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Abstract

A variation of the topological constraint theory is proposed where an atomic network is modeled

as a collection of rigid polytopes, and which explicitly distinguishes the bond angle constraints as

well as rigid bond angles from flexible ones. The proposed theory allows for direct quantitative

estimation of the fraction f of zero-frequency or floppy modes of the network. A preliminary model

is proposed to connect the theory to the two key experimental observables that characterize glass-

forming liquids, i.e., the glass transition temperature Tg and fragility m. The predicted values are

tested against the literature data available for binary and ternary chalcogenides in the Ge-As-Se

system. The Tg is related to f in this model by the activation entropy associated with the bond

scission-renewal dynamics that is at the heart of transport and relaxation in glass-forming liquids.

On the other hand, the large and temperature-dependent conformational entropy contribution of

the 1-polytopes, i.e., the selenium chain elements in these chalcogenide glass-forming liquids, plays

a key role in controlling the variation of m with f .
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I. INTRODUCTION

The deformability, entropy and even temperature-dependent disintegration modes of a

random atomic network are largely determined by the network’s rigidity. Seminal works

by Phillips [1, 2] and Thorpe [3, 4] have shown the existence of a floppy-to-rigid transition

in such networks in the form of rigidity percolation. The prevailing model suggests that

the network is floppy when the number of degrees of freedom per atom exceeds the number

of interatomic force field constraints, and the transition to rigidity occurs when these two

quantities are equal. The network’s rigidity therefore depends on the average coordination

number ⟨r⟩, and various arguments suggest that the floppy-to-rigid transition occurs at the

critical value rp = 2.4. Although Phillips [1, 2] originally attempted to relate the glass-

forming ability of a network to its entropy and deformability, Thorpe [3] placed the idea

of network rigidity on more formal footing by considering the number of zero-frequency

vibrational modes, i.e., continuous deformations with no energy penalty. The fraction f of

such modes is predicted to decrease with increasing ⟨r⟩ to zero at or near rp where rigidity

percolates, and increasing the connectivity further only serves to overconstrain the network.

The rigidity percolation model suggests that there could be an underlying universal de-

pendence of the physical properties of glasses on composition that is effectively insensitive

to their chemical details. The chalcogenide glasses provide an ideal testbed in this regard,

being characterized by energetically similar covalent bonds and a wide range of network con-

nectivity. As it is practically impossible to directly obtain f for these complex amorphous

networks, typical studies in the literature instead report the variation of physical properties

with ⟨r⟩ [5–10]. However, it remains unclear what would be the signature of the rigidity per-

colation in the physical properties of amorphous networks as a function of the connectivity.

In fact, a wide variety of physical properties including elastic moduli, refractive index and the

glass transition temperature Tg of glasses in the Ge-Se system show continuous and mono-

tonic change through rp [8]. On the other hand, Boolchand and coworkers have suggested

that the floppy-to-rigid transition may not be sharp at rp, but rather that the network is

optimally constrained and therefore stress-free over a range of ⟨r⟩ around the threshold value

of 2.4 [11–14]. These authors used modulated differential scanning calorimetry (MDSC) to

show that Ge-Se glasses with such optimally constrained networks are characterized by van-

ishing non-reversing enthalpy, and identified this as a property of the “Intermediate Phase”
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(IP). It was further suggested that these IP glasses would be completely resistant to aging or

relaxation below Tg. However, subsequent direct aging studies of IP glasses in the Ge-Se and

Si-Se systems by other researchers have shown the presence of both structural and enthalpy

relaxation [15–17], thus questioning the validity of the existence of such IP.

Considering that Tg depends strongly on the connectivity of a network, its monotonic

variation with ⟨r⟩ raises further questions about the use of the average coordination number

as a governing variable for rigidity percolation. For example, the Gibbs–DiMarzio model

of the chain polymer glass transition [18, 19] predicts that Tg (along with the available

free volume, chain stiffness and degree of polymerization) is described by the monotonic

function Tg = T0/(1 − κX) where X is the cross-linking density of the chains and κ is

a universal constant. Note that while the chain length in chain polymers is not affected

by cross-linking, this does result in progressively shorter chains for chalcogenides. Despite

this difference, Varshneya et al. [20] found that for chalcogenide networks the compositional

variation of Tg could be described by the same equation if κX is replaced by β(⟨r⟩−2) where

β is a system-dependent parameter. Naumis [21, 22] included the effect of floppy modes

on the vibrational density of states to provide theoretical justification for this observation

by suggesting that the Lindemann criterion for atomic displacements at the melting point

could also be applied to the glass transition. Other previous studies [23, 24] have shown the

existence of a fundamental connection between the temperature dependence of the atomic

mean square displacement and viscous flow or shear relaxation in glass-forming liquids.

However, the glass transition is not a true thermodynamic transition and is only significant

for the fact that, by definition, the structural relaxation timescale at Tg is on the order of

∼100 s. Therefore, the validity of applying the Lindemann criterion to the glass transition

remains questionable.

On the other hand, several studies have reported sharp changes in the activation energy

of viscous flow near Tg, or in the related fragility parameter [25]

m =
∂ log10 η

∂(Tg/T )

⃓⃓⃓⃓
T=Tg

(1)

where η is the viscosity, in the vicinity of Tg. That said, the original form of the rigidity

percolation model cannot explain temperature-dependent dynamics in supercooled liquids

because it does not include any mechanism for the thermal energy to overcome the inter-

atomic constraints. Gupta, Mauro and coworkers attempted to address this by explicitly
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introducing temperature-dependent network constraints in the rigidity model [26]. This in-

volves assigning each network constraint a switching temperature such that the constraint

becomes active only when the system temperature drops below the switching point. Al-

though this approach is used extensively in the literature to model the compositional vari-

ation of the thermophysical properties of a wide range of glass-formers, direct experimental

verification of the key assumption about the switching behavior has yet to be made.

Naumis [22, 27] attempted to connect the rigidity percolation model to statistical mechan-

ics by suggesting that the floppy modes provide channels in the potential energy landscape

that serve as pathways for the network to explore many local minima, and hence make a con-

tribution Sc to the configurational entropy. This entropy was calculated as Sc = fNkB lnΩ,

where Ω is the number of accessible microstates per atomic degree of freedom and is in-

dependent of f . Floppy modes indeed provide an important source of entropy, though

their connection with structural relaxation is not obvious from the standpoint of the energy

landscape where metabasin hopping and vibrational excitations within the metabasins are

expected to be temporally decoupled. A possible connection between the short- and long-

timescale processes has been proposed by Dyre and coworkers with their elastic “shoving”

model, where the rapid increase with cooling of the activation energy for structural relax-

ation in a fragile glass-forming liquid is attributed to a corresponding anharmonic increase

of the high-frequency shear modulus [28]. Additionally, an exact solvable glass transition

model by Naumis and coworkers [24] has related the short-time process to the frequency

of probing transition states of the energy landscape, while the long-time relaxation process

represents the transition between metastable states.

The rigidity percolation model is undoubtedly useful as means of understanding the be-

havior of random networks around the glass transition. Nevertheless, the model makes some

predictions that are not consistent with experimental observations, and the average atomic

coordination number ⟨r⟩ is not always an appropriate measure of the network connectivity

(Section IIA gives an example), at least not without qualifications described by Thorpe [3].

Moreover, a connection between the model and the statistical mechanics of glass-forming

liquids has yet to be conclusively established. That is to say, the topological constraint

theory of glasses should not be considered complete and inviolable.

This article proposes a variation of the topological constraint theory where, for the pur-

poses of calculating the available degrees of freedom, the network is considered as being
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constructed from a collection of rigid polytopes. This view is supported by, e.g., Sidebot-

tom’s observation that the mean connectivity of a network’s weakest links is more closely

related to the fragility than the mean coordination number [29, 30], and is related to the

concept of rigid unit modes in the context of negative thermal expansion materials [31, 32].

The theory is motivated and developed in Section II, along with a preliminary model that

relates the available degrees of freedom to the relaxation time of a glass-forming liquid. The

resulting equations are tested and evaluated for the family of chalcogenide glasses in Section

III, and suggest that this variation of the topological constraint theory could be useful more

generally.

II. NETWORKS OF RIGID POLYTOPES

This section revisits the rigidity percolation model. First, the limits of this model are

explored using the example of an octahedral network, with the purpose of reinforcing that the

underlying assumptions in the model are more subtle than is sometimes believed. Second, a

variation on the topological constraint theory is derived where rigid polytopes are considered

as the structural units of the network instead of atoms. This follows from the conceptual

separation of the degrees of freedom into three classes, namely, those that are directly

constrained by strong interatomic bonds, those that are constrained by the connectivity of

the network, and those that are unconstrained. Apart from offering more flexibility in the

application of the model, the resulting formula for the fraction of unconstrained degrees of

freedom is quantitatively different from Thorpe’s [3]. Third, the implications of the revised

model for the dynamical properties of supercooled liquids in the immediate vicinity of the

glass transition are explored. The predictions of this model are compared with experiments

in Section III.

A. Limits of the rigity percolation model

Thorpe’s rigidity percolation model [3] begins by classifying atoms in a random network

by the number of bonds in which they participate, without distinguishing bonds of different

types. If nr is the number of atoms with r bonds, then 3
∑︁

r nr is the number of degrees

of freedom. Specifying the bond lengths and bond angles around an atom with r bonds
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(a) (b)

FIG. 1. (a) Perovskite materials with formula ABO3 contain a regular network of corner-sharing

BO6 octahedra, with the position of the A atom in light grey. (b) Patterns of octahedral tilting

[33] are low-frequency modes of the network.

imposes r/2 and 2r − 3 constraints, respectively, on the degrees of freedom. If all of these

constraints are independent, then the fraction of unconstrained degrees of freedom f is given

by

f =
3
∑︁

r nr −
∑︁

r nr[r/2 + (2r − 3)]

3
∑︁

r nr

. (2)

The average coordination number ⟨r⟩ is defined to be
∑︁

r nrr/
∑︁

r nr (despite the misprint

in Ref. [3]), reducing this to the standard equation

f = 2− 5⟨r⟩/6 (3)

Since f = 0 when ⟨r⟩ = 2.4, the model is often believed to predict that rigidity should

percolate through the network and various properties of the system should be discontinu-

ous around this critical value. Thorpe’s original article included several qualifications to

this conclusion that are unfortunately not consistently discussed in the literature, but that

indicate that the situation is more nuanced than suggested by Eq. 3.

Consider applying this model to the regular network of corner-sharing octahedra in a

perovskite material, as shown in Figure 1a. If the formula for this material is ABO3, then a

single octahedron contains one B atom with six bonds and three O atoms with two bonds

each. The average coordination number for the octahedral network is then three, and the

model would seem to predict that the network is not only rigid but highly overconstrained.

Nonetheless, it is widely recognized that various patterns of octahedral tilting [33], including

the one in Figure 1b, are low-frequency modes of the network. In fact, such soft modes are

believed to be responsible for displacive phase transitions and negative thermal expansion
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in a number of systems [31, 32]. Possible resolutions to this apparent contradiction are

considered below to help to clarify the limitations of the model as frequently interpreted,

and to suggest refinements to be included in the subsequent derivation.

Our first attempt begins with the observation that the symmetry of the ideal system

allows only a constant number of octahedral tilting modes, independent of the number of

atoms. Hence, as the system size approaches the thermodynamic limit, the fraction of zero-

frequency modes goes to zero and the model gives the expected result. This argument is not

entirely satisfying though; the number of octahedral tilting modes is constant because they

extend throughout the entire network, but it is difficult to exclude the possibility of localized

zero-frequency modes whose number scales with the size of a disordered system. Thorpe

discussed this possibility, saying that “the number of zero frequency modes is not zero at

⟨r⟩ = rp because floppy inclusions still exist” [3]. Perhaps then the presence of localized

zero-frequency modes is less relevant to the system properties than a percolating network

of identical ideally rigid bonds. The difficulty with this is that bonds in physical systems

are neither identical nor ideally rigid; van der Waals forces allow systems with ⟨r⟩ < rp at

room temperature to solidify at low temperatures, and bond breaking allows systems with

⟨r⟩ > rp at room temperature to liquify at high temperatures. The conclusion here is the

same as the one arrived at by Thorpe [3], namely, one should neither expect to observe

discontinuous behavior in the number of zero-frequency modes, nor in the properties of

glass-forming liquids, at any particular value of the average coordination number.

Our second attempt considers the possibility that the number of constraints is overesti-

mated in Eq. 3. Initially observe that if the bond angles of the oxygens at the corners of

the octahedra were fixed, then the octahedra would not be able to tilt. Thorpe anticipated

this possibility as well: “For example in SixO1−x...it is reasonable not to count the angular

force at the oxygen atoms” [3]. Since the bond angle constraints do not explicitly appear in

Eq. 3, such a modification needs to be performed using Eq. 2. Unfortunately, excluding the

oxygen bond angle constraints is insufficient to make f nonnegative, and only increases the

apparent value from −0.5 to −0.25. This idea should instead be taken much further, with

only independent constraints included in Eq. 2 [3]. The difficulty with this is that while

many constraints are dependent for the octahedral network, distinguishing the dependent

from the independent ones is not at all obvious due to the interactions being nonlocal (e.g.,

a set of bonds could form a ring). While there do exist approaches to identifying the set of
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independent constrains (e.g., the pebble game [34, 35]), these require much more detailed

knowledge of the network configuration than is generally available in practice.

Perhaps since all of the quantities in Eq. 2 are defined using only local information, f

is more closely related to the properties of an average local environment than the overall

network. Indeed, f could be interpreted as an estimate for the average fraction of uncon-

strained degrees of freedom per atom. A value of f = −0.25 for the octahedral network

could then be rationalized as a consequence of the atoms at the centers of the octahedra

being highly overconstained. If f is truly a local quantity though, one should not expect it

to provide any information about the existence of nonlocal zero-frequency modes. That is,

interpreting f in this way resolves the apparent contradiction introduced as motivation for

this section, but raises the question of whether there is some other property that would be

more relevant to the experimental properties of the system.

A revised topological constraint theory would ideally address the several concerns iden-

tified in the preceeding discussion:

1. There is more than one kind of atomic interaction, and the model should distinguish

rigid bond angles from flexible ones.

2. Bond angle constraints should be explicit in the model, and included only where

dictated by intuition.

3. The model should suggest a connection to the nonlocal properties of the system that

is explicit and consistent with experiments.

Section II B proposes a revised topological constraint theory that is motivated by the first

and second points, while the third is the subject of Section IIC.

B. Revised topological constraint theory

The concept of a metabasin requires separating two types of relaxations in glass-forming

liquids, namely, local rearrangements of particles and substantial structural relaxations [36].

If the available kinetic energy is such that the system is confined to a single metabasin, then

the system is expected to behave as a solid. Conversely, a system that often experiences the

substantial structural relaxations associated with transitions between metabasins explores
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FIG. 2. Two tetrahedra could intersect not at all, on a 0-polytope (left), on a 1-polytope (center),

or on a 2-polytope (right), corresponding to corner sharing, edge sharing and face sharing.

more of the configuration space and is expected to behave as a liquid. This suggests that

characterizing the metabasins is essential to understanding the glassy state, and much effort

has been expended in this direction [37, 38].

Suppose that the local rearrangements in this picture can be identified with operations

involving a small number of covalent bonds, and structural relaxations with changes to

the network conformation or connectivity. Constraints associated with individual bonds

would then be less relevant to understanding the glass transition than constraints imposed

by the network connectivity on larger structural units. This serves as motivation for the

topological constraint theory developed in this section, where the network is considered

as being composed of rigid polytopes rather than individual atoms, and any relaxations

involving bonds within a rigid polytope are explicitly not considered. While others have

used rigid polytopes for this purpose before [39–41], and even general networks composed of

multiple types of rigid polyhedra with edge and face sharing [42], those authors specifically

considered the restricted question of whether topologically-disordered networks could exist.

Moreover, those theories consider the number of degrees of freedom per vertex (rather than

the fraction of unconstrained degrees of freedom) and require considerably more detailed

knowledge of the constituent polyhedra than the theory developed here.

A polytope is a generalization of polygons and polyhedra to any nonnegative dimension.

More precisely, an i-polytope is a finite region of i-dimensional space that is bounded by a

finite set of (i− 1)-dimensional hyperplanes. The boundary of a polytope is itself comprised

of polytopes, and a j-polytope of this type is called a j-facet [43]. For example, a polyhedron

(3-polytope) is bounded by faces (2-facets), the faces can join at edges (1-facets), and the

edges can join at vertices (0-facets). This article only considers i-polytopes for 0 ≤ i ≤ 3,

and requires two polytopes to intersect on a shared facet or not at all. For example, two

tetrahedra could intersect on a 0-polytope (corner sharing), a 1-polytope (edge sharing), or
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FIG. 3. A portion of an atomic network (top left) contains 2- and 3-coordinated white and grey

atoms, respectively. The same network can be modeled using rigid polytopes (top right), where

the bonds around grey atoms are replaced by triangles and the remaining bonds by line segments.

More precisely (bottom), the network is composed of five direct polytopes (two 1-polytopes and

three 2-polytopes) and four intersection polytopes (three 0-polytopes and one 1-polytope).

a 2-polytope (face sharing), as indicated in Figure 2.

Following the discussion above, a network of atomic bonds is represented as a network

of rigid polytopes. The construction of the polytopes is flexible by design and not entirely

algorithmic, but there are several general principles to follow. A polytope is usually con-

structed as the convex hull of a set of contiguous bonds. Substantial changes to the angles

of bonds within the set should be energetically expensive since the polytopes are assumed

to be rigid, and any internal degrees of freedom are explicitly ignored. This construction

implies that every polytope vertex coincides with some atom; if the system contains one

or more atomic species for which the bond angles are not entirely fixed (e.g. oxygen), then

these should be placed at the vertices.

Figure 3 considers an example fragment of an atomic network containing two types of

atoms, one 3-coordinated and the other 2-coordinated (bonds to the surroundings are omit-

ted for simplicity). If the bond angles around the grey atoms are fixed and those around

the white atoms are not, then the atomic network can be represented as a network of rods

and triangles. The polytopes constructed as convex hulls of sets of atomic bonds (i.e., the

rods and triangles) are called direct polytopes. The facets where direct polytopes intersect

are called intersection polytopes, and encode any constraints imposed by the connectivity

of the network on the motion of the direct polytopes. For example, the network in Figure 3

contains three intersection 0-polytopes, the existence of which requires the adjoining direct

polytopes to share a vertex. Alternatively, one could imagine being given a collection of

direct and intersection polytopes, and having to join direct polytopes along the intersection

polytopes (with none left over) to create a facsimile of the atomic network.
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FIG. 4. A direct d-polytope can contribute fewer than ϕ(d) degrees of freedom. For a direct

3-polytope connected to a single intersection 0-polytope (left), the two orientational variables do

not affect the network’s behavior, and the direct polytope can safely be replaced by a direct 0-

polytope. More generally, only the connection of a direct polytope to an intersection polytope

affects the network behavior, and the direct polytope can be replaced by the convex hull of the

connected intersection polytopes.

The objective of a topological constraint theory is to estimate f , the fraction of un-

constrained degrees of freedom available to the network. The direct polytopes contribute

degrees of freedom whereas the intersection polytopes contribute constraints; if the num-

ber of degrees of freedom contributed by a direct polytope and the number of constraints

contributed by an intersection polytope are known, and every constraint is assumed to be

independent, then f is straightforward to estimate. This reduces the objective of this section

to the calculation of the number of degrees of freedom or constraints contributed by a given

polytope.

Consider a single direct polytope. A 0-polytope requires three variables to specify the

three spatial coordinates. A 1-polytope requires five variables, three for a 0-facet and two

for the orientation of the attached edge. A 2- or 3-polytope requires six variables, five for

a 1-facet and one for the rotation angle about that facet. For notational purposes, let d be

the dimension of a direct polytope and define

ϕ(d) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
3 d = 0

5 d = 1

6 d = 2, 3

.

It is tempting to say that ϕ(d) is the number of degrees of freedom made available to the

network by a direct d-polytope, but this is not necessarily the case; Figure 4 shows several

situations where a direct d-polytope contributes fewer than ϕ(d) degrees of freedom. For
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example, the direct 3-polytope on the right constrains the distance between the connected

intersection 0-polytopes, but can rotate about the relevant edge without affecting the config-

urations available to the network (direct polytopes not connected by intersection polytopes

do not interact). That is, this direct 3-polytope effecively functions as a direct 1-polytope.

Along with the other examples in Figure 4, this suggests that a direct d-polytope actually

contributes only ϕ(δ) degrees of freedom, where δ ≤ d is the dimension of the convex hull

of the connected intersection polytopes and is called the reduced dimension.

For the intersection polytopes, the configurational variables of a single intersection d-

polytope contribute ϕ(d) degrees of freedom. Connecting an intersection d-polytope to a

direct polytope imposes ϕ(d) constraints on the direct polytope though, since the relevant

configurational variables of the intersection and direct polytopes must be the same. There

could be k additional angular constraints associated with the intersection polytope as well

(counted only after reducing the dimension of the connected direct polytopes). An inter-

section d-polytope connected to j direct polytopes would therefore contribute a total of

(j − 1)ϕ(d) + k constraints. For example, the intersection 0-polytope on the left of Figure 4

contributes three positional degrees of freedom, imposes three positional constraints on each

of the connected direct polytopes, and has zero associated angular constraints for a total of

three constraints.

At this point, the number of unconstrained degrees of freedom can be estimated by

substracting the sum of the constraints imposed by intersection polytopes from the sum

of the degrees of freedom contributed by direct polytopes. Let ni be the number of direct

polytopes with reduced dimension i, and mijk be the number of intersection i-polytopes with

j connections to direct polytopes and k associated angular constraints. Then the proposed

topological constraint theory gives the following estimate for the fraction of unconstrained

degrees of freedom:

f =

∑︁
i niϕ(i)−

∑︁
i

∑︁
j

∑︁
k mijk[(j − 1)ϕ(i) + k]∑︁

i niϕ(i)
. (4)

The use of this equation can be clarified with several examples. For SiO2, a network with n

direct 3-polytopes (SiO2 tetrahedra) would have 2n intersection 0-polytopes (oxygen atoms),

each with two connections to direct polytopes and no associated angular constraints. Eval-

uating Eq. 4 indicates that f = 0 for the SiO2 network, in agreement with the conventional

model. For the octahedral network in Figure 1, a network with n direct 3-polytopes would
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have 3n intersection 0-polytopes with the same properties as those for SiO2. Evaluating Eq.

4 for this network gives f = −0.5, a quantitatively different value from the −0.25 given by

Eq. 2 (modified to remove angular constraints on the oxygen atoms). Since the numerators

of Eqs. 2 and 4 are both the number of unconstrained degrees of freedom (a property of the

network that is independent of the model), the difference should be caused by the denomi-

nators. That is, there is a quantitative difference that results from choosing atoms or rigid

polytopes as the structural units of the network. The preferred choice should depend on

whether Eq. 2 or Eq. 4 is more strongly correlated with the experimental data.

C. A model for entropy and relaxation

Ideally, the relevance of the topological constraint theory developed in Section II B to

physical systems would be established by connecting the fraction of unconstrained degrees

of freedom f to an experimentally-observable quantity, and comparing the predicted and

experimental values of that quantity. The purpose of this section is to motivate and derive

an equation for the relaxation time τ of a glass-forming liquid that depends explicitly on

f . This will imply functional dependencies of the glass transition temperature Tg and the

fragility m on f that will be compared with experiments in Section III.

Given a single primary relaxation mechanism, a relaxation time τ can be modeled as

having an Arrhenius dependence on temperature, at least over a limited temperature range

near Tg. The relaxation time τ can then be simply written as

τ = τ0 exp

(︃
∆G

kBT

)︃
.

The free energy of activation ∆G can be written in terms of an activation enthalpy and

entropy. If only the the activation entropy ∆S depends explicitly on f , the expression for τ

can be re-written as

τ = τ0 exp

(︃
−∆S(f)

kB

)︃
exp

(︃
∆H

kBT

)︃
. (5)

This leaves only the construction of a model for ∆S(f) to be able to relate f to an experi-

mental observable.

For this purpose, assume that the configurational entropy of a network containing chain-

like moieties cross-linked by pyramidal or tetrahedral units is dominated by the conforma-

tional entropy of the chains. A simple model of such a network could contain 2-coordinated
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FIG. 5. Consider part of a network containing only chains of length n, with v chains connected to

a single grey atom (left). One possible bond-breaking event would convert one of these chains into

two chains of length ∼n/2 (right), increasing the entropy of the system.

white atoms and v-coordinated grey atoms with all of the white atoms participating in chains

of length n, as on the left of Fig. 5. A single chain can be modeled as a self-avoiding walk

(SAW), with a number of configurations approximately given by

Z(n) = Aµnnγ−1

where A, µ and γ are constants [44, 45]. Using Boltzmann’s formula S = kB lnZ, the

conformational entropy of a single chain depends on n as

S(n) = kB[lnA+ n lnµ+ (γ − 1) lnn]

where kB is Boltzmann’s constant. Since entropy is an extensive quantity, the change in

configurational entropy when breaking a bond to convert one chain of length n into two

chains of length ∼n/2, as on the right of Fig. 5, is

∆S = 2S(n/2)− S(n)

= kB[(γ − 1) ln(n/4) + lnA]. (6)

This is interpreted as the activation entropy for the bond scission-renewal dynamics. While

many distinct microscopic events are expected to contribute to the effective bond-breaking

mechanism in practice, the reasoning above is intended only to motivate the form of the

dependence of ∆S on n.

The dependence of n on f for the system on the left of Fig. 5 can be established using

Eq. 4. Specifically, a single chain contributes n direct 1-polytopes, (n − 1) intersection 0-

polytopes with two connections to direct polytopes along the chain, and 2/v intersection

0-polytopes with v connections to adjoining chains. Evaluating Eq. 4 gives

f =
2

5
− 3− 6/v

5n
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for the fraction of unconstrained degrees of freedom f as a function of n. Solving instead

for n gives

n =
3− 6/v

2− 5f
(7)

which indicates that the chain length diverges as f → 0.4. Since repeating the derivation

with the chain segments as 3-polytopes instead of 1-polytopes and not using the reduced

dimension makes the chain length diverge as f → 0.5, a significant change is expected in

the properties of most glass-forming liquids in the interval 0.4 ≤ f ≤ 0.5. Substituting Eq.

7 into Eq. 6 gives

∆S(f) = −kB

{︃
(γ − 1) ln(0.4− f)−

[︃
(γ − 1) ln

(︃
3− 6/v
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)︃
+ lnA

]︃}︃
= −kB[a ln(b− f)− c]

for the change in configurational entropy, where a, b and c are constants. The value of a

is expected to be around 0.157 from the literature [44, 45], and b is expected to be in the

interval 0.4 ≤ b ≤ 0.5 by the above reasoning. Finally, substituting the equation for ∆S(f)

into Eq. 5 gives

τ = τ ′0(b− f)a exp

(︃
∆H

kBT

)︃
(8)

for the relaxation time, where τ ′0 = τ0 exp(−c). If there is a characteristic relaxation time

τg ≈ 100 s that is a universal constant at the glass transition temperature Tg, then Eq. 8

can be inverted to find Tg as a function of f :

Tg =
∆H/kB

ln(τg/τ ′0)− a ln(b− f)
. (9)

The fragility m, on the other hand, is related by the Adam-Gibbs model of relaxation

[46] to the temperature dependence of the configurational entropy Sc:

m ∝ ∂Sc

∂T

⃓⃓⃓⃓
T=Tg

. (10)

Sidebottom [29] has recently suggested that the temperature dependence of Sc is governed by

the connectivity of a network. Estimating the conformational entropy of a network formed

via progressive cross-linking of chains indicated an abrupt rise in m as the average chain

length n between cross-linking points increased beyond ∼ 3. Substituting this value of n

into Eq. 7 gives 0.30 ≤ f ≤ 0.33 for 3 ≤ v ≤ 4, values typical for chalcogenide glasses.

Taken together, these results suggest that fragility m is expected to rise abruptly as as f
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increases beyond 0.3. These predictions for the dependence of Tg and m on f are compared

with experimental results for chalcogenide systems in Section III below.

III. CONNECTION WITH EXPERIMENTS

For the examination of select thermophysical properties of glass-forming networks as a

function of f , we restrict ourselves to binary and ternary compositions in the Ge-As-Se

system ranging from pure chalcogen Se to up to the stoichiometric compositions along the

GeSe2-As2Se3 join. This system is chosen as it represents a simple compositional evolution

from a chain-like structure for pure Se to a 3-dimensional network for the stochiometric com-

positions. There is the additional advantage that the nature and strength of the homopolar

Se-Se and heteropolar Ge/As-Se bonds in this system are similar, which ensures that their

effects on the network rigidity can be considered comparable. Although other chalcogenide

systems, i.e., the sulfides and the tellurides, share similarities in the compositional variation

of their physical properties, the increasingly ionic behavior in sulfides and metallic behavior

in tellurides result in significant differences in the nature of the homopolar and heteropolar

bonds [47]. The analysis of S-rich glasses is further complicated by the presence of S8 rings

that do not participate in the network [48]. The chalcogen-deficient glass-forming composi-

tions are not considered either, since such networks are over-constrained and the estimation

of f for such networks is not physically sensible. Moreover, the structure of chalcogen-

deficient Ge-As-Se networks is known to be complicated by the formation of molecular

elements of the type As4Se3, As4Se4 and As4, as well as the appearance of Ge-Ge bonds in

ethane-like Se3/2-Ge-Ge-Se3/2 units and Ge-As bonds [7, 49, 50]. The quantitative estima-

tion of the relative concentrations of these structural units and their effects on the network

rigidity are not straightforward and will be considered in the future. Finally, it is well known

that the GeSe4/2 tetrahedral units in the structural network of GexSe1−x glasses over the

composition range 0 ≤ x ≤ 0.33 are predominantly corner-sharing, but a small fraction

(15-35%) that increases monotonically with x form edge-sharing tetrahedral units [15, 51].

Sidebottom [29] suggested that the edge-sharing tetrahedra provide more degrees of freedom

to the network compared to their corner-sharing counterparts since the shared edge does not

participate in the connectivity of the rest of the network. However, this does not account

for the fact that edge-sharing between tetrahedra or other rigid polytopes can severely over-

16



constrain the local degrees of freedom of the polytope itself [17, 41]. Here we assume that

these effects approximately cancel, and that all of the tetrahedra are corner-sharing at the

concentrations considered below.

Now consider the fractional degrees of freedom f of a chalcogenide network with compo-

sition GexAsySe1−x−y that contains na atoms and nd direct polytopes. Let α be the fraction

of direct polytopes that are GeSe4/2 tetrahedra (3-polytopes), β be the fraction that are

AsSe3/2 triangles (reduced 2-polytopes), and (1− α− β) be the fraction that are Se2/2 line

segments (1-polytopes). The first step to calculate f is to find expressions for the direct

polytope fractions α and β in terms of the atomic fractions x and y. Equating the number

of Ge, As, and Se atoms with those that appear in the direct polytopes gives the following

system of equations:

xna = αnd

yna = βnd

(1− x− y)na = (1 + α + 0.5β)nd

Solving for the number of direct polytopes nd as a function of x and y and subtituting the

result into the first and second equations gives

α =
x

1− 2x− 1.5y

β =
y

1− 2x− 1.5y

for the fractions of direct 3-polytopes and direct 2-polytopes. The second step to calculate

f is to find the types and numbers of all intersection polytopes. Given the assumption that

all direct polytopes are corner sharing, the network contains only intersection 0-polytopes,

each with two connections to direct polytopes and no associated angular constraints. Since

there is precisely one intersection 0-polytope for every Se atom, the number ni of intersection

0-polytopes is

ni = (1− x− y)na

=
1− x− y

1− 2x− 1.5y
nd.

Evaluating Eq. 4 for a network containing αnd direct 3-polytopes, βnd direct 2-polytopes,

(1− α− β)nd direct 1-polytopes, and ni intersection 0-polytopes gives

f =
2− 6x− 3.5y

5− 9x− 6.5y
(11)
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FIG. 6. Fractional degrees of freedom f as a function of average coordination number ⟨r⟩.

Composition ranges for the various systems are GexSe1−x with 0.0 ≤ x ≤ 0.33, AsxSe1−x with

0.0 ≤ x ≤ 0.40, and GexAsySe1−x−y with 0.05 ≤ x ≤ 0.312 and 0.025 ≤ y ≤ 0.325.

for the fraction of unconstrained degrees of freedom.

The value of f is compared with the average coordination number ⟨r⟩ = 2x + y + 2 in

Fig. 6 for the binary and ternary Ge-As-Se compositions considered in this study. That f

should nearly be a function of ⟨r⟩ is surprising, given that both f and ⟨r⟩ are functions of

two independent variables relating to the number of tetrahedral and pyramidal cross-linking

elements. It is also immediately apparent that the variation of f with ⟨r⟩ is quite different

from that obtained by Thorpe using Eq. 3, since that version of f decreases linearly with

⟨r⟩ < rp until the sharp transition at rp = 2.4. The f obtained using Eq. 11 is instead nearly

a nonlinear function of ⟨r⟩ that goes to zero at rp = 2.67. As a result, the model developed in

Section II B predicts that As2Se3 and GeSe4 with ⟨r⟩ = 2.4 are underconstrained networks,

whereas Eq. 3 predicts that they are isostatically rigid; the source of this difference is in the

application of the angular constraints around Se atoms. This prediction of our model calls

into question the existence of the IP as defined elsewhere [11–14]. Furthermore, one should

expect a rapid increase in the elastic moduli beyond rp = 2.67 as the network is increasingly

over constrained; such behavior is indeed observed for a wide variety of binary and ternary

Ge-As/Sb-S/Se chalcogenide glasses [5, 8].

The glass transition temperature Tg for glass-forming liquids represents an isoviscous

temperature where the viscosity is ∼ 1012 Pa · s and the relaxation time is ∼ 100 s, and

is expected to be a monotonic function of the average connectivity of a network. Since
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FIG. 7. The glass transition temperature Tg for binary Ge-Se, As-Se, Si-Se and ternary Ge-As-Se

glasses is nearly a linear function of the fractional degrees of freedom f . The black line is a fit

using Eq. 9 for the parameter values reported in the text. Tg data are from [7, 9, 52–55].

FIG. 8. The fragility m for binary Ge-Se, As-Se, Si-Se and ternary Ge-As-Se glasses as a function

of the fractional degrees of freedom f . Fragility data are from [9, 17, 52, 53, 56–58].

the bond strengths of the homopolar Se-Se and heteropolar Ge-Se and As-Se bonds are

comparable, the Tg of Ge-As-Se glasses should monotonically decrease with f . This is borne

out in Fig. 7, which shows a nearly universal and linear decrease in Tg with increasing f in

these glasses. The black line in Fig. 7 is given by fitting Eq. 9 to the data using τg = 100 s,

τ ′0 = 10−13 s, b = 0.45, and a standard conjugate gradient minimization algorithm for the

remaining parameters. This procedure gives ∆H = 3.552± 0.001 eV and a = 36.32± 0.02,

with parameter uncertanties estimated by calculating the Hessian matrix at the minimum.

An activation enthalpy ∆H of around twice the bond energy is reasonable enough for a

scission event given the simplicity of the model developed in Section II C, and is roughly
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consistent with the value of ∼ 2.7 eV reported for the GexSe1−x system as reported in the

literature [57]. The deviation of a from the expected value of 0.157 is more dramatric, with

the activation entropy being ∼200 times larger than expected. This could be related to the

number of configurations in SAW models generally being calculated for chains on lattices

rather than in continuous space, or to the neglect of the effect of a scission event on the

conformations available to the surrounding network components.

The dependence of the fragility m on f for the same Ge-As-Se liquids is shown in Fig.

8. A nearly universal functional dependence between m and f is again observed for glass-

forming liquids in this system, where m is nearly constant ∼30 for 0 ≤ f ≤ 0.3 and rapidly

increases to ∼ 80 for 0.3 ≤ f ≤ 0.4. Recent studies have suggested that this behavior is

related to the disappearance of the conformational entropy of the selenium chain segments

as their average length is reduced to ∼3 [22, 29], and is consistent with the prediction made

in Section IIC for the corresponding threshold value of 0.30 ≤ f ≤ 0.33. By comparison,

the onset of the sharp rise in m coincides with ⟨r⟩ ≈ 2.3, below where the conventional

topological constraint theory predicts a transition.

IV. CONCLUSIONS

A rigid polytope model of glass structure is developed and used to calculate the relative

fraction of unconstrained degrees of freedom f , the result having a fundamentally different

dependence on ⟨r⟩ than that originally obtained by Thorpe [3] using a mean-field approxi-

mation. The variation of Tg and m of binary and ternary chalcogenide glass-forming liquids

in the Ge-As-Se system shows nearly universal dependence on f over a wide range of com-

positions. While Tg decreases almost linearly with f , m does not vary significantly in the

range 0 ≤ f ≤ 0.3 but increases rapidly with f for 0.3 ≤ f ≤ 0.4. The variation of Tg

with f can be explained by considering the change in the conformational entropy associated

with the bond scission-renewal process of chain segments as the primary mode of structural

relaxation of the glassy network. On the other hand, following Sidebottom [29], the rapid

increase in m for f > 0.3 is ascribed to the corresponding rise in the conformational entropy

of the selenium chain segments as their average length increases beyond ∼3 Se atoms.
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