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Convergence and Adaptation for Utility Optimal
Opportunistic Scheduling

Michael J. Neely

Abstract— This paper considers the fundamental convergence
time for opportunistic scheduling over time-varying channels.
The channel state probabilities are unknown and algorithms
must perform some type of estimation and learning while they
make decisions to optimize network utility. Existing schemes
can achieve a utility within ¢ of optimality, for any desired
€ > 0, with convergence and adaptation times of O(1/¢?).
This paper shows that if the utility function is concave and
smooth, then O(log(1/€)/e) convergence time is possible via
an existing stochastic variation on the Frank-Wolfe algorithm,
called the RUN algorithm. Next, a converse result is proven to
show it is impossible for any algorithm to have convergence
time better than O(1/¢), provided the algorithm has no a-
priori knowledge of channel state probabilities. Hence, RUN
is within a logarithmic factor of convergence time optimality.
However, RUN has a vanishing stepsize and hence has an infinite
adaptation time. Using stochastic Frank-Wolfe with a fixed step-
size yields improved O(1/¢?) adaptation time, but convergence
time increases to O(1/¢>), similar to existing drift-plus-penalty
based algorithms. This raises important open questions regarding
optimal adaptation.

I. FORMULATION

This paper treats opportunistic scheduling for multiple
wireless users. Consider a wireless system with n users that
transmit over their own links. The system operates over slotted
time ¢ € {0,1,2,...}. The wireless channels can change over
time and this affects the set of transmission rates available
for scheduling. Specifically, let {S[t]};2, be a process of
independent and identically distributed (i.i.d.) channel state
vectors that take values in some set S C R™, where m is
a positive integer.! The channel vectors have a probability
distribution function Fg(s) = P[S[t] < s| for all s € R™.
However, this distribution function is unknown. Every slot ¢,
the network controller observes the current S[t] and chooses
a transmission rate vector ult] = (pit],. .., pn[t]) from a
set I'gpy). That is, the set I'gy of transmission rate vectors
available on slot ¢ depends on the observed S[t]. This is called
opportunistic scheduling because the network controller can
choose to transmit with larger rates on links with currently
good channel conditions. The set I' gy is typically nonconvex
(for example, it might have only a finite number of points). It
is assumed that I'gy) € B for all t € {0,1,2,...}, where B is
a closed and bounded n-dimensional subset of R™.
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'The value m can be different from n if the number of channel state
parameters is different from the number of links, such as for systems where
each link has multiple subbands.

For each integer T' > 0, define the time average transmission
rate vector [T by:

AlT] = # 3=y nlt]

The goal is to make decisions over time to maximize the
limiting network utility:

Maximize: liTrri> inf ¢(E [g[T]]) (1)

Subject to:  pft] € Ty ,Vt€{0,1,2,...} @)

where ¢ : B — R is a concave network utility function.
The expectation in (1) is with respect to the random channel
state vectors and the potentially randomized decision rule for
choosing pu[t] € I'gy) on each slot . The above problem is
particularly challenging because the channel state distribution
function Fg is unknown. Algorithms designed without knowl-
edge of Fs are called statistics-unaware algorithms.

This paper considers the convergence time required
for a statistics-unaware algorithm to come within an e-
approximation of the optimal utility, where optimality con-
siders all algorithms, including those with perfect knowledge
of Fgs. It is shown that no statistics-unaware algorithm can
guarantee an e-approximation with convergence time faster
than O(1/¢). Further, it is shown that a variation on the Frank-
Wolfe algorithm with a running average, called RUN, achieves
this convergence bound to within a logarithmic factor. How-
ever, this performance holds when starting the time averages
at time 0 and using a vanishing stepsize. This raises important
questions of adaptation over arbitrary intervals of time.

A. Convergence and adaptation definitions

Define ¢°P! as the optimal utility value for problem (1)-(2).
Fix € > 0. An algorithm is said to achieve an e-approximation
with convergence time C' if:

(B [@[T]]) = ¢ —e NT>C

An algorithm is said to achieve an O(e)-approximation with
convergence time O(C) if the above holds with € and C
replaced by constant multiples of ¢ and C.
Convergence time only considers behavior starting from slot
t = 0. It is important to consider behavior over any interval of
time that starts at some arbitrary time ¢y. An algorithm is said
to achieve an e-approximation with adaptation time C'if for all
to € {0,1,2,...} under which the channel state distribution
Fs is the same for all slots ¢ > ty, we have:
¢ (3 ST E ) z 67 - VT2 C

t=to
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where the channel state distribution is allowed to be different
before slot £y. This definition captures how long it takes an
algorithm to respond to an unexpected change in channel
probabilities that occurs at some time ty. If the controller
knows when such a change occurs, it can simply reset the
algorithm by defining the current time as time 0. However,
the difficulty is that the controller does not necessarily know
when a change occurs, and so it cannot reset at appropriate
times. Thus, the adaptation time of an algorithm can be much
larger than its convergence time.

A key aspect of these definitions is that the probability
distribution for the system is unknown. If the distribution were
known, one could define a randomized algorithm that transmits
with optimized conditional probabilities (given the observed
St]), so that E [u[t]] is the same (optimal) vector at every
slot £ and convergence time is 0. An alternative sample-path
definition of convergence time is considered in [2]. That work
shows the sample path time average of an integer sequence
that converges to an optimal non-integer value must have error
that decays like ©(1/t) (for example, the error might be 1/t
on odd slots and —1/t on even slots). This holds regardless
of whether or not probabilities are known. This paper proves
that, if probabilities are unknown, then even the expectations
must have an Q(1/t) utility optimality gap.

B. Why time averages?

The performance metrics in this paper are with respect to
time average system performance. Time averages are funda-
mental in the fields of communications, networks, and infor-
mation theory (recall that the information theory definition of
channel capacity is in terms of a time average). Online opti-
mization of time averages is particularly challenging because
it means that the decisions made early in the timeline are
counted in the performance metric. Fast learning is crucial so
that past mistakes do not significantly hurt the time average.
The definition of convergence time used in this paper is similar
in spirit to the concept of regret used for online convex
optimization [3][4][5].

C. Prior drift-based algorithm

It is known that the drift-plus-penalty algorithm (DPP)
of [6][7] achieves an e-approximation with convergence and
adaptation times both O(1/¢2). That algorithm is designed for
more general problems with queues and/or constraints. For the
problem of the current paper, the DPP algorithm operates by

defining, for each ¢ € {1,...,n}, an auxiliary flow control
process ;[t] and virtual queue Q;[t] with update equation:
Qilt + 1] = max[Qs[t] + vi[t] — pilt], 0] 3)

The initial condition is typically @;[0] = 0. Every slot
t € {0,1,2,...}, DPP observes S[t] and chooses uft] =

(alt]s - pnlt]) and A[t] = (n[t], ..., 7n[t]) via:
plt] = arg (Tl[t],---r,??[)t(])GFs[t] Lg; Q;[t]r; [t]] 4)
v[t] = arg o, li (01[t], .-, Onlt]) — Z Qit]0; [t]] ®)

where € > 0 is a parameter that affects a tradeoff between
utility optimality and virtual queue size (and hence conver-
gence time). This separates the transmission rate decisions p[t]
according to the (possibly nonconvex) max-weight rule (4)
(which acts only on the queues), and the flow decisions ~[t]
according to the (convex) problem (5) (which uses both the
queues and the utility function ¢). This algorithm is statistics-
unaware. Under a mild bounded subgradient condition on the
utility function ¢, it is shown in [8] that the worst-case virtual
queue size is O(1/¢) and the utility achieved over the first T’
slots satisfies:?

E[(h[T])] = ¢ — O(e) VT > 1/¢

The utility function is not required to be differentiable and
hence this performance holds for non-smooth problems. A
similar inequality holds for any interval of time of duration
1/€2%, and so the algorithm has an O(1/€?) adaptation time.

D. Prior gradient-based algorithms

Alternative gradient-based algorithms are developed in
[9]1[10]. These assume the utility function is differentiable. Let
#'(z)T denote the transpose of the derivative of ¢ at vector

x = (x1,...,%y,), assumed to be a 1 X n row vector:
9¢(x)  9¢(x)
/ T _
d'(z)' = o, o,

The algorithms in [9][10] use a max-weight type decision with
weights determined by the gradient of the utility function eval-
uated at a sample path time average of previous transmission
rates. Specifically, every slot ¢ > 0 they choose pu[t] € T'gpy
as the maximizer of the following expression:

¢ (fft —1]) " pult] (6)

where fi[t — 1] represents some type of averaging of the previ-
ous transmission rates p[0], ..., u[t — 1], such as the running
average ilt] = 1714 p[7] (called the RUN algorithm in
this paper), or an exponentially smoothed average that shall
be precisely defined later (called the EXP algorithm in this
paper). This can be viewed as a stochastic variation on the
Frank-Wolfe algorithm for deterministic convex minimization
(see, for example, [11]). The analyses in [9][10] use fluid limit
arguments that make precise performance bounds difficult to
obtain. This gradient-based approach is extended in [12][13] to
include additional queue stability constraints. To our knowl-
edge, there are no formal analyses of the convergence time
of these algorithms. Analysis in [8] shows that a related
gradient-based stochastic primal-dual algorithm achieves an e-
approximation with O(1/¢€) queue size, but the proof requires
an (unproven) convergence assumption and does not specify
what the convergence time might be even if the convergence
assumption holds.

2Note that Q;[T]/T bounds the deviation between input flow rate and
delivery rate in virtual queue 4 of (3). The worst-case value of Q;[T]/T
is O(1/€)/T, which is O(e) whenever T > 1/¢2. This leads to 1/e2
convergence time [7].
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E. Related methods

Convergence times for related problems of minimizing
penalty subject to queue stability constraints are considered
in [14][15]. The work [14] uses a Lagrange multiplier esti-
mation phase to reduce convergence time to an O(1/e'2/3)
bound.> The work [15] treats average power minimization
subject to stability in a simple 1-queue system and shows
that convergence time of the DPP algorithm in this context
is O(log(1/¢)/€). A lower bound on convergence time of
Q(1/€) is also proven in [15] for the 1-queue power mini-
mization problem. The lower bound proof in [15] bears some
resemblance to the converse proof used in the current paper.
However, the multi-user network utility maximization problem
of the current paper has a different structure than the 1-queue
power minimization problem and requires different arguments.
Recent work in [16] uses drift techniques to show that con-
vergence time for dual-subgradient methods for deterministic
convex programs can be improved from O(1/€?) to O(1/e).

For problems with queues, optimal average queue size
tradeoffs with utility and average power are developed in
[17]1[18][19][15].

Convergence for a class of online convex optimization prob-
lems is considered in [3][4][5]. Such problems have a structure
that is different from the opportunistic scheduling problems of
the current paper, and their fundamental asymptotic laws are
different. However, the notion of regret treated in [3][4][5]
is similar to the convergence time definition of the current
paper. Algorithms for such problems can achieve regret over
T slots that is proportional to /7' [3], which corresponds
to O(1/€?) convergence time, and (for those problems) this
cannot be improved unless there is special structure such as
strong convexity [4][5].

Whittle indexing and Lyapunov indexing heuristics, related
to restless bandit systems, are used to treat power-aware multi-
user scheduling in [20][21]. The formulations in [20][21] have
a complex Markov decision structure for which heuristics
are useful. The work [20] treats approximate minimization
of a power and queue cost in a system with fixed Poisson
arrivals and time-varying channels. The work [21] treats
approximate throughput maximization subject to an average
power constraint for opportunistic file downloading with users
that go active and inactive. Analytical results on convergence
and optimality are not available for these heuristics (with
the exception of certain special cases described in [21] for
which optimality is provable). They also require knowledge or
approximation of certain statistical properties of the system.

F. Our contributions

This paper shows that, assuming the utility function ¢ is
smooth and has a Lipschitz continuous gradient, the conver-
gence time of RUN is O(log(1/e€)/e€), which is superior to
that of the DPP algorithm. To our knowledge, this is the
first demonstration that such performance is possible. Further,
we show that no statistics-unaware algorithm can achieve a

3The work [14] shows the transient time for backlog to come close to a
Lagrange multiplier vector is O(1/¢2/3). For transients to be amortized, the
total time for averages to be within e of optimality is O(1/el12/3),

convergence time faster than O(1/¢), and so RUN is within
a logarithmic factor of the optimal convergence time. In the
special case when the utility function is strongly concave, it is
shown that mean square error between the achieved rate vector
and the optimal rate vector decays like O(log(t)/t), where ¢
is the number of time steps.

Unfortunately, the RUN algorithm uses a vanishing stepsize
and Section V shows it generally has an infinite adaptation
time. This is because RUN builds up a time average over a
long period of time, and it takes an even longer time to “un-
average” this irrelevant time average after system probabilities
change. A simple fix is to replace the full time average
L[t — 1] used in (6), which averages over the always-growing
time interval {0, 1,...,¢— 1}, with an exponentially weighted
average (this gives rise to the EXP algorithm). Fluid model
properties of the EXP algorithm are considered in [9][12][13].
In this paper, we show EXP produces an O(¢) approximation
with convergence and adaptation times that are both O(1/¢2),
so that adaptation is improved in comparison to RUN, but
convergence is degraded. An open question is whether or not
it is possible for both convergence and adaptation times to be
improved beyond O(1/¢2).

II. PRELIMINARIES
A. Assumptions

The set of all transmission rate vectors available for schedul-
ing is assumed to be bounded. Specifically, define B as a
convex, closed, and bounded subset of R"™ that satisfies:

B C [0, p"**] > -- x [0, py ] )
where pf"** > ( are given maximum transmission rates over
each link ¢ € {1,...,n}. It is assumed that B has a nonempty
interior. Define D as the diameter of B:

D = sup |la— b 3)
a,beB

where all norms in this paper denote the standard Eu-

clidean norm |[|b|| = /> ., b?. For example, defining B =
[0, 179 x -+ x [0, p2 %] yields D = Y0 (o2,

For each channel state vector s € S, the set of available
transmission rate vectors I'g is assumed to be a closed and
bounded subset of B. The network controller chooses p[t] €
I'sp) on each slot ¢, and so 0 < p;[t] < pi*** for all slots ¢
and all i € {1,...,n}.

Let ¢ : B — R be a utility function that is continuous
and concave. The function ¢ is assumed to be differentiable
and G-smooth, so that the gradients ¢’(z) are G-Lipschitz
continuous:

16" () = &' ()l < Gllz = yll

Formally, the gradients ¢’(z) for points x on the boundary of

B are defined with respect to limits taken over the interior of

B, and are assumed to satisfy the G-Lipschitz property above.
An example utility function for z = (x1,...,x,) is

o) = 3o, log(1 + Bixi)

where (3; are positive values that weight the priority of each
user i € {1,...,n}. Using 8; = 8 for all ¢ and choosing a

Vr,y e B
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large value of (3 approaches the well known proportionally
fair utility >'"_, log(z;). In this paper, we avoid explicit use
of log(z;) because it has a singularity at x; = 0.

B. Convexity and smoothness

Every concave and differentiable function ¢ : B — R
satisfies the following inequality [22][23]:

o(y) < d(x) +¢'(z) " (y—x) Va,yeB )

Further, every G-smooth function ¢ : B — R satisfies the
following descent lemma [22][23]:

o(y) > op(x)+¢' (2) (y—2)—§|ly — |> Va,y € B (10)

C. Characterizing optimality

Let I'* be the set of all “one-shot” expectations E [u[0]] €
R™ that are possible on slot 0, considering all possible con-
ditional probability distributions for choosing 1[0] € I'gjg) in
reaction to the observed vector S[0]. Since p[0] € B with
probability 1, it follows that I C . It can be shown that I'*
is a convex set. Define T as the closure of I'*. It can be shown
that T~ is convex, closed, bounded, and T~ C B. It is shown
in [8] that T is the set of all possible limiting time average
expected transmission rate vectors. Further, optimality for the
problem (1)-(2) can be defined by T Specifically, define ¢°P*
as the supremum value of the objective (1) over all possible
algorithms. It is shown in [8] that:

¢ = sup ¢(a)

a:ef*

an

Continuity of ¢ and compactness of T implies there is at least
=k
one vector z* € ' such that ¢°P* = ¢(z*).

III. ALGORITHM AND ANALYSIS

This section considers a stochastic version of the determin-
istic Frank-Wolfe algorithm from [11], also considered in the
fluid limit papers [9][10]. It is useful to analyze a class of
algorithms that use general time-varying weights. Both RUN
and EXP have this structure.

A. Weighted averaging algorithms

Let {n:}52, be a sequence of real numbers that satisfy 0 <
n <1 forallt € {0,1,2,...}. These shall be used to define
a sequence of vectors y[t] € R™ that are weighted averages of
the transmission vectors. Specifically, define y[—1] = 0 € R",
and define:

Y[t] = (1 = ne)y[t — 1] + neplt]

The value 7 is called the stepsize on slot t. It can be shown
that using 7; = 1/(¢t+ 1) for all ¢ results in a running average
of p[t]. Using n, = n for all ¢, for a fixed n € (0,1),
results in a weighted average of p[t] with an exponentially
decaying memory. Strictly speaking, this is an “approximate”
exponentially weighted average because it uses 79 = n <
1 and so ~[0] may not be the same as p[0]. This is for
convenience later.

Ve {0,1,2,...} (12)

On each slot t € {0,1,2,...}, we consider a gradient-based
opportunistic scheduling algorithm that observes [t — 1] and
the current channel state S[t] and chooses the transmission
vector plft] to solve:

Maximize: ¢’ (y[t — 1]) T p[t]
Subject to:  pt] € Tgpy

13)
(14)

The above decision chooses u[t] to maximize a linear function
over the closed and bounded set I'g(;, and so there is at least
one maximizer. Ties are broken arbitrarily if more than one
maximizer exists. Formally, the tiebreaking rule is assumed to
be probabilistically measurable so that p[t] is a valid random
vector with well defined expectations that lie in the set 5.

Recall that [t — 1] is a weighted average of past transmis-
sion rates. Intuitively, to improve utility, it is reasonable for the
algorithm (13)-(14) to make transmission decisions every slot
that are aligned with the gradient of ¢ evaluated at the current
weighted average. However, it is not obvious what kind of
weighted average to use for [t — 1], or how different choices
affect utility, convergence time, and adaptation time.

A key property is this: If p[t] is the decision produced by
the rule (13)-(14) on slot t € {0,1,2,...}, then:

¢' (Y[t = 1)) T plt] > &' ([t — 1)) " [1]

where p*[t] is any other (possibly randomized) decision vector
in the set I'gp,j. This holds because p[t] is (by definition) the
maximizer of (13) subject to the constraint (14). Two other

5)

useful properties that hold for all slots ¢ € {0,1,2,...} are:
t| —~lt—1
ult) — e — 1= W=l 777[ L ae)
t

&' (Y[t = 1) T (Y[t] = [t — 1]) < o(v[t]) — d(v[t — 1])
G 2
+ 5“7[7?] =t =1l
a7

where (16) follows by (12); (17) follows by the smoothness
property (10).

B. Performance lemmas

Lemma 1: For each slot ¢t € {0,1,2,...} the decision rule
(13)-(14) ensures:

E [¢/(rlt = 1) (ult] = 1t~ 1)] > 67" ~ E[g(ft — 1)

where ¢°P! is the optimal objective value for problem (1)-(2).

Proof: Fix t € {0,1,2,...} and let pu[t] be the decision
made by the rule (13)-(14). Recall that I'* is the set of all
achievable one-shot expectations E [p[0]]. Fix « € I'* and let
p*[t] € T'gpy be a stationary and randomized algorithm that
makes decisions as a randomized function of S[t] to yield
E [1*[t]] = «. Applying inequality (15) gives:

¢ (Y[t = 1)) "] = &' (v[t — 1)) T [t]
Taking expectations of this gives
E[¢'(7[t = 1)) Tult] > B [¢' (4t — 1)) T (1]
QE[¢ (]t~ 1)) E [u[t]

=E[¢'(y[t—1])"] = (18)
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where equality (a) holds because channel state vectors S[t] are
iid. over slots and p*[t] depends only on S[t], so that it is
independent of [t — 1]. Inequality (18) holds for all vectors
x € I'*. Taking a limit as x — z*, where x* is a fixed vector
in T such that ¢(z*) = ¢°Pt, gives:

E[¢' (vt — 1) ult] ZE[¢'(vit—1))"] =
Subtracting the same value from both sides of the above
inequality gives:

E [¢/ (ot = 1) (slt] = 1t = 1))
>E [¢(lt = 1) (2" 1t — 1))
However, the subgradient inequality (9) for concave functions
yields:
# Gl =17 (@ =5l = 1) > (") — $(lt ~ 1)

Taking expectations of the above inequality and substituting
into the right-hand-side of (19) yields the result. O
Lemma 2: The algorithm (12)-(14) ensures for all ¢ €

{0,1,2,...}:

E[001H) = 601t = 1] § o _
yl N

19)

Elp(y[t - 1])]

7’]]5C:D2
-

where the diameter D is defined in (8).
Proof: By Lemma 1 we have for all slots ¢ € {0,1,2,...}:

(20)

E[p(v]t —1])] > ¢t — [qb’( [t = 1) T (ult] = v[t = 1)]
@ gort — ZE[¢/ (7t — 1) (v[t] A1t — 1])]
(b) 1
> 67 — —E[60lt) - 601t~ 1)
- 5-E Il = 2ft - 1]
D g~ Bl - d(oft — 1))
(1] = 41 — 1112]
9 port _ %Ewmﬁn—¢wwfun
nGD?
- 2D

where (a) holds by (16); (b) holds by (17); (c) holds by
(16); and (d) holds because p[t] and [t — 1] lie in the set
B and the largest possible magnitude of their difference is D.
Rearranging terms yields the result. 0

C. The RUN algorithm

Let n; = ; +1 for t € {0,1,2,...}. With these weights, the
iteration (12) produces a running average of the u[t] values:

t+1] ,vte{0,1,2,...}

¥ -

_
(]
S
'E \

Using these stepsizes for the weighted average in (13)-(14)
shall be called the RUN algorithm.

Theorem 1: Under the RUN algorithm, we have for all
integers T > 0:4

GD(1 +1og(T))

> opt
> ¢ oT

El¢ (m[T))]

where the diameter D is defined in (8).

Proof: Fix an integer 7' > 0. Summing inequality (20) over
te{0,1,...,T — 1} gives:

T-1
~[t—1])

Ele0t) = ¢0lt =] o pyort Z E [

=0 Ui

GD2 T-1
-3 e
t=0
Rearranging terms gives
T—1 t T2 1 1
E ¢ —1])] = T¢*? E[¢ -
S Bl - 1) 2 79 + Bl ]| 2+ -
n [E[ﬂé(v[—ll)] _Elp([T —1] ]}
"o nr-1
ap? T=1
- n
2 = t
Substituting 7; = 1/(t + 1) gives
T-1 T—2
> Ele(ylt - 1])] >T¢“’”+ZE [E])]
t=0
El¢ v[ 1])] TE [¢p(v[T —1])]
GDQ T—1
2 — t+1

Canceling common terms in the above inequality and rear-
ranging yields

5 T—1
TEpGT 1)) = o - C0 5 L
t=0

D2
> T¢" — ——(1+1og(T))
Dividing by T and using the fact that v[T' — 1] = @[T] gives
the result. O

This theorem shows that utility converges to the optimal
value ¢°P! as T — co. Deviation from optimality decays like
log(T)/T. Fix € > 0. Then we are within O(e) of optimality
after a convergence time of O(log(1/¢€)/e€). This last remark
is formalized by the following lemma.

Lemma 3: If 0 < ¢ < 1/e and T > log(1/e)/e, then
log(T')/T < (14 1/e)e.

4By Jensen’s inequality for the concave function ¢ we know ¢(E [[T]) >
E [¢(&[T])], and so Theorems 1 and 2 also provide bounds on ¢(E [z[T7]]).
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Proof: Define y = log(1/€). Then y > 1 and T > e. So,
log(T) (2) log(log(1/€)/¢)
T —  log(l/e)/e
_ loglog(1/e)
-1+ 5t
=€ [1 +

log(y)]
(2 €sup {1 + — log( ) }

)
z>1
=¢€[l+1/e€]

where (a) holds because log(T")/T is decreasing whenever
T > e; (b) holds because y > 1. OJ

D. The EXP algorithm

Fix n € (0,1) and define n; = n for all t € {0,1,2,...}.
This shall be called the EXP algorithm. For the next theorem,
it is convenient to further assume that the utility function ¢ is
entrywise nondecreasing, which is the case for most practical
problems that seek large transmission rates.

Theorem 2: Under the EXP algorithm, and under the addi-
tional assumption that ¢ is entrywise nondecreasing, we have
for all integers T' > O:

opt __ 2
Blo ()] 2 o - | 0] - 10D

Proof: Substituting 7, = n into (20) gives for all ¢ €

{0,1,2,...},

E[6(1{]) = 60 = 1] | ot _

; Elp(y[t - 1])]
nGD?
2
Fix T > 0. Summing over ¢t € {0,1,...,7 — 1} gives

E T—-1]) — -1
[(b(’)/[ D QS(PY[ ]) > T¢Opt Z E t _ 1 ]
n
B 77GD2T
2
Dividing by 7" and rearranging terms gives:
T—1
1 o GD?
7O Elo(l - 1)) 2 67" — T
t=0
, E01-1) = 67 — 1)
nT
From Jensen’s inequality for the concave function ¢ we have:
nGD?

{ ( Yo V[t—l])} 2¢0pt_T
E[p(v[-1]) — o(v[T — 1])]

+ T
(22)
opt UGDZ
Z ¢ Pt __ T
__ opt
MAUEL o3

where the last inequality holds because: (i) v[—
probability 1; (ii)) We have

1] = 0 with

a b
E6(IT - 1)) € 6ERT - 1]) < ¢
where (a) holds by Jensen’s inequality;
E[[T —1]] €T (see [24]).
It remains to relate the time average of the ~y[¢t — 1] process
to that of the p[t] process. Substituting 1, = # into (16) and
summing over ¢ € {0,...,T — 1} (and dividing by T gives:

(b) holds by

1 1« VT —1] —~[-1]
= M=% ) lt—1+ (24)
T & T < nT
-0
= V[t —1]

t=0

where the final inequality is taken entrywise and uses the fact
that y[—1] = 0 < [T — 1]. Substituting this inequality into
the left-hand-side of (23) and using the fact that ¢ is entrywise
nondecreasing proves the result. O

Fix € > 0. By defining 7 = ¢, Theorem 2 implies that
EXP achieves an O(¢)-approximation with convergence time
T =1/é.

E. Relation to deterministic Frank-Wolfe

Analysis of the Frank-Wolfe algorithm in a deterministic
context is given in [11]. An important difference is that
the above analysis treats the stochastic case and considers
performance in terms of the time average fi[1| achieved over
time. In contrast, the classical Frank-Wolfe algorithm seeks
a single vector x within a given convex set that is close to
optimal, with no regard to how time averages behave.

It is interesting to note that a modified stepsize 7, =
2/(t+2) is used for deterministic convex minimization in [11]
to show that an approximate vector x can be computed after 7'
iterations with error bounded by O(1/T) (which is faster than
the O(log(T')/T') result of RUN). At first glance, this suggests
that using the modified stepsize 1, = 2/(¢+2) in the stochastic
problem might remove the log(-) factor. However, the same
analysis of the deterministic problem cannot be used in our
stochastic context. Rather than seeking a single vector z that
yields good utility, we seek an online algorithm that ensures
the resulting time average transmission rate vector 1z[T] yields
good utility. Theorem 1 proves that the actual transmission
rates scheduled by the RUN algorithm have expected time
averages that deviate from optimal utility by no more than
O(log(T)/T). It is an open question whether or not there
exists a statistics-unaware algorithm that can improve the
convergence time of RUN by removing the log(-) factor.

However, the stepsize rule 1, = 2/(t + 2) is still useful for
stochastic scheduling problems. It leads to an algorithm that
is different from RUN and EXP. The resulting ~[¢] value is an
unusual weighted average of {u[0],..., u[t]}. Indeed, using
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e =2/(t+2) in (12) gives

110) = w0
A1) = Spl0] + 2l
102) = Gul0] + gult] + Spl2
1 2 3 4
V3] = TOM[O] + TOMM + TOMM + TOM[?)]

and so on. The next theorem shows that the utility associated
with this unusual weighted average [T deviates from ¢°P¢
by O(1/T). Unfortunately, this does not imply an improved
convergence rate for the actual time average transmission rate
vector fi[T].

Theorem 3: Using algorithm (12)-(14) with stepsize 7, =
2/(t + 2) yields an “unusual” weighted average ~[t] that
satisfies:

E [p(y[t])] > ¢°F* — WVt e {0,1,2,...}
Proof: The proof uses Lemma 2 together with an induction
argument similar to the deterministic case treated in [11].
Details are omitted for brevity (see [24]). O

2GD2

FE. Strongly concave utility functions

Consider again the RUN algorithm. Assume the utility
function ¢ : B — R is smooth, concave, and satisfies the
assumptions of Section II-A. Further, fix o > 0 and assume
¢ is a-strongly concave, meaning that: ¢(v) + S|[y|]* is
also a concave function over v € B (equivalently, —¢ is an
a-strongly convex functlon) Define x* as the (nonrandom)
vector in the set T’ that corresponds to utility optimality for
problem (1)-(2) (so that ¢(z*) = ¢°P). Strong concavity of ¢
implies that x is the unique vector in T with this property.
Let a[T] = % Zt o ' 1u[t] be the (random) sample path time
average over the first T' slots under the RUN algorithm. The
mean square error between [T and z* is

E [|[A[T] - 27[]*] = i B (@[T - 27)?)

Theorem 4: If ¢() is a-strongly concave over v € B, then
for all T' > 0 the RUN algorithm yields

B w112 GD?(1 + log(T))
E [|[E(r] - o|7] < S

Furthermore f[T’] converges to x* with probability 1.
Proof: Since ¢ : B — R is a-strongly concave, for any
two vectors x,y € B we have [22]:

6(y) < 6(a) +¢'(2) " (y — v) — Sl — yl?
Substituting y = @[T] and = = x* gives
S(AlT) < ¢(z") + ¢/ (") " (AIT] - ¥)
Taking expectations of both sides gives:
E[¢(a[T)] < é(a*) + ¢ (") " (E [A[T]] — z*)
- SE[IRIT] - 2"

Now note that E [E[T]] is a convex combination of pomts in the
convex set T and hence lies in the set T . Since z* maximizes

(25)

the utility function ¢ over all other vectors in the convex set
T, the standard optimality condition requires:

¢'(«*) " (E[a[T]]
Substituting this inequality into the previous one gives:
— * @ _— *
E [b(@T))] < ¢(x") — SE [I[AT] - 2"[]

Rearranging terms and using Theorem 1 yields (25).

To prove probability 1 convergence, we use a technique
similar to a classic proof of the law of large numbers: Fix
e > 0. For all positive integers £ we have by the Markov
inequality:

—2") <0

(26)

Pl — 2% = o < = [llﬁ[kQ}Q— o ||?]

_GD? (1 + log(k2)>

T ae? k2
where the final inequality holds by (25). Thus

2ok PlIIAR]

This holds for all € > 0 and we conclude (with the assistance
of the Borel-Cantelli lemma) that limy,_, . f1[k?] = 2* with
probability 1. That is, convergence occurs with probability 1
when sampling over the subsequence of perfect squares.

On the other hand, every positive integer 1" is between two
perfect squares:

—z*|| > € < 0

k%§T<(kT+l)2

where kr is the largest positive integer such that k2. < T.
Since (k1 +1)? — k% = 2kr + 1 we have
0<T—k:<2kr+1 27)

By definition of 7[t] = 1 S0 p[7] we have

ak2ke 1 =R
7[ ;] T+T Zﬂ[t]

AT =
t=kZ,
Thus
IRT] - Akl = = I\Zt 2 (ult] — T3]

(a ) D(T — k%)
- T
(;) : (2kT +1)
© 2D (2\7 +1)
- T

where (a) holds by the triangle inequality and the definition
of D in (8); (b) holds by (27); (c) holds by kr < V/T. Thus

lim [[[T] - 7lk7]l| =0 (28)
T—o0
By the triangle inequality

[R[T] = 2*|| < [[@lT] - "zl + ||Alkz] — o]

As T' — oo, the first term on the right-hand-side of the above
inequality converges to 0 by (28), while the second term
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*

converges to zero (with probability 1) because 7i[k%| — =
with probability 1. Thus, with probability 1,

i [[A[T) 27 =0
—00

U

Note that substituting (26) into Theorem 2 provides an

additional mean square error result for EXP for the case when

¢ is strongly concave. In the special case of deterministic

systems where channels do not vary with time and p[t] is

chosen in a fixed set I' C B every slot ¢, Theorems 1-4 hold
deterministically with all expectations removed.

IV. A STOCHASTIC CONVERSE RESULT

This section provides a simple example of an opportunistic
scheduling system, together with a smooth and strongly con-
cave utility function, such that all statistics-unaware algorithms
have a utility optimality gap that is at least Q(1/¢), where ¢
is the number of time steps.

A. A 2-user system with ON/OFF channels

Consider a 2-user system with an 1ii.d. channel
state  process {S[t]}{2,. Suppose there are only
three possible channel state vectors, so that S[t] €
{(ON,OFF),(ON,ON),(OFF,ON)}. Every slot ¢,
the network controller observes S[t] and chooses to either
transmit over exactly one channel that is currently ON, or to
remain idle. The corresponding decision sets are:

S[t] = (ON,OFF) = pult] € {(0,0),(1,0)}
S[t] = (ON,ON) = plt] € {(0,0),(1,0),(0,1)}
S[t] = (OFF,ON) = ult] € {(0,0),(0,1)}

Define the utility function ¢ : [0, 1] — R by

B(71,72) = log(1 + 1) + log(1 + 72)

It can be shown that ¢ is smooth and strongly concave over its
domain. Since ¢ is entrywise increasing, efficient algorithms
should transmit whenever there is at least one ON channel.
The only non-trivial decision is which channel to choose when
S[t] = (ON,ON). Consider a particular statistics-unaware
algorithm 7 that transmits whenever there is at least one ON
channel, and if S[t] = (ON, ON) it chooses between the two
transmission vectors (1, 0) and (0, 1) according to some (pos-
sibly randomized) policy. Like the RUN and EXP algorithms,
the algorithm 7 has no initial knowledge of the probability
mass function for S[t] and can only base decisions on current
and past observations. One can imagine that algorithm 7 is
chosen first, then a probability mass function (PMF) for S|[t]
is chosen by nature. Nature is free to choose a PMF under
which policy 7 performs poorly. Consider two different PMFs,
labeled PMF A and PMF B in Table L

On slot £ = 0, the algorithm 7 must have a contingency plan
for choosing (p1[0], p2[0]) if it observes S[0] = (ON,ON).
Define:

0 = Pl(12[0], u2[0)) = (1,0)[S[0] = (ON,ON)

St PMFA PMF B

(ON, OFF)  3/4 0

(ON, ON) 1/4 1/4

(OFF, ON) 0 3/4
TABLE I

VALUES FOR PMF A AND PMF B.

where this conditional probability 6 is determined by the
(potentially randomized) decision of algorithm 7 on slot 0,
and is not connected to any past observations. In particular,
the value of 6 is determined before nature chooses the PMF.
Below we show that, once the algorithm 7 is chosen (which
fixes the value of 0), nature can choose a PMF such that:

1

E [, [T]] , E [f3,[T]]) < ¢°Pt — —
S(E [T E (T < 67" - o
where the left-hand-side represents the utility achieved by

algorithm 7 over the first 7" slots, and ¢°P? is the optimal utility
of the network under the PMF that was chosen by nature.

VT €{2,3,4,..}

B. Case 1: 0 € [1/2,1]

Suppose 6 € [1/2,1]. Suppose nature chooses PMF A. Fig.
1 shows the set T of all achievable one-shot time averages
under PMF A. This set is called the capacity region and shall
be denoted by Ay4. It can be shown that optimal utility is
achieved at the corner point (3/4,1/4) € A4, so that:

¢°P' = log(1 +3/4) + log(1 + 1/4)

Since we assume policy 7 transmits whenever there is at least
one ON state, (E [u1[t]], E [u2[t]]) is on the dominant face of
A4 for all slots ¢ € {0,1,2,...} (see Fig. 1). Specifically, the
dominant face F' is the closed line segment between points
(3/4,1/4) and (1,0) in Fig. 1.

Fix T € {2,3,4,...}. Define vectors (a,b) and (c, d) by

(a,b) = E [(1[0], p2[0])]
(e;d) = 725 S B (pa [t], paft])]

where the expectations are with respect to the random S|[t]
channels that arise over time (which occur according to PMF
A) and the possibly random decisions of policy 7 in reaction
to the observed channels. We have:

(29)

(B[ T]) E7i[T) = 7(a,0) + Lt (e,d)  (30)
M, 4 Capacity region A,
(3/4,1/4)
1/4 \ R
(c,d) Dominant
1/8 face F
(a,b)
| .
0 T — H
3/4 1
Fig. 1. The capacity region A 4 under PMF A. All algorithms that transmit

whenever possible have average rates that lie on the dominant face F'. The
point (a,b) must lie in the intersection of F' and the striped region.
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By (29) we see that (¢, d) is a convex combination of points
in the dominant face F' and hence (c,d) € F (because set F
is convex).

Under PMF A and the policy 7 (defined by ) the point
(a,b) = E [(11[0], p2[0])] satisfies:

(a,b) = 3(1,0) + 10(1,0) + (1 — 0)(0,1)]

That is, (a,b) = $(3 4 6,1 — 6). In particular, a + b = 1,
(a,b) € F, and since 6 € [1/2,1] it holds that b < 1/8. Thus,
(a,b) lies in the intersection of the striped region of Fig. 1
with the dominant face F'. Then,

¢ (B[ [T1], E [m[T]])
@ log <1 + 4 + 7(T — 1)C> + log (1 + % + Lj — Ud)

T T T
() (T — 1)r>

< max [lo (1—&—2
~ (z,y)EF S T

R
b (T—-1)y
+log(1+f+T
©) a (T-1)] b (T-1)3
—log(1+T—|— T )—l—log(1+T—|— T )
3, (-9 1, (-1
=log(1+> 4 log (14 - 4
og<—|—4+ T >+0¢,<+4—|— T
() 3 a—3 b—1
< log(1+ =)+ I 1 log(1+4 =)+ 1
© gort _ (17 0)(8/35)
T
(Q¢opt_ 1

where (a) holds by substituting (30) into the utility function
&(v1,7v2) = log(l + 71) + log(l 4 ~2); (b) holds because
(¢,d) € F'; (c) holds because the (x,y) vector that maximizes
the given expression over F'is (z*,y*) = (3/4,1/4), which
can be proven by observing that: (i) (a,b) € F and so for
any (x,y) € F we have (a,b)/T + (z,y)(T — 1)/T € F;
(ii) utility increases as we move along the dominant face
towards the corner point (3/4,1/4), and so the (x,y) vector
that maximizes the given expression over F'is (3/4,1/4); (d)
holds because concavity of the function log(w+z) with respect
to z implies log(w + 2) < log(w) + Z for any real numbers
w, z that satisfy w > 0, w+z > 0; (e) holds because a = 1—10;
(f) holds because b < 1/8.

C. Case 2: 0 €0,1/2)
Suppose 6 € [0,1/2). However, suppose nature chooses

PMF B. The resulting cap