IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 4, PP. 1605-1618, JUNE 2018

A New Backpressure Algorithm for Joint Rate
Control and Routing with Vanishing Utility
Optimality Gaps and Finite Queue Lengths

Hao Yu and Michael J. Neely

Abstract—The backpressure algorithm has been widely used
as a distributed solution to the problem of joint rate control and
routing in multi-hop data networks. By controlling an algorithm
parameter, the backpressure algorithm can achieve an arbitrarily
small utility optimality gap. However, this in turn brings in a
large queue length at each node and hence causes large network
delay. This phenomenon is known as the fundamental utility-
delay tradeoff. The best known utility-delay tradeoff for general
networks is [O(e),0(1/¢)] and is attained by a backpressure
algorithm based on a drift-plus-penalty technique. This may
suggest that to achieve an arbitrarily small utility optimality
gap, backpressure-based algorithms must incur arbitrarily large
queue lengths. However, this paper proposes a new backpressure
algorithm that has a vanishing utility optimality gap, so utility
converges to exact optimality as the algorithm keeps running,
while queue lengths are bounded throughout by a finite constant.
The technique uses backpressure and drift concepts with a new
method for convex programming.

Index Terms—backpressure algorithm; rate control; routing;
utility-delay tradeoff

I. INTRODUCTION

In multi-hop data networks, the problem of joint rate
control and routing is to accept data into the network to
maximize certain utilities and to make routing decisions at
each node such that all accepted data are delivered to intended
destinations without overflowing any queue in intermediate
nodes. The original backpressure algorithm proposed in the
seminal work [2] by Tassiulas and Ephremides addresses this
problem by assuming that incoming data are given and are
inside the network stability region and develops a routing
strategy to deliver all incoming data without overflowing any
queue. In the context of [2], there is essentially no utility
maximization consideration in the network. The backpressure
algorithm is further extended by a drift-plus-penalty technique
to deal with both utility maximization and queue stability [3],
[4], [5]. Alternative extensions for both utility maximization
and queue stabilization are developed in [6], [7], [8], [9]. The
above extended backpressure algorithms have different dynam-
ics and/or may yield different utility-delay tradeoff results.
However, all of them rely on “backpressure” quantities, which
are the differential backlogs between neighboring nodes.

It has been observed in [10], [6], [8], [11] that the drift-
plus-penalty and other alternative algorithms can be interpreted

The authors are with the Electrical Engineering department at the University
of Southern California, Los Angeles, CA, 90007.

This work was presented in part at IEEE International Conference on
Computer Communications (INFOCOM), Atlanta, GA, USA, May, 2017 [1].

This work is supported in part by NSF grant CCF-1718477.

as first order Lagrangian dual type methods for constrained
optimization. In addition, these backpressure algorithms follow
certain fundamental utility-delay tradeoffs. For instance, the
primal-dual type backpressure algorithm in [6] achieves an
O(e) utility optimality gap with an O(1/€?) queue length.
That is, a small utility optimality gap (corresponding to a
small €) is available only at the cost of a large queue length.
The drift-plus-penalty backpressure algorithm [5], which has
the best utility-delay tradeoff among all existing first order
Lagrangian dual type methods for general networks, can only
achieve an O(e) utility optimality gap with an O(1/€) queue
length. Under certain restrictive assumptions over the network,
a better [O(€), O(log(1/¢€))] tradeoff is achieved via an expo-
nential Lyapunov function in [12], and an [O(e), O(log*(1/€))]
tradeoff is achieved via a LIFO-backpressure algorithm in [13].

Fundamental lower bounds on utility-delay tradeoffs in [14],
[15], [16], [17], [12] show that, for various stochastic network
settings, a large queue delay is unavoidable if a small utility
optimality gap is demanded. These works consider certain
hard problems with stochastic behavior. It leaves open the
question of whether or not performance can be improved for
networks that fall outside these hard cases. The current paper
investigates network flow problems that can be written as
(deterministic) convex programs, which are not restricted to
the prior lower bounds. We pursue the question of whether
or not improved tradeoffs are possible. Can optimal utility be
approached with constant queue sizes?

Recently, there have been many attempts in obtaining
new variations of backpressure algorithms for deterministic
network flow problems by applying Newton’s method to
the Lagrangian dual function. In the recent work [11], the
authors develop a Newton’s method for joint rate control and
routing. However, the utility-delay tradeoff in [11] is still
[O(€), O(1/€?)]; and the algorithm requires a centralized pro-
jection step although Newton directions can be approximated
in a distributed manner. Work [18] considers a network flow
control problem where the path of each flow is given (and
hence there is no routing part in the problem), and proposes
a decentralized Newton based algorithm for rate control.
Work [19] considers network routing without an end-to-end
utility and only shows the stability of the proposed Newton
based backpressure algorithm. All of the above Netwon’s
method based algorithms rely on distributed approximations
for the inverse of Hessians, whose computations still require
certain coordinations for the local information updates and
propagations and do not scale well with the network size. In

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 4, PP. 1605-1618, JUNE 2018

contrast, the first order Lagrangian dual type methods do not
need global network topology information. Rather, each node
only needs the queue length information of its neighbors.

This paper proposes a new first order Lagrangian dual
type backpressure algorithm that is as simple as the existing
algorithms in [5], [6], [8] but has a better utility-delay tradeoff.
The new backpressue algorithm achieves a vanishing utility
optimality gap that decays like O(1/f), where ¢ is the number
of iterations. It also guarantees that the queue length at each
node is always bounded by a fixed constant of the same order
as the optimal Lagrange multiplier of the network optimization
problem. This improves on the utility-delay tradeoffs of prior
work. In particular, it improves the steady-state [O(¢), O(1/€?)]
utility-delay tradeoff in [6] and the [O(€), O(1/¢)] utility-delay
tradeoff of the drift-plus-penalty algorithm in [5], both of
which yield an unbounded queue length to have a vanishing
utility optimality gap. Indeed, the steady-state utility-delay
tradeoff of our algorithm is [0, O(1)]. The convergence time
to reach this limiting performance is also faster than prior
work. Our algorithm achieves a zero utility gap and O(1) queue
lengths with a fast O(1/t) convergence rate.

The new backpressure algorithm differs from existing first
order backpressure algorithms in the following aspects:

1) The “backpressure” quantities in this paper are with
respect to newly introduced weights. These are different
from queues used in other backpressure algorithms, but
can still be locally tracked and updated.

2) The rate control and routing decision rule involves a
quadratic term that is similar to a term used in proximal
algorithms [20].

Note that the benefit of introducing a quadratic term in
network optimization has been observed in [21]. Work [21]
developed a distributive rate control algorithm for network
utility maximization (NUM) problems with given routing paths
that can be reformulated as a special case of the problem
treated in this paper. The algorithm of [21] considers a fixed
set of predetermined paths for each session and does not
scale well when treating all (typically exponentially many)
possible paths of a general network. The algorithm proposed
in [21] is not a backpressure type and and uses virtual queues
rather than actual queues. It is interesting to note that the
virtual queues in [21] remain O(1).! However, O(1) virtual
queue size does not imply the achieved utility has a fast
convergence (the convergence rate of [21] remains an open
question). In contrast, the algorithm in the current paper uses
both a quadratic term and a modified weight to get O(1) actual
queue size with a fast O(1/t) convergence rate.

In our conference version [1], the proposed backpressure al-
gorithm has a global algorithm parameter @, which is required
to be chosen based on the total number of links and sessions
in the network. In this paper, the proposed backpressure

IA technique in the proof of Prop 6.3.2 in [22] suggests that in the case of
fixed path routing of [21] and under several other assumptions that include
the implementation of a closest-to-source priority rule, there exists a constant
that bounds the deviation between virtual and actual queues. The technique in
[22] relies on a fixed-path assumption and has bounds that can grow at each
stage k of the path.

algorithm allows each node n to locally determine its algorithm
parameter «, based on the number of local link connections.

The network algorithm developed in this paper is based on
our recent work [23] that develops a new convex programming
method with an O(1/t) error decay for general constrained
convex programs (including problems that are nonsmooth, not
strongly convex and have nonlinear constraints). After our con-
ference version [1] and the arXiv preprint [24] of this paper,
Wang and Shroff in [25] studied the same joint rate control and
routing problem considered in this paper and propose another
backpressure algorithm by using the generalized alternating
direction method of multipliers (ADMM) from [26], [27], [28].
While that ADMM approach is very different from ours, the
obtained backpressure algorithm in [25] is remarkably similar
to our algorithm in this paper: It uses identical virtual queues
(up to a constant scaling) and solves source rate and link rate
subproblems with identical structures. One difference is the
two algorithms use different weights for these subproblems.
The other main difference is that at each iteration the algorithm
in [25] requires to update link rates first and then update
source rates based on the new link rate values, while our
algorithm can update link rates and source rates in parallel
since these subproblems are fully decoupled. This is because
the algorithm in [25] is restricted to the sequential update
procedure of ADMM, while our algorithm uses the parallel
methods developed by us in [23] together with the natural
separability of the linear node flow balance constraints.

The algorithm in [25] achieves source rates that satisfy
x[t] — x*, although a convergence rate for general utility
functions is not given. > In contrast, our analysis proves
an explicit O(1/t) optimality deviation for the time average
network utility. This time average starts at time 0 and provides
a performance guarantee for online implementation during
the entire network operation. However, a remarkable property
of the algorithm in [25] is that when the utility is smooth
(i.e., differentiable with Lipschitz continuous gradients) and
strongly convex, then the algorithm in [25] can ensure the
final value of the iterate x[f] converges exponentially fast to
an optimal value x*. It remains a promising research direction
to investigate whether the fast final iteration convergence also
holds for our algorithm, and to investigate the effect of the
parallel source and link rate update property and different
update rules for weight parameters in the subproblems.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a slotted data network with normalized time slots
t € {0,1,2,...}. This network is represented by a graph
G = (N, L), where N is the set of nodes and L C N X N
is the set of directed links. Let |[N| = N and |£| = L. This
network is shared by F end-to-end sessions denoted by a set
¥ . For each end-to-end session f € ¥, the source node Src(f)

2According to [26], the authors in [25] conclude their algorithm has
“O(1/t) non-ergodic convergence” defined as ||x[¢] — x[¢t — 1]||* < O(1/t),
or equivalently, ||x[¢] —x[z — 1]|| < O(1/+f), in [26]. However, this unusual
definition of non-ergodic convergence rate does not imply any convergence
rate of ||x[¢]—x"|| or utility optimality gap U (x[¢])—U (x*) and hence does not
provide insight into convergence behavior that network optimization concerns.
Thus, it has nothing to do with the O(1/r) convergence to optimal utility we
show in the current paper.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 4, PP. 1605-1618, JUNE 2018

and destination node Dst(f) are given but the routes are not
specified. Each session f has a continuous and concave utility
function Us(xy) that represents the “satisfaction” received by
accepting xy amount of data for session f into the network
at each slot. Unlike [6], [11] where Up(-) is assumed to
be differentiable and strongly concave, this paper considers
general concave utility functions Uy(-), including those that
are neither differentiable nor strongly concave. Formally, each
utility function Uy is defined over an interval dom(Uy), called
the domain of the function.

Denote the capacity of link / as C; and assume it is a fixed
and positive constant.?> Define ugf) as the amount of session f’s
data routed at link / that is to be determined by our algorithm.
Note that in general, the network may be configured such that
some session f is forbidden to use link /. For each link [,
define §; C F as the set of sessions that are allowed to use
link /. The case of unrestricted routing is treated by defining
S; = F for all links .

Note that if [= (n,m) with n,m € N, then i and C;
o

can also be respectively written as 1, m) and Cy,). For each
node n € N, denote the sets of its incoming links and outgoing
links as 7 (n) and O(n), respectively. Note that xr,Vf € F and
uy), Vle L,Vf € ¥ are the decision variables of a joint rate
control and routing algorithm. If the global network topology
information is available, the optimal joint rate control and
routing can be formulated as the following multi-commodity

network flow problem:

max Z Uy(xy) (1)
Xf> :“1 fET
s.t. xplip=sre(r)y + Z /lgf) < Z ,ugf)
leI(n) 1eO(n)
VfeF,Vne N\ {Dst(f)} (2)
Z uff) <(C,Vlel, 3)
feFr
w=ovieLvfes, “
W =0vieLVfeF\S, (5)
xp € dom(Up), Vf € F (6)

where 1y, is an indicator function; (2) represents the node
flow conservation constraints relaxed by replacing the equality
with an inequality, meaning that the total rate of flow f into
node n is less than or equal to the total rate of flow f out
of the node (since, in principle, we can always send fake
data for departure links when the inequality is loose); and (3)
represents link capacity constraints. Note that for each flow f,
there is no constraint (2) at its destination node Dst(f) since
all incoming data are consumed by this node.

The above formulation includes network utility maximiza-
tion with fixed paths as special cases. In the case when each
session only has one single given path, e.g., the network utility
maximization problem considered in [30], we could modify the
sets S; used in constraints (4) and (5) to reflect this fact. For
example, if link /; is only used for sessions f; and f5, then

3As stated in [11], this is a suitable model for wireline networks and
wireless networks with fixed transmission power and orthogonal channels.

S;, = {fi, £}. Similarly, the case [21] where each session is
restricted to using links from a set of predefined paths can be
treated by modifying the sets S; accordingly. See Appendix
A for more discussions.

The solution to problem (1)-(6) corresponds to the optimal
joint rate control and routing. However, to solve this convex
program at a single computer, we need to know the global
network topology and the solution is a centralized one, which
is not practical for large data networks. As observed in [10],
[6], [8], [11], various versions of backpressure algorithms can
be interpreted as distributed solutions to problem (1)-(6) from
first order Lagrangian dual type methods.

Assumption 1: (Feasibility) Problem (1)-(6) has at least one
optimal solution vector [x;;; #Ef),*] feFiles

Assumption 2: (Existence of Lagrange multipliers) As-
sume the convex program (1)-(6) has Lagrange multipliers
attaining the strong duality. Specifically, define convex set
C = {[xf;,ugf)]feﬂez : (3)-(6) hold}. Assume there exists
a Lagrange multiplier vector A* =
such that

[ﬂg)’*]fesf,ne)\/\{ost(f)} >0

q(A") = max{(1) : (2)-(6)}

where ¢g(1) = max; .ec {ZjeTUf(xf) -

2 feF 2neN\{Dst(f)} AP [sy + Zierm ﬂgf) -
21e0(n) ugf)]} is the Lagrangian dual function of problem
(1)-(6) by treating (3)-(6) as a convex set constraint.
Assumptions 1 and 2 hold in most cases of interest. For
example, Slater’s condition guarantees Assumption 2. Since
the constraints (2)-(6) are linear, Proposition 6.4.2 in [31]
ensures that Lagrange multipliers exist whenever constraints
(2)-(6) are feasible and when the utility functions Uy are
either defined over open sets (such as Us(x) = log(x) with
dom(Uy) = (0,00)) or can be concavely extended to open
sets, meaning that there is an € > 0 and a concave function
Uy : (—€,00) — R such that Up(x) = Us(x) whenever x > 0.*
Fact 1: (Replacing inequality with equality) If Assump-
tion 1 holds problem (1)-(6) has an optimal solution vector
[x f,yl]feflgz such that all constraints (2) take equalities.

Proof: Note that each ,ul) can appear on the left side in
at most one constraint (2) and appear on the right side in at
most one constraint (2). Let [xj’j, K)’*] reFier be an optimal
solution vector such that at least one inequality constraint (2)
is loose. Note that we can reduce the value of /,tgf)’* on the
right side of a loose (2) until either that constraint holds with
equality, or until x; ()}* reduces to 0. The objective function
value does not change, and no constraints are violated. We
can repeat the process until all inequality constraints (2) are
tight. [

4t dom(Uy) = [0, o), such concave extension is possible if the right-
derivative of Uy at x = 0 is finite (such as for Us(x) = log(1+x) or Ug(x) =
min[x, 3]). Such an extension is impossible for the example Uy (x) = vx
because the slope is infinite at x = 0. Nevertheless, Lagrange multipliers
often exist even for these utility functions, such as when Slater’s condition
holds [31].

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 4, PP. 1605-1618, JUNE 2018

III. THE NEW BACKPRESURE ALGORITHM
A. Discussion of Various Queueing Models

At each node, an independent queue backlog is maintained
for each session. At each slot #, let x¢[¢] be the source session
rates; and let ,u(f) [¢] be the link session rates. Some prior work

enforces the constraint (2) via virtual queues Yn(f) [£] of the
following form:

Y+ 11 = max {11 + 1L rmseetr)

S-S W, }

leI(n) 1eO0(n)

)

While this virtual equation is a meaningful approximation, it
differs from reality in that new injected data are allowed to
be transmitted immediately, or equivalently, a single packet
is allowed to enter and leave many nodes within the same
slot. Further, there is no clear connection between the virtual
queues Y,gf) [¢] in (7) and the actual queues in the network.
Indeed, it is easy to construct examples that show there can be
an arbitrarily large difference between the Y,Ef) [¢] value in (7)
and the physical queue size in actual networks (see Appendix
B).

An actual queueing network has queues Z,(lf >[t] with the
following dynamics:

ZP0 + 1] < max {z,(f)[z] -y ugﬁ[t],o}
1eO(n)

+ [N sy + Y 1]
1eI(n)

®)

This is faithful to actual queue dynamics and does not allow
data to be retransmitted over multiple hops in one slot. Note
that (8) is an inequality because the new arrivals from other
nodes may be strictly less than ;¢ 7, ugf)[t] because those
other nodes may not have enough backlog to send. The model
(8) allows for any decisions to be made to fill the transmission
values ,ugf)[t] in the case that Z,(;f)[t] < 2ieom) uy)[t],
provided that (8) holds.

This paper develops an algorithm that converges to the
optimal utility defined by problem (1)-(6), and that produces
worst-case bounded queues on the actual queueing network,

that is, with actual queues that evolve as given in (8). To
begin, it is convenient to introduce the following virtual queue

equation
3T+ xp sy + Y, 110
1eO(n) lel(n)
)

01t +11=0111 -

where ng) [] represents a virtual queue value associated
with session f at node n. At first glance, this model (9)
appears to be only an approximation, perhaps even a worse
approximation than (7), because it allows the Q&,f)[t] values
to be negative. Indeed, we use Qslf)[t] only as virtual queues
to inform the algorithm and do not treat them as actual
queues. However, this paper shows that using these virtual
queues to choose the p[f] decisions ensures not only that
the desired constraints (2) are satisfied, but that the resulting
plt] decisions create bounded queues Z [t] in the actual
network, where the actual queues evolve according to (8).

In short, our algorithm can be faithfully implemented with
respect to actual queueing networks, and converges to exact
optimality on those networks.
The next lemma shows that if an algorithm can guarantee
virtual queues Qn(f) [¢] defined in (9) are bounded, then actual
physical queues satisfying (8) are also bounded.
Lemma 1: Consider a network flow problem described
by problem (1)-(6). For all [€ L and f € ¥, let
ygf)[t], xs[t] be decisions yielded by a dynamic algorithm.
Suppose Y11, P11, 0Y[1] evolve by (7)-(9) with initial
conditions ¥,)[0] = Z,(f)[O] = Qg)[O] = 0. If there exists a
constant B > 0 such that |Q§lf)[t]| < B, Vt, then we also have
1) 2P < 2B+ Sycom G forall 1 € {0,1,2,...}.
2) Y] < 2B+ Syeom Ci for all 1 € {0,1,2,....}.
Proof:

1) Fix f € F.n € N \ {Dst(f)}. Define an auxﬂlary
virtual queue Qn [¢] that is initialized by Qn [| =
B + Yicom) Ci and evolves according to (9). It follows
that 0[] = Q“>[]+B+z,€0<,,)c,,w Since 0Y[1] >
—B, Vt by assumption, we have Qn [] 2icom Cr =
21e0m) uy)[t], Vt. This implies that Qn [t] also satisfies:

Z 11,0 }
1€0(n)

+ X7 [{n=sre(r)y + Z Hy
leI(n)

A(f)[t + 1] = max {Q(f)
1, vt (10)

which is identical to (8) except the ine uallty is replaced

by an equality. Since Z [0 0< Q ; and Q(f)[t]

satisfies (10) by 1nduct10ns Z(f [£] < Q)[],V

Since Qn [1= Qn []+B+Zle()(n) C1, ¥t and Qn [t] <

B, Vt, we have Qg)[t] < 2B+ Yicom) Ci, V1. It follows

that Z[1] < 2B + 3ycoqm Cis V1.

2) The proof of part (2) is similar and is in Appendix C.

|

B. The New Backpressure Algorithm

In this subsection, we propose a new backpressure algorithm
that yields source session rates x¢[¢] and link session rates
uy)[t] at each slot such that the physical queues for each
session at each node are bounded by a constant and the time
average utility satisfies

- Z DUyl 2 Y Uplxp) = 0(1 /), Ve 2 1

7=0 feF feF

where xf are from the optimal solution to (1)-(6). Note that
Jensen’s inequality further implies that

ZUf Z

feF 7=0

> > Up(xp) - 001 /0, Vi > 1

fer

The new backpressure algorithm is described in Algorithm
1. Similar to existing backpressure algorithms, the updates in
Algorithm 1 at each node n are fully distributed and only
depend on weights at itself and its neighbor nodes. Unlike
existing backpressure algorithms, the weights used to update

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 4, PP. 1605-1618, JUNE 2018

decision variables xy[¢] and ugf)

E,f) [¢] themselves, rather, they are augmented values W,(,f)[t]
equal to the sum of the virtual queues and the amount of net
injected data in the previous slot ¢ — 1. In addition, the updates
involve an additional quadratic term, which is similar to a term
used in proximal algorithms [20]. Note that the source rate
update (in the second bullet) and the link rate update (in the
third bullet) are fully decoupled and hence can be performed
in parallel or in a swapped order.

[7] are not the virtual queues

Algorithm 1 The New Backpressure Algorithm

Let @, > 0,Vn € N be constant parameters. Initialize
xp[-11 = 0, i[-1] = 0,¥f € F,VI € £ and 0Y[0] =
0,Yn e N,Vf € F. At each time ¢t € {0,1,2,...}, each node
n does the following:

« For each f € 7, if node n is not the destination node of
session f, i.e., n # Dst(f), then define weight W []:

W11 =00 18] + xf[t = 11 sy

S LT S

lel(n) 1eO(n)

[t=1]. (11)
If node n is the destination node, i.e., n = Dst(f), then
define W,(lf)[t] = 0. Notify neighbor nodes (nodes k that
can send session f data to node n, ie., Yk such that
f € S n)) about this new W,(f)[t] value.

o For each f € F, if node n is the source node of session

f, ie., n=Src(f), choose xs[t] as the solution to
max Ur(xp) = W 1xs — an(xp = xp[1 = 1) (12)
s.t. xy € dom(Uy) (13)

« For all (n,m) € O(n), choose {/1(,1 m)[1,Vf € ¥} as the
solution to the following convex program:

max Z (Wr(tf)[1] - W(f)[f])ﬂ(n m)

”(err?m) feF
2
~(an+am) Y (1) - pd) =107 (14
feF

>oud) < Coum (15)

feF
) 20VfeS 16
/J((n,m) ()
ll(n my = 0V & Sum) (17)

o For each f € ¥, if node n is not the destination of f,
i.e., n # Dst(f), update virtual queue Q,,(f)[t + 1] by (9).

C. Almost Closed-Form Updates in Algorithm 1

This subsection shows the decisions xy[f] and /Jgf)[l‘] in
Algorithm 1 have either closed-form solutions or “almost”
closed-form solutions at each iteration ¢.

Lemma 2: Let ¢ = xy[t] denote the solution to (12)-(13).

1) Suppose dom(Uy) = [0, o) and Uy(xy) is differentiable.
Let y(x) = Up(xp) = 2anxy + 2ax7[t = 1] - W [1].
If y(0) < 0, then Xy = 0; otherwise £y is the root to

the equation (xs) = 0 and can be found by a bisection
search.

2) Suppose dom(Uy) = (0, 0) and Us(xs) = wy log(xs) for
some weight wy > 0. Then:

. 2anxglr = 11-w[1]

day
. W] = 20301 = 112 + 8wy
da,,
Proof: Omitted for brevity. []

The problem (14)-(17) can be represented as follows by
eliminating Hiomy f ¢ Su,m), completing the square and
replacing maximization with minimization. (Note that K =

|S(n,m)| <I|F1)

min (18)
k=1
K
st >z <b (19)
k=1
2% >0, Vk e {1,2,...,K} (20)

Lemma 3: The solution to problem (18)-(20) is given by
zl’; =max{0,a; — 0*},Vk € {1,2,...,K} where 6* > 0 can be
found either by a bisection search (See Appendix D) or by
Algorithm 2 with complexity O(K log K).

Proof: A similar problem where (19) is replaced with an
equality constraint is considered in [32]. The optimal solution
to this quadratic program is characterized by its KKT condition
and a corresponding algorithm can be developed to obtain its
KKT point. A complete proof is presented in Appendix D. ®

Algorithm 2 Algorithm to solve problem (18)-(20)

1) Check if Z,Ile max{0, ar} < b holds. If yes, let 6* =0
and z,’z = max{0,ar},Vk € {1,2,...,K} and terminate
the algorithm; else, continue to the next step.

2) Sort all ag, € {1,2,...,K} in a decreasing order 7 such
that az(1) > azp) = -+ 2 axx). Define Sp = 0.

3) Fork=1to K

o Let S = Sg-1 + ax. Let * = 322,

o« If 0" > 0, azx) — 6" > 0 and azp4) — 6 < 0,
then terminate the loop; else, continue to the next
iteration in the loop.

4) Let ZZ = max{0,ar — 0"},Yk € {1,2,...,
terminate the algorithm.

K} and

Note that step (3) in Algorithm 2 has complexity O(K) and
hence the overall complexity of Algorithm 2 is dominated by
the sorting step (2) with complexity O(K log(K)).

IV. PERFORMANCE ANALYSIS OF ALGORITHM 1
A. Preliminaries
This subsection introduces facts from convex analysis and
some useful additional notation.

Definition 1 (Strongly Concave Functions): Let Z C R" be
a convex set. Function f is said to be strongly concave on

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 4, PP.

Z with modulus « if there exists a constant @ > 0 such that
f(2) + 1allz]|* is concave on Z.

By the definition of strongly concave functions, it is easy to
show that if f(z) is concave and o > 0, then f(z)—a||z—z||?
is strongly concave with modulus 2« for any constant zy. The
next lemma shows that a strongly concave function deviates
at least quadratically from its maximum value.

Lemma 4 (Corollary 1 in [23]): Let Z C R™ be a convex
set. Let function f be strongly concave on Z with modulus @
and z°P' be a global maximum of f on Z. Then, f(z°P") >
f(z) + 51|z°P" - z||? forall z € Z.

Define column vector y = [xf; /Jgf)]fefle > which aggre-
gates all optimization variables in problem (1)-(6). For each
feF,ne N\ {Dst(f)}, define column vector

y,@_{

which is composed of the control actions appearing in each
constraint (2); and introduce a function with respect to ys,

g3 = xp1 sy + Z K Z ﬂ%f)

leI(n) 1eO(n)

if n = Src(f),
else,

Lo 1 Ve romuom

20
[llgf)]lef(n)UO(n)

(22)

Thus, constraint (2) can be rewritten as
gD <0, Vf € F,¥n e N\ {Dst(f)}.

Note that each vector y(f) is a subvector of y and has length
d, + 1 where d,, is the degree of node n (the total number of
outgoing links and incoming links) if node n is the source of
session f; and has length d, if node n is not the source of
session f. Note that components in different vector variables
yE,f) can overlap. The vector variables y and ys,f) are introduced
only to simplify notation.

The virtual queue update equation (9) can be rewritten as:

o+ 11= 01 + & 1. (23)
The weight update equation (11) can be rewritten as:
w11 = 01 + g (w1 - 10). (24)
Define
L= (e11)* (25)

feF ne N\Dst(f)

and call it a Lyapunov function. In the remainder of this paper,
double summations are often written compactly as a single
summation, e.g.,

DY 2

feF ne N\Dst(f)
neN\Dst(f)

()2 (-).

Define the Lyapunov drift as

Alt] = Lt + 1) — L(¢).

The following lemma follows directly from equation (23).
Lemma 5: At each iteration t € {0, 1,...} in Algorithm 1,
the Lyapunov drift is given by

S (s i + 5 (s

feF,
neN\Dst(f)

Al = \Gh))- @6)

1605-1618, JUNE 2018

Proof: Fix f € ¥ and n € N \ Dst(f), we have

S+ 1) - 5 (@ 1)

2
1 1
2@ +g§,”(y<f>[D) - 5@ 1)’
=0\ [1g (I + 5 (D yhl)® 27)
where (a) follows from (23).
By the definition of A[f], we have
1
A=3 > (@ r+1)’ - @ 1))
feF,
ne N\Dst(f)
9N (e i + 5 (e whD)?)
feT,
neN\Dst(f)
where (a) follows from (27). [|
B. Intuitions of Algorithm 1
Recall y = [)Cf;/.lgf)]fegf’leij. Define
h(y) =) Us(xp). (28)

e

The intuition behind our approach comes from examining
the “drift-plus-penalty” expression from prior Lyapunov based
backpressure type algorithms as in [5]. With A[¢] given in (26)
being a change of the Lyapunov function, prior backpressure
algorithms would yield

Vh(y[t]) - Alr]

=Vh(y1r)) - QT g(o17]) - 3l
N
<B

where V > 0 is an algorithm parameter and Q and g(a:[t])
are vectors that concatenate the individual Qn [t] and g7 ’(
components. Prior algorithms seek to choose y[¢] to maximize
the first two terms on the right-hand-side of this expression
over (3)-(6); the quadratic term marked by an underbrace is
bounded by a constant B and results in a B/V error (which
can be made small by increasing the V parameter). One
could eliminate the B term by changing the algorithm to
optimize all three terms (including the %Ilg(y[r])ll2 term) but
this would be a nonseparable optimization that is as difficult
as the original problem (1)-(6). Our insight is to approximate
this quadratic term as [g(y[r — 1])]"[g(y[¢])], include this
easy-to-optimize term in the maximization step, and then
compensate for the approximation error by introducing prox-
terms ||y(,{)[t] - yg,f)[t — 1| together with a strong concavity
argument (which we can rigorously establish even though our
utility function is not necessarily strongly concave). Since this
approach eliminates the B constant, we no longer need the V
parameter to be large, and so we use V = 1.

At each time ¢, consider choosing a decision vector y[¢] that
includes elements in each subvector ys,f)[t] to solve problem
(29)-(30). The expression (29) is a modified drift-plus-penalty
expression. Unlike the standard drift-plus-penalty expressions

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 4, PP. 1605-1618, JUNE 2018

from [5], the above expresswn uses weights W(f)[t], which
augments each Qn [] by g5 () (y [t — 1]), rather than virtual
queues lef)[t]. It also includes a “prox”-like term that penal-
izes deviation from the previous y[# — 1] vector. This results in
the novel backpressure-type algorithm of Algorithm 1. Indeed,
the decisions in Algorithm 1 were derived as the solution to
problem (29)-(30). This is formalized in the next lemma.
Lemma 6: At each iteration t € {0, 1,...}, the action y[¢]
jointly chosen in Algorithm 1 is the solution to problem (29)-
(30).
Proof: The proof involves collecting terms associated
with the x¢[¢t] and ,ugf)[t] decisions. See Appendix E for
details.]

Furthermore, the next lemma relates A(y*) and h(y[t])
yielded by action y[¢] that aggregates all control actions jointly

chosen in Algorithm 1 at each iteration ¢ € {0, 1,...}.

() x

Lemma 7: Let y* = [f,,ul lreFier be an optimal

solution to problem (1)-(6) given in Fact 1, i.e., g,)(yn)=
0O,Vf € F,Yn € N\ Dst(f). If o, > 2(d +1),Vn € N,
where d, is the degree of node rn, then the action y[t] =
Lxrle]s 1)[t]]fe;:,lel jointly chosen in Algorithm 1 at each
iteration ¢ € {0, 1, ...} satisfies

h(y[t]) = h(y") + @[1] - @[z — 1] + A[7]

where @[z] = Z)‘e?"neN (a'nl{n;tDst(f)}”y DR +
ol (=pstp)y Trerim(™" = 1 [11)?) and h(Y) is deﬁned in
(28).

Proof: See Appendix F.]

It remains to show that this modified backpressure algorithm
leads to fundamentally improved performance.

C. Utility Optimality Gap Analysis

Define column vector Q[t] = | 5{[)[t](]ff€7rnE M Dsi)) A
the stacked vector of all virtual queues Q)) [t] defined in (9).
Note that (25) can be rewritten as L(¢) = 2||Q[t]||>. Define

vectorized constraints (2) as g(y) = [gn)(yn N feFnemDst(f)-

Lemma 8: Let y* = [f,,ug)

lreFier be an optimal
solution to problem (1)-(6) given in Fact 1, 1i.e., g;)(y b)=
0O,Vf € F,¥n € N\ Dst(f). If a,, > (d +1),Yn € N in
Algorithm 1, where d,, is the degree of node n, then for all
t>1,

t—1
> hyTrD 2 1hiy') ~ ¢ + 5 1QUIP.
=0

where ¢ = O[-1] = rernen (@nlpmnsyllyd 11> +

] (n=s()) Sreron(uy ")) is a constant.
Proof: By Lemma 7, we have h(y[t]) > h(y*) + O[7] —
Ot —-1]+A[r],VT € {0,1,...,t—1}. Recall A[r] = L[t +1] -

L[7]. Summing over 7 € {0, 1,...,7 — 1} yields
=1
> hiylr))
7=0
t—1
>th(y") +) (®[t] - @[z - 1]) + Z Al
7=0
=th(y") + @[t - 1] - ®[-1]+L[t]— L[0]
(@) 1
>th(y") - ®[-1] + EIIQ[lJII2
where (a) follows from the fact that ®[z] > 0,Vz, L[t] =
511Q[7]|I* and L[0] = 0. L]

The next theorem summarizes that Algorithm 1 yields a
vanishing utility optimality gap that approaches zero like

o(1)1).

Theorem 1: Let y* = [};,ugf)’*]fengL be an optimal

solution to problem (1)-(6) given in Fact 1, ie., g(f)(y(f » ") =
0,YVf € F,Yn € N\ Dst(f). If @, > 2(d +1),Vn € N in
Algorithm 1, where d,, is the degree of node n, then for all
t > 1, we have

-1
N EDN A e

=0 feF feF

where is a constant defined in Lemma 8. Moreover, if we

define X¢[t] = 1 ¥/70 xf[r], Vf € F, then

S U 2 Y Una) - 1.

fer feF

Proof: Recall by (28) that h(y) = XrcsUr(xr). By
Lemma 8, we have

=1
. 1
2 D Urlalel) =) Up(xp) = £ + S1IQINIP
7=0 feF feF
(@ .
21) Up(xp) = ¢.
feF
where (a) follows from the trivial fact that ||Q[¢]||?> > 0.
Dividing both sides by a factor ¢ yields the first inequality in

this theorem. The second inequality follows from the concavity
of Us(-) and Jensen’s inequality. [|

D. Queue Stability Analysis

Lemma 9: Let Q[t],t € {0, 1,..
Algorithm 1. For any ¢ > 1,

t—1
= > gyl
7=0

Proof: This lemma follows directly from the fact that
Q[0] = 0 and queue update equation (9) can be written as
Qlz + 1] = Q[z] + g(ylz]). u

The next theorem shows the boundedness of all virtual
queues Q,(lf)[t] in Algorithm 1.

Theorem 2: Let y* = [};,ugf)’*]fE;qEL be an optimal
solution to problem (1)-(6) given in Fact 1, i.e. g(f)(y(f b)=
0,YVf e ¥,¥n e N \Dst(f), and A" be a Lagrange multiplier

.} be the virtual queues in

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 4, PP. 1605-1618, JUNE 2018

max hy) - > (W 0F) + anllyd
y feF,

neN\Dst(f)
s.t. (3)-(6)

W= - > e Y " —u =117 (29)
feF, leI(n)
n=Dst(f)
(30)

vector given in Assumption 2. If @, > %(d,, +1),¥n e N
in Algorithm 1, where d, is the degree of node n, then
VfeF,Vne N\ {Dst(f)}, we have

101111 < IQIAN < 201" + V22, Ve > 1

where (is a constant defined in Lemma 8.

Proof: Let q(1) = supycc {h(y) - /ng(y)} be the La-
grangian dual function defined in Assumption 2. For all
7€{0,1,...,}, by Assumption 2, we have

" nyle]) - gyl

where (a) follows from the definition of ¢(1"). Rearranging
terms yields

h(y[r]) < h(y*) + 2*Tg(y[]), V7 € {0, 1,.. .}.
t — 1} yields

hy") = g S

Fix ¢t > 0. Summing over 7 € {0, 1, ...,

-1 t—1
> h(ylr)) <th(y) + > 2 Tg(y[r])
=0 =0

t—1
=th(y") + 2*T > g(yl7])
=0

(g)th(y*) + /l*’TQ[t]
Ciny?) + [1QIN

where (a) follows form Lemma 9 and (b) follows from
Cauchy-Schwarz inequality.
On the other hand, by Lemma 8, we have

t—1

Zh(y[r) 2 th(y") - ¢ + —IIQ[£l

Combining the last two inequalities and cancelling the com-
mon terms yields

1
SIQUAIP - £ < 1A* QL1
= (1QIAI - 1) < 14117 +2Z

=[QUeIl < |41+ /I + 24

QU < 201471 + ¢

where (a) follows from the basic inequality Va + b < Va+Vb
for any a,b > 0.
Thus, for any f € ¥ and n € N\ {Dst(f)}, we have

10111 < QLI < 2014%|| + v2¢.

|]
This theorem shows that the absolute values of all virtual
queues Q&,f) [¢] are bounded by a constant B = 2||A%|| + 4/2¢

from above. By Lemma 1 and discussions in Section III-A, the
actual physical queues Z,(,f)[t] evolving via (8) satisfy Z,(,f)[t] <
2B + Xicom) Ci, Vi. This is summarized in the next corollary.
[]’Z'ygf)’*]fgqe[be an optimal
solution to problem (1)-(6) given in Fact 1, i.e., g(f)(y(f)) =
0,Vf e F,¥ne N\ Dst(f), and 2" be a Lagrange multiplier
vector given in Assumption 2. If @, > é(d +1)%Vn e N
in Algorithm 1, where dn is the degree of node n, then all
actual physical queues Z [L Vf e F,vne N\ {Dst(f)} in
the network evolving via (8) satisfy

P <N+ 2820+ 3 G

1€0(n)

Corollary 1: Let y* =

where (is a constant defined in Lemma 8.

Define vector x* = [x;i] res and X[t] = [Xf[t]]fe# where x]’;
and Xy [t] are defined in Theorem 1. Note that if each Ur(xr) 1s
strongly concave with respect to xr, then X* is unique by strong
concavity. (However, [yy)’*]le £ 1s not necessarily unique.)
In this case, Corollary 2 shows X[f] yielded by Algorithm 1
converges to the unique maximizer x*.

Corollary 2: If the conditions in Theorem 1 hold and each
Uy(xy) is strongly concave with respect to xy, then Algorithm
1 guarantees X[7] — x* as t — oo.

Proof: Assume each Uy(xy) is strongly concave with
respect to xy with modulus cy. Let ¢ = mingeq{cy}. By As-
sumption 2, we have y* = argmaxyc{/(y) —A2*Tg(y)}. Recall
that i(y) = 2. req Ur(xr) and g(y) are separable since they can
be written as the sum of scalar functions in terms of xy and
u(f) Thus, x7 y and [,u(f b]reF appear separably and maximize
in the left-side of (31) where each xj’i satisfying (6) maximizes
a strongly concave part and each vector [,ugf)’*]fef,r satisfying
(3)-(5) maximizes a concave part. Define y[f] = %Z;_:}) yl7l.
Note that y[¢] satisfies (3)-(6) since each y[7] is generated by
Algorithm 1. By Lemma 4, for all # > 1,

U - Ty

feF
> 3 UGyl - U Te@l) + Y L - Flr))?
feF feF

H D Ur(Eell) - ATg(lr) + glli[t] — x|

feF
=)
2y UGl - AT gy + SIRI - x|
feF =0
c _ 1 _
e Z Ur(xrle]) = ;/l*’TQ(t) + %le[r] -x"|? (31)
feF

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 4, PP. 1605-1618, JUNE 2018

where (a) follows from ¢ = mingc#{cr}; (b) follows from the
linearity of g(-) and the definition of y[¢]; and (c) follows from
Lemma 9.

Recall that /l*’Tg(y*) = 0 by strong duality of convex
programs (Assumption 2). Thus, (31) implies

SIRI] - X
<> Upxp) = > UpGrlel) + %/l*’TQ(t)
feF fex

<3 U - Y Ul + Il

feF feF
®»1 . 1,
<L+ @I+ V22)

where (a) follows from the Cauchy-Schwarz inequality; and
(b) follows from Theorem 1, which implies 3. re Uy (xXr[t]) 2
SrerUp(x)) - 1z,¥t > 1, and Theorem 2, which implies

QI < 2[IA%|| + y2¢, ¥t > 1.
Taking limits t — oo on both sides yields that X[t] — x* as
t — oo, -

E. Performance of Algorithm 1

Theorems 1 and 2 together imply that Algorithm 1 with
an = %(d,, + 1),¥n € N can achieve a vanishing utility
optimality gap that decays like O(1/f), where ¢ is number
of iterations, and guarantees the physical queues at each node
for each session are always bounded by a constant that is
independent of the utility optimality gap.

This is superior to existing backpressure algorithms from
[6], [5], [11] that can achieve O(e) utility gaps only at the
cost of O(1/€?) or O(1/¢€) queue lengths. To obtain a vanishing
utility gap, existing backpressure algorithms in [6], [5], [11]
necessarily yield unbounded queues. Note that to achieve O(e)
utility gaps, existing backpressure algorithms in [6], [5], [11]
need to choose an algorithm parameter V = O(1/e), which
in turn leads to O(V?) or O(V) queue lengths. In fact, the
O(1/€*) queue bound in the primal-dual type backpressure
algorithm [6] is given by VZ?||A*|| + B; where A* is the
Lagrangian multiplier vector attaining strong duality and Bj
is a constant determined by the problem parameters. A recent
work [33] also shows that the O(1/€) queue bound in the
backpressure algorithm from drift-plus-penalty is of the order
V||A*|| + B, where B; is also a constant determined by the
problem parameters. Since A* is a constant vector independent
of V and V = O(1/e), both algorithms are claimed to have
O(1/€?) or O(1/€) queue bounds. By Corollary 1, Algorithm
1 guarantees physical queues at each node are bounded by
4]|A*|| + B3, where Bs is constant given a problem. Thus, the
constant queue bound guaranteed by Algorithm 1 is typically
smaller than the O(V?) or O(V) queue bounds from [6] and
[33] even for a small V. (A small V corresponds to a poor
utility performance for the backpressure algorithms in [6], [5].)

V. NUMERICAL EXPERIMENT

In this section, we consider a simple network with 6 nodes
and 8 links as described in Figure 1. This network has two

sessions: session 1 from node 1 to node 6 has utility function
log(x1) and session 2 from node 3 to node 4 has utility function
1.51og(x2). (The log utilities are widely used as metrics of
proportional fairness in data networks [29].) The routing path
of each session is arbitrary as long as data can be delivered
from the source node to the destination node. For simplicity,
assume that each link has capacity 1. The optimal source
session rate to problem (1)-(6) is x; = 1.2 and xj = 1.8 and
link session rates, i.e., static routing for each session, is drawn
in Figure 2.

Session 2: 3->4

Fig. 1. A simple network with 6 nodes, 8 links and 2 sessions.

Session 2: 3->4I'

Fig. 2. The optimal routing for the network in Figure 1.

To compare the convergence performance of Algorithm 1
and the backpressure algorithm in [5] (with the best utility-
delay tradeoff among all existing backpressure algorithms),
we run both Algorithm 1 with @, = %(d,, +1),Vn € N
and the backpressure algorithm in [5] with V = 500 (This
backpressure algorithm [5] yields O(1/V) utility gaps and
O(V) queue lengths, where V is the algorithm parameter) to
plot Figure 3. Since each session has a log utility function,
which is strongly convex, by Corollary 2, the running averages
of source rates yielded by Algorithm 1 converge to the optimal
source rates. In fact, our simulation results in Figure 3 show
that per iteration source rates x[7] (without averaging) also
converge to the optimal source rates. It can be observed from
Figure 3 that Algorithm 1 converges to the optimal source rates
faster than the backpressure algorithm in [5]. The backpressure
algorithm in [5] with V = 500 takes around 2500 iterations
to converge to source rates close to (1.2, 1.8) while Algorithm
1 only takes around 400 iterations to converges to (1.2,1.8)
(as shown in the zoom-in subfigure at the top right corner.) In
fact, the backpressure algorithm in [5] with V = 500 can not
converge to the exact optimal source session rate (1.2,1.8)
but can only converge to its neighborhood with a distance
gap determined by the value of V. This is an effect from
the fundamental [O(1/V), O(V)] utility-delay tradeoff of the
backpressure algorithm in [5]. In contrast, Algorithm 1 can

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 4, PP. 1605-1618, JUNE 2018

eventually converge to the exact optimal source session rate
(1.2,1.8). A zoom-in subfigure at the bottom right corner in
Figure 3 verifies this and shows that the source rate for Session
1 in Algorithm 1 converges to 1.2 while the source rate in the
backpressure algorithm in [5] with V = 500 oscillates around
a point slightly larger than 1.2.

5 T T T T T T T T

Backpressure in Neely 2010

New Backpressure: Algorithm 1

2
T
i

3 200 400 600 800
[
o
> i
2
3
o
”n 4
15 Ve .
: [~ ememememe—a
1 g
7
BRNSsSSSSSS S
*T Seston1:156 12)
ession 1: 1= 1.195
3000 | 3500 | 4000
0 L I . I . . .
0 500 1000 1500 2000 2500 3000 3500 4000

lterations

Fig. 3. Convergence performance comparison between Algorithm 1 and the
backpressure algorithm in [5] with V = 500.

Corollary 1 shows that Algorithm 1 guarantees each actual
queue in the network is bounded by constant 4||A*|| + 2\/2 +
>, teom) Ci- Recall that the backpressure algorithm in [5] can
guarantee the actual queues in the network are bounded by
a constant of order V||A¥||. Figure 4 plots the sum of actual
queue length at each node for Algorithm 1 and the backpres-
sure algorithm in [5] with V = 10,100 and 500. (Recall a
larger V in the backpressure algorithm in [5] yields a smaller
utility gap but a larger queue length.) It can be observed
that Algorithm 1 has the smallest actual queue length (see
the zoom-in subfigure) and the actual queue length of the
backpressure algorithm in [5] scales linearly with respect to
V.

1400 T T T T T

1200 - b

=)

=3

=]
T
1

©

Q

=]
T
1

@
1=
S
T
@
S

a

=)

=]
T

Network Sum Physical Queue Length

0
/ 0 50 100 150 200 250 30p

Backpressure in Neely 2010 (V=100) .

n
=3
=]

Backpressure in Neely 2010 (V=10)

J/ New Backpressure: Algorithm 1 1
1 1 1 1 I
0 500 1000 1500 2000 2500 3000
Iterations

/3

Fig. 4. Actual queue length comparison between Algorithm 1 and the
backpressure algorithm in [5].

VI. CONCLUSION

This paper develops a new first-order Lagrangian dual type
backpressure algorithm for joint rate control and routing in
multi-hop data networks. The new backpressure algorithm
can achieve vanishing utility optimality gaps and finite queue
lengths. This improves the state-of-the-art [O(¢), O(1/€?)] or
[O(e), O(1/€)] utility-delay tradeoff attained by existing back-
pressure algorithms [6], [10], [8], [11].

APPENDIX A
NETWORK UTILITY MAXIMIZATION WITH
PREDETERMINED MULTI-PATH

Consider the multi-path network utility maximization in
[21] where each session has multiple given paths. Let x¢ be
the total source rate of each session f € . Let Py be the

set of paths for session f. The link session rate uy) becomes
()

a vector ,ugf) (1] "’]jep,. (Note that multiple paths for the
same session are allowed to overlap.) Define Sl(f) as the set

of (fpaths for session f that are allowed to use link /. Note that

are determined by the given paths for each session. That
is, 1f path j for session f uses link /, then j € S(f) if no given
path for session f uses link /, then S(f)= 0. The multi-path
network utility maximization problem can be formulated as
follows:

max Z Uy(xy)
feF
S.t. xfl{n:Src(f)}+ Z Z #(fj) Z Z /J(fj)’

lel(n)jePr 1eO(n) jePr
VfeF,Vne N\ {Dst(f)}
> Y saviedr
feFjePy
(f’j>>0v16£erTVjeS(f),
@ =0vie LVf e F.VjePr\ ST,
xf € dom(Uy),Vf e F
The above formulation is in the form of problem (1)-(6) except
that the variable dimension is extended.
In this case, Algorithm 1 developed in Section III-B to solve

problem (1)-(6) can be adapted to solve the above multi-path
network utility maximization problem by replacing ,ugf) with

> jePy /JU B in updates (11) and (9); and replacing subproblem
(14)- (17) with

(f) (f) (F.J)
r{}?x Z (W ~ Wi Z ’u(nm)
Hinm)y feF JE€Pr
f.)) (V)] 2
~an+am) 2, D (i = Harmlt = 1)
FeFjePy
)
s.t. Z Z ,ug’m) < Cim)
fETjEPf
plh > 0vfervjes!)
£ _ : ;)
ulh =ovfeF.viesy

which again has the same structure as subproblem (14)-(17)
except that the variable dimension is extended.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 4, PP. 1605-1618, JUNE 2018

APPENDIX B
AN EXAMPLE ILLUSTRATING THE POSSIBLY LARGE GAP
BETWEEN MODEL (7) AND MODEL (8)

Consider a network example shown in Figure 5. The net-
work has 3k + 1 nodes. Only node O is a destination and
only nodes a;, b;,i € {1,2,...,k} can have exogenous arrivals.
Assume all link capacities are equal to 1 and the exogenous
arrivals are periodic with period 2k, as follows:

o Time slot 1: One packet arrives at node a;.
« Time slot 2: One packet arrives at node a;.

« Time slot k: One packet arrives at node ai.
¢ Time slot k + 1: One packet arrives at node b;.
« Time slot k£ + 2: One packet arrives at node b;.

« Time slot 2k: One packet arrives at node by.

Under dynamics (7), each packet arrives on its own slot and
traverses all links of its path to exit on the same slot it arrived.
The queue backlog in each node is O for all time.

Under dynamics (8), the first packet arrives at time slot 1
to node a;. This packet visits node a, at time slot 2, when
the second packet also arrives at a;. One of these packets
is delivered to node a3 at time slot 3, and another packet
also arrives to node 3. The nodes {1,...,k} do not have any
exogenous arrivals and act only to delay the delivery of all
packets from the a; nodes. It follows that the link from node
k to node 0 will send exactly one packet over each slot ¢ €
{2k + 1,2k +2,...,2k + k}. Similarly, the link from by to 0
sends exactly one packet to node 0 over each of these same
slots. Thus, node O receives 2 packets on each slot r € {2k +
1,2k +2,...,2k + k}, but can only output 1 packet per slot.
The queue backlog in this node grows linearly and reaches
k + 1 at time 2k + k. Thus, the backlog in node 0 can be
arbitrarily large when k is large. This example demonstrates
that, even when there is only one destination, the deviation
between virtual queues under dynamics (7) and actual queues
under dynamics (8) can be arbitrarily large, even with an out-
degree of at most 1 and an in-degree of at most 2.

Fig. 5. An example illustrating the possibly large gap between queue model
(7) and queue model (8)

APPENDIX C
PROOF OF PART (2) IN LEMMA 1

Fix f e ¥,n e N\ {Dst(f)}. By (10),
Ot +1]

=max {01~) 4w/

1€0(n)

+ > ul

leI(n)
_max{ (f)[]+xf[]1{n =sre(f)} + Z u(f)
lel(n)
DN AU Ty ﬂﬁ”[t]}
1eO0(n)

eI (n)
(a) -
2 max {0 1]+ x/ [pueseecry + ., 1]

1eI(n)

1eO(n)

(1], 0} + x[1]1 {n=sre(r))

where (a) follows from the fact that ,um[t], x¢[t], Vf, 1t are
non-negative. Note that the right side of the above equation is
identical to the rlght side of (7) except that Y (t) is rewritten
as Q(f)(t) Since Y (0) 0< Q (O), by induction, we have
Y [] < QY [11. vi. Since 0 [1] = QL[]+ B+ S jcoqm Ci. Vt
and Q[¢] < B, V1, we have QY[1] < 2B + e Ci V1. It
follows that Y [1] < 2B + 3;com) Ci» V1.

APPENDIX D
PROOF OF LEMMA 3

Note that problem (18)-(20) satisfies Slater’s condition. So
the optimal solution to problem (18)-(20) is characterized by
KKT conditions [34]. Introducing Lagrange multipliers 6§ € R,
for inequality constraint Zszl w<bandv=[v,...,vk]" €
Rf for inequality constraints z;x > 0,k € {1,2,...,K}. Let
" = [z,.. .,z}]T and (6%,v*) be any primal and dual pair
with the zero duality gap. By KKT conditions, we have
G = 07 —vp = 0.k € {L2.. GKE Y 2 S b6t 2
0:6"(Lf, 2 - b) 0;z; > 0,Vk € {1 2,...,K}vi 20, Vk e
{L2,....K}viz :O,Vke{l,Z,...,K}.

Eliminating v;:, Vk € {1,2,...,K} in all equations yields
0 > ax - 7.k € {L2.. KhYX&,z < bt >
0; 9*(Zk 1zk b) =0 Zk > 0, Vk € {1,2,...,K};(zz —ag +
6%)z; = 0,Vk € {1,2,...,K}.

For all k € {1,2,...,K}, we consider §* < a; and 6* > a;
separately:

1) If 6* < ay , then 6* > a; — zl’z holds only when zl’z > 0,

which by (z; —ax +6%)z; = 0 implies that z; = ax — 6".

2) If 6° > ayg, then ZZ > 0 is impossible, because ZZ >0

implies that z; —ay +6" > 0, which together with z; > 0
contradicts the slackness condition (z; —ax +6)z; = 0.
Thus, if 6" > ai, we must have z; = 0.
Summarizing both cases, we have z; = max{O ay — 0"}, Vk €
{1,2,...,K}, where 6" is chosen such that Zk 1%, <b,0"20
and 9*(21(:1 z; —b) =0.

To find such 8%, we first check if 8* = 0. If 8* = 0 is true,

the slackness condition 6*(¥ &, zf — b) is guaranteed to hold

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 4, PP. 1605-1618, JUNE 2018

and we need to further require 2115:1 7 = Z,’le max{0, ar} <
b. Thus * = 0 if and only if Zle max{0,ax} < b. Thus,
Algorithm 2 check if Zszl max{0, ax} < b holds at the first
step and if this is true, then we conclude 6" = 0 and we are
done!

Otherwise, we know 6* > 0. By the slackness con-
dition 6*(X5, z; —b) = 0, we must have pona 7 =
ZK:I max{0,ar — 8*} = b. To find 6 > 0 such that
ey max{0,ax — 6"} = b, we could apply a bisection search
by noting that all z; are decreasing with respect to 6.

Another algorithm of finding 6* is inspired by the observa-
tion thatif a; > a;, Vi, j € {1,2,...,K}, then zj > z;. Thus, we
first sort all a; in a decreasing order, say is the permutation
such that ar(1y > az@2) = -+ 2 ax(); and then sequentially
check if k € {1,2,..., K} is the index such that a;)—6* > 0
and aq(x+1)—6" < 0. To check this, we first assume k is indeed
such an index and solve the equation Z;?:](aﬂ(,-) —-0")=bto
obtain #*; (Note that in Algorithm 2, to avoid recalculating the
partial sum Zf: | dx(;) for each k, we introduce the parameter
Sk = Zle ar(j) and update Sy incrementally. By doing this,
the complexity of each iteration in the loop is only O(1).) then
verify the assumption by checking if 8" > 0, azu) — 6" =2 0
and azx+1) — 60" < 0. The algorithm is described in Algorithm
2 and has complexity O(K log(K)). The overall complexity is
dominated by the step of sorting all ag.

APPENDIX E
PROOF OF LEMMA 6

The objective function (29) can be rewritten as

-, (W)
feF,
ne N\Dst(f)
+anly =i -]||)
feF,n=Dst(f) leI(n)
(@)
gZUf(Xf)
feF
- Z W(f)[t](xfl{n Slc(f))'l'ZZEI(n)lll Zze()(n).ulm)
feF,
neN\Dst(f)
- Z an(xp = x7[t = 11 pnsrer))
feF,
ne N\Dst(f)
DI AR A s
feF, leI(n)
ne N\Dst(f)
- D) w1y
fe7 1€0(n)
neN\Dst(f)
- 2w ! = -

feF,n=Dst(f) leI(n)

(b)
2 (Upap) = Wl [ty = ey (xy = xle = 1))
feF
£ 0 S Wl -wli)al
(nm)e L feF
= D (awraw) Yl - -1 (32)
(n,m)eL feF
where (a) follows from the fact that ||yn ’Zf -1])? =
i — xplt — UL guosrory + Saerontl - 0l - 12 +

Zzeo(n)(/ly) - ,ugf)[t — 1])?; and (b) follows by collecting
each linear term H) and each quadratic term (”Ef) - #gf)[t -
11)%. In the last step (b), the quadratic term Y, e r(@n +
) Zfef(lu((i)m) /"((Z)m) [t — 1])? is obtained by simply col-
) _ (f)[1])? in the last 3
n [[]_
W(f)[1) p Ef)) is obtained by noting each link session rate

u}f) appears twice with opposite signs in the summation

lecting each quadratic term (y;
terms in step (a); and the linear term ., e r 2 fef(

term X e qnem (Dst(f)} Wr(Lf)[t](xfl{n:Src(f)} + 2ier(n) uﬁf) -
2ieom) Ky) unless link / flows into Dst(f) and recalling that

Wil = OVf € F.

Note that equation (32) is now separable for each scalar
xs and vector [u())]fef,r Thus, problem (29)-(30) can be
decomposed into 1ndependent smaller optimization problems
in the form of problem (12)-(13) with respect to xr, and in

the form of problem (14)-(17) with respect to /ng)m), VfeF.

APPENDIX F
PROOF OF LEMMA 7

Definition 2 (Lipschitz Continuity): Let Z C R" be a convex
set. Function f : Z — R is said to be Lipschitz continuous
on Z with modulus f if there exists 8 > 0 such that || f(z;) —
f@)|l < Bllz1 — 2| for all z),2, € Z.

The followm%ffact summarizes the Lipschitz continuity of
each function g

Fact 2: Each functlon gn >() defined in (22) is Lipschitz
continuous with respect to vector y,;° with modulus

Bn < Vd, + 1.

where d,, is the degree of node n.
Proof This fact can be easily shown by noting that each
() 7 (yn)) is a linear function with respect to vector y,’ and
has at most d,, + 1 non-zero coefficients that are equal to +1.
|
Now, we are ready to present the main proof.
Note that W,(,f)[t] appears as a known constant in (12). Since

Uy (xy) is concave and W,(,f)[t]xf is linear, it follows that (12) is
strongly concave with respect to xy with modulus 2a,. Since
xs[t] is chosen to solve (12)-(13), by Lemma 4, Vf € ¥, we
have

Ur(xplt]) - rc(f)ll‘leltl an (xp[t] = xp[t = 1))
(33)-left
> Up(x}) - Smm[f]xf an(xy - xplt - -1+ an(x} - xf[)?. (33)

(33)-right

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 4, PP. 1605-1618, JUNE 2018

Similarly, we know (14) is strongly concave with respect
to vector [yf)] req with modulus 2(a, + ;). By Lemma 4,
Y(n,m) € Oén) we have

Zrer (W -WL 1)kl 101

~(anram) Srer (1 11 1e-1)’

(34)-left

Srer (WOU-WD 1) ur

[\

_(‘7"*'“'") Yfer (ﬂg.) "H(n, m)[t_ll)2 (34)

+(anram) Sper (2 - 11)}

(34)-right

Recall that each column vector y) defined in (21) is
composed by control actions that appear in each constraint
(2); column vector y = [xy; py)] reFier is the collection of
all control actions; and h(y) = 2 req Ur(xr). Summing term
(33)-left over all f € F and term (34)-left over all (n,m) € L
and using an argument similar to the proof of Lemma 6 (Recall
that y[7] jointly chosen in Algorithm 1 is to minimize (29) by
Lemma 6) yields

Z (33)-left + Z (34)-left

feFr (n,m)eN
=hylh - Y (W ie o
fer,
neN\Dst(f)

+aully 101 =¥ 1 - 1117

= 2 @) W - w1y (35)
feF, leI(n)
n=Dst(f)
Recall that @[t] = rernen (@nlpesiyllyd”" -

DI + @l uepsiry) Zrezon®)’™" = 1 1117?). Summing
term (33)-right over all f € F and term (34)-right over all
(n,m) € L yields

> (33)right+ Y (34)-right

feF (n,m)eN
=h(y") + ®[1] - @[z - 1]
-y > Wil e, (36)
feF ne N\{Dst(f)}
Combining (33)-(36) and rearranging terms yields
h(y[z])
2h(y") + @[] -0t =11 > Wl o)
feF,
neN\Dst(f)
+ > Wl e
feF,
ne N\Dst(f)
+ anny‘”[1=yl = 11IP)
0 a1 - i =117
feF, leI(n)
n=Dst(f)

Py + o]

*)

- Ot -1]
W11 310

feT,
neN\Dst(f)
+ally 1) -yl = 1017
Ohy*) + o[t] - o[t - 1]
v (e me o
feF,
neN\Dst(f)
+ 8PPl - 1e 3 1)

+a’n||Yn [t] _yn [t_ (37)

e

where (a) follows from the fact that gﬁ,f)(yy)’*) = 0 and
2 feFn=Dst(f) Xn Zle](n)(ﬂl D1~ ll [t =1])2 > 0; (b) follows
from the fact that W,, []= Q&,f)[t] + g5)(ym[t —1]).

Recall that uju, = %u%+%u%— ;(ul —uy)? for any uy, u; € R.
Thus, for all f € F,n € N \ Dst(f), we have

g @1t = e ol >[r1>
=5 (&0 = 1) + 5 (66 1)’
— 5l ol -1 =gl @)t 68
Substituting (38) into (37) yields
h(ylr))
>h(y") + O[t] - @[r — 1]
£ (00 6 + 5 (6 o1 1)
feF,
neN\Dst(f)
% (& i 11)?
5 (e 1= 1)~ 8 01 1))
+anllyd 1] - ¥ 1 - 11P)
Dntyy + 0[] = [t - 1]
+ fZT (@D 1D + 5 (660 1~ 1)
neN\Dst(f)
- (e)’
+ (an = 5B =yt - 1IP)

®)
> h(y*) + ®[t] - @[t — 1]

s Y (@6 + 5 (6 1)) 69)
feF,
neN\Dst(f)
where (a) follows from the Fact 2, i.e., each g(f)(-) is Lipschitz
with modulus B, and (b) follows from the fact that @, >

Ldw + 1), Bu < Ny +1 and L (g (v [= 1) 2 0.
Substituting (26) into (39) yields

h(y[t]) = h(y") + ©[t] — @[¢ — 1] + Az].

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 4, PP.

[1]

[2]

[3]

[4

=

[5]

[6]

[7

—

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

REFERENCES

H. Yu and M. J. Neely, “A new backpressure algorithm for joint rate
control and routing with vanishing utility optimality gaps and finite
queue lengths,” in Proceedings of IEEE International Conference on
Computer Communications (INFOCOM), 2017.

L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Transactions on Automatic Control,
vol. 37, no. 12, pp. 1936-1948, 1992.

M. J. Neely, “Dynamic power allocation and routing for satellite and
wireless networks with time varying channels,” Ph.D. dissertation,
Massachusetts Institute of Technology, 2003.

L. Georgiadis, M. J. Neely, and L. Tassiulas, “Resource allocation and
cross-layer control in wireless networks,” Foundations and Trends in
Networking, 2006.

M. J. Neely, Stochastic Network Optimization with Application to
Communication and Queueing Systems. Morgan & Claypool Publishers,
2010.

A. Eryilmaz and R. Srikant, “Joint congestion control, routing, and mac
for stability and fairness in wireless networks,” IEEE Journal on Selected
Areas in Communications, vol. 24, no. 8, pp. 1514-1524, 2006.

A. L. Stolyar, “Maximizing queueing network utility subject to stability:
Greedy primal-dual algorithm,” Queueing Systems, vol. 50, no. 4, pp.
401-457, 2005.

X. Lin and N. B. Shroft, “Joint rate control and scheduling in multihop
wireless networks,” in Proceedings of IEEE Conference on Decision and
Control (CDC), 2004.

J.-W. Lee, R. R. Mazumdar, and N. B. Shroff, “Opportunistic power
scheduling for dynamic multi-server wireless systems,” IEEE Transac-
tions on Wireless Communications, vol. 5, no. 6, pp. 1506-1515, 2006.
M. J. Neely, E. Modiano, and C. E. Rohrs, “Dynamic power allocation
and routing for time-varying wireless networks,” IEEE Journal on
Selected Areas in Communications, vol. 23, no. 1, pp. 89-103, 2005.
J. Liu, N. B. Shroff, C. H. Xia, and H. D. Sherali, “Joint congestion
control and routing optimization: An efficient second-order distributed
approach,” IEEE/ACM Transactions on Networking, vol. 24, no. 3, pp.
1404-1420, 2015.

M. J. Neely, “Super-fast delay tradeoffs for utility optimal fair scheduling
in wireless networks,” IEEE Journal on Selected Areas in Communica-
tions, vol. 24, no. 8, pp. 1489-1501, 2006.

L. Huang, S. Moeller, M. J. Neely, and B. Krishnamachari, “LIFO-
backpressure achieves near-optimal utility-delay tradeoff,” IEEE/ACM
Transactions on Networking, vol. 21, no. 3, pp. 831-844, 2013.

R. A. Berry and R. G. Gallager, “Communication over fading channels
with delay constraints,” IEEE Transactions on Information Theory,
vol. 48, no. 5, pp. 1135-1149, 2002.

M. J. Neely, “Optimal energy and delay tradeoffs for multiuser wireless
downlinks,” IEEE Transactions on Information Theory, vol. 53, no. 9,
pp. 3095-3113, 2007.

A. Eryilmaz and R. Srikant, “Asymptotically tight steady-state queue
length bounds implied by drift conditions,” Queueing Systems, vol. 72,
pp. 311-359, 2012.

M. J. Neely, “Energy-aware wireless scheduling with near-optimal
backlog and convergence time tradeoffs,” IEEE/ACM Transactions on
Networking, vol. 24, no. 4, pp. 2223-2236, 2016.

E. Wei, A. Ozdaglar, and A. Jadbabaie, “A distributed Newton method
for network utility maximization-I: algorithm,” IEEE Transactions on
Automatic Control, vol. 58, no. 9, pp. 2162-2175, 2013.

M. Zargham, A. Ribeiro, and A. Jadbabaie, “Accelerated backpressure
algorithm,” in Proceedings of IEEE Global Communications Conference
(GLOBECOM), 2013.

N. Parikh and S. Boyd, “Proximal algorithms,” Foundations and Trends
in Optimization, vol. 1, no. 3, pp. 123-231, 2013.

X. Lin and N. B. Shroff, “Utility maximization for communication
networks with multipath routing,” IEEE Transactions on Automatic
Control, vol. 51, no. 5, pp. 766-781, 2006.

X. Lin, “Simplification of network dynamics in large systems,” Ph.D.
dissertation, Purdue University, 2005.

H. Yu and M. J. Neely, “A simple parallel algorithm with an O(1/r)
convergence rate for general convex programs,” SIAM Journal on
Optimization, vol. 27, no. 2, pp. 759-783, 2017.

——, “A new backpressure algorithm for joint rate control and rout-
ing with vanishing utility optimality gaps and finite queue lengths,”
arXiv:1701.04519, 2017.

[25]

[26]

[27]

[28]

[29]

(30]

(31]

(32]

[33]

[34]

1605-1618, JUNE 2018

S. Wang and N. Shroff, “Towards fast-convergence, low-delay and
low-complexity network optimization,” Proceedings of the ACM on
Measurement and Analysis of Computing Systems, Dec. 2017.

B. He and X. Yuan, “On non-ergodic convergence rate of Douglas-
Rachford alternating direction method of multipliers,” Numerische Math-
ematik, vol. 130, no. 3, pp. 567-577, 2015.

W. Deng and W. Yin, “On the global and linear convergence of the
generalized alternating direction method of multipliers,” Journal of
Scientific Computing, vol. 66, no. 3, pp. 889-916, 2016.

D. Han, D. Sun, and L. Zhang, “Linear rate convergence of the alternat-
ing direction method of multipliers for convex composite programming,”
Mathematics of Operations Research, 2017.

F. P. Kelly, A. K. Maulloo, and D. K. Tan, “Rate control for commu-
nication networks: Shadow prices, proportional fairness and stability,”
Journal of the Operational Research Society, vol. 49, no. 3, pp. 237-252,
1998.

S. H. Low and D. E. Lapsley, “Optimization flow control—I: basic
algorithm and convergence,” IEEE/ACM Transactions on Networking,
vol. 7, no. 6, pp. 861-874, 1999.

D. P. Bertsekas, A. Nedi¢, and A. E. Ozdaglar, Convex Analysis and
Optimization. Athena Scientific, 2003.

J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra, “Efficient pro-
jections onto the /;-ball for learning in high dimensions,” in Proceedings
of International Conference on Machine Learning (ICML), 2008.

M. J. Neely, “A simple convergence time analysis of drift-plus-penalty
for stochastic optimization and convex programs,” arXiv:1412.0791,
2014.

S. Boyd and L. Vandenberghe, Convex Optimization.
University Press, 2004.

Cambridge

