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Abstract—The backpressure algorithm has been widely used
as a distributed solution to the problem of joint rate control and
routing in multi-hop data networks. By controlling an algorithm
parameter, the backpressure algorithm can achieve an arbitrarily
small utility optimality gap. However, this in turn brings in a
large queue length at each node and hence causes large network
delay. This phenomenon is known as the fundamental utility-
delay tradeoff. The best known utility-delay tradeoff for general
networks is [O(ǫ),O(1/ǫ)] and is attained by a backpressure
algorithm based on a drift-plus-penalty technique. This may
suggest that to achieve an arbitrarily small utility optimality
gap, backpressure-based algorithms must incur arbitrarily large
queue lengths. However, this paper proposes a new backpressure
algorithm that has a vanishing utility optimality gap, so utility
converges to exact optimality as the algorithm keeps running,
while queue lengths are bounded throughout by a finite constant.
The technique uses backpressure and drift concepts with a new
method for convex programming.

Index Terms—backpressure algorithm; rate control; routing;
utility-delay tradeoff

I. INTRODUCTION

In multi-hop data networks, the problem of joint rate

control and routing is to accept data into the network to

maximize certain utilities and to make routing decisions at

each node such that all accepted data are delivered to intended

destinations without overflowing any queue in intermediate

nodes. The original backpressure algorithm proposed in the

seminal work [2] by Tassiulas and Ephremides addresses this

problem by assuming that incoming data are given and are

inside the network stability region and develops a routing

strategy to deliver all incoming data without overflowing any

queue. In the context of [2], there is essentially no utility

maximization consideration in the network. The backpressure

algorithm is further extended by a drift-plus-penalty technique

to deal with both utility maximization and queue stability [3],

[4], [5]. Alternative extensions for both utility maximization

and queue stabilization are developed in [6], [7], [8], [9]. The

above extended backpressure algorithms have different dynam-

ics and/or may yield different utility-delay tradeoff results.

However, all of them rely on “backpressure” quantities, which

are the differential backlogs between neighboring nodes.

It has been observed in [10], [6], [8], [11] that the drift-

plus-penalty and other alternative algorithms can be interpreted
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as first order Lagrangian dual type methods for constrained

optimization. In addition, these backpressure algorithms follow

certain fundamental utility-delay tradeoffs. For instance, the

primal-dual type backpressure algorithm in [6] achieves an

O(ǫ) utility optimality gap with an O(1/ǫ2) queue length.

That is, a small utility optimality gap (corresponding to a

small ǫ) is available only at the cost of a large queue length.

The drift-plus-penalty backpressure algorithm [5], which has

the best utility-delay tradeoff among all existing first order

Lagrangian dual type methods for general networks, can only

achieve an O(ǫ) utility optimality gap with an O(1/ǫ) queue

length. Under certain restrictive assumptions over the network,

a better [O(ǫ),O(log(1/ǫ))] tradeoff is achieved via an expo-

nential Lyapunov function in [12], and an [O(ǫ),O(log2(1/ǫ))]
tradeoff is achieved via a LIFO-backpressure algorithm in [13].

Fundamental lower bounds on utility-delay tradeoffs in [14],

[15], [16], [17], [12] show that, for various stochastic network

settings, a large queue delay is unavoidable if a small utility

optimality gap is demanded. These works consider certain

hard problems with stochastic behavior. It leaves open the

question of whether or not performance can be improved for

networks that fall outside these hard cases. The current paper

investigates network flow problems that can be written as

(deterministic) convex programs, which are not restricted to

the prior lower bounds. We pursue the question of whether

or not improved tradeoffs are possible. Can optimal utility be

approached with constant queue sizes?

Recently, there have been many attempts in obtaining

new variations of backpressure algorithms for deterministic

network flow problems by applying Newton’s method to

the Lagrangian dual function. In the recent work [11], the

authors develop a Newton’s method for joint rate control and

routing. However, the utility-delay tradeoff in [11] is still

[O(ǫ),O(1/ǫ2)]; and the algorithm requires a centralized pro-

jection step although Newton directions can be approximated

in a distributed manner. Work [18] considers a network flow

control problem where the path of each flow is given (and

hence there is no routing part in the problem), and proposes

a decentralized Newton based algorithm for rate control.

Work [19] considers network routing without an end-to-end

utility and only shows the stability of the proposed Newton

based backpressure algorithm. All of the above Netwon’s

method based algorithms rely on distributed approximations

for the inverse of Hessians, whose computations still require

certain coordinations for the local information updates and

propagations and do not scale well with the network size. In
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contrast, the first order Lagrangian dual type methods do not

need global network topology information. Rather, each node

only needs the queue length information of its neighbors.

This paper proposes a new first order Lagrangian dual

type backpressure algorithm that is as simple as the existing

algorithms in [5], [6], [8] but has a better utility-delay tradeoff.

The new backpressue algorithm achieves a vanishing utility

optimality gap that decays like O(1/t), where t is the number

of iterations. It also guarantees that the queue length at each

node is always bounded by a fixed constant of the same order

as the optimal Lagrange multiplier of the network optimization

problem. This improves on the utility-delay tradeoffs of prior

work. In particular, it improves the steady-state [O(ǫ),O(1/ǫ2)]
utility-delay tradeoff in [6] and the [O(ǫ),O(1/ǫ)] utility-delay

tradeoff of the drift-plus-penalty algorithm in [5], both of

which yield an unbounded queue length to have a vanishing

utility optimality gap. Indeed, the steady-state utility-delay

tradeoff of our algorithm is [0,O(1)]. The convergence time

to reach this limiting performance is also faster than prior

work. Our algorithm achieves a zero utility gap and O(1) queue

lengths with a fast O(1/t) convergence rate.

The new backpressure algorithm differs from existing first

order backpressure algorithms in the following aspects:

1) The “backpressure” quantities in this paper are with

respect to newly introduced weights. These are different

from queues used in other backpressure algorithms, but

can still be locally tracked and updated.

2) The rate control and routing decision rule involves a

quadratic term that is similar to a term used in proximal

algorithms [20].

Note that the benefit of introducing a quadratic term in

network optimization has been observed in [21]. Work [21]

developed a distributive rate control algorithm for network

utility maximization (NUM) problems with given routing paths

that can be reformulated as a special case of the problem

treated in this paper. The algorithm of [21] considers a fixed

set of predetermined paths for each session and does not

scale well when treating all (typically exponentially many)

possible paths of a general network. The algorithm proposed

in [21] is not a backpressure type and and uses virtual queues

rather than actual queues. It is interesting to note that the

virtual queues in [21] remain O(1).1 However, O(1) virtual

queue size does not imply the achieved utility has a fast

convergence (the convergence rate of [21] remains an open

question). In contrast, the algorithm in the current paper uses

both a quadratic term and a modified weight to get O(1) actual

queue size with a fast O(1/t) convergence rate.

In our conference version [1], the proposed backpressure al-

gorithm has a global algorithm parameter α, which is required

to be chosen based on the total number of links and sessions

in the network. In this paper, the proposed backpressure

1A technique in the proof of Prop 6.3.2 in [22] suggests that in the case of
fixed path routing of [21] and under several other assumptions that include
the implementation of a closest-to-source priority rule, there exists a constant
that bounds the deviation between virtual and actual queues. The technique in
[22] relies on a fixed-path assumption and has bounds that can grow at each
stage k of the path.

algorithm allows each node n to locally determine its algorithm

parameter αn based on the number of local link connections.

The network algorithm developed in this paper is based on

our recent work [23] that develops a new convex programming

method with an O(1/t) error decay for general constrained

convex programs (including problems that are nonsmooth, not

strongly convex and have nonlinear constraints). After our con-

ference version [1] and the arXiv preprint [24] of this paper,

Wang and Shroff in [25] studied the same joint rate control and

routing problem considered in this paper and propose another

backpressure algorithm by using the generalized alternating

direction method of multipliers (ADMM) from [26], [27], [28].

While that ADMM approach is very different from ours, the

obtained backpressure algorithm in [25] is remarkably similar

to our algorithm in this paper: It uses identical virtual queues

(up to a constant scaling) and solves source rate and link rate

subproblems with identical structures. One difference is the

two algorithms use different weights for these subproblems.

The other main difference is that at each iteration the algorithm

in [25] requires to update link rates first and then update

source rates based on the new link rate values, while our

algorithm can update link rates and source rates in parallel

since these subproblems are fully decoupled. This is because

the algorithm in [25] is restricted to the sequential update

procedure of ADMM, while our algorithm uses the parallel

methods developed by us in [23] together with the natural

separability of the linear node flow balance constraints.

The algorithm in [25] achieves source rates that satisfy

x[t] → x∗, although a convergence rate for general utility

functions is not given. 2 In contrast, our analysis proves

an explicit O(1/t) optimality deviation for the time average

network utility. This time average starts at time 0 and provides

a performance guarantee for online implementation during

the entire network operation. However, a remarkable property

of the algorithm in [25] is that when the utility is smooth

(i.e., differentiable with Lipschitz continuous gradients) and

strongly convex, then the algorithm in [25] can ensure the

final value of the iterate x[t] converges exponentially fast to

an optimal value x∗. It remains a promising research direction

to investigate whether the fast final iteration convergence also

holds for our algorithm, and to investigate the effect of the

parallel source and link rate update property and different

update rules for weight parameters in the subproblems.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a slotted data network with normalized time slots

t ∈ {0, 1, 2, . . .}. This network is represented by a graph

G = (N,L), where N is the set of nodes and L ⊆ N × N
is the set of directed links. Let |N | = N and |L| = L. This

network is shared by F end-to-end sessions denoted by a set

F . For each end-to-end session f ∈ F , the source node Src( f )
2According to [26], the authors in [25] conclude their algorithm has

“O(1/t) non-ergodic convergence” defined as ‖x[t] − x[t − 1] ‖2 ≤ O(1/t),
or equivalently, ‖x[t] − x[t − 1] ‖ ≤ O(1/

√
t), in [26]. However, this unusual

definition of non-ergodic convergence rate does not imply any convergence
rate of ‖x[t]−x∗ ‖ or utility optimality gap U(x[t])−U(x∗) and hence does not
provide insight into convergence behavior that network optimization concerns.
Thus, it has nothing to do with the O(1/t) convergence to optimal utility we
show in the current paper.
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and destination node Dst( f ) are given but the routes are not

specified. Each session f has a continuous and concave utility

function Uf (x f ) that represents the “satisfaction” received by

accepting x f amount of data for session f into the network

at each slot. Unlike [6], [11] where Uf (·) is assumed to

be differentiable and strongly concave, this paper considers

general concave utility functions Uf (·), including those that

are neither differentiable nor strongly concave. Formally, each

utility function Uf is defined over an interval dom(Uf ), called

the domain of the function.

Denote the capacity of link l as Cl and assume it is a fixed

and positive constant.3 Define µ
( f )
l

as the amount of session f ’s

data routed at link l that is to be determined by our algorithm.

Note that in general, the network may be configured such that

some session f is forbidden to use link l. For each link l,

define Sl ⊆ F as the set of sessions that are allowed to use

link l. The case of unrestricted routing is treated by defining

Sl = F for all links l.

Note that if l = (n,m) with n,m ∈ N , then µ
( f )
l

and Cl

can also be respectively written as µ
( f )
(n,m) and C(n,m). For each

node n ∈ N , denote the sets of its incoming links and outgoing

links as I(n) and O(n), respectively. Note that x f , ∀ f ∈ F and

µ
( f )
l
, ∀l ∈ L, ∀ f ∈ F are the decision variables of a joint rate

control and routing algorithm. If the global network topology

information is available, the optimal joint rate control and

routing can be formulated as the following multi-commodity

network flow problem:

max
x f ,µ

( f )
l

∑

f ∈F
Uf (x f ) (1)

s.t. x f 1{n=Src( f )} +
∑

l∈I(n)
µ
( f )
l

≤
∑

l∈O(n)
µ
( f )
l

∀ f ∈ F , ∀n ∈ N \ {Dst( f )} (2)∑

f ∈F
µ
( f )
l

≤ Cl, ∀l ∈ L, (3)

µ
( f )
l

≥ 0, ∀l ∈ L, ∀ f ∈ Sl, (4)

µ
( f )
l
= 0, ∀l ∈ L, ∀ f ∈ F \ Sl, (5)

x f ∈ dom(Uf ), ∀ f ∈ F (6)

where 1{·} is an indicator function; (2) represents the node

flow conservation constraints relaxed by replacing the equality

with an inequality, meaning that the total rate of flow f into

node n is less than or equal to the total rate of flow f out

of the node (since, in principle, we can always send fake

data for departure links when the inequality is loose); and (3)

represents link capacity constraints. Note that for each flow f ,

there is no constraint (2) at its destination node Dst( f ) since

all incoming data are consumed by this node.

The above formulation includes network utility maximiza-

tion with fixed paths as special cases. In the case when each

session only has one single given path, e.g., the network utility

maximization problem considered in [30], we could modify the

sets Sl used in constraints (4) and (5) to reflect this fact. For

example, if link l1 is only used for sessions f1 and f2, then

3As stated in [11], this is a suitable model for wireline networks and
wireless networks with fixed transmission power and orthogonal channels.

Sl1 = { f1, f2}. Similarly, the case [21] where each session is

restricted to using links from a set of predefined paths can be

treated by modifying the sets Sl accordingly. See Appendix

A for more discussions.

The solution to problem (1)-(6) corresponds to the optimal

joint rate control and routing. However, to solve this convex

program at a single computer, we need to know the global

network topology and the solution is a centralized one, which

is not practical for large data networks. As observed in [10],

[6], [8], [11], various versions of backpressure algorithms can

be interpreted as distributed solutions to problem (1)-(6) from

first order Lagrangian dual type methods.

Assumption 1: (Feasibility) Problem (1)-(6) has at least one

optimal solution vector [x∗
f
; µ

( f ),∗
l

] f ∈F,l∈L .

Assumption 2: (Existence of Lagrange multipliers) As-

sume the convex program (1)-(6) has Lagrange multipliers

attaining the strong duality. Specifically, define convex set

C = {[x f ; µ
( f )
l
] f ∈F,l∈L : (3)-(6) hold}. Assume there exists

a Lagrange multiplier vector λ∗
= [λ( f ),∗n ] f ∈F,n∈N\{Dst( f )} ≥ 0

such that

q(λ∗) = max{(1) : (2)-(6)}

where q(λ) = max[x f ;µ
( f )
l

]∈C
{ ∑

f ∈F Uf (x f ) −
∑

f ∈F
∑

n∈N\{Dst( f )} λ
( f )
n

[
x f 1{n=Src( f )} +

∑
l∈I(n) µ

( f )
l

−∑
l∈O(n) µ

( f )
l

]}
is the Lagrangian dual function of problem

(1)-(6) by treating (3)-(6) as a convex set constraint.

Assumptions 1 and 2 hold in most cases of interest. For

example, Slater’s condition guarantees Assumption 2. Since

the constraints (2)-(6) are linear, Proposition 6.4.2 in [31]

ensures that Lagrange multipliers exist whenever constraints

(2)-(6) are feasible and when the utility functions Uf are

either defined over open sets (such as Uf (x) = log(x) with

dom(Uf ) = (0,∞)) or can be concavely extended to open

sets, meaning that there is an ǫ > 0 and a concave function

Ũf : (−ǫ,∞) → R such that Ũf (x) = Uf (x) whenever x ≥ 0.4

Fact 1: (Replacing inequality with equality) If Assump-

tion 1 holds, problem (1)-(6) has an optimal solution vector

[x∗
f
; µ

( f ),∗
l

] f ∈F,l∈L such that all constraints (2) take equalities.

Proof: Note that each µ
( f )
l

can appear on the left side in

at most one constraint (2) and appear on the right side in at

most one constraint (2). Let [x∗
f
, µ

( f ),∗
l

] f ∈F,l∈L be an optimal

solution vector such that at least one inequality constraint (2)

is loose. Note that we can reduce the value of µ
( f ),∗
l

on the

right side of a loose (2) until either that constraint holds with

equality, or until µ
( f ),∗
l

reduces to 0. The objective function

value does not change, and no constraints are violated. We

can repeat the process until all inequality constraints (2) are

tight.

4If dom(Uf ) = [0,∞), such concave extension is possible if the right-
derivative of Uf at x = 0 is finite (such as for Uf (x) = log(1+x) or Uf (x) =
min[x, 3]). Such an extension is impossible for the example Uf (x) =

√
x

because the slope is infinite at x = 0. Nevertheless, Lagrange multipliers
often exist even for these utility functions, such as when Slater’s condition
holds [31].
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III. THE NEW BACKPRESURE ALGORITHM

A. Discussion of Various Queueing Models

At each node, an independent queue backlog is maintained

for each session. At each slot t, let x f [t] be the source session

rates; and let µ
( f )
l
[t] be the link session rates. Some prior work

enforces the constraint (2) via virtual queues Y
( f )
n [t] of the

following form:

Y
( f )
n [t + 1] =max

{
Y
( f )
n [t] + x f [t]1{n=Src( f )}

+

∑

l∈I(n)
µ
( f )
l
[t] −

∑

l∈O(n)
µ
( f )
l
[t], 0

}
. (7)

While this virtual equation is a meaningful approximation, it

differs from reality in that new injected data are allowed to

be transmitted immediately, or equivalently, a single packet

is allowed to enter and leave many nodes within the same

slot. Further, there is no clear connection between the virtual

queues Y
( f )
n [t] in (7) and the actual queues in the network.

Indeed, it is easy to construct examples that show there can be

an arbitrarily large difference between the Y
( f )
n [t] value in (7)

and the physical queue size in actual networks (see Appendix

B).

An actual queueing network has queues Z
( f )
n [t] with the

following dynamics:

Z
( f )
n [t + 1] ≤ max

{
Z
( f )
n [t] −

∑

l∈O(n)
µ
( f )
l
[t], 0

}

+ x f [t]1{n=Src( f )} +
∑

l∈I(n)
µ
( f )
l
[t]. (8)

This is faithful to actual queue dynamics and does not allow

data to be retransmitted over multiple hops in one slot. Note

that (8) is an inequality because the new arrivals from other

nodes may be strictly less than
∑

l∈I(n) µ
( f )
l
[t] because those

other nodes may not have enough backlog to send. The model

(8) allows for any decisions to be made to fill the transmission

values µ
( f )
l
[t] in the case that Z

( f )
n [t] ≤ ∑

l∈O(n) µ
( f )
l
[t],

provided that (8) holds.
This paper develops an algorithm that converges to the

optimal utility defined by problem (1)-(6), and that produces
worst-case bounded queues on the actual queueing network,
that is, with actual queues that evolve as given in (8). To
begin, it is convenient to introduce the following virtual queue
equation

Q
( f )
n [t + 1] =Q

( f )
n [t] −

∑

l∈O(n)
µ
( f )
l

[t] + x f [t]1{n=Src( f )} +
∑

l∈I(n)
µ
( f )
l

[t]

(9)

where Q
( f )
n [t] represents a virtual queue value associated

with session f at node n. At first glance, this model (9)

appears to be only an approximation, perhaps even a worse

approximation than (7), because it allows the Q
( f )
n [t] values

to be negative. Indeed, we use Q
( f )
n [t] only as virtual queues

to inform the algorithm and do not treat them as actual

queues. However, this paper shows that using these virtual

queues to choose the µ[t] decisions ensures not only that

the desired constraints (2) are satisfied, but that the resulting

µ[t] decisions create bounded queues Z
( f )
n [t] in the actual

network, where the actual queues evolve according to (8).

In short, our algorithm can be faithfully implemented with

respect to actual queueing networks, and converges to exact

optimality on those networks.

The next lemma shows that if an algorithm can guarantee

virtual queues Q
( f )
n [t] defined in (9) are bounded, then actual

physical queues satisfying (8) are also bounded.

Lemma 1: Consider a network flow problem described

by problem (1)-(6). For all l ∈ L and f ∈ F , let

µ
( f )
l
[t], x f [t] be decisions yielded by a dynamic algorithm.

Suppose Y
( f )
n [t], Z

( f )
n [t], Q

( f )
n [t] evolve by (7)-(9) with initial

conditions Y
( f )
n [0] = Z

( f )
n [0] = Q

( f )
n [0] = 0. If there exists a

constant B > 0 such that |Q( f )
n [t]| ≤ B, ∀t, then we also have

1) Z
( f )
n [t] ≤ 2B +

∑
l∈O(n) Cl for all t ∈ {0, 1, 2, . . .}.

2) Y
( f )
n [t] ≤ 2B +

∑
l∈O(n) Cl for all t ∈ {0, 1, 2, . . .}.

Proof:

1) Fix f ∈ F , n ∈ N \ {Dst( f )}. Define an auxiliary

virtual queue Q̂
( f )
n [t] that is initialized by Q̂

( f )
n [0] =

B +
∑

l∈O(n) Cl and evolves according to (9). It follows

that Q̂
( f )
n [t] = Q

( f )
n [t]+B+

∑
l∈O(n) Cl, ∀t. Since Q

( f )
n [t] ≥

−B, ∀t by assumption, we have Q̂
( f )
n [t] ≥ ∑

l∈O(n) Cl ≥∑
l∈O(n) µ

( f )
l
[t], ∀t. This implies that Q̂

( f )
n [t] also satisfies:

Q̂
( f )
n [t + 1] =max

{
Q̂

( f )
n [t] −

∑

l∈O(n)
µ
( f )
l
[t], 0

}

+ x f [t]1{n=Src( f )} +
∑

l∈I(n)
µ
( f )
l
[t], ∀t (10)

which is identical to (8) except the inequality is replaced

by an equality. Since Z
( f )
n [0] = 0 < Q̂

( f )
n [0]; and Q̂

( f )
n [t]

satisfies (10), by inductions, Z
( f )
n [t] ≤ Q̂

( f )
n [t], ∀t.

Since Q̂
( f )
n [t] = Q

( f )
n [t]+B+

∑
l∈O(n) Cl, ∀t and Q

( f )
n [t] ≤

B, ∀t, we have Q̂
( f )
n [t] ≤ 2B +

∑
l∈O(n) Cl, ∀t. It follows

that Z
( f )
n [t] ≤ 2B +

∑
l∈O(n) Cl, ∀t.

2) The proof of part (2) is similar and is in Appendix C.

B. The New Backpressure Algorithm

In this subsection, we propose a new backpressure algorithm

that yields source session rates x f [t] and link session rates

µ
( f )
l
[t] at each slot such that the physical queues for each

session at each node are bounded by a constant and the time

average utility satisfies

1

t

t−1∑

τ=0

∑

f ∈F
Uf (x f [t]) ≥

∑

f ∈F
Uf (x∗f ) − O(1/t), ∀t ≥ 1

where x∗
f

are from the optimal solution to (1)-(6). Note that

Jensen’s inequality further implies that

∑

f ∈F
Uf

(1
t

t−1∑

τ=0

x f [τ]
)
≥

∑

f ∈F
Uf (x∗f ) − O(1/t), ∀t ≥ 1

The new backpressure algorithm is described in Algorithm

1. Similar to existing backpressure algorithms, the updates in

Algorithm 1 at each node n are fully distributed and only

depend on weights at itself and its neighbor nodes. Unlike

existing backpressure algorithms, the weights used to update
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decision variables x f [t] and µ
( f )
l
[t] are not the virtual queues

Q
( f )
n [t] themselves, rather, they are augmented values W

( f )
n [t]

equal to the sum of the virtual queues and the amount of net

injected data in the previous slot t−1. In addition, the updates

involve an additional quadratic term, which is similar to a term

used in proximal algorithms [20]. Note that the source rate

update (in the second bullet) and the link rate update (in the

third bullet) are fully decoupled and hence can be performed

in parallel or in a swapped order.

Algorithm 1 The New Backpressure Algorithm

Let αn > 0, ∀n ∈ N be constant parameters. Initialize

x f [−1] = 0, µ
( f )
l
[−1] = 0, ∀ f ∈ F , ∀l ∈ L and Q

( f )
n [0] =

0, ∀n ∈ N, ∀ f ∈ F . At each time t ∈ {0, 1, 2, . . .}, each node

n does the following:

• For each f ∈ F , if node n is not the destination node of

session f , i.e., n , Dst( f ), then define weight W
( f )
n [t]:

W
( f )
n [t] =Q

( f )
n [t] + x f [t − 1]1{n=Src( f )}

+

∑

l∈I(n)
µ
( f )
l
[t − 1] −

∑

l∈O(n)
µ
( f )
l
[t − 1]. (11)

If node n is the destination node, i.e., n = Dst( f ), then

define W
( f )
n [t] = 0. Notify neighbor nodes (nodes k that

can send session f data to node n, i.e., ∀k such that

f ∈ S(k,n)) about this new W
( f )
n [t] value.

• For each f ∈ F , if node n is the source node of session

f , i.e., n = Src( f ), choose x f [t] as the solution to

max
x f

Uf (x f ) − W
( f )
n [t]x f − αn

(
x f − x f [t − 1]

)2
(12)

s.t. x f ∈ dom(Uf ) (13)

• For all (n,m) ∈ O(n), choose {µ( f )(n,m)[t], ∀ f ∈ F } as the

solution to the following convex program:

max
µ
( f )
(n,m)

∑

f ∈F

(
W

( f )
n [t] − W

( f )
m [t]

)
µ
( f )
(n,m)

−
(
αn + αm

) ∑

f ∈F

(
µ
( f )
(n,m) − µ

( f )
(n,m)[t − 1]

)2
(14)

s.t.
∑

f ∈F
µ
( f )
(n,m) ≤ C(n,m) (15)

µ
( f )
(n,m) ≥ 0, ∀ f ∈ S(n,m) (16)

µ
( f )
(n,m) = 0, ∀ f < S(n,m) (17)

• For each f ∈ F , if node n is not the destination of f ,

i.e., n , Dst( f ), update virtual queue Q
( f )
n [t + 1] by (9).

C. Almost Closed-Form Updates in Algorithm 1

This subsection shows the decisions x f [t] and µ
( f )
l
[t] in

Algorithm 1 have either closed-form solutions or “almost”

closed-form solutions at each iteration t.

Lemma 2: Let x̂ f ≡ x f [t] denote the solution to (12)-(13).

1) Suppose dom(Uf ) = [0,∞) and Uf (x f ) is differentiable.

Let ψ(x f ) = U ′
f
(x f ) − 2αnx f + 2αnx f [t − 1] − W

( f )
n [t].

If ψ(0) ≤ 0, then x̂ f = 0; otherwise x̂ f is the root to

the equation ψ(x f ) = 0 and can be found by a bisection

search.

2) Suppose dom(Uf ) = (0,∞) and Uf (x f ) = w f log(x f ) for

some weight w f > 0. Then:

x̂ f =
2αnx f [t − 1] − W

( f )
n [t]

4αn

+

√
(W ( f )

n [t] − 2αnx f [t − 1])2 + 8αnw f

4αn

Proof: Omitted for brevity.

The problem (14)-(17) can be represented as follows by

eliminating µ
( f )
(n,m), f < S(n,m), completing the square and

replacing maximization with minimization. (Note that K =

|S(n,m) | ≤ |F |.)

min
1

2

K∑

k=1

(zk − ak)2 (18)

s.t.

K∑

k=1

zk ≤ b (19)

zk ≥ 0, ∀k ∈ {1, 2, . . . ,K} (20)

Lemma 3: The solution to problem (18)-(20) is given by

z∗
k
= max{0, ak − θ∗}, ∀k ∈ {1, 2, . . . ,K} where θ∗ ≥ 0 can be

found either by a bisection search (See Appendix D) or by

Algorithm 2 with complexity O(K log K).
Proof: A similar problem where (19) is replaced with an

equality constraint is considered in [32]. The optimal solution

to this quadratic program is characterized by its KKT condition

and a corresponding algorithm can be developed to obtain its

KKT point. A complete proof is presented in Appendix D.

Algorithm 2 Algorithm to solve problem (18)-(20)

1) Check if
∑K

k=1 max{0, ak} ≤ b holds. If yes, let θ∗ = 0

and z∗
k
= max{0, ak}, ∀k ∈ {1, 2, . . . ,K} and terminate

the algorithm; else, continue to the next step.

2) Sort all ak, ∈ {1, 2, . . . ,K} in a decreasing order π such

that aπ(1) ≥ aπ(2) ≥ · · · ≥ aπ(K). Define S0 = 0.

3) For k = 1 to K

• Let Sk = Sk−1 + ak . Let θ∗ = Sk−b
k

.

• If θ∗ ≥ 0, aπ(k) − θ∗ > 0 and aπ(k+1) − θ∗ ≤ 0,

then terminate the loop; else, continue to the next

iteration in the loop.

4) Let z∗
k
= max{0, ak − θ∗}, ∀k ∈ {1, 2, . . . ,K} and

terminate the algorithm.

Note that step (3) in Algorithm 2 has complexity O(K) and

hence the overall complexity of Algorithm 2 is dominated by

the sorting step (2) with complexity O(K log(K)).

IV. PERFORMANCE ANALYSIS OF ALGORITHM 1

A. Preliminaries

This subsection introduces facts from convex analysis and

some useful additional notation.

Definition 1 (Strongly Concave Functions): Let Z ⊆ Rn be

a convex set. Function f is said to be strongly concave on
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Z with modulus α if there exists a constant α > 0 such that

f (z) + 1
2
α‖z‖2 is concave on Z.

By the definition of strongly concave functions, it is easy to

show that if f (z) is concave and α > 0, then f (z)−α‖z−z0‖2

is strongly concave with modulus 2α for any constant z0. The

next lemma shows that a strongly concave function deviates

at least quadratically from its maximum value.

Lemma 4 (Corollary 1 in [23]): Let Z ⊆ Rn be a convex

set. Let function f be strongly concave on Z with modulus α

and zopt be a global maximum of f on Z. Then, f (zopt ) ≥
f (z) + α

2
‖zopt − z‖2 for all z ∈ Z.

Define column vector y = [x f ; µ
( f )
l
] f ∈F,l∈L , which aggre-

gates all optimization variables in problem (1)-(6). For each

f ∈ F , n ∈ N \ {Dst( f )}, define column vector

y
( f )
n =

{
[x f ; µ

( f )
l
]l∈I(n)∪O(n) if n = Src( f ),

[µ( f )
l
]l∈I(n)∪O(n) else,

(21)

which is composed of the control actions appearing in each

constraint (2); and introduce a function with respect to y
( f )
n as

g
( f )
n (y( f )n ) = x f 1{n=Src( f )} +

∑

l∈I(n)
µ
( f )
l

−
∑

l∈O(n)
µ
( f )
l

(22)

Thus, constraint (2) can be rewritten as

g
( f )
n (y( f )n ) ≤ 0, ∀ f ∈ F , ∀n ∈ N \ {Dst( f )}.

Note that each vector y
( f )
n is a subvector of y and has length

dn + 1 where dn is the degree of node n (the total number of

outgoing links and incoming links) if node n is the source of

session f ; and has length dn if node n is not the source of

session f . Note that components in different vector variables

y
( f )
n can overlap. The vector variables y and y

( f )
n are introduced

only to simplify notation.

The virtual queue update equation (9) can be rewritten as:

Q
( f )
n [t + 1] = Q

( f )
n [t] + g( f )n (y( f )n [t]). (23)

The weight update equation (11) can be rewritten as:

W
( f )
n [t] = Q

( f )
n [t] + g( f )n (y( f )n [t − 1]). (24)

Define

L(t) = 1

2

∑

f ∈F

∑

n∈N\Dst( f )

(
Q

( f )
n [t]

)2
(25)

and call it a Lyapunov function. In the remainder of this paper,

double summations are often written compactly as a single

summation, e.g.,
∑

f ∈F

∑

n∈N\Dst( f )

(
·
) ∆
=

∑

f ∈F,
n∈N\Dst( f )

(
·
)
.

Define the Lyapunov drift as

∆[t] = L(t + 1) − L(t).

The following lemma follows directly from equation (23).

Lemma 5: At each iteration t ∈ {0, 1, . . .} in Algorithm 1,

the Lyapunov drift is given by

∆[t] =
∑

f ∈F,
n∈N\Dst( f )

(
Q

( f )
n [t]g( f )n (y f

n[t]) +
1

2

(
g
( f )
n (y f

n[t])
)2)

. (26)

Proof: Fix f ∈ F and n ∈ N \ Dst( f ), we have

1

2

(
Q

( f )
n [t + 1]

)2 − 1

2

(
Q

( f )
n [t]

)2

(a)
=

1

2

(
Q

( f )
n [t] + g( f )n (y( f )n [t])

)2 − 1

2

(
Q

( f )
n [t]

)2

=Q
( f )
n [t]g( f )n (y f

n[t]) +
1

2

(
g
( f )
n (y f

n[t])
)2

(27)

where (a) follows from (23).

By the definition of ∆[t], we have

∆[t] = 1

2

∑

f ∈F,
n∈N\Dst( f )

( (
Q

( f )
n [t + 1]

)2 −
(
Q

( f )
n [t]

)2)

(a)
=

∑

f ∈F,
n∈N\Dst( f )

(
Q

( f )
n [t]g( f )n (y f

n[t]) +
1

2

(
g
( f )
n (y f

n[t])
)2)

where (a) follows from (27).

B. Intuitions of Algorithm 1

Recall y = [x f ; µ
( f )
l
] f ∈F,l∈L . Define

h(y) =
∑

f ∈F
Uf (x f ). (28)

The intuition behind our approach comes from examining

the “drift-plus-penalty” expression from prior Lyapunov based

backpressure type algorithms as in [5]. With ∆[t] given in (26)

being a change of the Lyapunov function, prior backpressure

algorithms would yield

V h(y[t]) − ∆[t]

=V h(y[t]) − Q[t]Tg(y[t]) − 1

2
‖g(y[t])‖2

︸        ︷︷        ︸
≤B

where V > 0 is an algorithm parameter and Q[t] and g(y[t])
are vectors that concatenate the individual Q

( f )
n [t] and g

( f )
n (·)

components. Prior algorithms seek to choose y[t] to maximize

the first two terms on the right-hand-side of this expression

over (3)-(6); the quadratic term marked by an underbrace is

bounded by a constant B and results in a B/V error (which

can be made small by increasing the V parameter). One

could eliminate the B term by changing the algorithm to

optimize all three terms (including the 1
2
‖g(y[t])‖2 term) but

this would be a nonseparable optimization that is as difficult

as the original problem (1)-(6). Our insight is to approximate

this quadratic term as [g(y[t − 1])]T[g(y[t])], include this

easy-to-optimize term in the maximization step, and then

compensate for the approximation error by introducing prox-

terms ‖y( f )n [t] − y
( f )
n [t − 1]‖2 together with a strong concavity

argument (which we can rigorously establish even though our

utility function is not necessarily strongly concave). Since this

approach eliminates the B constant, we no longer need the V

parameter to be large, and so we use V = 1.

At each time t, consider choosing a decision vector y[t] that

includes elements in each subvector y
( f )
n [t] to solve problem

(29)-(30). The expression (29) is a modified drift-plus-penalty

expression. Unlike the standard drift-plus-penalty expressions
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from [5], the above expression uses weights W
( f )
n [t], which

augments each Q
( f )
n [t] by g

( f )
n (y( f )n [t − 1]), rather than virtual

queues Q
( f )
n [t]. It also includes a “prox”-like term that penal-

izes deviation from the previous y[t−1] vector. This results in

the novel backpressure-type algorithm of Algorithm 1. Indeed,

the decisions in Algorithm 1 were derived as the solution to

problem (29)-(30). This is formalized in the next lemma.

Lemma 6: At each iteration t ∈ {0, 1, . . .}, the action y[t]
jointly chosen in Algorithm 1 is the solution to problem (29)-

(30).

Proof: The proof involves collecting terms associated

with the x f [t] and µ
( f )
l
[t] decisions. See Appendix E for

details.

Furthermore, the next lemma relates h(y∗) and h(y[t])
yielded by action y[t] that aggregates all control actions jointly

chosen in Algorithm 1 at each iteration t ∈ {0, 1, . . .}.
Lemma 7: Let y∗ = [x∗

f
; µ

( f ),∗
l

] f ∈F,l∈L be an optimal

solution to problem (1)-(6) given in Fact 1, i.e., g
( f )
n (y( f ),∗n ) =

0, ∀ f ∈ F , ∀n ∈ N \ Dst( f ). If αn ≥ 1
2
(dn + 1), ∀n ∈ N ,

where dn is the degree of node n, then the action y[t] =
[x f [t]; µ( f )l

[t]] f ∈F,l∈L jointly chosen in Algorithm 1 at each

iteration t ∈ {0, 1, . . .} satisfies

h(y[t]) ≥ h(y∗) + Φ[t] − Φ[t − 1] + ∆[t]

where Φ[t] = ∑
f ∈F,n∈N

(
αn1{n,Dst( f )}‖y( f ),∗n − y

( f )
n [t]‖2

+

αn1{n=Dst( f )}
∑

l∈I(n)(µ
( f ),∗
l

− µ
( f )
l
[t])2

)
and h(y) is defined in

(28).

Proof: See Appendix F.

It remains to show that this modified backpressure algorithm

leads to fundamentally improved performance.

C. Utility Optimality Gap Analysis

Define column vector Q[t] =
[
Q

( f )
n [t]

]
f ∈F,n∈N\{Dst( f )} as

the stacked vector of all virtual queues Q
( f )
n [t] defined in (9).

Note that (25) can be rewritten as L(t) = 1
2
‖Q[t]‖2. Define

vectorized constraints (2) as g(y) = [g( f )n (y( f )n )] f ∈F,n∈N\Dst( f ).

Lemma 8: Let y∗ = [x∗
f
; µ

( f ),∗
l

] f ∈F,l∈L be an optimal

solution to problem (1)-(6) given in Fact 1, i.e., g
( f )
n (y( f ),∗n ) =

0, ∀ f ∈ F , ∀n ∈ N \ Dst( f ). If αn ≥ 1
2
(dn + 1), ∀n ∈ N in

Algorithm 1, where dn is the degree of node n, then for all

t ≥ 1,

t−1∑

τ=0

h(y[τ]) ≥ th(y∗) − ζ + 1

2
‖Q[t]‖2.

where ζ = Φ[−1] = ∑
f ∈F,n∈N

(
αn1{n,Dst( f )}‖y( f ),∗n ‖2

+

αn1{n=Dst( f )}
∑

l∈I(n)(µ
( f ),∗
l

)2
)

is a constant.

Proof: By Lemma 7, we have h(y[τ]) ≥ h(y∗) + Φ[τ] −
Φ[τ−1]+∆[τ], ∀τ ∈ {0, 1, . . . , t −1}. Recall ∆[τ] = L[τ+1]−

L[τ]. Summing over τ ∈ {0, 1, . . . , t − 1} yields

t−1∑

τ=0

h(y[τ])

≥th(y∗) +
t−1∑

τ=0

(
Φ[τ] − Φ[τ − 1]

)
+

t−1∑

τ=0

∆[τ]

=th(y∗) + Φ[t − 1] − Φ[−1] + L[t] − L[0]
(a)
≥ th(y∗) − Φ[−1] + 1

2
‖Q[t]‖2

where (a) follows from the fact that Φ[t] ≥ 0, ∀t, L[t] =
1
2
‖Q[t]‖2 and L[0] = 0.

The next theorem summarizes that Algorithm 1 yields a

vanishing utility optimality gap that approaches zero like

O(1/t).
Theorem 1: Let y∗ = [x∗

f
; µ

( f ),∗
l

] f ∈F,l∈L be an optimal

solution to problem (1)-(6) given in Fact 1, i.e., g
( f )
n (y( f ),∗n ) =

0, ∀ f ∈ F , ∀n ∈ N \ Dst( f ). If αn ≥ 1
2
(dn + 1), ∀n ∈ N in

Algorithm 1, where dn is the degree of node n, then for all

t ≥ 1, we have

1

t

t−1∑

τ=0

∑

f ∈F
Uf (x f [τ]) ≥

∑

f ∈F
Uf (x∗f ) −

1

t
ζ,

where ζ is a constant defined in Lemma 8. Moreover, if we

define x f [t] = 1
t

∑t−1
τ=0 x f [τ], ∀ f ∈ F , then

∑

f ∈F
Uf (x f [t]) ≥

∑

f ∈F
Uf (x∗f ) −

1

t
ζ .

Proof: Recall by (28) that h(y) = ∑
f ∈F Uf (x f ). By

Lemma 8, we have

t−1∑

τ=0

∑

f ∈F
Uf (x f [τ]) ≥t

∑

f ∈F
Uf (x∗f ) − ζ +

1

2
‖Q[t]‖2

(a)
≥ t

∑

f ∈F
Uf (x∗f ) − ζ .

where (a) follows from the trivial fact that ‖Q[t]‖2 ≥ 0.

Dividing both sides by a factor t yields the first inequality in

this theorem. The second inequality follows from the concavity

of Uf (·) and Jensen’s inequality.

D. Queue Stability Analysis

Lemma 9: Let Q[t], t ∈ {0, 1, . . .} be the virtual queues in

Algorithm 1. For any t ≥ 1,

Q[t] =
t−1∑

τ=0

g(y[τ])

Proof: This lemma follows directly from the fact that

Q[0] = 0 and queue update equation (9) can be written as

Q[t + 1] = Q[t] + g(y[t]).
The next theorem shows the boundedness of all virtual

queues Q
( f )
n [t] in Algorithm 1.

Theorem 2: Let y∗ = [x∗
f
; µ

( f ),∗
l

] f ∈F,l∈L be an optimal

solution to problem (1)-(6) given in Fact 1, i.e., g
( f )
n (y( f ),∗n ) =

0, ∀ f ∈ F , ∀n ∈ N \ Dst( f ), and λ∗ be a Lagrange multiplier
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max
y

h(y) −
∑

f ∈F,
n∈N\Dst( f )

(
W

( f )
n [t]g( f )n (y( f )n ) + αn‖y( f )n − y

( f )
n [t − 1]‖2

)
−

∑

f ∈F,
n=Dst( f )

αn

∑

l∈I(n)
(µ( f )

l
− µ

( f )
l
[t − 1])2 (29)

s.t. (3)-(6) (30)

vector given in Assumption 2. If αn ≥ 1
2
(dn + 1), ∀n ∈ N

in Algorithm 1, where dn is the degree of node n, then

∀ f ∈ F , ∀n ∈ N \ {Dst( f )}, we have

|Q( f )
n [t]| ≤ ‖Q[t]‖ ≤ 2‖λ∗‖ +

√
2ζ, ∀t ≥ 1

where ζ is a constant defined in Lemma 8.

Proof: Let q(λ) = supy∈C
{
h(y) − λTg(y)

}
be the La-

grangian dual function defined in Assumption 2. For all

τ ∈ {0, 1, . . . , }, by Assumption 2, we have

h(y∗) = q(λ∗)
(a)
≥ h(y[τ]) − λ∗,Tg(y[τ])

where (a) follows from the definition of q(λ∗). Rearranging

terms yields

h(y[τ]) ≤ h(y∗) + λ∗,Tg(y[τ]), ∀τ ∈ {0, 1, . . .}.

Fix t > 0. Summing over τ ∈ {0, 1, . . . , t − 1} yields

t−1∑

τ=0

h(y[τ]) ≤th(y∗) +
t−1∑

τ=0

λ∗,Tg(y[τ])

=th(y∗) + λ∗,T
t−1∑

τ=0

g(y[τ])

(a)
= th(y∗) + λ∗,TQ[t]
(b)
≤ th(y∗) + ‖λ∗‖‖Q[t]‖

where (a) follows form Lemma 9 and (b) follows from

Cauchy-Schwarz inequality.

On the other hand, by Lemma 8, we have

t−1∑

τ=0

h(y[τ]) ≥ th(y∗) − ζ + 1

2
‖Q[t]‖2.

Combining the last two inequalities and cancelling the com-

mon terms yields

1

2
‖Q[t]‖2 − ζ ≤ ‖λ∗‖‖Q[t]‖

⇒
(
‖Q[t]‖ − ‖λ∗‖

)2 ≤ ‖λ∗‖2
+ 2ζ

⇒‖Q[t]‖ ≤ ‖λ∗‖ +
√
‖λ∗‖2

+ 2ζ

(a)
⇒‖Q[t]‖ ≤ 2‖λ∗‖ +

√
2ζ

where (a) follows from the basic inequality
√

a + b ≤
√

a+
√

b

for any a, b ≥ 0.

Thus, for any f ∈ F and n ∈ N \ {Dst( f )}, we have

|Q( f )
n [t]| ≤ ‖Q[t]‖ ≤ 2‖λ∗‖ +

√
2ζ .

This theorem shows that the absolute values of all virtual

queues Q
( f )
n [t] are bounded by a constant B = 2‖λ∗‖ +

√
2ζ

from above. By Lemma 1 and discussions in Section III-A, the

actual physical queues Z
( f )
n [t] evolving via (8) satisfy Z

( f )
n [t] ≤

2B +
∑

l∈O(n) Cl, ∀t. This is summarized in the next corollary.

Corollary 1: Let y∗ = [x∗
f
; µ

( f ),∗
l

] f ∈F,l∈L be an optimal

solution to problem (1)-(6) given in Fact 1, i.e., g
( f )
n (y( f ),∗n ) =

0, ∀ f ∈ F , ∀n ∈ N \ Dst( f ), and λ∗ be a Lagrange multiplier

vector given in Assumption 2. If αn ≥ 1
2
(dn + 1)2, ∀n ∈ N

in Algorithm 1, where dn is the degree of node n, then all

actual physical queues Z
( f )
n [t], ∀ f ∈ F , ∀n ∈ N \ {Dst( f )} in

the network evolving via (8) satisfy

Z
( f )
n [t] ≤4‖λ∗‖ + 2

√
2ζ +

∑

l∈O(n)
Cl, ∀t .

where ζ is a constant defined in Lemma 8.

Define vector x∗ = [x∗
f
] f ∈F and x[t] = [x f [t]] f ∈F where x∗

f

and x f [t] are defined in Theorem 1. Note that if each Uf (x f ) is

strongly concave with respect to x f , then x∗ is unique by strong

concavity. (However, [µ( f ),∗
l

]l∈L is not necessarily unique.)

In this case, Corollary 2 shows x[t] yielded by Algorithm 1

converges to the unique maximizer x∗.
Corollary 2: If the conditions in Theorem 1 hold and each

Uf (x f ) is strongly concave with respect to x f , then Algorithm

1 guarantees x[t] → x∗ as t → ∞.

Proof: Assume each Uf (x f ) is strongly concave with

respect to x f with modulus cf . Let c = min f ∈F{cf }. By As-

sumption 2, we have y∗ = argmaxy∈C{h(y) −λ∗,Tg(y)}. Recall

that h(y) = ∑
f ∈F Uf (x f ) and g(y) are separable since they can

be written as the sum of scalar functions in terms of x f and

µ
( f )
l

. Thus, x∗
f

and [µ( f ),∗
l

] f ∈F appear separably and maximize

in the left-side of (31) where each x∗
f

satisfying (6) maximizes

a strongly concave part and each vector [µ( f ),∗
l

] f ∈F satisfying

(3)-(5) maximizes a concave part. Define y[t] = 1
t

∑t−1
τ=0 y[τ].

Note that y[t] satisfies (3)-(6) since each y[τ] is generated by

Algorithm 1. By Lemma 4, for all t ≥ 1,
∑

f ∈F
Uf (x∗f ) − λ∗,Tg(y∗)

≥
∑

f ∈F
Uf (x f [t]) − λ∗,Tg(y[t]) +

∑

f ∈F

cf

2
(x∗f − x f [t])2

(a)
≥

∑

f ∈F
Uf (x f [t]) − λ∗,Tg(y[t]) + c

2
‖x[t] − x∗‖2

(b)
=

∑

f ∈F
Uf (x f [t]) − λ∗,T 1

t

t−1∑

t=0

g(y[τ]) + c

2
‖x[t] − x∗‖2

(c)
=

∑

f ∈F
Uf (x f [t]) −

1

t
λ∗,TQ(t) + c

2
‖x[t] − x∗‖2 (31)
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and we need to further require
∑K

k=1 z∗
k
=

∑K
k=1 max{0, ak} ≤

b. Thus θ∗ = 0 if and only if
∑K

k=1 max{0, ak} ≤ b. Thus,

Algorithm 2 check if
∑K

k=1 max{0, ak} ≤ b holds at the first

step and if this is true, then we conclude θ∗ = 0 and we are

done!

Otherwise, we know θ∗ > 0. By the slackness con-

dition θ∗
( ∑K

k=1 z∗
k
− b

)
= 0, we must have

∑K
k=1 z∗

k
=∑K

k=1 max{0, ak − θ∗} = b. To find θ∗ > 0 such that∑K
k=1 max{0, ak − θ∗} = b, we could apply a bisection search

by noting that all z∗
k

are decreasing with respect to θ∗.

Another algorithm of finding θ∗ is inspired by the observa-

tion that if aj ≥ ai, ∀i, j ∈ {1, 2, . . . ,K}, then z∗
j
≥ z∗

i
. Thus, we

first sort all ak in a decreasing order, say π is the permutation

such that aπ(1) ≥ aπ(2) ≥ · · · ≥ aπ(K); and then sequentially

check if k ∈ {1, 2, . . . ,K} is the index such that aπ(k) − θ∗ ≥ 0

and aπ(k+1)−θ∗ < 0. To check this, we first assume k is indeed

such an index and solve the equation
∑k

j=1(aπ(j) − θ∗) = b to

obtain θ∗; (Note that in Algorithm 2, to avoid recalculating the

partial sum
∑k

j=1 aπ(j) for each k, we introduce the parameter

Sk =
∑k

j=1 aπ(j) and update Sk incrementally. By doing this,

the complexity of each iteration in the loop is only O(1).) then

verify the assumption by checking if θ∗ ≥ 0, aπ(k) − θ∗ ≥ 0

and aπ(k+1) − θ∗ ≤ 0. The algorithm is described in Algorithm

2 and has complexity O(K log(K)). The overall complexity is

dominated by the step of sorting all ak .

APPENDIX E

PROOF OF LEMMA 6

The objective function (29) can be rewritten as

h(y) −
∑

f ∈F,
n∈N\Dst( f )

(
W

( f )
n [t]g( f )n (y( f )n )

+ αn‖y( f )n − y
( f )
n [t − 1]‖2

)

−
∑

f ∈F,n=Dst( f )
αn

∑

l∈I(n)
(µ( f )

l
− µ

( f )
l
[t − 1])2

(a)
=

∑

f ∈F
Uf (x f )

−
∑

f ∈F,
n∈N\Dst( f )

W
( f )
n [t]

(
x f 1{n=Src( f )}+

∑
l∈I(n) µ

( f )
l

−∑l∈O(n) µ
( f )
l

)

−
∑

f ∈F,
n∈N\Dst( f )

αn(x f − x f [t − 1])21{n=Src( f )}

−
∑

f ∈F,
n∈N\Dst( f )

αn

∑

l∈I(n)
(µ( f )

l
− µ

( f )
l
[t − 1])2

−
∑

f ∈F,
n∈N\Dst( f )

αn

∑

l∈O(n)
(µ( f )

l
− µ

( f )
l
[t − 1])2

−
∑

f ∈F,n=Dst( f )
αn

∑

l∈I(n)
(µ( f )

l
− µ

( f )
l
[t − 1])2

(b)
=

∑

f ∈F

(
Uf (x f ) − W

( f )
Src( f )[t]x f − αSrc( f )(x f − x f [t − 1])2

)

+

∑

(n,m)∈L

∑

f ∈F

(
W

( f )
n [t] − W

( f )
m [t]

)
µ
( f )
(n,m)

−
∑

(n,m)∈L
(αn + αm)

∑

f ∈F
(µ( f )(n,m) − µ

( f )
(n,m)[t − 1])2 (32)

where (a) follows from the fact that ‖y( f )n − y
( f )
n [t − 1]‖2

=

(x f − x f [t − 1])21{n=Src( f )} +
∑

l∈I(n)(µ
( f )
l

− µ
( f )
l
[t − 1])2 +∑

l∈O(n)(µ
( f )
l

− µ
( f )
l
[t − 1])2; and (b) follows by collecting

each linear term µ
( f )
l

and each quadratic term (µ( f )
l

− µ
( f )
l
[t −

1])2. In the last step (b), the quadratic term
∑

(n,m)∈L(αn +
αm)

∑
f ∈F(µ

( f )
(n,m) − µ

( f )
(n,m)[t − 1])2 is obtained by simply col-

lecting each quadratic term (µ( f )
l

− µ
( f )
l
[t − 1])2 in the last 3

terms in step (a); and the linear term
∑

(n,m)∈L
∑

f ∈F
(
W

( f )
n [t]−

W
( f )
m [t]

)
µ
( f )
(n,m) is obtained by noting each link session rate

µ
( f )
l

appears twice with opposite signs in the summation

term
∑

f ∈F,n∈N\{Dst( f )} W
( f )
n [t]

(
x f 1{n=Src( f )} +

∑
l∈I(n) µ

( f )
l

−∑
l∈O(n) µ

( f )
l

)
unless link l flows into Dst( f ) and recalling that

W
( f )
Dst( f ) = 0, ∀ f ∈ F .

Note that equation (32) is now separable for each scalar

x f and vector [µ( f )(n,m)] f ∈F . Thus, problem (29)-(30) can be

decomposed into independent smaller optimization problems

in the form of problem (12)-(13) with respect to x f , and in

the form of problem (14)-(17) with respect to µ
( f )
(n,m), ∀ f ∈ F .

APPENDIX F

PROOF OF LEMMA 7

Definition 2 (Lipschitz Continuity): Let Z ⊆ Rn be a convex

set. Function f : Z → Rm is said to be Lipschitz continuous

on Z with modulus β if there exists β > 0 such that ‖ f (z1) −
f (z2)‖ ≤ β‖z1 − z2‖ for all z1, z2 ∈ Z.

The following fact summarizes the Lipschitz continuity of

each function g
( f )
n (·).

Fact 2: Each function g
( f )
n (·) defined in (22) is Lipschitz

continuous with respect to vector y
( f )
n with modulus

βn ≤
√

dn + 1.

where dn is the degree of node n.

Proof: This fact can be easily shown by noting that each

g
( f )
n (y( f )n ) is a linear function with respect to vector y

( f )
n and

has at most dn + 1 non-zero coefficients that are equal to ±1.

Now, we are ready to present the main proof.

Note that W
( f )
n [t] appears as a known constant in (12). Since

Uf (x f ) is concave and W
( f )
n [t]x f is linear, it follows that (12) is

strongly concave with respect to x f with modulus 2αn. Since
x f [t] is chosen to solve (12)-(13), by Lemma 4, ∀ f ∈ F , we
have

Uf (x f [t]) −W
( f )
Src( f )[t]x f [t] − αn(x f [t] − x f [t − 1])2

︸                                                                    ︷︷                                                                    ︸
(33)-left

≥Uf (x∗f ) −W
( f )
Src( f )[t]x

∗
f − αn(x∗f − x f [t − 1])2 + αn(x∗f − x f [t])2

︸                                                                                     ︷︷                                                                                     ︸
(33)-right

. (33)
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Similarly, we know (14) is strongly concave with respect

to vector [µ f(n,m)] f ∈F with modulus 2(αn +αm). By Lemma 4,

∀(n,m) ∈ O(n), we have
∑

f ∈F
(
W

( f )
n [t]−W ( f )

m [t]
)
µ
( f )
(n,m)[t]

−
(
αn+αm

) ∑
f ∈F

(
µ
( f )
(n,m)[t]−µ

( f )
(n,m)[t−1]

)2

︸                                       ︷︷                                       ︸
(34)-left

≥
∑

f ∈F
(
W

( f )
n [t]−W ( f )

m [t]
)
µ
( f ),∗
(n,m)

−
(
αn+αm

) ∑
f ∈F

(
µ
( f ),∗
(n,m)−µ

( f )
(n,m)[t−1]

)2

+

(
αn+αm

) ∑
f ∈F

(
µ
( f ),∗
(n,m)−µ

( f )
(n,m)[t]

)2

︸                                    ︷︷                                    ︸
(34)-right

(34)

Recall that each column vector y
( f )
n defined in (21) is

composed by control actions that appear in each constraint

(2); column vector y = [x f ; µ
( f )
l
] f ∈F,l∈L is the collection of

all control actions; and h(y) = ∑
f ∈F Uf (x f ). Summing term

(33)-left over all f ∈ F and term (34)-left over all (n,m) ∈ L
and using an argument similar to the proof of Lemma 6 (Recall

that y[t] jointly chosen in Algorithm 1 is to minimize (29) by

Lemma 6) yields
∑

f ∈F
(33)-left +

∑

(n,m)∈N
(34)-left

=h(y[t]) −
∑

f ∈F,
n∈N\Dst( f )

(
W

( f )
n [t]g( f )n (y( f )n [t])

+ αn‖y( f )n [t] − y
( f )
n [t − 1]‖2

)

−
∑

f ∈F,
n=Dst( f )

αn

∑

l∈I(n)
(µ( f )

l
[t] − µ

( f )
l
[t − 1])2. (35)

Recall that Φ[t] =

∑
f ∈F,n∈N

(
αn1{n,Dst( f )}‖y( f ),∗n −

y
( f )
n [t]‖2

+ αn1{n=Dst( f )}
∑

l∈I(n)(µ
( f ),∗
l

− µ
( f )
l
[t])2

)
. Summing

term (33)-right over all f ∈ F and term (34)-right over all

(n,m) ∈ L yields

∑

f ∈F
(33)-right +

∑

(n,m)∈N
(34)-right

=h(y∗) + Φ[t] − Φ[t − 1]
−
∑

f ∈F

∑

n∈N\{Dst( f )}
W

( f )
n [t]g( f )n (y( f ),∗n ), (36)

Combining (33)-(36) and rearranging terms yields

h(y[t])
≥h(y∗) + Φ[t] − Φ[t − 1] −

∑

f ∈F,
n∈N\Dst( f )

W
( f )
n [t]g( f )n (y( f ),∗n )

+

∑

f ∈F,
n∈N\Dst( f )

(
W

( f )
n [t]g( f )n (y( f )n [t])

+ αn‖y( f )n [t] − y
( f )
n [t − 1]‖2

)

+

∑

f ∈F,
n=Dst( f )

αn

∑

l∈I(n)
(µ( f )

l
[t] − µ

( f )
l
[t − 1])2

(a)
≥ h(y∗) + Φ[t] − Φ[t − 1]
+

∑

f ∈F,
n∈N\Dst( f )

(
W

( f )
n [t]g( f )n (y( f )n [t])

+ αn‖y( f )n [t] − y
( f )
n [t − 1]‖2

)

(b)
= h(y∗) + Φ[t] − Φ[t − 1]

+

∑

f ∈F,
n∈N\Dst( f )

(
Q

( f )
n [t]g( f )n (y( f )n [t])

+ g
( f )
n (y( f )n [t − 1])g( f )n (y( f )n [t])

+ αn‖y( f )n [t] − y
( f )
n [t − 1]‖2

)
(37)

where (a) follows from the fact that g
( f )
n (y( f ),∗n ) = 0 and∑

f ∈F,n=Dst( f ) αn
∑

l∈I(n)(µ
( f )
l
[t] − µ( f )

l
[t −1])2 ≥ 0; (b) follows

from the fact that W
( f )
n [t] = Q

( f )
n [t] + g( f )n (y( f )n [t − 1]).

Recall that u1u2 =
1
2
u2

1
+

1
2
u2

2
− 1

2
(u1−u2)2 for any u1, u2 ∈ R.

Thus, for all f ∈ F , n ∈ N \ Dst( f ), we have

g
( f )
n (y( f )n [t − 1])g( f )n (y( f )n [t])

=

1

2

(
g
( f )
n (y( f )n [t − 1])

)2
+

1

2

(
g
( f )
n (y( f )n [t])

)2

− 1

2

(
g
( f )
n (y( f )n [t − 1]) − g

( f )
n (y( f )n [t])

)2
. (38)

Substituting (38) into (37) yields

h(y[t])
≥h(y∗) + Φ[t] − Φ[t − 1]

+

∑

f ∈F,
n∈N\Dst( f )

(
Q

( f )
n [t]g( f )n (y( f )n [t]) + 1

2

(
g
( f )
n (y( f )n [t − 1])

)2

+

1

2

(
g
( f )
n (y( f )n [t])

)2

− 1

2

(
g
( f )
n (y( f )n [t − 1]) − g

( f )
n (y( f )n [t])

)2

+ αn‖y( f )n [t] − y
( f )
n [t − 1]‖2

)

(a)
≥ h(y∗) + Φ[t] − Φ[t − 1]

+

∑

f ∈F,
n∈N\Dst( f )

(
Q

( f )
n [t]g( f )n (y( f )n [t]) + 1

2

(
g
( f )
n (y( f )n [t − 1])

)2

+

1

2

(
g
( f )
n (y( f )n [t])

)2

+

(
αn −

1

2
β2
n

)
‖y( f )n [t] − y

( f )
n [t − 1]‖2

)

(b)
≥ h(y∗) + Φ[t] − Φ[t − 1]

+

∑

f ∈F,
n∈N\Dst( f )

(
Q

( f )
n [t]g( f )n (y( f )n [t]) + 1

2

(
g
( f )
n (y( f )n [t])

)2)
(39)

where (a) follows from the Fact 2, i.e., each g
( f )
n (·) is Lipschitz

with modulus βn and (b) follows from the fact that αn ≥
1
2
(dn + 1), βn ≤

√
dn + 1 and 1

2

(
g
( f )
n (y( f )n [t − 1])

)2 ≥ 0.

Substituting (26) into (39) yields

h(y[t]) ≥ h(y∗) + Φ[t] − Φ[t − 1] + ∆[t].
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