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Abstract

We present a complete, automated, and effi-
cient approach for utilizing valency analysis in
making dependency parsing decisions. It in-
cludes extraction of valency patterns, a proba-
bilistic model for tagging these patterns, and
a joint decoding process that explicitly con-
siders the number and types of each token’s
syntactic dependents. On 53 treebanks rep-
resenting 41 languages in the Universal De-
pendencies data, we find that incorporating va-
lency information yields higher precision and
F1 scores on the core arguments (subjects and
complements) and functional relations (e.g.,
auxiliaries) that we employ for valency anal-
ysis. Precision on core arguments improves
from 80.87 to 85.43. We further show that
our approach can be applied to an ostensibly
different formalism and dataset, Tree Adjoin-
ing Grammar as extracted from the Penn Tree-
bank; there, we outperform the previous state-
of-the-art labeled attachment score by 0.7. Fi-
nally, we explore the potential of extending va-
lency patterns beyond their traditional domain
by confirming their helpfulness in improving
PP attachment decisions.'

1 Introduction

Many dependency parsers treat attachment deci-
sions and syntactic relation labeling as two in-
dependent tasks, despite the fact that relation la-
bels carry important subcategorization informa-
tion. For example, the number and types of the
syntactic arguments that a predicate may take is
rather restricted for natural languages — it is not
common for an English verb to have more than one
syntactic subject or more than two objects.

In this work, we present a parsing approach
that explicitly models subcategorization of (some)
syntactic dependents as valency patterns (see

'Our implementation is available at https://
github.com/tzshi/valency-parser—emnlpl8
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Cornell University
llee @cs.cornell.edu

He says that you like to swim .

Figure 1: Sample annotation in UD, encoding the
core valency pattern nsubj ¢ ccomp for says,
nsubj ¢ xcomp for like, and so on (see §2-4)

Fig. 1 for examples), and operationalize this no-
tion as extracted supertags. An important dis-
tinction from prior work is that our definition of
valency-pattern supertags is relativized to a user-
specified subset of all possible syntactic relations
(see §3). We train supertaggers that assign proba-
bilities of potential valency patterns to each token,
and leverages these probabilities during decoding
to guide our parsers so that they favor more lin-
guistically plausible output structures.

We mainly focus on two subsets of relations in
our analysis, those involving core arguments and
those that represent functional relations, and per-
form experiments over a collection of 53 treebanks
in 41 languages from the Universal Dependencies
dataset (UD; Nivre et al., 2017). Our valency-
aware parsers improve upon strong baseline sys-
tems in terms of output linguistic validity, mea-
sured as the accuracy of the assigned valency pat-
terns. They also have higher precision and F1
scores on the subsets of relations under analysis,
suggesting a potentially controlled way to balance
precision-recall trade-offs.

We further show that our approach is not limited
to a particular treebank annotation style. We apply
our method to parsing another grammar formal-
ism, Tree Adjoining Grammar, where dependency
and valency also play an important role in both
theory and parser evaluation. Our parser reaches
a new state-of-the-art LAS score of 92.59, with
more than 0.6 core-argument F1-score improve-
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ment over our strong baseline parser.

Finally, we demonstrate the applicability of our
valency analysis approach to other syntactic phe-
nomena less associated with valency in its tradi-
tional linguistic sense. In a case study of PP at-
tachment, we analyze the patterns of two syntac-
tic relations commonly used in PP attachment, and
include them in the joint decoding process. Preci-
sion of the parsers improves by an absolute 3.30%
on these two relation types.

2 Syntactic Dependencies and Valencies

According to Nivre (2005), the modern depen-
dency grammar can be traced back to Tesniere
(1959), with its roots reaching back several cen-
turies before the Common Era. The theory is cen-
tered on the notion of dependency, an asymmet-
rical relation between words of a sentence. Tes-
nicre distinguishes three node types when analyz-
ing simple predicates: verb equivalents that de-
scribe actions and events, noun equivalents as the
arguments of the events, and adverb equivalents
for detailing the (temporal, spatial, etc.) circum-
stances. There are two types of relations: (1)
verbs dominate nouns and adverbs through a de-
pendency relation; (2) verbs and nouns are linked
through a valency relation. Tesni¢re compares a
verb to an atom: a verb can attract a certain num-
ber of arguments, just as the valency of an atom
determines the number of bonds it can engage in
(Agel and Fischer, 2015). In many descriptive
lexicographic works (Helbig and Schenkel, 1959;
Herbst et al., 2004), valency is not limited to verbs,
but also includes nouns and adjectives. For more
on the linguistic theory, see Agel et al. (2003,
2006).

Strictly following the original notion of va-
lency requires distinguishing between arguments
and adjuncts, as well as obligatory and optional
dependents. However, there is a lack of consen-
sus as to how these categorizations may be dis-
tinguished (Tutunjian and Boland, 2008), and thus
we adopt a more practical definition in this paper.

3 Computational Representation

Formally, we fix a set of syntactic relations R,
and define the valency pattern of a token w; with
respect to R as the linearly-ordered’ sequence

2Our approach, whose full description is in §5, can be
adapted to cases where linear ordering is de-emphasized. The
algorithm merely requires a distinction between left and right

Dataset  Subset Syntactic Relations
Core ngubj, obj, iobj,
csubj, ccomp, xcomp
UD aux, cop, mark,
Func.
det, clf, case
PP (§8) nmod, obl
0 (subject), 1 (object),
TAG Core 2 (indirect object)
Co-head CO

Table 1: Sets of syntactic relations we used for va-
lency analysis. UD subsets come from the official
categorization in the annotation guidelines.

a_j---a_1%ay---ag: the o symbol denotes the
center word w;, and each a; asserts the existence
of a word w dominated by w; via relation a; € R,
W 2, w. For a; and a,,, when [ < m, the syn-
tactic dependent for a; linearly precedes the syn-
tactic dependent for a,,. As an example, consider
the UD-annotated sentence in Fig. 1. The token
says has a core-relation® valency pattern nsubj o
ccomp, and like has the pattern nsubj ¢ xcomp.
If we consider only functional relations, both like
and swim have the pattern mark o.* We sometimes
employ the abbreviated notation o™ o o, where o
indicates a sequence and the letters L and R distin-
guish left dependencies from right dependencies.

We make our definition of valency patterns de-
pendent on choice of R not only because some de-
pendency relations are more often obligatory and
closer to the original theoretical definition of va-
lency, but also because the utility of different types
of syntactic relations can depend on the down-
stream task. For example, purely functional de-
pendency labels are semantically vacuous, so they
are often omitted in the semantic representations
extracted from dependency trees for question an-
swering (Reddy et al., 2016, 2017). There are also
recent proposals for parser evaluation that down-
play the importance of functional syntactic rela-
tions (Nivre and Fang, 2017).

dependents. We choose to encode linearity since it appears
that most languages empirically exhibit word order prefer-
ences even if they allow for relatively free word order.
>UD core and functional relations are listed in Table 1.
“The (possibly counterintuitive) direction for that and o
is a result of UD’s choice of a content-word-oriented design.
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4 Pilot Study: Sanity Checks

We consider two questions that need to be ad-
dressed at the outset:’

1. How well do the extracted patterns generalize
to unseen data?

2. Do state-of-the-art parsers already capture
the notion of valency implicitly, though they
are not explicitly optimized for it?

The first question checks the feasibility of learning
valency patterns from a limited amount of data;
the second probes the potential for any valency-
informed parsing approach to improve over cur-
rent state-of-the-art systems.

To answer these questions, we use the UD 2.0
dataset for the CoNLL 2017 shared task (Zeman
et al., 2017) and the system outputs® of the top
five performing submissions (Dozat et al., 2017;
Shi et al., 2017b; Bjorkelund et al., 2017; Che
et al., 2017; Lim and Poibeau, 2017). Selection
of treebanks is the same as in §6. We extract va-
lency patterns relative to the set of 6 UD core ar-
guments given in Table 1 because they are close to
the original notion of valency and we hypothesize
that these patterns should exhibit few variations.
This is indeed the case: the average number of
valency patterns we extract is 110.4 per training
treebank, with Turkish (t r) having the fewest at
34, and Galician (g1) having the most at 298 pat-
terns. We observe that in general, languages with
higher degree of flexibility in word order tend to
generate more patterns in the data, as our patterns
encode linear word order information.

Next, we extract valency patterns from the test
set and compare them against those from the train-
ing set. On average, out of the 55.4 patterns ob-
served in the gold-standard test sets, only 5.5, or
9.98%, are new and unseen with respect to train-
ing. In comparison, 36.2% of the word types ap-
pearing in the test sets are not seen during training.
This suggests that the valency pattern space is rel-
atively restricted, and the patterns extracted from
training sets do generalize well to test sets.

Finally, we consider the average number of va-
lency patterns extracted from the top-performing

SWe actually performed these sanity checks after im-
plementation and experiments of our approach, because we
missed this idea and because it requires access to test sets that
we abstained from looking at during model development.

SRetrieved from https://lindat .mff.cuni.cz/
repository/xmlui/handle/11234/1-2424.

system outputs and the number of those not ob-
served in training.” All 5 systems are remarkably
“hallucinatory” in inventing valency relations, in-
troducing 16.8 to 35.5 new valency patterns, sig-
nificantly larger than the actual number of unseen
patterns. Below we show an error committed by
the state-of-the-art Dozat et al. (2017) parser (up-
per half) as compared to the gold-standard annota-
tion (lower half), and we highlight the core argu-
ment valency relations of the verb bothers in bold.
The system incorrectly predicts how come to be a
clausal subject.

How come no one bothers to ask ...

l
advmod

Each such non-existent new pattern implies at
least some (potentially small) parsing error that
can contribute to the degradation of downstream
task performance.

5 Valency-Aware Dependency Parsing

5.1 Overview

Our model is based on the following probability

factorization for a given sentence x = wi, ..., Wy,
and parse tree y for x:
1 n
P(ylz) = HP vi|w; ) P(hi|wq) P(ri|wi, hi),
l'
i=1

where Z, is the normalization factor, v; is the va-
lency pattern extracted for w; from y, h; is the
index of the syntactic governor of w;, and 7; is
the syntactic relation label of the dependency rela-
tion between wy,; and w;. We first assume that we
have a feature extractor that associates each token
in the sentence w; with a contextualized feature
vector w;, and explain how to calculate the fac-
tored probabilities (§5.2). Then we discuss decod-
ing (§5.3) and training (§5.4). Our decoder can be
viewed as a special-case implementation of head-
automaton grammars (Alshawi, 1996; Eisner and
Satta, 1999). Finally, we return to the issue of fea-
ture extraction (§5.5).

"The CoNLL 2017 shared task is an end-to-end parsing
task, so the participating systems do not have access to gold-
standard tokenization, which is a potential explanation for the
presented analysis. On the other hand, the conclusion still
holds even if we restrict to system outputs with perfect or
nearly perfect segmentations.
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Figure 2: Eisner’s (1996)/Eisner and Satta’s (1999) algorithm, with valency-pattern annotations, incorpo-
rated as state information, shown explicitly. We show only the R-rules; the L-rules are symmetric.

5.2 Parameterization

We parameterize P(v;|w;) as a softmax distribu-
tion over all candidate valency patterns:

P(vi|w;) oc exp(scoreVAL(wi)),

CH)

where score VAL

is a multi-layer perceptron (MLP).

For each word w;, we generate a probability dis-
tribution over all potential syntactic heads in the
sentence (Zhang et al., 2017). After we have se-
lected the head of w; to be wy,;, we decide on the
syntactic relation label based on another probabil-

ity distribution. We use two softmax functions:

P(h;|w;) oc exp(score™AP (wy,., w;)),

r P (w,, wi)),

P(rilw;, h;) oc exp(score;

HEAD LABEL

where both score and score are param-
eterized by deep biaffine scoring functions (Dozat
and Manning, 2017).

5.3 Decoding

For joint decoding, we adopt the Eisner’s (1996)
algorithm annotated with valency patterns as the
state information in Eisner and Satta (1999). The
algorithm is depicted in Fig. 2. For each complete
and incomplete span, visualized as triangles and
trapezoids respectively, we annotate the head with
its valency pattern. We adopt Earley’s (1970) no-
tation of e to outward-delimit the portion of a va-
lency pattern, starting from the center word ¢, that
has already been collected within the span. INIT
generates a minimal complete span with hypoth-
esized valency pattern; the e is put adjacent to ©.

CoMB matches an incomplete span to a complete
span with compatible valency pattern, yielding a
complete analysis on the relevant side of ¢. LINK
either advances the e by attaching a syntactic de-
pendent with the corresponding relation label, or
attaches a dependent with a relation label irrele-
vant to the current valency analysis. This algo-
rithm can be easily extended to cases where we
analyze multiple subsets of valency relations si-
multaneously: we just need to annotate each head
with multiple layers of valency patterns, one for
each subset.?

The time complexity of a naive dynamic
programming implementation is O(|V|?|a|n?),
where |V is the number of valency patterns and
|| is the maximum length of a valency pattern. In
practice, |V| is usually larger than n, making the
algorithm prohibitively slow. We thus turn to A*
parsing for a more practical solution.

A* parsing We take inspiration from A* CCG
parsing (Lewis and Steedman, 2014; Lewis et al.,
2016; Yoshikawa et al., 2017). The idea (see
Alg. 1) is to estimate the best compatible full parse
for every chart item (in our case, complete and in-
complete spans), and expand the chart based on
the estimated priority scores. Our factorization of
probability scores allows the following admissi-
ble heuristic: for each span, we can optimistically
estimate its best full parse score by assigning to

8To allow our model to account for unseen patterns in new
data, we create a special wildcard valency pattern that allows
dependents with arbitrary relations in the decoding process,
and during training, treat valency patterns occurring fewer
than 5 times as examples of the wildcard pattern.
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Algorithm 1 Agenda-based best-first parsing al-
gorithm, adapted from Lewis et al. (2016), Alg. 1.
Helper Functions: INIT(s) returns the set of
spans generated by INIT. C.RULES(p) returns the
set of spans that can be derived by combining p
with existing entries in C through COMB or LINK.

1: procedure PARSE(s)

2 /I Empty priority queue A

3 A— g

4: /! Initialize A with minimal complete spans
5: for p € INIT(s) do

6 A.INSERT(p);

7

8

9

/I Empty chart C
C—g
: while A # ¢ do
10: p «— A.POPMAX()
11: /I Found the global optimal solution
12: if p is a full parse then return p
13: else if p ¢ C then
14: C.ADD(p)
15: /I Extend the chart
16: for p’ € C.RULES(p) do
17: A.INSERT(p')

every token outside the span the best possible va-
lency pattern, best possible attachment and best re-
lation label.

5.4 Training

We train all components jointly and optimize for
the cross entropy between our model prediction
and the gold standard, or, equivalently, the sum
of the log-probabilities for the three distributions
comprising our factorization from §5.1. This can
be thought of as an instance of multi-task learn-
ing (MTL; Caruana, 1997), which has been shown
to be useful in parsing (Kasai et al., 2018). To
further reduce error propagation, instead of using
part-of-speech tags as features, we train a tagger
jointly with our main parser components (Zhang
and Weiss, 2016).

5.5 Feature Extraction

We adopt bi-directional long short-term memory
networks (bi-LSTMs; Hochreiter and Schmidhu-
ber, 1997) as our feature extractors, since they
have proven successful in a variety of syntactic
parsing tasks (Kiperwasser and Goldberg, 2016;
Cross and Huang, 2016; Stern et al., 2017; Shi
et al,, 2017a). As inputs to the bi-LSTMs,

we concatenate one pre-trained word embedding,
one randomly-initialized word embedding, and
the output of character-level LSTMs for captur-
ing sub-token level information (Ballesteros et al.,
2015). The bi-LSTM output vectors at each
timestep are then assigned to each token as its con-
textualized representation w;.

6 Experiments

Data and Evaluation Our main experiments are
based on UD version 2.0, which was prepared for
the CoNLL 2017 shared task (Zeman et al., 2017).
We used 53 of the treebanks’ across 41 languages
that have train and development splits given for the
shared task. In contrast to the shared-task setting,
where word and sentence segmentation are to be
performed by the system, we directly use the test-
set gold segmentations in order to focus directly on
parsing; but this does mean that the performance
of our models cannot be directly compared to the
officially-reported shared-task results. For evalu-
ation, we report unlabeled and labeled attachment
scores (UAS and LAS respectively). Further, we
explicitly evaluate precision, recall and F1 scores
(P/R/F) for the syntactic relations from Table 1, as
well as valency pattern accuracies (VPA) involv-
ing those relations.

Implementation Details We use three-layer bi-
LSTMs with 500 hidden units (250 in each di-
rection) for feature extraction. The valency an-
alyzer uses a one-hidden-layer MLP with RelLU
activation function (Nair and Hinton, 2010), while
the head selector and labeler use 512- and 128-
dimensional biaffine scoring functions respec-
tively. Our models are randomly initialized (Glo-
rot and Bengio, 2010) and optimized with AMS-
grad (Reddi et al., 2018) with initial learning rate
0.002. We apply dropout (Srivastava et al., 2014)
to our MLPs and variational dropout (Gal and
Ghahramani, 2016) to our LSTMs with a keep rate
of 0.67 during training.

Efficiency Our A* parsers are generally reason-
ably efficient; for the rare (< 1%) cases where the
A* search does not finish within 500,000 chart ex-
pansion steps, we back off to a model without va-
lency analysis. When analyzing three or more re-
lation subsets, the initialization steps become pro-

We exclude the two large treebanks cs and
ru_syntagrus due to experiment resource constraints.

There are other Czech and Russian treebanks in our selected
collection.
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Core Func.
Subsets UAS LAS # VPA P/R/F # VPA P/R/F

87.59 83.64 | 2.75 95.83 80.87/81.31/81.08 | 4.85 97.51 91.99/92.43/92.20

Core MTL | 87.71 83.80 | 2.73 96.02 81.96/81.98/81.96 | 4.85 97.51 91.96/92.50/92.23
+ Joint Decoding | 87.80 83.93 | 2.60 96.68 85.43/81.75/83.53 | 4.86 97.50 91.81/92.65/92.22

Func. MTL | 87.67 83.71 | 2.75 95.80 80.69/81.21/80.94 | 4.84 97.58 92.30/92.57/92.44
+ Joint Decoding | 87.72 83.75 | 2.75 95.80 80.64/81.32/80.96 | 4.80 97.74 93.16/92.42/92.79

Core + Func. MTL | 87.67 83.79 | 2.73 95.99 81.72/81.81/81.75 | 4.84 97.59 92.27/92.62/92.44
+ Joint Decoding | 87.81 83.99 | 2.63 96.60 84.70/81.90/83.26 | 4.82 97.74 92.98/92.69/92.83

Baseline

Table 2: Macro-averaged results on UD 2.0 across 53 treebanks. Detailed results in the Suppl. Material.
VPA=valency pattern accuracy; MTL=multi-task learning; #=average number of predicted attachments
per sentence. Best results for each metrics are highlighted in bold.

Treebank Baseline Joint ER \ Treebank Baseline Joint ER \ Treebank  Baseline Joint ER
Dutchpmax 84.91 89.83 32.63 | Portuguesemax 92.24 93.46 15.66 | Norwegianmin 90.38 91.41 10.76
Greek 85.82 89.50 25.95 | Portuguesemin  86.90 88.88 15.10 | Indonesian 81.53 83.51 10.75
Swedishyax  86.97 90.21 24.92 | Spanishmax 85.04 87.29 15.06 | Latvian 71.33 74.41 10.74
Finnishvax ~ 88.14 90.87 22.96 | Hungarian 79.11 82.13 14.45 | Frenchyn 90.56 91.51 10.01
Italian 87.04 90.00 22.85 | Arabic 74.33 T77.97 14.16 | Basque 76.79 78.97 9.39
Latinyax 82.52 86.37 22.03 | Urdu 70.47 74.63 14.07 | Hindi 80.38 82.16 9.04
Danish 85.85 88.93 21.75 | Dutchmin 76.03 79.18 13.13 | German 81.05 82.73 8.85
Finnishyn 87.95 90.44 20.68 | Swedishyn 85.51 87.36 12.76 | Czechmin 76.68 78.64 8.42
Slovenian 86.03 88.59 18.31 | Croatian 84.14 86.12 12.46 | Polish 86.67 87.72 7.84
Old Slavonic  76.79 81.02 18.25 | Gothic 72.15 75.60 12.38 | A. Greekmin 59.00 62.17 7.74
Frenchyax 89.86 91.71 18.21 | A. Greekmax 74.31 77.48 12.34 | Turkish 58.43 61.59 7.61
Estonian 72.02 77.09 18.09 | Hebrew 80.27 82.60 11.80 | Korean 83.33 84.55 7.31
Slovak 80.39 83.78 17.32 | Persian 80.83 83.08 11.72 | Chinese 73.81 75.66 7.07
Czechmax 85.58 88.02 16.90 | Norwegianmax 91.20 92.21 11.50 | Englishmin 84.69 85.60 5.96
Latinyn 76.60 80.55 16.89 | Catalan 88.19 89.54 11.49 | Vietnamese 48.45 51.49 591
Romanian 82.60 85.51 16.74 | Englishmm 84.26 86.05 11.37 | Galician 72.17 73.70 5.49
Englishyax  90.96 92.43 16.20 | Spanishmin 88.72 89.98 11.17 | Japanese 91.87 91.88 0.14
Russian 82.17 85.05 16.13 | Bulgarian 83.98 85.75 11.02 | Average 81.08 &83.53 13.80

Table 3: Treebank-specific F1 scores on core argument relations, comparing the baseline models to our
Core MTL + joint decoding models, sorted by the error reduction (ER, %) rate. When comparing a model
with performance sy against baseline score s1, ER is defined as (sa — s1)/(1 — s1). For languages with
two or three treebanks, we include multiple entries differentiated by the subscripts MAX/MID/MIN,
corresponding to the treebanks with the highest/median/lowest ER, respectively. A. Greek = Ancient
Greek.
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hibitively slow due to the large number of valency
pattern combinations. Thus, we limit the num-
ber of combinations for each token to the highest-
scoring 500.

Results on UD We present our main experimen-
tal results on UD in Table 2. The baseline sys-
tem does not leverage any valency information
(we only train the head selectors and labelers,
and use the original Eisner decoder). We com-
pare the baseline to settings where we train the
parsers jointly with our proposed valency analyz-
ers, distinguishing the effect of using this infor-
mation only at training (multi-task learning; MTL)
vs. both at training and decoding.

Including valency analysis into the training ob-
jective already provides a slight improvement in
parsing performance, in line with the findings of
Kasai et al. (2018). With our proposed joint de-
coding, there is a mild improvement to the overall
UAS and LAS, and a higher boost to VPA. The
output parse trees are now more precise in the an-
alyzed valency relations: on core arguments, pre-
cision increases by as much as 4.56. As shown
by Table 3, the performance gain of joint decod-
ing varies across treebanks, ranging from an error
reduction rate of over 30% (Dutch Lassy Small
Treebank) on core argument relations to nearly
0% (Japanese). Overall, our approach exhibits a
clearly positive impact on most of the treebanks
in UD. We do not see performance correlating
to language typology, although we do observe
smaller error-reduction rates on treebanks with
lower baseline performances, that is, on “harder”
languages.

7 Parsing Tree Adjoining Grammar

Dependency and valency relations also play an
important role in formalisms other than depen-
dency grammar. In this section, we apply our pro-
posed valency analysis to Tree Adjoining Gram-
mar (TAG; Joshi and Schabes, 1997), because
TAG derivation trees, representing the process
of inserting obligatory arguments and adjoining
modifiers, can be treated as a dependency repre-
sentation (Rambow and Joshi, 1997). We follow
prior art and use Chen’s (2001) automatic conver-
sion of the Penn Treebank (Marcus et al., 1993)
into TAG derivation trees. The dataset annota-
tion has labels 0, 1 and 2, corresponding to sub-
ject, direct object, and indirect object; we treat
these as our core argument subset in valency anal-

ysis.!? Additionally, we also analyze CO (co-head
for phrasal verbs) as a separate singleton subset.
We leave out adj (adjuncts) in defining our va-
lency patterns. We strictly follow the experiment
protocol of previous work (Bangalore et al., 2009;
Chung et al., 2016; Friedman et al., 2017; Kasai
et al., 2017, 2018), and report the results in Ta-
ble 4. The findings are consistent with our main
experiments: MTL helps parsing performance,
and joint decoding further improves on core argu-
ment F1 scores, reaching a new state-of-the-art re-
sult of 92.59 LAS. The precision recall trade-off is
pronounced for the CO relation subset.

8 Case Study on PP Attachment

Although valency information has traditionally
been used to analyze complements or core argu-
ments,!! in this section, we show the utility of
our approach in analyzing other types of syntactic
relations. We choose the long-standing problem
of prepositional phrase (PP) attachment (Hindle
and Rooth, 1993; Brill and Resnik, 1994; Collins
and Brooks, 1995; de Kok et al., 2017), which is
known to be a major source of parsing mistakes
(Kummerfeld et al., 2012; Ng and Curran, 2015).
In UD analysis, PPs usually have the labels obl
or nmod with respect to their syntactic parents,
whereas adpositions are attached via a case rela-
tion, which is included in the functional relation
subset. Thus, we add another relation subset, obl
and Nmod, to our valency analysis.

Table 5 presents the results for different com-
binations of valency relation subsets. We find
that PP-attachment decisions are generally harder
to make, compared with core and functional re-
lations. Including them during training distracts
other parsing objectives (compare Core + PP with
only analyzing Core in §6). However, they do per-
mit improvements on precision for PP attachment
by 3.30, especially with our proposed joint decod-
ing. This demonstrates the usage of our algorithm
outside the traditional notions of valency — it can
be a general method for training parsers to focus
on specific subsets of syntactic relations.

%We choose not to use the sparse labels 3 and 4, which
encode additional complements.

'There are also recent proposals to analyze valency with-
out distinguishing complements and adjuncts (Cech et al.,
2010).

1283



Core CO
UAS LAS VPA P/R/F VPA P/R/F

Friedman et al. (2017) | 90.31 88.96 - - - -

Kasai et al. (2017) | 90.97  89.68 - - - -

Kasai et al. (2018) | 93.26 91.89 - - - -
Baseline \ 93.66 92.44 \ 97.06 92.45/92.76 / 92.60 \ 99.22  73.11/87.20/79.54
Core + COMTL | 93.71  92.53 97.19 92.74793.20/92.97 99.24  75.43/84.44/79.68
+ Joint Decoding | 93.75 92.59 | 97.47 93.27/93.22/93.24 | 99.24 76.06/83.70/79.70

Table 4: Experimental results on parsing TAGs.

Core P/R/F

Func. P/R/F

PP P/R/F

80.87/81.31/81.08

91.99/92.43/92.20

77.29/77.99/77.62

80.61/81.23/80.91
79.93/81.50/80.69

92.03/92.50/92.26
91.92/92.51/92.21

78.30/78.38/78.32
80.59/77.68/79.04

81.62/81.81/81.71

84.18/81.97/83.05

91.93/92.52/92.22
91.68/92.65/92.16

77.93/78.25/78.08
79.71/78.03/78.83

| UAS LAS |
Baseline | 87.59 83.64 |
PPMTL | 87.67 83.70
+ Joint Decoding | 87.68 83.69
Core + PPMTL | 87.70 83.77
+ Joint Decoding | 87.80 83.91
Core + Func. + PP MTL | 87.67 83.75
+ Joint Decoding | 87.81 83.94

81.35/81.68/81.50
83.88/81.97/82.90

92.18/92.61/92.39

92.78/92.63/92.70

77.99/78.22/78.08
79.54/78.11/78.78

Table 5: Experimental results involving analyzing PPs as valency patterns.

9 Further Related Work

Supertagging Supertagging (Bangalore and
Joshi, 2010) has been proposed for and used
in parsing TAG (Bangalore and Joshi, 1999;
Nasr and Rambow, 2004), CCG (Curran and
Clark, 2003; Curran et al., 2006), and HPSG
(Ninomiya et al., 2006; Blunsom and Baldwin,
2006). Within dependency parsing, supertags
have also been explored in the literature, but prior
work mostly treats them as additional features.
Ambati et al. (2013, 2014) use CCG supertags to
improve dependency parsing results, while Ouchi
et al. (2014, 2016) leverage dependency-based
supertags as features. Faleriska et al. (2015) com-
pare supertagging to parser stacking, where they
extract supertags from base parsers to provide
additional features for stacked parsers, instead of
having a supertagger as a separate component.

Constrained Dependency Grammar Another
line of research (Wang and Harper, 2004; Foth
et al., 2006; Foth and Menzel, 2006; Bharati
et al., 2002, 2009; Husain et al., 2011) utilizes su-
pertags in dependency parsing within the frame-
work of constraint dependency grammar (CDG;
Maruyama, 1990; Heinecke et al., 1998). Con-
straints in CDG may be expressed in very gen-
eral terms (and are usually hand-crafted for spe-
cific languages), so prior work in CDG involves
a constraint solver that iteratively or greedily up-

date hypotheses without optimality guarantees. In
contrast, our work focuses on a special form of
constraints — the valency patterns of syntactic de-
pendents within a subset of relations — and we
provide an efficient A*-based exact decoding al-
gorithm.

Valency in Parsing To the best of our knowl-
edge, there have been few attempts to utilize lex-
ical valency information or to improve specifi-
cally on core arguments in syntactic parsing apart
from CDG. @vrelid and Nivre (2007) target pars-
ing core relations in Swedish with specifically-
designed features such as animacy and defi-
niteness that are useful in argument realization.
Jakubicek and Kovar (2013) leverage external lex-
icons of verb valency frames for reranking. Mir-
roshandel et al. (2012, 2013) and Mirroshandel
and Nasr (2016) extract selectional constraints and
subcategorization frames from large unannotated
corpora, and enforce them through forest rerank-
ing. Our approach does not rely on external re-
sources or lexicons, but directly extracts valency
patterns from labeled dependency parse trees. Ear-
lier works in this spirit include Collins (1997).

Semantic Dependency Parsing and Semantic
Role Labeling The notion of valency is also
used to describe predicate-argument structures
that are adopted in semantic dependency pars-
ing and semantic role labeling (Surdeanu et al.,
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2008; Hajic et al., 2009; Oepen et al., 2014, 2015).
While semantic frames clearly have patterns, pre-
vious work (Punyakanok et al., 2008; Flanigan
et al., 2014; Téckstrom et al., 2015; Peng et al.,
2017; He et al., 2017) incorporates several types
of constraints, including uniqueness and determin-
ism constraints that require that certain labels ap-
pear as arguments for a particular predicate only
once. They perform inference through integer lin-
ear programming, which is usually solved approx-
imately, and cannot easily encode linear ordering
constraints for the arguments.

A* parsing Best-first search uses a heuristic to
expand the parsing chart instead of doing so ex-
haustively. It was first applied to PCFGs (Rat-
naparkhi, 1997; Caraballo and Charniak, 1998;
Sagae and Lavie, 2006), and then to dependency
parsing (Sagae and Tsujii, 2007; Zhao et al.,
2013; Vaswani and Sagae, 2016). Our proba-
bility factorization permits a simple yet effec-
tive A* heuristic. A* parsing was introduced for
parsing PCFGs (Klein and Manning, 2003; Pauls
and Klein, 2009), and has been widely used for
grammar formalisms and parsers with large search
spaces, for example CCG (Auli and Lopez, 2011)
and TAG (Waszczuk et al., 2016, 2017). Our
decoder is similar to the supertag and dependency
factored A* CCG parser (Yoshikawa et al., 2017),
which in turn builds upon the work of Lewis and
Steedman (2014) and Lewis et al. (2016). Our
model additionally adds syntactic relations into
the probability factorizations.

10 Conclusions

We have presented a probability factorization and
decoding process that integrates valency patterns
into the parsing process. The joint decoder favors
syntactic analyses with higher valency-pattern su-
pertagging probabilities. Experiments on a large
set of languages from UD show that our parsers
are more precise in the subset of syntactic rela-
tions chosen for valency analysis, in addition to
enjoying the benefits gained from jointly training
the parsers and supertaggers in a multi-task learn-
ing setting.

Our method is not limited to a particular type of
treebank annotation or a fixed subset of relations.
We draw similar conclusions when we parse TAG
derivation trees. Most interestingly, in a case study
on PP attachment, we confirm the utility of our
parsers in handling syntactic relations beyond the

traditional domain of valency.

A key insight of this paper that departs from
prior work on automatic extraction of supertags
from dependency annotations is that our definition
of valency patterns is relativized to a subset of syn-
tactic relations. This definition is closer to the lin-
guistic notion of valency and alleviates the data
sparsity problems in that the number of extracted
valency patterns is small. At the same time, the
patterns generalize well, and empirically, they are
effective in our proposed joint decoding process.

Our findings point to a number of directions for
future work. First, the choice of subsets of syntac-
tic relations for valency analysis impacts the pars-
ing performance in those categories. This may
suggest a controllable way to address precision-
recall trade-offs targeting specific relation types.
Second, we experimented with a few obvious sub-
sets of relations; characterizing what subsets can
be most improved with valency augmentation is an
open question. Finally, our decoder builds upon
projective dependency-tree decoding algorithms.
In the future, we will explore the possibility of re-
moving the projective constraint and the tree re-
quirement, extending the applicability of valency
patterns to other tasks such as semantic role label-
ing.
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