89.09 19502 ≥ 3600 31475242

69 75 50 50 50 10.46 139.84 28866 ≥ 3600 1747600

70 75 50 100 50 13.46 51.33 7478 ≥ 3600 4579441

71 75 50 100 50 17.91 5.75 362 3585.51 1415201

Means 13.65 71.50 14052

72 75 75 50 50 9.32 94.15 16830 ≥ 3600 4006474

73 75 75 50 50 11.50 86.90 15076 ≥ 3600 3636937

74 75 75 100 50 21.87 2519.64 267744 ≥ 3600 1185965

75 75 75 100 50 24.30 1569.69 197996 ≥ 3600 1144374

Means 16.75 1067.60 124412

76 100 25 50 50 8.99 6.78 408 155.29 27742

77 100 25 50 50 8.18 79.48 5450 ≥ 3600 2647874

78 100 25 75 50 26.23 1030.75 100044 ≥ 3600 1049577

Means 14.47 372.34 35301

79 75 25 50 75 8.50 ≥ 3600 542572 ≥ 3600 3248691

80 75 25 50 75 11.67 1197.30 212828 ≥ 3600 2730181

81 75 25 100 75 16.93 ≥ 3600 449218 ≥ 3600 13374465

82 75 25 100 75 22.19 ≥ 3600 268486 ≥ 3600 13553753

83 75 50 50 75 10.94 3587.62 445828 ≥ 3600 2126574

84 75 50 50 75 12.60 ≥ 3600 488384 ≥ 3600 1758366

85 75 50 100 75 22.05 ≥ 3600 408186 ≥ 3600 1269948

86 75 50 100 75 19.24 ≥ 3600 429360 ≥ 3600 1389433

87 75 75 50 75 12.25 ≥ 3600 442694 ≥ 3600 1984975

88 75 75 50 75 11.15 ≥ 3600 463366 ≥ 3600 2227245

89 75 75 100 75 24.20 ≥ 3600 276876 ≥ 3600 1390365

90 75 75 100 75 20.69 1221.35 107572 3537.29 1604647
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C Inverse QP instances

See Table 11.
Computational results on 25 inverse QP instances can be found in Table 11. For

each set of 5 instances, the average CPU time is listed if all the instances were solved
or the number of solved instances is noted.

Table 11 Performance on 25 inverse quadratic programs. Mean solution time is listed for each set of five
problems solved successfully by a code; otherwise, the number of solved instances is given. The number
of cutting planes added by CPLEX MIP is also reported; GF are Gomory fractional cuts, MIR are mixed
integer rounding cuts, L&P are lift-and-project cuts, and IB are implicit bound cuts

m̃ ñ Instance Time for our code CPLEX MIP time CPLEX MIP cuts

GF MIR L&P IB

100 75 a 303.58 3504.84 5 3 2

100 75 b 304.58 2686.84 22 1

100 75 c 60.38 69.09 11 1

100 75 d 328.71 3600.00 19

100 75 e 94.91 182.61 11 1

Mean or success 218.43 4 of 5

120 90 a 271.24 1314.80 9 7

120 90 b 250.26 3600.00 14 2

120 90 c 126.13 209.95 7 5

120 90 d 215.09 3600.00 16

120 90 e 1101.49 3864.48 11 8

Mean or success 392.84 2 of 5

150 20 a 55.12 702.95 5

150 20 b 486.00 3263.58 7

150 20 c 163.54 3319.01 4

150 20 d 49.13 1260.59 6

150 20 e 3605.77 3781.06 1

Success 4 of 5 4 of 5

200 15 a 154.11 1057.09 7

200 15 b 81.65 477.30 1

200 15 c 3604.85 3600.00 4

200 15 d 128.41 365.59 7 1

200 15 e 47.71 224.61 5

Success 4 of 5 4 of 5

400 5 a 225.54 1573.05 7

400 5 b 1797.89 3600.00 17

400 5 c 238.79 183.92 21

400 5 d 252.45 388.98 20

400 5 e 47.45 224.18 5

Mean or success 512.42 4 of 5
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