
IEEE/ACM TRANSACTIONS ON NETWORKING VOL. 27, NO. 3, PP. 904-917, JUNE 2019 1

Convergence and Adaptation for Utility Optimal

Opportunistic Scheduling
Michael J. Neely

Abstract— This paper considers the fundamental convergence
time for opportunistic scheduling over time-varying channels.
The channel state probabilities are unknown and algorithms
must perform some type of estimation and learning while they
make decisions to optimize network utility. Existing schemes
can achieve a utility within ǫ of optimality, for any desired
ǫ > 0, with convergence and adaptation times of O(1/ǫ2).
This paper shows that if the utility function is concave and
smooth, then O(log(1/ǫ)/ǫ) convergence time is possible via
an existing stochastic variation on the Frank-Wolfe algorithm,
called the RUN algorithm. Next, a converse result is proven to
show it is impossible for any algorithm to have convergence
time better than O(1/ǫ), provided the algorithm has no a-
priori knowledge of channel state probabilities. Hence, RUN
is within a logarithmic factor of convergence time optimality.
However, RUN has a vanishing stepsize and hence has an infinite
adaptation time. Using stochastic Frank-Wolfe with a fixed step-
size yields improved O(1/ǫ2) adaptation time, but convergence
time increases to O(1/ǫ2), similar to existing drift-plus-penalty
based algorithms. This raises important open questions regarding
optimal adaptation.

I. FORMULATION

This paper treats opportunistic scheduling for multiple

wireless users. Consider a wireless system with n users that

transmit over their own links. The system operates over slotted

time t ∈ {0, 1, 2, . . .}. The wireless channels can change over

time and this affects the set of transmission rates available

for scheduling. Specifically, let {S[t]}∞t=0 be a process of

independent and identically distributed (i.i.d.) channel state

vectors that take values in some set S ⊆ R
m, where m is

a positive integer.1 The channel vectors have a probability

distribution function FS(s) = P [S[t] ≤ s] for all s ∈ R
m.

However, this distribution function is unknown. Every slot t,
the network controller observes the current S[t] and chooses

a transmission rate vector µ[t] = (µ1[t], . . . , µn[t]) from a

set ΓS[t]. That is, the set ΓS[t] of transmission rate vectors

available on slot t depends on the observed S[t]. This is called

opportunistic scheduling because the network controller can

choose to transmit with larger rates on links with currently

good channel conditions. The set ΓS[t] is typically nonconvex

(for example, it might have only a finite number of points). It

is assumed that ΓS[t] ⊆ B for all t ∈ {0, 1, 2, . . .}, where B is

a closed and bounded n-dimensional subset of Rn.

This work was presented in part at the Allerton Conference for Communi-
cation, Control, and Computing, Monticello, IL, 2017 [1]. The author is with
the University of Southern California. This work was supported by grant NSF
CCF-1718477.

1The value m can be different from n if the number of channel state
parameters is different from the number of links, such as for systems where
each link has multiple subbands.

For each integer T > 0, define the time average transmission

rate vector µ[T] by:

µ[T] = 1
T

∑T−1
t=0 µ[t]

The goal is to make decisions over time to maximize the

limiting network utility:

Maximize: lim inf
T→∞

φ(E [µ[T]]) (1)

Subject to: µ[t] ∈ ΓS[t] , ∀t ∈ {0, 1, 2, . . .} (2)

where φ : B → R is a concave network utility function.

The expectation in (1) is with respect to the random channel

state vectors and the potentially randomized decision rule for

choosing µ[t] ∈ ΓS[t] on each slot t. The above problem is

particularly challenging because the channel state distribution

function FS is unknown. Algorithms designed without knowl-

edge of FS are called statistics-unaware algorithms.

This paper considers the convergence time required

for a statistics-unaware algorithm to come within an ǫ-
approximation of the optimal utility, where optimality con-

siders all algorithms, including those with perfect knowledge

of FS . It is shown that no statistics-unaware algorithm can

guarantee an ǫ-approximation with convergence time faster

than O(1/ǫ). Further, it is shown that a variation on the Frank-

Wolfe algorithm with a running average, called RUN, achieves

this convergence bound to within a logarithmic factor. How-

ever, this performance holds when starting the time averages

at time 0 and using a vanishing stepsize. This raises important

questions of adaptation over arbitrary intervals of time.

A. Convergence and adaptation definitions

Define φopt as the optimal utility value for problem (1)-(2).

Fix ǫ > 0. An algorithm is said to achieve an ǫ-approximation

with convergence time C if:

φ(E [µ[T]]) ≥ φopt − ǫ , ∀T ≥ C

An algorithm is said to achieve an O(ǫ)-approximation with

convergence time O(C) if the above holds with ǫ and C
replaced by constant multiples of ǫ and C.

Convergence time only considers behavior starting from slot

t = 0. It is important to consider behavior over any interval of

time that starts at some arbitrary time t0. An algorithm is said

to achieve an ǫ-approximation with adaptation time C if for all

t0 ∈ {0, 1, 2, . . .} under which the channel state distribution

FS is the same for all slots t ≥ t0, we have:

φ
(

1
T

∑t0+T−1
t=t0

E [µ[t]]
)

≥ φopt − ǫ , ∀T ≥ C

IEEE/ACM TRANSACTIONS ON NETWORKING VOL. 27, NO. 3, PP. 904-917, JUNE 2019 2

where the channel state distribution is allowed to be different

before slot t0. This definition captures how long it takes an

algorithm to respond to an unexpected change in channel

probabilities that occurs at some time t0. If the controller

knows when such a change occurs, it can simply reset the

algorithm by defining the current time as time 0. However,

the difficulty is that the controller does not necessarily know

when a change occurs, and so it cannot reset at appropriate

times. Thus, the adaptation time of an algorithm can be much

larger than its convergence time.

A key aspect of these definitions is that the probability

distribution for the system is unknown. If the distribution were

known, one could define a randomized algorithm that transmits

with optimized conditional probabilities (given the observed

S[t]), so that E [µ[t]] is the same (optimal) vector at every

slot t and convergence time is 0. An alternative sample-path

definition of convergence time is considered in [2]. That work

shows the sample path time average of an integer sequence

that converges to an optimal non-integer value must have error

that decays like Ω(1/t) (for example, the error might be 1/t
on odd slots and −1/t on even slots). This holds regardless

of whether or not probabilities are known. This paper proves

that, if probabilities are unknown, then even the expectations

must have an Ω(1/t) utility optimality gap.

B. Why time averages?

The performance metrics in this paper are with respect to

time average system performance. Time averages are funda-

mental in the fields of communications, networks, and infor-

mation theory (recall that the information theory definition of

channel capacity is in terms of a time average). Online opti-

mization of time averages is particularly challenging because

it means that the decisions made early in the timeline are

counted in the performance metric. Fast learning is crucial so

that past mistakes do not significantly hurt the time average.

The definition of convergence time used in this paper is similar

in spirit to the concept of regret used for online convex

optimization [3][4][5].

C. Prior drift-based algorithm

It is known that the drift-plus-penalty algorithm (DPP)

of [6][7] achieves an ǫ-approximation with convergence and

adaptation times both O(1/ǫ2). That algorithm is designed for

more general problems with queues and/or constraints. For the

problem of the current paper, the DPP algorithm operates by

defining, for each i ∈ {1, . . . , n}, an auxiliary flow control

process γi[t] and virtual queue Qi[t] with update equation:

Qi[t+ 1] = max[Qi[t] + γi[t]− µi[t], 0] (3)

The initial condition is typically Qi[0] = 0. Every slot

t ∈ {0, 1, 2, . . .}, DPP observes S[t] and chooses µ[t] =
(µ1[t], . . . , µn[t]) and γ[t] = (γ1[t], . . . , γn[t]) via:

µ[t] = arg max
(r1[t],...,rn[t])∈ΓS[t]

[

n
∑

i=1

Qi[t]ri[t]

]

(4)

γ[t] = arg max
θ[t]∈B

[

1

ǫ
φ(θ1[t], . . . , θn[t])−

n
∑

i=1

Qi[t]θi[t]

]

(5)

where ǫ > 0 is a parameter that affects a tradeoff between

utility optimality and virtual queue size (and hence conver-

gence time). This separates the transmission rate decisions µ[t]
according to the (possibly nonconvex) max-weight rule (4)

(which acts only on the queues), and the flow decisions γ[t]
according to the (convex) problem (5) (which uses both the

queues and the utility function φ). This algorithm is statistics-

unaware. Under a mild bounded subgradient condition on the

utility function φ, it is shown in [8] that the worst-case virtual

queue size is O(1/ǫ) and the utility achieved over the first T
slots satisfies:2

E [φ(µ[T])] ≥ φopt −O(ǫ) ∀T ≥ 1/ǫ2

The utility function is not required to be differentiable and

hence this performance holds for non-smooth problems. A

similar inequality holds for any interval of time of duration

1/ǫ2, and so the algorithm has an O(1/ǫ2) adaptation time.

D. Prior gradient-based algorithms

Alternative gradient-based algorithms are developed in

[9][10]. These assume the utility function is differentiable. Let

φ′(x)⊤ denote the transpose of the derivative of φ at vector

x = (x1, . . . , xn), assumed to be a 1× n row vector:

φ′(x)⊤ =

[

∂φ(x)

∂x1
, . . . ,

∂φ(x)

∂xn

]

The algorithms in [9][10] use a max-weight type decision with

weights determined by the gradient of the utility function eval-

uated at a sample path time average of previous transmission

rates. Specifically, every slot t > 0 they choose µ[t] ∈ ΓS[t]

as the maximizer of the following expression:

φ′(µ̃[t− 1])⊤µ[t] (6)

where µ̃[t−1] represents some type of averaging of the previ-

ous transmission rates µ[0], . . . , µ[t− 1], such as the running

average µ[t] = 1
t

∑t−1
τ=0 µ[τ] (called the RUN algorithm in

this paper), or an exponentially smoothed average that shall

be precisely defined later (called the EXP algorithm in this

paper). This can be viewed as a stochastic variation on the

Frank-Wolfe algorithm for deterministic convex minimization

(see, for example, [11]). The analyses in [9][10] use fluid limit

arguments that make precise performance bounds difficult to

obtain. This gradient-based approach is extended in [12][13] to

include additional queue stability constraints. To our knowl-

edge, there are no formal analyses of the convergence time

of these algorithms. Analysis in [8] shows that a related

gradient-based stochastic primal-dual algorithm achieves an ǫ-
approximation with O(1/ǫ) queue size, but the proof requires

an (unproven) convergence assumption and does not specify

what the convergence time might be even if the convergence

assumption holds.

2Note that Qi[T]/T bounds the deviation between input flow rate and
delivery rate in virtual queue i of (3). The worst-case value of Qi[T]/T
is O(1/ǫ)/T , which is O(ǫ) whenever T ≥ 1/ǫ2. This leads to 1/ǫ2

convergence time [7].

IEEE/ACM TRANSACTIONS ON NETWORKING VOL. 27, NO. 3, PP. 904-917, JUNE 2019 3

E. Related methods

Convergence times for related problems of minimizing

penalty subject to queue stability constraints are considered

in [14][15]. The work [14] uses a Lagrange multiplier esti-

mation phase to reduce convergence time to an O(1/ǫ1+2/3)
bound.3 The work [15] treats average power minimization

subject to stability in a simple 1-queue system and shows

that convergence time of the DPP algorithm in this context

is O(log(1/ǫ)/ǫ). A lower bound on convergence time of

Ω(1/ǫ) is also proven in [15] for the 1-queue power mini-

mization problem. The lower bound proof in [15] bears some

resemblance to the converse proof used in the current paper.

However, the multi-user network utility maximization problem

of the current paper has a different structure than the 1-queue

power minimization problem and requires different arguments.

Recent work in [16] uses drift techniques to show that con-

vergence time for dual-subgradient methods for deterministic

convex programs can be improved from O(1/ǫ2) to O(1/ǫ).
For problems with queues, optimal average queue size

tradeoffs with utility and average power are developed in

[17][18][19][15].

Convergence for a class of online convex optimization prob-

lems is considered in [3][4][5]. Such problems have a structure

that is different from the opportunistic scheduling problems of

the current paper, and their fundamental asymptotic laws are

different. However, the notion of regret treated in [3][4][5]

is similar to the convergence time definition of the current

paper. Algorithms for such problems can achieve regret over

T slots that is proportional to
√
T [3], which corresponds

to O(1/ǫ2) convergence time, and (for those problems) this

cannot be improved unless there is special structure such as

strong convexity [4][5].

Whittle indexing and Lyapunov indexing heuristics, related

to restless bandit systems, are used to treat power-aware multi-

user scheduling in [20][21]. The formulations in [20][21] have

a complex Markov decision structure for which heuristics

are useful. The work [20] treats approximate minimization

of a power and queue cost in a system with fixed Poisson

arrivals and time-varying channels. The work [21] treats

approximate throughput maximization subject to an average

power constraint for opportunistic file downloading with users

that go active and inactive. Analytical results on convergence

and optimality are not available for these heuristics (with

the exception of certain special cases described in [21] for

which optimality is provable). They also require knowledge or

approximation of certain statistical properties of the system.

F. Our contributions

This paper shows that, assuming the utility function φ is

smooth and has a Lipschitz continuous gradient, the conver-

gence time of RUN is O(log(1/ǫ)/ǫ), which is superior to

that of the DPP algorithm. To our knowledge, this is the

first demonstration that such performance is possible. Further,

we show that no statistics-unaware algorithm can achieve a

3The work [14] shows the transient time for backlog to come close to a
Lagrange multiplier vector is O(1/ǫ2/3). For transients to be amortized, the

total time for averages to be within ǫ of optimality is O(1/ǫ1+2/3).

convergence time faster than O(1/ǫ), and so RUN is within

a logarithmic factor of the optimal convergence time. In the

special case when the utility function is strongly concave, it is

shown that mean square error between the achieved rate vector

and the optimal rate vector decays like O(log(t)/t), where t
is the number of time steps.

Unfortunately, the RUN algorithm uses a vanishing stepsize

and Section V shows it generally has an infinite adaptation

time. This is because RUN builds up a time average over a

long period of time, and it takes an even longer time to “un-

average” this irrelevant time average after system probabilities

change. A simple fix is to replace the full time average

µ[t− 1] used in (6), which averages over the always-growing

time interval {0, 1, . . . , t−1}, with an exponentially weighted

average (this gives rise to the EXP algorithm). Fluid model

properties of the EXP algorithm are considered in [9][12][13].

In this paper, we show EXP produces an O(ǫ) approximation

with convergence and adaptation times that are both O(1/ǫ2),
so that adaptation is improved in comparison to RUN, but

convergence is degraded. An open question is whether or not

it is possible for both convergence and adaptation times to be

improved beyond O(1/ǫ2).

II. PRELIMINARIES

A. Assumptions

The set of all transmission rate vectors available for schedul-

ing is assumed to be bounded. Specifically, define B as a

convex, closed, and bounded subset of Rn that satisfies:

B ⊆ [0, µmax
1]× · · · × [0, µmax

n] (7)

where µmax
i > 0 are given maximum transmission rates over

each link i ∈ {1, . . . , n}. It is assumed that B has a nonempty

interior. Define D as the diameter of B:

D = sup
a,b∈B

||a− b|| (8)

where all norms in this paper denote the standard Eu-

clidean norm ||b|| =
√

∑n
i=1 b

2
i . For example, defining B =

[0, µmax
1]× · · · × [0, µmax

n] yields D2 =
∑n

i=1(µ
max
i)2.

For each channel state vector s ∈ S , the set of available

transmission rate vectors Γs is assumed to be a closed and

bounded subset of B. The network controller chooses µ[t] ∈
ΓS[t] on each slot t, and so 0 ≤ µi[t] ≤ µmax

i for all slots t
and all i ∈ {1, . . . , n}.

Let φ : B → R be a utility function that is continuous

and concave. The function φ is assumed to be differentiable

and G-smooth, so that the gradients φ′(x) are G-Lipschitz

continuous:

||φ′(x)− φ′(y)|| ≤ G||x− y|| , ∀x, y ∈ B
Formally, the gradients φ′(x) for points x on the boundary of

B are defined with respect to limits taken over the interior of

B, and are assumed to satisfy the G-Lipschitz property above.

An example utility function for x = (x1, . . . , xn) is

φ(x) =
∑n

i=1 log(1 + βixi)

where βi are positive values that weight the priority of each

user i ∈ {1, . . . , n}. Using βi = β for all i and choosing a

IEEE/ACM TRANSACTIONS ON NETWORKING VOL. 27, NO. 3, PP. 904-917, JUNE 2019 4

large value of β approaches the well known proportionally

fair utility
∑n

i=1 log(xi). In this paper, we avoid explicit use

of log(xi) because it has a singularity at xi = 0.

B. Convexity and smoothness

Every concave and differentiable function φ : B → R

satisfies the following inequality [22][23]:

φ(y) ≤ φ(x) + φ′(x)⊤(y − x) ∀x, y ∈ B (9)

Further, every G-smooth function φ : B → R satisfies the

following descent lemma [22][23]:

φ(y) ≥ φ(x)+φ′(x)⊤(y−x)− G
2 ||y − x||2 ∀x, y ∈ B (10)

C. Characterizing optimality

Let Γ∗ be the set of all “one-shot” expectations E [µ[0]] ∈
R

n that are possible on slot 0, considering all possible con-

ditional probability distributions for choosing µ[0] ∈ ΓS[0] in

reaction to the observed vector S[0]. Since µ[0] ∈ B with

probability 1, it follows that Γ∗ ⊆ B. It can be shown that Γ∗

is a convex set. Define Γ
∗

as the closure of Γ∗. It can be shown

that Γ
∗

is convex, closed, bounded, and Γ
∗ ⊆ B. It is shown

in [8] that Γ
∗

is the set of all possible limiting time average

expected transmission rate vectors. Further, optimality for the

problem (1)-(2) can be defined by Γ
∗
. Specifically, define φopt

as the supremum value of the objective (1) over all possible

algorithms. It is shown in [8] that:

φopt = sup
x∈Γ

∗

φ(x) (11)

Continuity of φ and compactness of Γ
∗

implies there is at least

one vector x∗ ∈ Γ
∗

such that φopt = φ(x∗).

III. ALGORITHM AND ANALYSIS

This section considers a stochastic version of the determin-

istic Frank-Wolfe algorithm from [11], also considered in the

fluid limit papers [9][10]. It is useful to analyze a class of

algorithms that use general time-varying weights. Both RUN

and EXP have this structure.

A. Weighted averaging algorithms

Let {ηt}∞t=0 be a sequence of real numbers that satisfy 0 <
ηt ≤ 1 for all t ∈ {0, 1, 2, . . .}. These shall be used to define

a sequence of vectors γ[t] ∈ R
n that are weighted averages of

the transmission vectors. Specifically, define γ[−1] = 0 ∈ R
n,

and define:

γ[t] = (1− ηt)γ[t− 1] + ηtµ[t] , ∀t ∈ {0, 1, 2, . . .} (12)

The value ηt is called the stepsize on slot t. It can be shown

that using ηt = 1/(t+1) for all t results in a running average

of µ[t]. Using ηt = η for all t, for a fixed η ∈ (0, 1),
results in a weighted average of µ[t] with an exponentially

decaying memory. Strictly speaking, this is an “approximate”

exponentially weighted average because it uses η0 = η <
1 and so γ[0] may not be the same as µ[0]. This is for

convenience later.

On each slot t ∈ {0, 1, 2, . . .}, we consider a gradient-based

opportunistic scheduling algorithm that observes γ[t− 1] and

the current channel state S[t] and chooses the transmission

vector µ[t] to solve:

Maximize: φ′(γ[t− 1])⊤µ[t] (13)

Subject to: µ[t] ∈ ΓS[t] (14)

The above decision chooses µ[t] to maximize a linear function

over the closed and bounded set ΓS[t], and so there is at least

one maximizer. Ties are broken arbitrarily if more than one

maximizer exists. Formally, the tiebreaking rule is assumed to

be probabilistically measurable so that µ[t] is a valid random

vector with well defined expectations that lie in the set B.

Recall that γ[t− 1] is a weighted average of past transmis-

sion rates. Intuitively, to improve utility, it is reasonable for the

algorithm (13)-(14) to make transmission decisions every slot

that are aligned with the gradient of φ evaluated at the current

weighted average. However, it is not obvious what kind of

weighted average to use for γ[t− 1], or how different choices

affect utility, convergence time, and adaptation time.

A key property is this: If µ[t] is the decision produced by

the rule (13)-(14) on slot t ∈ {0, 1, 2, . . .}, then:

φ′(γ[t− 1])⊤µ[t] ≥ φ′(γ[t− 1])⊤µ∗[t] (15)

where µ∗[t] is any other (possibly randomized) decision vector

in the set ΓS[t]. This holds because µ[t] is (by definition) the

maximizer of (13) subject to the constraint (14). Two other

useful properties that hold for all slots t ∈ {0, 1, 2, . . .} are:

µ[t]− γ[t− 1] =
γ[t]− γ[t− 1]

ηt
(16)

φ′(γ[t− 1])⊤(γ[t]− γ[t− 1]) ≤ φ(γ[t])− φ(γ[t− 1])

+
G

2
||γ[t]− γ[t− 1]||2

(17)

where (16) follows by (12); (17) follows by the smoothness

property (10).

B. Performance lemmas

Lemma 1: For each slot t ∈ {0, 1, 2, . . .} the decision rule

(13)-(14) ensures:

E
[

φ′(γ[t− 1])⊤(µ[t]− γ[t− 1])
]

≥ φopt − E [φ(γ[t− 1])]

where φopt is the optimal objective value for problem (1)-(2).

Proof: Fix t ∈ {0, 1, 2, . . .} and let µ[t] be the decision

made by the rule (13)-(14). Recall that Γ∗ is the set of all

achievable one-shot expectations E [µ[0]]. Fix x ∈ Γ∗ and let

µ∗[t] ∈ ΓS[t] be a stationary and randomized algorithm that

makes decisions as a randomized function of S[t] to yield

E [µ∗[t]] = x. Applying inequality (15) gives:

φ′(γ[t− 1])⊤µ[t] ≥ φ′(γ[t− 1])⊤µ∗[t]

Taking expectations of this gives

E
[

φ′(γ[t− 1])⊤µ[t]
]

≥ E
[

φ′(γ[t− 1])⊤µ∗[t]
]

(a)
= E

[

φ′(γ[t− 1])⊤
]

E [µ∗[t]]

= E
[

φ′(γ[t− 1])⊤
]

x (18)

IEEE/ACM TRANSACTIONS ON NETWORKING VOL. 27, NO. 3, PP. 904-917, JUNE 2019 5

where equality (a) holds because channel state vectors S[t] are

i.i.d. over slots and µ∗[t] depends only on S[t], so that it is

independent of γ[t − 1]. Inequality (18) holds for all vectors

x ∈ Γ∗. Taking a limit as x → x∗, where x∗ is a fixed vector

in Γ
∗

such that φ(x∗) = φopt, gives:

E
[

φ′(γ[t− 1])⊤µ[t]
]

≥ E
[

φ′(γ[t− 1])⊤
]

x∗

Subtracting the same value from both sides of the above

inequality gives:

E
[

φ′(γ[t− 1])⊤(µ[t]− γ[t− 1])
]

≥ E
[

φ′(γ[t− 1])⊤(x∗ − γ[t− 1])
]

(19)

However, the subgradient inequality (9) for concave functions

yields:

φ′(γ[t− 1])⊤(x∗ − γ[t− 1]) ≥ φ(x∗)− φ(γ[t− 1])

Taking expectations of the above inequality and substituting

into the right-hand-side of (19) yields the result.

Lemma 2: The algorithm (12)-(14) ensures for all t ∈
{0, 1, 2, . . .}:

E [φ(γ[t])− φ(γ[t− 1])]

ηt
≥ φopt − E [φ(γ[t− 1])]

− ηtGD2

2
(20)

where the diameter D is defined in (8).

Proof: By Lemma 1 we have for all slots t ∈ {0, 1, 2, . . .}:

E [φ(γ[t− 1])] ≥ φopt − E
[

φ′(γ[t− 1])⊤(µ[t]− γ[t− 1])
]

(a)
= φopt − 1

ηt
E
[

φ′(γ[t− 1])⊤(γ[t]− γ[t− 1])
]

(b)

≥ φopt − 1

ηt
E [φ(γ[t])− φ(γ[t− 1])]

− G

2ηt
E
[

||γ[t]− γ[t− 1]||2
]

(c)
= φopt − 1

ηt
E [φ(γ[t])− φ(γ[t− 1])]

− ηtG

2
E
[

||µ[t]− γ[t− 1]||2
]

(d)

≥ φopt − 1

ηt
E [φ(γ[t])− φ(γ[t− 1])]

− ηtGD2

2
(21)

where (a) holds by (16); (b) holds by (17); (c) holds by

(16); and (d) holds because µ[t] and γ[t − 1] lie in the set

B and the largest possible magnitude of their difference is D.

Rearranging terms yields the result.

C. The RUN algorithm

Let ηt =
1

t+1 for t ∈ {0, 1, 2, . . .}. With these weights, the

iteration (12) produces a running average of the µ[t] values:

γ[t] =
t

t+ 1
γ[t− 1] +

1

t+ 1
µ[t]

=⇒ γ[t] =
1

t+ 1

t
∑

τ=0

µ[τ] = µ[t+ 1] , ∀t ∈ {0, 1, 2, . . .}

Using these stepsizes for the weighted average in (13)-(14)

shall be called the RUN algorithm.

Theorem 1: Under the RUN algorithm, we have for all

integers T > 0:4

E [φ (µ[T])] ≥ φopt − GD2(1 + log(T))

2T

where the diameter D is defined in (8).

Proof: Fix an integer T > 0. Summing inequality (20) over

t ∈ {0, 1, . . . , T − 1} gives:

T−1
∑

t=0

E [φ(γ[t])− φ(γ[t− 1])]

ηt
≥ Tφopt −

T−1
∑

t=0

E [φ(γ[t− 1])]

− GD2

2

T−1
∑

t=0

ηt

Rearranging terms gives

T−1
∑

t=0

E [φ(γ[t− 1])] ≥ Tφopt +

T−2
∑

t=0

E [φ(γ[t])]

[−1

ηt
+

1

ηt+1

]

+

[

E [φ(γ[−1])]

η0
− E [φ(γ[T − 1])]

ηT−1

]

− GD2

2

T−1
∑

t=0

ηt

Substituting ηt = 1/(t+ 1) gives

T−1
∑

t=0

E [φ(γ[t− 1])] ≥ Tφopt +
T−2
∑

t=0

E [φ(γ[t])]

+ E [φ(γ[−1])]− TE [φ(γ[T − 1])]

− GD2

2

T−1
∑

t=0

1

t+ 1

Canceling common terms in the above inequality and rear-

ranging yields

TE [φ(γ[T − 1])] ≥ Tφopt − GD2

2

T−1
∑

t=0

1

t+ 1

≥ Tφopt − GD2

2
(1 + log(T))

Dividing by T and using the fact that γ[T − 1] = µ[T] gives

the result.

This theorem shows that utility converges to the optimal

value φopt as T → ∞. Deviation from optimality decays like

log(T)/T . Fix ǫ > 0. Then we are within O(ǫ) of optimality

after a convergence time of O(log(1/ǫ)/ǫ). This last remark

is formalized by the following lemma.

Lemma 3: If 0 < ǫ ≤ 1/e and T ≥ log(1/ǫ)/ǫ, then

log(T)/T ≤ (1 + 1/e)ǫ.

4By Jensen’s inequality for the concave function φ we know φ(E [µ[T]]) ≥
E [φ(µ[T])], and so Theorems 1 and 2 also provide bounds on φ(E [µ[T]]).

IEEE/ACM TRANSACTIONS ON NETWORKING VOL. 27, NO. 3, PP. 904-917, JUNE 2019 6

Proof: Define y = log(1/ǫ). Then y ≥ 1 and T ≥ e. So,

log(T)

T

(a)

≤ log(log(1/ǫ)/ǫ)

log(1/ǫ)/ǫ

= ǫ

[

1 +
log log(1/ǫ)

log(1/ǫ)

]

= ǫ

[

1 +
log(y)

y

]

(b)

≤ ǫ sup
z≥1

{

1 +
log(z)

z

}

= ǫ[1 + 1/e]

where (a) holds because log(T)/T is decreasing whenever

T ≥ e; (b) holds because y ≥ 1.

D. The EXP algorithm

Fix η ∈ (0, 1) and define ηt = η for all t ∈ {0, 1, 2, . . .}.

This shall be called the EXP algorithm. For the next theorem,

it is convenient to further assume that the utility function φ is

entrywise nondecreasing, which is the case for most practical

problems that seek large transmission rates.

Theorem 2: Under the EXP algorithm, and under the addi-

tional assumption that φ is entrywise nondecreasing, we have

for all integers T > 0:

E [φ (µ[T])] ≥ φopt −
[

φopt − φ(0)

ηT

]

− ηGD2

2
Proof: Substituting ηt = η into (20) gives for all t ∈

{0, 1, 2, . . .},

E [φ(γ[t])− φ(γ[t− 1])]

η
≥ φopt − E [φ(γ[t− 1])]

− ηGD2

2

Fix T > 0. Summing over t ∈ {0, 1, . . . , T − 1} gives

E [φ(γ[T − 1])− φ(γ[−1])]

η
≥ Tφopt −

T−1
∑

t=0

E [φ(γ[t− 1])]

− ηGD2T

2

Dividing by T and rearranging terms gives:

1

T

T−1
∑

t=0

E [φ(γ[t− 1])] ≥ φopt − ηGD2

2

+
E [φ(γ[−1])− φ(γ[T − 1])]

ηT

From Jensen’s inequality for the concave function φ we have:

E

[

φ
(

1
T

∑T−1
t=0 γ[t− 1]

)]

≥ φopt − ηGD2

2

+
E [φ(γ[−1])− φ(γ[T − 1])]

ηT
(22)

≥ φopt − ηGD2

2

+
φ(0)− φopt

ηT
(23)

where the last inequality holds because: (i) γ[−1] = 0 with

probability 1; (ii) We have

E [φ(γ[T − 1])]
(a)

≤ φ(E [γ[T − 1]])
(b)

≤ φopt

where (a) holds by Jensen’s inequality; (b) holds by

E [γ[T − 1]] ∈ Γ
∗

(see [24]).

It remains to relate the time average of the γ[t− 1] process

to that of the µ[t] process. Substituting ηt = η into (16) and

summing over t ∈ {0, . . . , T − 1} (and dividing by T) gives:

1

T

T−1
∑

t=0

µ[t] =
1

T

T−1
∑

t=0

γ[t− 1] +
γ[T − 1]− γ[−1]

ηT
(24)

≥ 1

T

T−1
∑

t=0

γ[t− 1]

where the final inequality is taken entrywise and uses the fact

that γ[−1] = 0 ≤ γ[T − 1]. Substituting this inequality into

the left-hand-side of (23) and using the fact that φ is entrywise

nondecreasing proves the result.

Fix ǫ > 0. By defining η = ǫ, Theorem 2 implies that

EXP achieves an O(ǫ)-approximation with convergence time

T = 1/ǫ2.

E. Relation to deterministic Frank-Wolfe

Analysis of the Frank-Wolfe algorithm in a deterministic

context is given in [11]. An important difference is that

the above analysis treats the stochastic case and considers

performance in terms of the time average µ[T] achieved over

time. In contrast, the classical Frank-Wolfe algorithm seeks

a single vector x within a given convex set that is close to

optimal, with no regard to how time averages behave.

It is interesting to note that a modified stepsize ηt =
2/(t+2) is used for deterministic convex minimization in [11]

to show that an approximate vector x can be computed after T
iterations with error bounded by O(1/T) (which is faster than

the O(log(T)/T) result of RUN). At first glance, this suggests

that using the modified stepsize ηt = 2/(t+2) in the stochastic

problem might remove the log(·) factor. However, the same

analysis of the deterministic problem cannot be used in our

stochastic context. Rather than seeking a single vector x that

yields good utility, we seek an online algorithm that ensures

the resulting time average transmission rate vector µ[T] yields

good utility. Theorem 1 proves that the actual transmission

rates scheduled by the RUN algorithm have expected time

averages that deviate from optimal utility by no more than

O(log(T)/T). It is an open question whether or not there

exists a statistics-unaware algorithm that can improve the

convergence time of RUN by removing the log(·) factor.

However, the stepsize rule ηt = 2/(t+ 2) is still useful for

stochastic scheduling problems. It leads to an algorithm that

is different from RUN and EXP. The resulting γ[t] value is an

unusual weighted average of {µ[0], . . . , µ[t]}. Indeed, using

IEEE/ACM TRANSACTIONS ON NETWORKING VOL. 27, NO. 3, PP. 904-917, JUNE 2019 7

ηt = 2/(t+ 2) in (12) gives

γ[0] = µ[0]

γ[1] =
1

3
µ[0] +

2

3
µ[1]

γ[2] =
1

6
µ[0] +

2

6
µ[1] +

3

6
µ[2]

γ[3] =
1

10
µ[0] +

2

10
µ[1] +

3

10
µ[2] +

4

10
µ[3]

and so on. The next theorem shows that the utility associated

with this unusual weighted average γ[T] deviates from φopt

by O(1/T). Unfortunately, this does not imply an improved

convergence rate for the actual time average transmission rate

vector µ[T].
Theorem 3: Using algorithm (12)-(14) with stepsize ηt =

2/(t + 2) yields an “unusual” weighted average γ[t] that

satisfies:

E [φ(γ[t])] ≥ φopt − 2GD2

t+ 1
, ∀t ∈ {0, 1, 2, . . .}

Proof: The proof uses Lemma 2 together with an induction

argument similar to the deterministic case treated in [11].

Details are omitted for brevity (see [24]).

F. Strongly concave utility functions

Consider again the RUN algorithm. Assume the utility

function φ : B → R is smooth, concave, and satisfies the

assumptions of Section II-A. Further, fix α > 0 and assume

φ is α-strongly concave, meaning that: φ(γ) + α
2 ||γ||2 is

also a concave function over γ ∈ B (equivalently, −φ is an

α-strongly convex function). Define x∗ as the (nonrandom)

vector in the set Γ
∗

that corresponds to utility optimality for

problem (1)-(2) (so that φ(x∗) = φopt). Strong concavity of φ
implies that x∗ is the unique vector in Γ

∗
with this property.

Let µ[T] = 1
T

∑T−1
t=0 µ[t] be the (random) sample path time

average over the first T slots under the RUN algorithm. The

mean square error between µ[T] and x∗ is:

E
[

||µ[T]− x∗||2
]

=
∑n

i=1 E
[

(µi[T]− x∗
i)

2
]

Theorem 4: If φ(γ) is α-strongly concave over γ ∈ B, then

for all T > 0 the RUN algorithm yields

E
[

||µ[T]− x∗||2
]

≤ GD2(1 + log(T))

αT
(25)

Furthermore µ[T] converges to x∗ with probability 1.

Proof: Since φ : B → R is α-strongly concave, for any

two vectors x, y ∈ B we have [22]:

φ(y) ≤ φ(x) + φ′(x)⊤(y − x)− α

2
||x− y||2

Substituting y = µ[T] and x = x∗ gives

φ(µ[T]) ≤ φ(x∗) + φ′(x∗)⊤(µ[T]− x∗)− α

2
||µ[T]− x∗||2

Taking expectations of both sides gives:

E [φ(µ[T])] ≤ φ(x∗) + φ′(x∗)⊤(E [µ[T]]− x∗)

− α

2
E
[

||µ[T]− x∗||2
]

Now note that E [µ[T]] is a convex combination of points in the

convex set Γ
∗

and hence lies in the set Γ
∗
. Since x∗ maximizes

the utility function φ over all other vectors in the convex set

Γ
∗
, the standard optimality condition requires:

φ′(x∗)⊤(E [µ[T]]− x∗) ≤ 0

Substituting this inequality into the previous one gives:

E [φ(µ[T])] ≤ φ(x∗)− α

2
E
[

||µ[T]− x∗||2
]

(26)

Rearranging terms and using Theorem 1 yields (25).

To prove probability 1 convergence, we use a technique

similar to a classic proof of the law of large numbers: Fix

ǫ > 0. For all positive integers k we have by the Markov

inequality:

P [||µ[k2]− x∗|| ≥ ǫ] ≤ E
[

||µ[k2]− x∗||2
]

ǫ2

≤ GD2

αǫ2

(

1 + log(k2)

k2

)

where the final inequality holds by (25). Thus

∑∞

k=1 P [||µ[k2]− x∗|| ≥ ǫ] < ∞

This holds for all ǫ > 0 and we conclude (with the assistance

of the Borel-Cantelli lemma) that limk→∞ µ[k2] = x∗ with

probability 1. That is, convergence occurs with probability 1

when sampling over the subsequence of perfect squares.

On the other hand, every positive integer T is between two

perfect squares:

k2T ≤ T < (kT + 1)2

where kT is the largest positive integer such that k2T ≤ T .

Since (kT + 1)2 − k2T = 2kT + 1 we have

0 ≤ T − k2T ≤ 2kT + 1 (27)

By definition of µ[t] = 1
t

∑t−1
τ=0 µ[τ] we have

µ[T] =
µ[k2T]k

2
T

T
+

1

T

T−1
∑

t=k2
T

µ[t]

Thus

||µ[T]− µ[k2T]|| =
1

T
||
∑T−1

t=k2
T

(µ[t]− µ[k2T])||
(a)

≤ D(T − k2T)

T
(b)

≤ 2D · (2kT + 1)

T
(c)

≤ 2D · (2
√
T + 1)

T

where (a) holds by the triangle inequality and the definition

of D in (8); (b) holds by (27); (c) holds by kT ≤
√
T . Thus

lim
T→∞

||µ[T]− µ[k2T]|| = 0 (28)

By the triangle inequality

||µ[T]− x∗|| ≤ ||µ[T]− µ[k2T]||+ ||µ[k2T]− x∗||

As T → ∞, the first term on the right-hand-side of the above

inequality converges to 0 by (28), while the second term

IEEE/ACM TRANSACTIONS ON NETWORKING VOL. 27, NO. 3, PP. 904-917, JUNE 2019 10

the RUN algorithm chooses µ[t0 + r] ∈ ΓS[t0+r] to maximize

φ′(µ[t0+r])⊤µ[t0+r], but the value of µ[t0+r] is significantly

influenced by the old time average µ[t0], which is irrelevant

for optimizing over the new system probabilities associated

with phase 2. That is, the RUN algorithm is fed an irrelevant

time average during t ∈ {t0, . . . , t0 + t0/2}.

Intuitively, this means that during t ∈ {t0, . . . , t0 + t0/2},

RUN cannot produce decisions that are desirable with respect

to the phase 2 probabilities. This suggests that the time

required to adapt to the phase 2 probabilities should be larger

than t0/2, which can be made arbitrarily large by choosing

t0 arbitrarily large. Since our definition of adaptation time in

Section I-A does not depend on the time t0, this suggests the

adaptation time of RUN is infinite.

This intuition can be made precise with a simple example

with two users and utility function

φ(x1, x2) = log(1 + x1) + log(1 + x2)

For further simplicity, assume there are only two possible

channel state vectors S[t], and the first channel state vector

holds (with probability 1) for all time during phase 1, while

the second channel state holds (with probability 1) for all time

during phase 2:

• Phase 1: ΓS[t] = {(1, 0)} for all t ∈ {0, . . . , t0 − 1}.

• Phase 2: ΓS[t] = {(1, 0), (0, 1)} for all t ≥ t0.

During phase 1 the system is restricted to choosing µ[t] =
(1, 0) and so µ[t0] = (1, 0). So for all integers r ∈
{0, 1, . . . , t0/2} we have by (31):

(µ1[t0 + r], µ2[t0 + r]) = (1, 0)

(

t0
t0 + r

)

+

(

1

r

t0+r−1
∑

t=t0

(µ1[t], µ2[t])

)

(

r

t0 + r

)

Since µ1[t] ≥ 0 and µ2[t] ≤ 1 for all t we have

µ1[t0 + r] ≥ 1 ·
(

t0
t0 + r

)

+ 0 ≥ 2/3

µ2[t0 + r] ≤ 0 + 1 ·
(

r

t0 + r

)

≤ 1/3

where we have used t0/(t0 + r) ≥ 2/3 whenever r ∈
{0, . . . , t0/2}. In particular:

µ1[t0 + r] > µ2[t0 + r] ∀r ∈ {0, . . . , t0/2} (32)

Fix t = t0+r for some r ∈ {0, . . . , t0/2}. The RUN decision

on time t chooses (µ1[t], µ2[t]) ∈ {(1, 0), (0, 1)} to maximize:

φ′(µ[t])⊤(µ1[t], µ2[t]) =
µ1[t]

1 + µ1[t]
+

µ2[t]

1 + µ2[t]

By (32) we have µ1[t] > µ2[t] and so the decision on each

slot t ∈ {t0, . . . , t0 + t0/2} will be µ[t] = (0, 1). Thus, the

achieved utility over the interval {t0, . . . , t0 + t0/t} is:

φ(0, 1) = log(2) ≈ 0.6931

while the optimal utility associated with phase 2 is:

φ(1/2, 1/2) = 2 log(1.5) ≈ 0.8109

The gap between the achieved utility during {t0, . . . , t0+t0/2}
and the optimal utility during this time is larger that 0.1.

Assuming that ǫ ≤ 0.1, the time t0/2 is not long enough

to produce an ǫ-approximation. Since t0/2 can be made

arbitrarily large, we find that the adaptation time is ∞ under

the RUN algorithm.

This example was intentionally simple. It is easy to con-

struct more sophisticated examples that also yield infinite

adaptation time under RUN. A key ingredient in any such

example is the use of a nonlinear utility function. This is

because linear utility functions have constant gradients and

so φ′(µ[t]) does not depend on µ[t].

B. Finite adaptation time of EXP

Suppose we run EXP over time t ∈ {0, 1, 2, . . .}. Fix t0
and suppose the system probabilities are i.i.d. over slots t ∈
{t0, t0 + 1, t0 + 2, . . .}. Let φopt denote the optimal utility

associated with these system probabilities. To demonstrate the

performance of EXP over t ∈ {t0, t0 + 1, t0 + 2, . . .}, we can

reuse our prior analysis from Theorem 2 while shifting the

timeline to treat time t0 as time 0, and time t0 − 1 as time

−1. There are four differences:

1) We no longer have γ[−1] = 0. Rather, γ[−1] in the

shifted timeline is equal to γ[t0 − 1] in the original

timeline, which is a random vector generated from run-

ning the EXP algorithm over the original time slots

t ∈ {0, . . . , t0 − 1}. The channel probabilities during

{0, . . . , t0 − 1} are not necessarily the same as the

probability distribution that holds on and after time t0.

Regardless of what happened before time t0, we know

γ[t0 − 1] is in the bounded set B. Hence, in the new

timeline we treat γ[−1] as an unknown vector in B.

2) In the new timeline, we can no longer conclude

E [φ(γ[T − 1])] ≤ φopt. This conclusion was possible

under the assumption γ[−1] = 0, which is no longer

guaranteed. Thus, we simply treat γ[T − 1] as another

unknown vector in the bounded set B.

3) The function φ : B → R itself is assumed to be Lipschitz

continuous with parameter L, so that

|φ(x)− φ(y)| ≤ L||x− y|| ∀x, y ∈ B (33)

4) The analysis technique shall be slightly different than

that of Theorem 2 and shall result in a looser bound.

However, the additional assumption that φ is entrywise

nondecreasing is no longer needed.

Theorem 5: Suppose the concave utility function satisfies

the smoothness assumptions given in Section II-A and also

satisfies the Lipschitz property (33). Assume that EXP is used

with parameter η ∈ (0, 1). Assume that vectors µ[t] always

take values in the set B, and that channel states are i.i.d. over

slots t ∈ {t0, t0+1, t0+2, . . .} with optimal utility φopt. Then

for all integers T ≥ 1 we have:

φ
(

1
T

∑t0+T−1
t=t0

E [µ[t]]
)

≥ φopt − ηGD2

2

+
φmin − φmax − LD

ηT

IEEE/ACM TRANSACTIONS ON NETWORKING VOL. 27, NO. 3, PP. 904-917, JUNE 2019 11

where φmax = supx∈B φ(x) and φmin = infx∈B φ(x).
Proof: Using the shifted timeline where time t0 is mapped

to time 0, we follow the proof of Theorem 2 until inequality

(22) to obtain:

E

[

φ
(

1
T

∑T−1
t=0 γ[t− 1]

)]

≥ φopt − ηGD2

2

+
E [φ(γ[−1])− φ(γ[T − 1])]

ηT

≥ φopt − ηGD2

2

+
φmin − φmax

ηT
(34)

By (24) and the fact that time averages of γ[T −1] and γ[−1]
are in the convex set B we have

|| 1T
∑T−1

t=0 µ[t]− 1
T

∑T−1
t=0 γ[t− 1]|| ≤ D

ηT

By the Lipschitz property of φ we have

φ(1
T

∑T−1
t=0 µ[t]) ≥ φ(1

T

∑T−1
t=0 γ[t− 1])− LD

ηT

Substituting this inequality into (34) proves the result on

the shifted timeline, which implies the result for the original

timeline.

Now fix ǫ > 0. Defining η = ǫ, we find the result in

Theorem 5 implies that if T ≥ 1/ǫ2 then

φ
(

1
T

∑t0+T−1
t=t0

E [µ[t]]
)

≥ φopt −O(ǫ)

Thus, EXP produces an O(ǫ) approximation with an adapta-

tion time of T = O(1/ǫ2).

VI. SIMULATIONS

A. Convergence for RUN and EXP

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time Slot t

0

0.5

1

1.5

T
im

e
 A

v
g
 T

ra
n
s
m

is
s
io

n
 R

a
te

Average Transmission Rates Over Time

1
 RUN

1
 EXP, =0.001

1
 EXP, =0.1

2
 EXP, =0.1

2
 EXP, =0.001

2
 RUN

Fig. 3. A 2-user simulation of RUN and EXP over 2000 slots. The (black)
dashed horizontal lines are optimal rates x∗

1
= 0.4671875, x∗

2
= 1.034375.

These lie almost exactly on the (green) RUN curves for slots t ≥ 400. At each
slot t, data values of µi[t] are shown for each algorithm and are averaged over
1000 independent experiments. Sample path curves for a single experiment
look similar these, have similar ending values at t = 2000, but are slightly
more “noisy/wiggly” for times t < 1000.

Fig. 3 shows simulation data for a 2-user system (described

below) over 2000 slots. The (black) dashed horizontal lines

show optimal average rates x∗
1 and x∗

2. The (green) curves

show µ1[t] and µ2[t] versus t for the RUN algorithm. These

curves converge quickly and lie almost exactly on top of their

respective (black) dashed horizontal lines. The red curves show

data for EXP with η = 0.1; these curves converge quickly but

to values that are not close to the optimal x∗
1, x

∗
2 values. The

blue curves show data for EXP with η = 0.001, an η that

is small enough to give accurate time averages as t → ∞.

However, these curves converge more slowly than RUN, as

predicted in the analytical results of Theorems 1 and 2. Only

extreme cases η = 0.1 and η = 0.001 are shown in Fig. 3 so

that data can be presented clearly without crowding the figure.

Data for EXP with η = 0.01 is not shown in Fig. 3, but is

presented in the next subsection.

System parameters for Fig. 3 are as follows: Two users; on

each slot t we choose only one user i ∈ {1, 2} for transmission

at rate Si[t]; channel probability mass function (PMF) is

P [(S1[t], S2[t]) = (0, 0)] = 1/4 (35)

P [(S1[t], S2[t]) = (1, 2)] = 1/2 (36)

P [(S1[t], S2[t]) = (1, 1)] = 1/16 (37)

P [(S1[t], S2[t]) = (1, 3)] = 3/32 (38)

P [(S1[t], S2[t]) = (3, 1)] = 1/32 (39)

P [(S1[t], S2[t]) = (3, 3)] = 1/16 (40)

This PMF is used to create a system with nontrivial random-

ness (with correlations between channels 1 and 2 and with

channel 2 having better states on average) while also being

simple enough for exact optimality to be computed offline. The

utility function is φ(x1, x2) = log(1+10x1)+ log(1+10x2).
An offline calculation gives an exact optimality of:

x∗
1 = 299/640 = 0.4671875 , x∗

2 = 331/320 = 1.034375

Recall that none of the algorithms know the PMF or the

optimal values x∗
1, x

∗
2.

B. Adaptation for RUN and EXP

0 500 1000 1500 2000 2500 3000 3500 4000

Time Slot t

0

0.2

0.4

0.6

0.8

1

1.2

1.4

A
v
e
ra

g
e
d
 T

ra
n
s
m

is
s
io

n
 R

a
te

Adaptation to a PMF Change

RUN-RESTART

RUN-RESTART

EXP, =0.001

EXP, =0.001

EXP, =0.01

EXP, =0.01

RUN

RUN

Fig. 4. Changing the PMF halfway through the simulation. Values of the
instantaneous µ1[t] are averaged over 100000 independent simulations (not
the same as the time averaged µ1[t] values in Fig. 3). Dashed lines (black)
are optimal over first and second half of the simulation; RUN (green); RUN-
RESTART (purple); EXP η = 0.01 (red); EXP η = 0.001 (blue).

Fig. 4 shows data for the same 2-user system of the

previous subsection, with the same utility function, but with

the PMF changed halfway through the simulation. For slots

t ∈ {0, . . . , 2000} the PMF (35)-(40) is used. For slots

IEEE/ACM TRANSACTIONS ON NETWORKING VOL. 27, NO. 3, PP. 904-917, JUNE 2019 12

t ∈ {2001, . . . , 4000} the PMF is the same with the exception

that (36) is replaced by

P [(S1[t], S2[t]) = (2, 1)] = 1/2

which improves the average channels seen by user 1. Opti-

mality for this new PMF is

x∗
1,new = 35/32 = 1.09375 , x∗

2,new = 17/32 = 0.53125

For ease of visualization, Fig. 4 only plots data associated

with user 1. The (black) dashed horizontal lines of Fig. 4

represent the optimal user 1 values x∗
1 = 0.4671875 and

x∗
1,new = 1.09375 associated with the first and second PMFs,

respectively. The RUN algorithm (green) quickly converges

to the first horizontal line on the first half of the simulation,

but takes the longest to adapt when the PMF changes. This

adaptation time can be made arbitrarily large by increasing

the duration of the first half of the simulation. The EXP

η = 0.01 algorithm (red) remarkably converges quickly to

a near optimal value in the first half of the simulation, and

is the quickest to adapt to the PMF change, but converges

to a value that is not close to the optimal dashed line in the

second half. The EXP η = 0.001 algorithm (blue) converges

slower than EXP η = 0.01 but has near optimal values when

it converges in both halves of the simulation.

Another algorithm RUN-RESTART (purple) is considered

in Fig. 4. This resets the time averages of RUN on slots

0, 1500, 3000. Of course, ideal restart times are 0 and 2000, but

this would be cheating because the algorithm does not know

the PMF will change at time t = 2000.5 The perturbations due

to the restarts are apparent in Fig. 4.

C. Power allocation for a 20-user system

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time Slot t

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

T
im

e
 A

v
g
 T

ra
n
s
m

is
s
io

n
 R

a
te

Time Avg Transmission Rate versus Time

20
 RUN

10
 EXP, = 0.1

20
 EXP, = 0.1

20
 EXP, = 0.01

20
 EXP, = 0.001

10
 EXP, = 0.00110

 EXP, = 0.01

10
 RUN

Fig. 5. Simulation of µ10[t] and µ20[t] for the 20-user system with power
allocation. At each slot t, data values of µi[t] are shown for each algorithm
and are averaged over 1000 independent experiments. Sample path curves for
a single experiment look similar to these but are slightly more “noisy/wiggly”
during the first half of the simulation. RUN (green); EXP η = 0.1 (red); EXP
η = 0.01 (purple); EXP η = 0.001 (blue).

5One can use RUN-RESTART with periodic restarts at the end of frames
of duration log(1/ǫ)/ǫ slots. This ensures an O(ǫ)-approximation over every
frame in which the PMF does not change. To ensure that a single PMF change
that takes place during some frame has only an O(ǫ) influence on the multi-
frame time average thereafter, one needs O(1/ǫ) frames to come next, which
implies an adaptation time of O(log(1/ǫ)/ǫ2) that is remarkably close to the
O(1/ǫ2) adaptation time of EXP.

Fig. 5 plots simulation data for users 10 and 20 in a 20-

user system with transmission rates that depend on power

allocation. Let P [t] = (P1[t], . . . , P20[t]) be a power allocation

vector that is chosen every slot t in the simplex set P:

P =
{

(P1, ..., P20) :
∑20

i=1 Pi ≤ 1, Pi ≥ 0 ∀i ∈ {1, . . . , 20}
}

The transmission rates for each user i ∈ {1, . . . , 20} are

µi[t] = log(1 + Si[t]Pi[t])

with channel vectors S[t] = (S1[t], . . . , S20[t]) i.i.d. over slots

and independent over i with Si[t] uniform over [0.1, i] for each

i ∈ {1, . . . , 20}. Thus, users with larger indices tend to have

better channels. The utility function is φ(x) =
∑20

i=1 log(1 +
10xi). Every slot t, channel vector S[t] is observed and the

problem of choosing P [t] ∈ P to maximize

φ(γ[t− 1])⊤ [log(1 + S1[t]P1[t]), . . . , log(1 + S20[t]P20[t])]

can be solved by classic “water-filling” Lagrange multiplier

methods [25][26].

The µi[t] values in Fig. 5 converge quickly and stay flat for

t ≥ 200 under RUN (green). It is difficult to perform an exact

offline calculation of optimality for this 20-user example, so

the black dashed horizontal lines shown in the figure represent

the final values of µi[2000] under RUN. The EXP algorithms

with η = 0.001 (blue) and η = 0.01 (purple) have noticeably

slower convergence time. In fact, 2000 slots is not enough time

for EXP with η = 0.001 to converge near the dashed horizontal

lines (although it eventually gets extremely close to the dashed

lines for large values of t, data not shown). Not surprisingly,

the EXP algorithm with η = 0.1 (red) converges more quickly.

Remarkably, in this example, the particular values of µ10[t]
and µ20[t] that EXP converges to under η = 0.1 are very

close to the optimal dashed lines (only a slight deviation is

noticeable between the red and dashed black lines in Fig. 5).

D. Adaptation and DPP comparison

0 500 1000 1500 2000 2500 3000 3500 4000

Time t

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

T
ra

n
s
m

is
s
io

n
 r

a
te

 f
o

r
d

e
v
ic

e
 1

0

RUN

EXP = 0.1

EXP = 0.01

EXP = 0.1

EXP = 0.01

Fig. 6. Adaptation results for user 10 under RUN and EXP for the 20-user
system. Channel probabilities are changed halfway through the simulation.

Figs. 6, 7, 8 show adaptation results for the same 20-user

power allocation system as the previous subsection. The sim-

ulation is conducted over 4000 slots. In the first 2000 slots the

system parameters are as described in the previous subsection.

IEEE/ACM TRANSACTIONS ON NETWORKING VOL. 27, NO. 3, PP. 904-917, JUNE 2019 13

0 500 1000 1500 2000 2500 3000 3500 4000

Time t

0

0.1

0.2

0.3

0.4

0.5

0.6

T
ra

n
s
m

is
s
io

n
 r

a
te

 o
f

d
e

v
ic

e
 6

RUN

EXP =0.1

EXP =0.01

DPP V=20

DPP V=50

DPP V=50

DPP V=20

Fig. 7. Adaptation results for user 6 under RUN, EXP, and DPP for the
20-user system. Probabilities are changed halfway through the simulation.

0 500 1000 1500 2000 2500 3000 3500 4000

Time t

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

T
ra

n
s
m

is
s
io

n
 r

a
te

 o
f

d
e

v
ic

e
 1

0

RUN

EXP =0.1

EXP =0.01
DPP V=20 DPP V=50

DPP V=20

DPP V=50

EXP =0.1

Fig. 8. Adaptation results for user 10 under RUN, EXP, and DPP for the
20-user system. Probabilities are changed halfway through the simulation.

On slot 2000 the parameters are changed by swapping the

user conditions so that Si[t] is uniform over [0.1, 21 − i] for

each user i ∈ {1, . . . , 20}. These new conditions are used

for all time thereafter. The resulting utility is the same under

these new conditions, but the optimal rate vector is different.

The figures plot sample path data that is averaged over 10000

independent simulations (each simulation lasting 4000 slots).

The horizontal lines in the figures should be viewed as the

asymptotically optimal values under the two sets of conditions

and are obtained by separate simulations of the RUN algorithm

in scenarios where the channel probabilities never change.

Fig. 6 plots results for user 10. It shows that RUN cannot

adapt to the change within a reasonable time. The EXP

algorithm with η = 0.1 has the fastest adaptation time but,

after time 2000, converges to a value that is slightly shifted

below the optimal value. The EXP algorithm with η = 0.01
has a longer adaptation as compared to the case η = 0.1, but it

still adapts within a reasonable time and converges to a value

that is closer to optimality.

Fig. 7 plots the same simulation scenario but shows results

for user 6. Also, for comparison purposes, data from the DPP

algorithm with V = 1/ǫ = 20 and V = 1/ǫ = 50 is also

shown. It can be seen that EXP and DPP can adapt, while RUN

cannot. Starting from time 0, EXP converges to near-optimality

remarkably fast for both the η = 0.1 and η = 0.01 cases, while

DPP performance seems slower in comparison by a constant

time lag that is roughly proportional to V . However, when

considering adaptation after time 2000, the DPP algorithm

with V = 20 seems comparable to the EXP algorithm with

η = 0.01. DPP data for user 10 is in Fig. 8 and tells a similar

story: In that case the EXP algorithm also converges more

quickly starting from time 0 as when starting from time 2000;

while DPP has a similar adaptation time starting from time

0 as starting from time 2000. Both EXP with η = 0.1 and

η = 0.01 converge much faster than DPP with V = 20 and

V = 50 when starting from time t = 0, but at time t = 2000
the adaptation time of EXP with η = 0.01 is comparable to

that of DPP with V = 20.

These simulation results reveal an important distinction

between EXP and DPP that is not apparent in the mathe-

matical analysis. The mathematical analysis shows that both

algorithms have O(1/ǫ2) convergence and adaptation time and

does not suggest that one will have a better coefficient than

the other. However, the simulations suggest the convergence

of DPP may be slower than EXP by a constant time lag

(particularly for the case starting from t = 0). This may

be due to the fact that DPP is a more general algorithm

that, unlike EXP, does not need a differentiable and smooth

utility function. The DPP algorithm can also handle queues

and constraints. However, DPP requires a queue, and so it

uses a virtual queue (as described in the introduction), and

this virtual queue may be creating an additional constant time

lag that is not apparent in the analysis.

VII. CONCLUSIONS

This paper considers convergence and adaptation for oppor-

tunistic scheduling. Convergence time was defined in terms of

time averages starting at time 0, while adaptation time was

defined more stringently in terms of time averages starting at

an arbitrary time t0. The adaptation time shows how fast an

algorithm can react to a one-time system change that takes

place at an unknown location in the timeline.

First, it was shown that no algorithm can achieve an

ǫ-approximation with convergence or adaptation time less

than O(1/ǫ). A Frank-Wolfe algorithm with a diminishing

stepsize, called RUN, was shown to have convergence time

that achieves this lower bound to within a logarithmic factor.

However, the diminishing stepsize makes it difficult for RUN

to adapt to system changes. In fact, RUN was shown to

have an infinite adaptation time. A Frank-Wolfe algorithm

with constant stepsize was shown to have convergence and

adaptation times both of size O(1/ǫ2).
This work motivates two open questions: (i) Can the

logarithmic gap between the lower and upper bounds on

convergence time be closed? This may require improving the

lower bound and/or developing another algorithm that has

better convergence time than RUN; (ii) Can an adaptation time

lower than O(1/ǫ2) be achieved?

REFERENCES

[1] M. J. Neely. Optimal convergence and adaptation for utility optimal
opportunistic scheduling. Proc. Proc. Allerton Conf. on Communication,

Control, and Computing, October 2017.

IEEE/ACM TRANSACTIONS ON NETWORKING VOL. 27, NO. 3, PP. 904-917, JUNE 2019 14

[2] B. Li, R. Li, and A. Eryilmaz. On the optimal convergence speed of
wireless scheduling for fair resource allocation. IEEE Transactions on

Networking, vol. 23, no. 2:631–643, April 2015.
[3] M. Zinkevich. Online convex programming and generalized infinitesimal

gradient ascent. Proc. 20th International Conference on Machine

Learning (ICML), 2003.
[4] E. Hazan, A. Agarwal, and S. Kale. Logarithmic regret algorithms for

online convex optimization. Machine Learning, vol. 69, no. 2, pp. 169-
192, Dec. 2007.

[5] E. Hazan and S. Kale. Beyond the regret minimization barrier: an
optimal algorithm for stochastic strongly-convex optimization. Journal

of Machine Learning Research, vol. 15 (July):pp. 2489–2512, 2014.
[6] M. J. Neely, E. Modiano, and C. Li. Fairness and optimal stochastic

control for heterogeneous networks. IEEE/ACM Transactions on Net-

working, vol. 16, no. 2, pp. 396-409, April 2008.
[7] M. J. Neely. A simple convergence time analysis of drift-plus-penalty

for stochastic optimization and convex programs. ArXiv technical report,

arXiv:1412.0791v1, Dec. 2014.
[8] M. J. Neely. Stochastic Network Optimization with Application to

Communication and Queueing Systems. Morgan & Claypool, 2010.
[9] H. Kushner and P. Whiting. Asymptotic properties of proportional-fair

sharing algorithms. Proc. 40th Annual Allerton Conf. on Communica-

tion, Control, and Computing, Monticello, IL, Oct. 2002.
[10] R. Agrawal and V. Subramanian. Optimality of certain channel aware

scheduling policies. Proc. 40th Annual Allerton Conf. on Communica-

tion, Control, and Computing, Monticello, IL, Oct. 2002.
[11] S. Bubeck. Convex optimization: Algorithms and complexity. Founda-

tions and Trends in Machine Learning, 8(3-4):231–357, 2015.
[12] A. Stolyar. Maximizing queueing network utility subject to stability:

Greedy primal-dual algorithm. Queueing Systems, vol. 50, no. 4, pp.
401-457, 2005.

[13] A. Stolyar. Greedy primal-dual algorithm for dynamic resource alloca-
tion in complex networks. Queueing Systems, vol. 54, no. 3, pp. 203-220,
2006.

[14] L. Huang, X. Liu, and X. Hao. The power of online learning in stochastic
network optimization. Proc. SIGMETRICS, 2014.

[15] M. J. Neely. Energy-aware wireless scheduling with near optimal
backlog and convergence time tradeoffs. IEEE/ACM Transactions on

Networking, 24(4):2223–2236, 2016.
[16] H. Yu and M. J. Neely. A simple parallel algorithm with an O(1/t)

convergence rate for general convex programs. SIAM Journal on

Optimization, 27(2):759–783, 2017.
[17] R. Berry and R. Gallager. Communication over fading channels with

delay constraints. IEEE Transactions on Information Theory, vol. 48,
no. 5, pp. 1135-1149, May 2002.

[18] M. J. Neely. Optimal energy and delay tradeoffs for multi-user wireless
downlinks. IEEE Transactions on Information Theory, vol. 53, no. 9,
pp. 3095-3113, Sept. 2007.

[19] M. J. Neely. Super-fast delay tradeoffs for utility optimal fair scheduling
in wireless networks. IEEE Journal on Selected Areas in Commu-

nications, Special Issue on Nonlinear Optimization of Communication

Systems, vol. 24, no. 8, pp. 1489-1501, Aug. 2006.
[20] V. S. Borkar, G. S. Kasbekar, S. Pattathil, and P. Y. Shetty. Opportunistic

scheduling as restless bandits. IEEE Transactions on Control of Network

Systems, 5(4):1952 1961, Dec. 2018.
[21] X. Wei and M. J. Neely. Power aware wireless file downloading: A

Lyapunov indexing approach to a constrained restless bandit problem.
IEEE Transactions on Networking, vol. 24, no. 4:2264–2277, Aug. 2016.

[22] Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic

Course. Kluwer Academic Publishers, Boston, 2004.
[23] D. P. Bertsekas, A. Nedic, and A. E. Ozdaglar. Convex Analysis and

Optimization. Boston: Athena Scientific, 2003.
[24] M. J. Neely. Optimal convergence and adaptation for utility optimal

opportunistic scheduling. arXiv:1710.01342, October 2017.
[25] T. M. Cover and J. A. Thomas. Elements of Information Theory. New

York: John Wiley & Sons, Inc., 1991.
[26] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. Efficient

projections onto the l1-ball for learning in high dimensions. Proc.

International Conference on Machine Learning (ICML), 2008.

	Formulation
	Convergence and adaptation definitions
	Why time averages?
	Prior drift-based algorithm
	Prior gradient-based algorithms
	Related methods
	Our contributions

	Preliminaries
	Assumptions
	Convexity and smoothness
	Characterizing optimality

	Algorithm and analysis
	Weighted averaging algorithms
	Performance lemmas
	The RUN algorithm
	The EXP algorithm
	Relation to deterministic Frank-Wolfe
	Strongly concave utility functions

	A stochastic converse result
	A 2-user system with ON/OFF channels
	Case 1: [1/2, 1]
	Case 2: [0, 1/2)

	Adaptation
	Infinite adaptation time of RUN
	Finite adaptation time of EXP

	Simulations
	Convergence for RUN and EXP
	Adaptation for RUN and EXP
	Power allocation for a 20-user system
	Adaptation and DPP comparison

	Conclusions
	References

