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Abstract
Utilizing memory and register bandwidth in modern archi-
tectures may require swizzles — non-trivial mappings of data
and computations onto hardware resources — such as shuf-
fles. We develop Swizzle Inventor to help programmers im-
plement swizzle programs, by writing program sketches that
omit swizzles and delegating their creation to an automatic
synthesizer. Our synthesis algorithm scales to real-world
programs, allowing us to invent new GPU kernels for stencil
computations, matrix transposition, and a finite field mul-
tiplication algorithm (used in cryptographic applications).
The synthesized 2D convolution and finite field multipli-
cation kernels are on average 1.5–3.2x and 1.1–1.7x faster,
respectively, than expert-optimized CUDA kernels.

CCSConcepts • Software and its engineering→ Source
code generation;Automatic programming; •Computer
systems organization→ Single instruction, multiple data.
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1 Introduction
Efficient execution on a GPU has always rested on a care-
ful assignment of data onto the machine hierarchy (threads,
warps, and thread blocks). Recent years have witnessed the
emergence of a class of program optimizations that gener-
alize these assignments and communication patterns into
so-called swizzles, unlocking dramatic speedups. Informally,
we define a swizzle kernel to be a program that coordinates
multiple mappings of data and computations to hardware
resources in order to achieve the correct result. These map-
pings may be complex and non-affine.
One such optimization, by Ben-Sasson et al., introduces

a register cache [3], a logical structure that distributes data
across threads’ private registers. The data is shared among
threads in the same warp with swizzle patterns using an
intra-warp shuffle instruction. An optimization by Catan-
zaro et al. [7] transpose a non-square matrix while perform-
ing only coalescedmemory accesses. Their trick is to perform
the transpose entirely in the registers of threads in a warp
in three shuffling phases: column-wise, row-wise, and again
column-wise. These papers demonstrated 1.5–45x speedup.

These results stem from the flexibility of swizzles, which
gives them more power to simultaneously:

1. improve locality and/or parallelism,
2. utilize low-latency private memory such as registers,
3. satisfy hardware constraints, for example by coalesc-

ing global memory accesses, and
4. organize the computation so as to exploit special hard-

ware support, such as an intra-warp data exchange.

Today’s compilers cannot perform swizzling optimizations
[2, 12, 28], and the swizzle kernels published in literature
required significant human expertise [3, 7, 13, 18, 29].

This paper describes the design of Swizzle Inventor, a tool
that aides in developing swizzle kernels. The programmer
writes a program sketch that describes the algorithm but
leaves the swizzles unspecified (Section 3); the tool then
synthesizes those mappings to complete the sketch into a
correct program. The algorithm with unknown mappings
is easy to write because a swizzle corresponds to an array
index expression. For example, index expressions used when
arrays are copied determine data movement and thus also
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the mapping of data to memory. Similarly, index expressions
used when computing on array elements determine the map-
ping of computations to threads. Although Swizzle Inventor
is built for GPUs (Section 6), its underlying techniques can
be used for other hardware targets.

Swizzle Inventor allows programmers to experiment. Imag-
ine we want to determine whether there exists an algorithm
with less computation. We sketch the algorithm, restricting
it to fewer statements than the known algorithm, thus ex-
pressing the hypothesis. If the synthesizer can complete the
sketch, we discover such an algorithm. If not, we have saved
time by not attempting to develop the mappings ourselves.
We used this process to discover many GPU kernels that are
faster than expert-written ones (Section 7).
Swizzle Inventor can synthesize input-independent and

bounded kernels. A kernel is input-independent if input val-
ues do not influence any control flow or array indexing. Thus,
Swizzle Inventor cannot be used for restructuring sparse
data at the moment. However, input-independent kernels
are ubiquitous, including stencil computations, dense linear
algebra, and cryptography operations. In a bounded kernel,
loop bounds are constants known at compile time, and so are
the dimensions of arrays accessed by the kernel. Bounded
kernels are important in practice because they usually deter-
mine the overall performance; they are typically invoked by
an outer loop that iterates over fixed-size tiles of an array
with an unknown or dynamic size. Note that this is a typical
way to handle unbounded matrices in GPU programming.

Automatic synthesis of swizzle kernels for GPUs poses
new challenges. First, the SIMT execution requires the syn-
thesized maps to be expressions over a thread identifier and
loop iterations. Previously synthesized swizzle programs
[1, 23, 25] used constant maps. To this end, we design a
language of swizzles as a set of composable primitive swiz-
zle operations that are (1) efficient to evaluate at runtime,
(2) sufficient to compose into swizzles needed in advanced
optimizations, and (3) efficient for synthesis (Section 5).

Second, to give the synthesizer more flexibility when map-
ping a program to hardware, it is sometimes useful to restruc-
ture the computation by reordering terms, such as terms in
a summation of a stencil. We develop a representation of
program states that uses canonical forms of algebraic ex-
pressions. This representation lets an SMT solver efficiently
synthesize programs that reorder terms compared to how
the computation is expressed in the specification (Section 4).

Using Swizzle Inventor, we discover new implementations
that are better than expert-written ones: (1) a variant of a fi-
nite field multiplication that is on average 7–67% faster than
the original version based on Ben-Sasson et al. [3]; (2) a 2D
convolution kernel that is 3.2x and 2.3x faster than NVIDIA
Performance Primitives (NPP) [21] and ArrayFire [32], re-
spectively; and (3) a new algorithm for an in-place non-
square matrix transposition, based on Catanzaro et al. [7],

that does not need any intra-warp shuffles because swiz-
zles are performed during the load and store, which remain
coalesced despite performing a swizzle (Section 7).

2 Overview
In this section, we overview Swizzle Inventor by demonstrat-
ing how to implement an optimized 1D convolution GPU ker-
nel, a weighted variant of the example in Ben-Sasson et al. [3].
According to Ben-Sasson et al., caching input data using reg-
isters can be faster than using shared memory. Unlike shared
memory, registers are private to an individual thread. There-
fore, we have to explicitly use intra-warp shuffle instructions
to exchange data between threads in each warp.

Program Sketch In Swizzle Inventor, programmers write
an optimized implementation as a program sketch, which
omits index swizzle expressions. For our running example,
assume that the programmers already prefetch the input
from global memory to registers inp[2][warp_size] as sug-
gested by Ben-Sasson et al. Two rows of inp are sufficient
to hold input data for each warp when K = 3. This part is
straightforward, so the programmers handle it themselves.
Therefore, the program sketch, shown in Listing 1, considers
registers inp as the input to the program, which is distributed
among all GPU threads in each warp.

Program sketches often naturally express high-level strate-
gies. This particular sketch expresses that in each iteration,
each thread (i) selects an input value it owns A , (ii) ex-
changes the value with other threads B , and (iii) multiplies
the obtained value with the right weight before accumulating
the result C . A and B express the Read-Publish communi-
cation strategy, described by Ben-Sasson et al.

// These two constants are specified at compile/synthesis time
int K = 3; // Filter size
int warp_size = 4; // Using 4 for illustration. Real warp size is 32.

float[warp_size] sketch(__register__ float inp[2][warp_size],
float w[K] /* in global constant memory */) {

// Thread tid owns column tid of inp, out, and to_share.
__register__ float to_share[warp_size], out[warp_size] = {0};
for (int k = 0; k < K; k++) {
// Threads in a warp run in parallel.
parallel for (int tid = 0; tid < warp_size; tid++) {

// Each thread chooses the value to share with other threads.

to_share[tid] = inp[?swizzle1(tid,k)][tid]; A
// Solution: ?swizzle1 = (tid >= k) ? 0 : 1

}
parallel for (int tid = 0; tid < warp_size; tid++) {

// Choose which thread to read data from.
// This corresponds to a CUDA intra-warp shuffle instruction

float tmp = to_share[?swizzle2(tid,k)]; B
// Solution: ?swizzle2 = (tid + k) % warp_size

out[tid] += w[?swizzle3(tid,k)] * tmp; C
// Solution: ?swizzle3 = k

} }
return out

}

Listing 1. The program sketch for swizzled 1D convolution.
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Figure 1. The execution of the synthesized convolution from Listing 1. Each column presents an execution of a thread tid .
Values flow from top to bottom. The green, yellow, and orange boxes represent swizzles that (i) select a local input value, (ii)
select a remote thread to receive data from, and (iii) select a weight, respectively.

precondition: inp = [[x0, x1, x2, x3], [x4, x5, 0, 0]]
w = [w0, w1, w2]

postcondition: out = [(w0 ∗ x0) + (w1 ∗ x1) + (w2 ∗ x2),
(w0 ∗ x1) + (w1 ∗ x2) + (w2 ∗ x3),
(w0 ∗ x2) + (w1 ∗ x3) + (w2 ∗ x4),
(w0 ∗ x3) + (w1 ∗ x4) + (w2 ∗ x5)]

Figure 2. Pre- and post-condition for the sketch in Listing 1

float[] spec(float inp[], float w[K], int n) {
float out[n] = {0};
for(int i = 0; i < n; i++)

for(int k = 0; k < K; k++)
out[i] += w[k] * inp[i+k];

return out;
}

// Ensure that the implementation behaves like the spec.
float inp_spec[warp_size+K-1] = symbolic_matrix([warp_size+K-1]);
// inp_spec = [x0, x1, x2, x3, x4, x5]
float inp_impl[2][warp_size] = reshape(inp_spec, [2, 4]);
// inp_impl = [[x0, x1, x2, x3], [x4, x5, 0, 0]]
float w[K] = [w0, w1, w2];
assert(spec(inp_spec, w, warp_size) == sketch(inp_impl, w));

Listing 2. Program specification for 1D Convolution

Swizzle Synthesis The difficult part of implementing this
program is selecting (i) which local cached value to share A ,
(ii) from which remote thread each thread receives data B ,
and (iii) the right weight to multiply C . These decisions are
delegated to our synthesizer, which replaces ?swizzle with
concrete swizzle expressions such that the program meets
the specification.

Specification A specification to our synthesis problem is
in the form of a program’s pre- and post-conditions. A pre-
condition is an input matrix with each of its elements initial-
ized with a distinct algebraic variable or algebraic expression
that captures a precondition of that specific matrix element.
A post-condition is an output matrix whose elements are
algebraic expressions of the input variables.

Writing a specification as pre- and post-conditions can be
troublesome. Therefore, we let programmers write a sequen-
tial program as a specification. Programmers initialize input
matrices with algebraic variables or expressions, and then
symbolically interpret both the sequential program and the
program sketch on these input matrices. Our correctness con-
dition is simply the equivalence of the output matrices from
the sequential program and the synthesized program. This
process implicitly extracts pre- and post-conditions used by
the synthesis problem.

The specification of 1D convolution is shown in Figure 2,
which is derived from a sequential program in Listing 2.

Solution Our framework synthesizes the solution shown
in the comments below lines A , B , and C in Listing 1,
which implements non-trivial swizzles illustrated in Figure 1,
in eight seconds. Even though this is a simple 1D convolution,
the synthesized implementation is 5% faster on a Kepler GPU
compared to a shared memory implementation (for the filter
of size 9; see details in Section 7.1).

Alternative Solution Another solution to this problem is:
?swizzle1 = (tid >= (K-1) - k) ? 0 : 1
?swizzle2 = (tid + (K-1) - k) % warp_size
?swizzle3 = (K-1) - k

In iteration k , it multiplies an input value by w[2 − k]. The
output out[0] from this solution is (w2 ∗ x2) + (w1 ∗ x1) +
(w0 ∗ x0), equivalent to the expected output, despite the
order of the summation. This reordering is necessary for
performance improvement in some programs, such as a finite
field multiplication (Section 7.2) and reducing values in an
array of structures (Section 7.3).

3 Programming Abstractions
This section explains the key programming abstractions used
in Swizzle Inventor in a hardware-independent setting. In
this setting, Swizzle Inventor helps programmers implement
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matrix programs (Section 3.1) by completing unknown swiz-
zle expressions in program sketches (Section 3.2).

3.1 Matrix Programs
Matrix programs can be used to represent various kinds of
parallel programming models. Listing 1 is a matrix program
that has inner parallel loops to imitate the implicit parallel
thread execution in SIMT, and uses each column of a matrix
to represent a local array belonged to one thread.

Index Swizzle Array access is where a swizzle happens.
Therefore, we call an array index expression an index swizzle.
An index swizzle maps integers to an integer. Index swiz-
zles in a matrix program can be used to express patterns
of various kinds of data movements, including local data
access, data transfer from one type of memory to another,
and data exchange between computing elements. Swizzle
Inventor supports an index swizzle that is an expression of
loop variables and constants, so it is input-independent. This
restriction is required for our efficient synthesis algorithm.
Note that an index swizzle does not have to be used directly
at an array indexing location. It can be assigned to a variable
that is later used as an array index for indirect array access.
It can be used as a return value of a function that computes
an array index.

Condition Swizzle Data movement can be determined by
control flow, which we control with a condition swizzle. A
condition swizzle maps integers to a boolean and can be
used in branching or predication. Like an index swizzle, a
condition swizzle must be input-independent.

Matrices and Loops All matrix sizes must be known at
compile time. Values of matrix elements are values computed
by expressions over input matrix elements and constants.
Loops must be statically bounded. To handle an unbounded
or dynamically-sized matrix, we can execute a bounded ma-
trix program on each bounded tile of an unbounded matrix.

3.2 Program Sketches
Program sketches are matrix programs with some swizzles
replaced with unknown swizzles or holes (?swizzle). We pro-
vide three kinds of holes.

Condition Swizzle ?swcond(v, ...) is a hole for a condition
swizzle. The arguments to ?swcond are integer variables that
may be used in the substituted expression.

Transformation Index Swizzle ?swxform(i,n,k) is a hole
for an index swizzle such that the overall array access is a per-
mutation or broadcast of the original data when considering
all n elements. ?swxform takes three arguments:
i original index before applying the swizzle (primary index).
n number of elements to be swizzled, where i ∈ [0,n), and n

is statically known.

k runtime parameter (secondary index, e.g., another loop
variable).

For the 1D convolution example in Listing 1, ?swizzle2 is
?swxform(tid,n,k), and ?swizzle3 is ?swxform(k,K , tid).

Partition Index Swizzle ?swpart(n, i, ...) is a hole for an in-
dex swizzle that divides different values of i, ... into a few
partitions and produces the output value based on the parti-
tion. It can be used when the number of elements available
is smaller than the number of accesses required. The ?swpart
hole takes two or more arguments: n the number of elements
available (an array bound), and the rest of the arguments
are integer variables that may be used in the expression. For
the 1D convolution in Listing 1, we use ?swpart(K ,k, tid) for
?swizzle1 because the total number of loop iterations K is
more than the number of data values own by each thread’s
inp[2].

4 Swizzle Synthesis
4.1 General Approach: Canonicalization
Synthesis Program sketches include holes that need to be
instantiated with concrete swizzle expressions such that the
resulting matrix program satisfies the specification.

Verification A matrix program meets a specification if
all post-conditions hold. An output matrix X is equal to a
specification matrix X ′ if they have the same shape and
equivalent values at each index. Therefore, the key of our
verification problem is to determine if value x is equivalent
to value x ′, when x and x ′ are algebraic expressions such as
(a ∗b) + (c ∗d) + (e ∗ f ) and (d ∗ c) + (e ∗ f ) + (a ∗b), where
a to f are algebraic variables.

Our approach is to represent a value in a canonical form
so that values can be compared for equivalence by check-
ing if they have the same form. Typically, to prove that two
programs are equivalent, we use a constraint solver to check
that they produce the same outputs for all possible concrete
inputs. Using canonicalization, we do not need to use a con-
straint solver to check program equivalence.

This approach to verification-by-canonicalization is sound
but incomplete; the verifier will never incorrectly conclude
that two nonequivalent expressions are equivalent, but it
may fail to discover some equivalences, such as that a + a is
equivalent to 2 ∗ a, and a ∗ (b + c) is equivalent to (a ∗ b) +
(a ∗ c). Swizzle Inventor treats these values as nonequivalent
to simplify the synthesis problem and because optimizing
algebraic expressions is not our primary goal.

4.2 Canonical Representation
For our prototype framework, we choose to handle only
output values that are computed from a particular class of
computations, namely reduction. While this choice restricts
the kinds of programs that our tool can support, they already
cover many interesting optimizations, as shown in Section 7.
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ProgrammingAbstraction We represent reduction using
an accumulator. Users can create, update, and evaluate accu-
mulators as follows, where→ denotes operational semantics:

create: o := create_accumulator(init ,finalize, ⊕[, ⊙])
→ o := init

update: accumulate(o,v, c) → if(c) o := o ⊕ v

accumulate(o, [v1,v2, . . .], c)

→ if(c) o := o ⊕ (v1 ⊙ v2 ⊙ . . .)

evaluate: eval(o) → finalize(o)

An operator ⊕ is an outer reduction operator, and ⊙ is an
optional inner reduction operator. Reduction operators must
be commutative and associative.
To modify Listing 1 to use accumulators, we replace the

definition of out and how it is updated at C by:
// Definition
acc out[warp_size] = { create_accumulator(0, identity, +, *) };
// Update
accumulate(out[tid], [tmp[tid], w[k]], true);

Encoding We encode an output valuev from an accumula-
tor as an accumulation a = (s, init ,finalize, ⊕[, ⊙]), where s
is a multiset (unordered list) of algebraic variables from input
matrices. For example, we encode the expected out[0] from
our running example as ({{w0,x0}, {w1,x1}, {w2,x2}}, 0,
identity, +, ∗).
The encoding process happens while Swizzle Inventor

interprets a program. We define the interpretation (⇝) of
accumulator’s create, update, and evaluate as follows:

create: s := create_accumulator(init ,finalize, ⊕[, ⊙])

⇝ s := {}

update: accumulate(s, l , c)⇝ if(c) o := o ⊎ {l}

evaluate: eval(s)⇝ (s, init ,finalize, ⊕[, ⊙])

Where ⊎ denotes multiset sum. Accumulators a = (s, init ,
finalize, ⊕[, ⊙]) and a′ = (s ′, init ′,finalize′, ⊕′[, ⊙′]) are
equivalent if s ≡multiset s

′, and all other fields are pairwise
equal. Nested multisets s and s ′ are equivalent if they contain
the same elements regardless of their order, in a recursive
manner. A multiset is essentially a canonical representation
of a reduction expression because a multiset ignores the
order of elements but preserves their count.
Given that all other fields in a and a′ are pairwise equal,

s ≡multiset s
′ ⇒ a ≡ a′ because ⊕ and ⊙ are both commu-

tative and associative. For example, consider out[0] from
the specification and the alternative solution of our running
example:
{{w0, x0 }, {w1, x1 }, {w2, x2 }} ≡multiset {{w2, x2 }, {w1, x1 }, {w0, x0 }}

(w0 ∗ x0) + (w1 ∗ x1) + (w2 ∗ x2) = (w2 ∗ x2) + (w1 ∗ x1) + (w0 ∗ x0)

4.3 Synthesis Algorithm
The synthesis problem is to select a swizzle expression for
each swizzle hole in a program sketch such that the resulting

matrix program meets the specification. Each hole describes
a space of swizzle expressions to choose from. In this section,
we assume that expressions in the space have unique id’s. Our
goal is to find the expression id for each hole; we call it the
control value of the hole. The actual encoding of expressions
in the search space of a swizzle hole is defined in Section 5.

While a matrix program has a single execution, a program
sketch defines multiple executions, one for each combination
of control values. Rather than systematically enumerating all
possible executions, we represent all executions in a compact
predicated program state. Recall that the state of a value of a
matrix element in a matrix program is a canonical algebraic
expression. In a program sketch, the state of an element’s
value will be a set of alternative canonical expressions. These
alternatives arise from the choices of control values. To keep
track of these choices, these alternatives are predicated by
boolean expressions of control values. For example, x is
(hole0 == 0)?a ∗ b : (hole0 == 1)? : a ∗ c : a ∗ d .
We use Rosette [26, 27], a solver-aided language, to com-

pute program states of a program sketch and find a solution
for control values. Rosette, in turn, translates our query into
an SMT formula and asks an SMT solver for a solution.

Objective Function In addition to satisfying the specifica-
tion, our synthesizer searches for a solution that minimizes
the number of accumulate statements because the fewer
accumulate statements the less computation a program re-
quires. If the predicate of an accumulate statement can be
evaluated to false statically (e.g., i < i), such a statement is
not counted. Swizzle Inventor does not yet model other hard-
ware performance costs such as stalls from bank conflicts.

5 Synthesis Search Space
This section presents our encoding of the synthesis search
space for the swizzle holes provided by Swizzle Inventor.

5.1 Search Space of Condition Swizzle
The following grammar defines the search space of a condi-
tion swizzle hole:

?swcond(v, ...) := (v | ...) ⊙cmp (I ⊙bin (v | ...))

⊙cmp := = | , | ≥ | > | ≤ | <

⊙bin := +|−
I := integer constant

5.2 Search Space of Partition Index Swizzle
This index swizzle hole builds upon condition swizzle holes:

?swpart(n,v, . . .) := if ?swcond(v, . . .) then 0
elif ?swcond(v, . . .) then 1
. . .

else n − 1
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Example The solution to the swizzle hole at A in Listing 1
is if (tid >= (0 + k)) then 0 else 1.

5.3 Search Space of Transformation Index Swizzle
By examining swizzle expressions required to perform the in-
place matrix transposition designed by Catanzaro et al. [7],
we observe that their permutation expressions require oper-
ations +, −, ∗, /, and mod.

Naive Template Naively, we might create a grammar for
search space as follows:

?swd
xform(v, . . .) := I | v | . . . | (1)

?swd−1
xform(v, . . .) ⊙l inear ?sw

d−1
xform(v, . . .)

?swd−1
xform(v, . . .) ⊙bin I

?sw0
xform(v, . . .) := I | v | . . .

⊙l inear := + |−

⊙bin := ∗ | / |mod

However, this grammar is unnecessarily general, and some
example swizzles require a large depth d , making the search
space extremely large and synthesis slow (Section 7.4).
Instead, we develop a template that can express all the

kinds of permutations and broadcasts we have encountered,
but rules out as many other expressions as possible.

Swizzle Primitives Our template will be composed of the
following three permutation primitives, where x̃ denotes a
named integer constant that will be synthesized.

Equation (2) defines a rotation permutation, which rotates
an array of elements by a constant R, as depicted in Figure 3.

rot(n)(k)(i) = (i + R) mod n (2)

where R = k ∗ c̃r + ⌊k/d̃r ⌋ + c̃

A fanning permutation, as defined in Equation (3), spreads
out adjacent elements by putting them c̃f distance apart.

fan(n)(i) = (i ∗ c̃f + ⌊i/d̃f ⌋) mod n (3)

where d̃f = n/дcd, дcd = GCD(c̃f ,n)

Imagine filling out an output array y by placing an element
from the input array x one by one from the lowest to high-
est index. If x[i] is placed at y[j], x[i + 1] will be placed at
y[(j + c̃f ) mod n]. If дcd = 1, this insertion pattern has no
collisions (Figure 4). Otherwise, collisions will occur. ⌊i/d̃f ⌋
handles these collisions, by shifting the element over if there
already exists an element in the target location (Figure 5).
Equation (3) provides this desired behavior because after
d̃f = n/дcd placements, a collision will happen, so it incre-
ments the output index by 1 after every d̃f placements.

Any permutation may be grouped, using Equation (4).

group(дs,p)(i) = ⌊i/дs⌋ ∗ дs + p(i mod дs) (4)

x[i] 0 1 2 3 4 5 6 7

y[rot(i)] = x[i] 6 7 0 1 2 3 4 5

rot(i) = (i + 2) mod 8

Figure 3. Rotation permutation. n = 8,R = 2

x[i] 0 1 2 3 4 5 6 7

y[fan(i)] = x[i] 0 3 6 1 4 7 2 5

fan(i) = (3 ∗ i) mod 8

Figure 4. Co-prime fanning permutation. c̃f = 3, d̃f = n = 8

x[i] 0 1 2 3 4 5 6 7 8

y[fan(i)] = x[i] 0 3 6 1 4 7 2 5 8

fan(i) = (3 ∗ i+⌊i/3⌋) mod 9collision shift

Figure 5. Non-co-prime fanning permutation. n = 9, c̃f = 3,
d̃f = n/дcd = 3

x[i] 0 1 2 3 4 5 6 7

y[group(4, fan)(i)]
= x[i]

0 3 2 1 4 7 6 5

group(4, fan)(i) = ⌊i/4⌋ ∗ 4 + ((3 ∗ (i mod 4)) mod 4)

дs
Figure 6. Grouping permutation. n = 8,дs = d̃f = 4, c̃f = 3

This divides the elements of the original array into multiple
groups of дs consecutive elements, and permutes elements
locally within each group based on the given permutation p
(Figure 6). ⌊i/дs⌋ ∗дs determines the starting location of each
group, while p(i mod дs) determines the permuted element
offset within each group.

Our Template Our swizzle template, ?swxform, is composed
of these permutation primitives as follows. We use i for
the index to be swizzled, n for the total number of indices
(statically known), and k for an additional runtime parameter.

?swxform(i,n,k) = дroup(д̃s, fan_rot(д̃s,k))(i) (5)
where д̃s divides n

fan_rot(n,k) = rotate(n,k) ◦ fan(n) (6)
rotate(n,k) = if �wrap then дroup(дcd, rot(дcd)(k))

else rot(n)(k) (7)
where дcd = GCD(c̃f , д̃s)

?swxform is a grouped permutation whose subgroup is in turn
permuted by fan_rot. If д̃s = n, we essentially apply fan_rot
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x[i] 0 1 2 3 4 5 6 7 8

y[fan(i)] = x[i] 0 3 6 1 4 7 2 5 8

z[group(3, rot)(i)]
= y[i]

6 0 3 7 1 4 8 2 5

z[(group(3, rot) ◦ fan)(i)] = x[i]
fan(i) = (3 ∗ i + ⌊i/3⌋) mod 9

group(3, rot)(i) = ⌊i/3⌋ ∗ 3 + (((i mod 3) + 1) mod 3)

дcd collision shift

Figure 7.When swizzle expression is fanning followed by
grouped rotation. n = д̃s = 9, c̃f = 3, d̃f = n/дcd = 3,R = 1,�wrap = true

on the entire array. Using function composition ◦, we define
fan_rot as applying fan followed by rotate. The function
rotate is either a rotation or a grouped rotation, depending
on the synthesized boolean �wrap. The group size of the
grouped rotation in Equation (7) is the GCD of c̃f from fan
in Equation (6) and д̃s from Equation (5). Figure 7 illustrates
a complete permutation when fan_rot is fan followed by a
grouped rotation, and д̃s = n.
Overall, we synthesize д̃s, c̃f , d̃f , c̃r , d̃r , c̃, and �wrap for

each swizzle hole. In theory, we do not have to synthesize
d̃f because it can be computed in Equation (3). However, in
practice, computing GCD requires recursion, which needs to
be unrolled in order to generate constraints. The unrolling
of theGCD function leads to inefficient constraints. Instead,
we treat d̃f as an unknown and synthesize it. We include an
additional constraint that d̃f must divide д̃s , andдcd = д̃s/d̃f .
Note that this index template can express non-affine map-
pings because the divisors d̃r and д̃s are not constant.
This swizzle template also lets us move values from a

source array of sizens to a destination array of sizend , where
nd < ns . Additionally, the template can express broadcasts
(y[i] = x[?swxform(i,n,k)]) when c̃f = 0, d̃f = n, �wrap =
false, and the broadcasted element’s index is R.

Example The solution to the swizzle hole at B in List-
ing 1 is a rotation permutation with R = k (c̃r = 1, d̃r =
warp_size, c̃ = 0), no grouping (д̃s = warp_size), no fan-
ning (c̃f = 1, d̃f = warp_size), and �wrap = false.

5.4 Search Space Restriction
Even our restricted swizzle template and grammars are more
flexible than required for most programs. Since exploring the
full search space defined by them takes a significant amount
of time, we progress our synthesis by first exploring a very
restricted search space and keep expanding it until we find
a solution, similar to metasketches [4].

Most programs require only simple permutations with
rotation or co-prime fanning and without grouping. Most
condition expressions do not require any constants. Thus,
we explore the search space in the following order:
Space 1: We prohibit grouping and non-co-prime fanning

in ?swxform by fixing d̃f = д̃s = n and �wrap = false.
We additionally fix d̃r = n and restrict the constant
in ?swcond to be zero.

Space 2: Same as Space 1 but with the full ?swcond grammar.
Space 3: The full search space.
The best solution in a larger search space may have a

lower cost than a solution found in a smaller search space.
Therefore, if we want an optimal solution, we will have to
explore the full space. However, we show in Section 7 that
the first solution found is often optimal and already faster
than existing manual implementations.

6 Specialization for GPU Kernels
Thus far, we have described a general framework for pro-
gramming swizzles. In this section, we discuss how we spe-
cialize this framework for GPU programming.

6.1 SIMT Programs
SIMT programs are a subset of matrix programs. The func-
tion sketch in Listing 1 can be written as lines 3–14 in the
full GPU kernel sketch in Listing 3. Note that in SIMT, there
are implicit parallel inner loops over threads in a warp, and
local variables have an extra dimension for threads in a warp.
Thus, the sketch function in Listing 3 is identical to that in
Listing 1, including the shapes of inp and out . Notice that
swizzle holes can be used as before. Listing 2 is then a specifi-
cation of the function sketch in Listing 3 as well. In practice,
we let programmers write program sketches in SIMT style.

1 int K = 3; __constant__ float w[3];
2
3 __device__ inline float sketch(float inp[2], float w[K]) {
4 int tid = threadIdx.x % warp_size;
5 float out = 0;
6 for(int k = 0; k < K; k++) {
7 float to_send = inp[?sw_part(tid, k)];
8 // Intrinsic for exchanging values between threads in each warp
9 float tmp = __shfl_sync(FULL_MASK, to_send,
10 ?sw_xform(tid, warp_size, k));
11 out += w[?sw_xform(k, K, tid)] * tmp;
12 }
13 return out;
14 }
15
16 __global__ void conv1d(const float *x, float *y, int n) {
17 int global_id = blockIdx.x * blockDim.x + threadIdx.x;
18 int tid = threadIdx.x % warp_size;
19 int warp_offset = global_id - tid;
20 float inp[2];
21 // Distribute X across registers of a warp of threads

22 global_to_local_1d<float>(x, inp, warp_offset, 1, 2); D
23 float out = sketch(inp, w);
24 if(globalId < n) y[globalId] = out;
25 }

Listing 3. Full sketch of CUDA Kernel for 1D Convolution
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From the perspective of a warp of 32 threads, the code
in Listing 3 only produces 32 output values. However, a
thread block contains multiple warps, and there is a virtually
unlimited number of thread blocks to execute a kernel on
different parts of a potentially unbounded input matrix.
Swizzle Inventor is implemented in Rosette [26, 27], a

solver-aided language embedded in Racket. Therefore, users
write a program sketch as a CUDA-style Racket (CuRacket)
program. Ideally, we would like to support program sketches
written in CUDA, but our prototype implementation cur-
rently supports only CuRacket programs. CuRacket restricts
the bodies of if-then-else to be single expressions in order to
help prevent thread divergence.

6.2 Load-Store Utility Functions
Since programmers still have to handle loading and storing
data from and to global memory, our framework provides
convenience functions to load and store a contiguous chunk
of memory per thread warp or block.

The function below makes each warp collaboratively load
a contiguous 1D chunk of memory from global memory A
to local memory or registers rA as depicted in Figure 8.

global_to_local_1d(A, rA, offsetx , slicex , roundx , [shflx])

Each warp executes roundx rounds of loading. In round
rx ∈ [0, roundx ), each thread tid = (threadIdx .x%warp_size)
loads consecutive slicex elements starting at position:

offsetx + rx ∗warp_size ∗ slicex + shflx(tid) ∗ slicex
The function takes optional shuffle functions shflx to shuffle
data while loading it (swizzling data distribution); the default
shuffle function is shflx(i) = i (no shuffle).

Listing 3 uses this function at D to load data from global
memory to registers, with slicex = 1, roundx = 2 and no
shuffle, just like Figure 8. Figure 9 depicts how this function
works when shflx(i) = (3 ∗ i + 3) mod 4. Note that threads
in a warp access consecutive memory in each round if shflx
is a permutation, so this function has the desired property
that the global memory accesses are fully-coalesced (when
slicex = 1, 2, or 4).

We also provide a similar function global_to_shared_1d
for loading from global to shared memory, as well as equiv-
alent functions for storing to global memory, and 2D loads
and stores. Swizzle Inventor encourages programmers to
write a kernel with coalesced memory accesses by providing
these load-store functions.

These functions essentially provide an assignment of data
to threads similar to existing frameworks that support de-
composing arrays and processing them using different levels
of the compute hierarchy. These include Chapel [8], Hier-
archically Tiled Arrays (HTA) [9] and Lift [10]. However,
programmers still have to supply the shfl argument manually
in these frameworks.

Figure 8. In function global_to_local_1d, threads of a warp
collaboratively load a consecutive 1D chunk of data from
global to local memory or registers. This figure illustrates
the simple case when shflx(i) = i .

Figure 9. Function global_to_local_1d allows a shuffle of
data while loading to local storage. This figure illustrates
the behavior when shflx(i) = (3 ∗ i + i) mod warp_size.
Thread tid gets slice shflx(tid) in each round.

In Swizzle Inventor, programmers can ask the synthesizer
to generate the right permutation by using ?swizzle in the
shfl argument. If ?swizzle is used during load or store, the
load or store must be inside a sketch function that is checked
against a specification. For example, if we pass ?swizzle as
the shfl argument to the дlobal_to_local_1d load function in
Listing 3, then we must move the load function call inside
the body of the sketch function, which has a specification.
In our case study, we do not need to swizzle during loading
or storing for 1D convolution, but this feature is useful for
matrix transposition (Section 7.3).

6.3 Code Generation
Once our tool finds a solution to the synthesis problem, it
can translate the solution into CUDA. For most CuRacket
constructs, there is a straightforward translation from Cu-
Racket to CUDA. Our framework provides the load-store
utility functions in both CuRacket and CUDA.
Below, we discuss a few optimizations that are crucial

for generating GPU kernels that use registers instead of the
slower thread’s private storage called local memory. Since
CUDA will put arrays accessed with dynamic indices into
local memory rather than registers, these optimizations avoid
the use of local memory by turning accesses with dynamic
indices into accesses with static indices.

Distributing Array References Consider Listing 3, the so-
lution inp[(tid >= k) ? 0 : 1] has a dynamic index. If we
modify this code by replacing it with (tid >= k) ? inp[0]

: inp[1], array inp is now referenced by a static index. Our
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code generator looks for dynamically referenced arrays as
the result of conditionals and attempts to distribute static
array references inside conditional expressions.

Barrel Array Rotation Some GPU programs require ro-
tating a thread’s local array by a dynamic amount. We follow
the barrel rotation implementation as suggested by Catan-
zaro et al. [7]. The rotation can be performed in

⌈
log2 n

⌉
steps,

by statically iterating over the bits of the rotation amount R,
and conditionally rotating each thread’s array by distance
2s at each step s if that bit of R is set.

7 Evaluation
We use Swizzle Inventor to implement GPU kernels that
may benefit from advanced data movement. We measure the
execution time of the kernels compiled with CUDA 9.2 on
(i) NVIDIA Quadro GV100 Volta GPU (from 2017) and (ii)
NVIDIA TITANGK110 Kepler GPU (from 2013).1 For each ex-
ecution time data point, we report themedian over three runs.
Swizzle Inventor is available at http://github.com/mangpo/
swizzle-inventor. The evaluation aims to answer three main
questions.

Question 1 Expressiveness: can Swizzle Inventor synthesize
the kernels with swizzling optimizations in the literature?

Swizzle Inventor is able to synthesize swizzling optimiza-
tions for stencil computation [3] (Section 7.1), finite field
multiplication [3] (Section 7.2), and matrix transposition [7]
(Section 7.3).

Question 2 Inventiveness: can Swizzle Inventor invent new
optimizations?

Swizzle Inventor synthesizes a 2D convolution kernel that
is on average 3.2x, 2.3x, and 1.5x faster than NVIDIA Perfor-
mance Primitives (NPP), ArrayFire [32], and Iandola et al. [16]
respectively. For finite field multiplication of degree 64 and
higher, a synthesized kernel is on average 6% and 67% faster
than the hand-written kernel from Ben-Sasson et al. [3] on
Volta and Kepler, respectively. For non-square matrix trans-
position, we are able to invent a new algorithm that performs
permutations during load and store, whose performance is
on par with the state-of-the-art algorithm [7].

Question 3 How long does Swizzle Inventor take to synthe-
size swizzling expressions?

Swizzle Inventor can synthesize an optimal solutionwithin
17 minutes for every kernel, and the median synthesis time
is five seconds (Section 7.4).

7.1 Stencil
We used Swizzle Inventor to synthesize the following stencil
computation kernels:
1D stencil (moving average), the running example in Ben-

Sasson et al. [3];
1To serve as a direct comparison to the evaluation in Ben-Sasson et al. [3].
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Figure 10. Stencil benchmarks showing speedup over
shared memory version while varying the filter size

1D convolution similar to moving average with weights;
2D convolution (non-separable), a common kernel in image

processing pipelines.

The program sketches for these kernels are similar to List-
ing 3 but each thread produces a tunable number of output
values. The sketches prefetch input data from global memory
to registers but leave out the details on how threads later
obtain the correct values from these registers. The sketch
for 2D convolution is slightly more complex as each thread
owns a 2D inp array.
We were able to synthesize kernels that use a register

cache similar to the solution by Ben-Sasson et al. [3]. Fig-
ure 10 displays the speedup of the synthesized register cache
implementations over our hand-written shared memory ker-
nels, based on the baseline in Ben-Sasson et al. The figure
shows the speedup calculated from the execution time of
the fastest configuration, considering the number of threads
per thread block, the number of outputs per thread, and the
shape of the 2D inp array.
For 2D convolution, we also compared against expert-

optimized CUDA kernels from NPP [21], ArrayFire [32] (a
high performance library for parallel computing), and Ian-
dola et al.[15, 16] (which can run up to filter size of 7). On
average, our kernel is 3.2x, 2.3x, and 1.5x faster than these
three respective algorithms. ArrayFire either computes con-
volution directly using shared memory or applies convo-
lution FFT. Iandola et al. provide an implementation with
tunable parameters to control an amount of work done by
each thread and where to store an input image (i.e., global,
texture, shared, and registers), but do not exploit intra-warp
shuffles. We tuned Iandola et al. for the best configuration
for each filter size; NPP and ArrayFire do not expose tuning
parameters. Our synthesized kernel is faster than NPP and
ArrayFire on all filter sizes running on both GPUs. It is also
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faster than Iandola et al., except on filter size of 5 on Kepler,
for which the best configuration is to put the input image in
the texture memory. To synthesize this implementation, we
would need a different program sketch.

7.2 Finite Field Multiplication
Multiplication of two finite field elements is a building block
and amajor computational bottleneck ofmany cryptographic
applications. Finite field multiplication (FFM) can be reduced
to a small number of polynomial multiplications, as shown
by Ben-Sasson et al. [3]. In this case study, we synthesized
polynomial multiplication kernels of different degrees:

Mult-32 (32-degree) used in FFM of degree 32;
Mult-64 (64-degree) used in FFM of degree 64 or higher.

We obtained two baselines from the implementation [11]
of [3] (i) using shared memory and (ii) using register cache.
We wrote two program sketches, (i) using shared memory
and (ii) using register cache, based on the algorithm pre-
sented by Ben-Sasson et al. and let the synthesizer fill in how
the cached data is accessed. Figure 11 displays the speedup
of FFM of degree 32 and 64 of the different implementations
over shared memory version from Ben-Sasson et al., when
varying the number of multiplications. Figure 12 displays
the speedup of FFM of degrees 64–384, which use Mult-64
as its sub-kernel, with a fixed number of multiplications.

For Mult-32, our synthesized kernels for both shared mem-
ory and register cache versions are logically identical to the
baseline implementations. However, our implementations
and the baselines differ on the usage of if-else statements
and the order of thread index computation and shuffle in-
structions. These small differences result in an 8% speedup
on average, when comparing our register cache version and
the register cache baseline in degree-32 FFM, as shown in
the first row of Figure 11.

The synthesized Mult-64 kernels, on the other hand, offer
significant speedup over the baseline kernels as evidenced in
the second row of Figure 11. Our synthesized shared memory
implementation offers on average 9% and 40% speedup over
the shared memory baseline on Volta and Kepler respectively.
Our synthesized register cached implementation is on aver-
age 7% slower than the register cache baseline on Volta, but
on average 15% faster on Kepler. Overall a synthesized kernel
is the fastest configuration on both GPUs: shared memory
on Volta and register cache on Kepler.
When the degree is equal to or greater than 64, the syn-

thesized shared memory implementation is the best version
on both Volta and Kepler as shown in Figure 12. It offers,
on average, 6% and 67% speedup over the manual shared
memory kernel on Volta and Kepler, respectively.

To explain why the synthesized Mult-64 kernels are faster
than the manual baselines, we must take a look at our pro-
gram sketch. Below displays the main loop of the sketch that
uses register caching.
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Figure 11. FFM speedup when varying number of
multiplications
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// A warp computes 128 values for one polynomial multiplication, so
// each thread computes 128/32 = 4 outputs (ans0, ans1, ans2, ans3).
acc ans0 = create_accumulator(0, identity, ^, &);
...
for(int k = 0; k < 32; k++){ // Compute all outputs in 32 iterations.
// Use intra-warp shuffles to obtain elements cached in rA and rB.
int a0 = __shfl_sync(mask,

rA[?sw_part(2,tid,k)], ?sw_xform(tid,32,k));
int a1 = __shfl_sync(mask,

rA[?sw_part(2,tid,k)], ?sw_xform(tid,32,k));
int b0 = __shfl_sync(mask,

rB[?sw_part(2,tid,k)], ?sw_xform(tid,32,k));
int b1 = __shfl_sync(mask,

rB[?sw_part(2,tid,k)], ?sw_xform(tid,32,k));

// Update ans0 with all combinations of a0/a1 & b0/b1.
accumulate(ans0, [a0,b0], ?sw_cond(tid,k));
accumulate(ans0, [a0,b1], ?sw_cond(tid,k));
accumulate(ans0, [a1,b0], ?sw_cond(tid,k));
accumulate(ans0, [a1,b1], ?sw_cond(tid,k));

// Update ans1, ans2, and ans3, so there are 4x4 total accumulates.
...

}

There are 16 accumulate statements total in this program
sketch. Our synthesizer found a solution with six accumulate
statements (the other ten have false predicates), instead of
eight as in the baseline program; note that accumulate state-
ments with false predicates are eliminated away by our code
generation. Our synthesizer is able to discover a better im-
plementation because it considers more complex swizzles to
obtain a0,a1,b0, and b1, compared to the baseline program’s.
Similarly for shared memory, we let the synthesizer make
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the same decision, but instead of using intra-warp shuffles,
the synthesizer selects which row and column of sA and sB
in shared memory each thread reads from.

7.3 Matrix transposition
Catanzaro et al. show how transposition of a non-square
matrix can be used to accelerate loading from or storing
to arrays of structures (AoS) in GPU global memory [7].
One can load from global memory in a coalescing fashion
and then transfer data to the target threads by transposing
data among the threads in the same warp via registers or
shared memory. In this case study, we synthesized matrix
transposition using registers for the following use cases:

AoS-load-store loads an array of structures and stores it back
in a structure of arrays format.

AoS-load-sum loads an array of structures and computes a
sum of the values in each structure.

The first baseline is our manual implementation using
shared memory without data swizzling. It transposes the
matrix during the load to shared memory, and both load
and store are coalesced. Additionally we obtained two more
implementations from the implementation [6] of [7]. Catan-
zaro et al.direct performs a direct load from global memory
to the threads without matrix transposition, which may in-
cur non-coalescing loads. Catanzaro et al.shfl implements the
transpose algorithm using registers that is composed of three
operations: column shuffle, row shuffle, and column shuffle.
In the GPU setting, a column shuffle corresponds to a local
array permutation, and a row shuffle corresponds to data
exchange via an intra-warp shuffle. The paper presents an
elaborate process to derive the correct shuffling formulas.
Using Swizzle Inventor, we wrote a program sketch that

performs the three-step shuffle operation, as shown in the
pseudocode in Listing 4. The framework then synthesizes the
shuffling formulas. For AoS-load-sum, the last column shuffle
is unnecessary because the order of elements in a column
does not matter as we only care about the sum of the column,
so our program sketch only includes a two-step shuffle. This
requires the program verification to treat summations of the
same list of elements as equivalent despite their orders, as
supported by our encoding (Section 4.2). Our framework
can synthesize and generate code (Swizzle Inventorcrc) that
performs as well as Catanzaro et al.shfl , as shown in Figure 13.
Additionally, we used Swizzle Inventor to devise a new

transpose algorithm for AoS-load-store that applies row-
column-row shuffles instead of the original column-row-
column shuffles. The benefit of this new strategy is that we
can perform the row shuffles togetherwith load and store (via
дlobal_to_local and local_to_дlobal functions) without us-
ing any intra-warp shuffle instructions. The synthesizer was
able to synthesize shuffling expressions for all struct sizes.
The performance of our new algorithm (Swizzle Inventorrcr )
is the same as the original algorithm, as shown in Figure 13.
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Figure 13. AoS-load-store and AoS-load-sum speedup
when varying struct sizes.2 Note that Swizzle Inventorcrc is
on top of Swizzle Inventorrcr and Catanzaro et al.shfl .

for i, j in [0...m), [0...n)
t1[i][j] = inp[?swizzle1(i,j)][j] // Step 1: column shuffle

for i, j in [0...m), [0...n)
t2[i][j] = t1[i][?swizzle2(j,i)] // Step 2: row shuffle

for i, j in [0...m), [0...n)
out[i][j] = t2[?swizzle3(i,j)][j] // Step 3: column shuffle

Listing 4. Pseudocode sketch of matrix transposition,
composed of column-row-column shuffles

7.4 Synthesis Time
We synthesized all kernels in the three case studies on Mac-
Book Pro 3.1GHz Intel Core i7 with Rosette 2.2. The synthesis
time is reported in Table 1. Recall from Section 5.4 that our
framework performs the search in three search spaces from
the most restricted space to the complete search space (Space
1–3). Table 1 reports time to find a solution in each search
space. The “TTS” column reports Time To find the first op-
timal Solution when the synthesizer starts searching from
Space 1 to Space 3. For example, if the optimal solution is
found in Space 2, and not in Space 1, then the TTS is equal
to the sum of time in Space 1 and Space 2, excluding time in
Space 3. For all kernels except Mult-64 with register cache,
the first solution found is optimal. For Mult-64 with register
cache, the first solution found in Space 1 is the same imple-
mentation as Ben-Sasson et al.reg , but the solution found in
Space 2 has a lower cost. Overall, our synthesizer can find
an optimal solution within 17 minutes for every kernel, but
the median TTS is five seconds.

Comparison to Naive Template Our transformation in-
dex swizzle template is key to our fast synthesis. To show
its effect on the synthesis time, we synthesized the easier
benchmarks (Mult-32 and AoS-load-sum) by replacing the

2The solution for AoS struct size= 3 can be used for struct size= 6 by always
moving two elements as a unit (using int2 datatype). Similarly, the solution
for struct size = 1 and 2 can be used for struct size = 4 and 8, respectively,
by always moving four elements as a unit (using int4 datatype).
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Benchmark Version Synthesis Time (s)

(Struct Size) Space 1 Space 2 Space 3 TTS

1D stencil reg 10 11 16 10
1D conv reg 8 8 15 8
2D conv reg 39 155 154 39
Mult-32 shmem 1 1 3 1

reg 1 1 3 1
Mult-64 shmem 479 865 – 479

reg ((118)) 867 – 985
AoS-Sum crc (1)2 1 1 3 1

crc (2)2 (1) (1) 4 6
crc (3)2 1 1 9 1
crc (5) 3 3 15 3
crc (7) 4 4 29 4

AoS-Store crc (1)2 1 1 3 1
crc (2)2 (1) (1) 8 9
crc (3)2 1 1 12 1
crc (5) 3 3 21 3
crc (7) 10 11 51 10
rcr (1)2 1 1 6 1
rcr (2)2 (2) (2) 159 163
rcr (3)2 6 6 – 6
rcr (5) 13 13 – 13
rcr (7) 23 29 1132 23

Table 1. Median synthesis time in seconds from three runs.
“TTS” column reports accumulated time to find the first
optimal solution from Spaces 1–3. The parenthesized value
indicates time to prove that no solution exists in that space.
Double-parenthesized value indicates time to find a solution,
but the solution is not optimal when considering candidates
in larger space. “–” indicates timeout (> 30 minutes).

Benchmark Version Mean Synthesis Time (s)

(Struct Size) SW Naive 1 Naive 2 No Acc

Mult-32 shmem 1 1 11 3
reg 1 2 11 3

AoS-Sum crc (1)2 1 1 6 1
crc (2)2 6 (3) (680) 18
crc (3)2 1 (9) 637 –
crc (5) 3 (15) – 749
crc (7) 4 (24) – –

Table 2. Comparison of different synthesizer versions.
Table reports mean synthesis time in seconds from three
runs. “SW” column reports “TTS” column from Table 1.
“Naive 1” and “Naive 2” use the naive transformation index
swizzle template with depth 1 and 2 respectively. “No Acc”
synthesizes without accumulators (without canonicaliza-
tion). The parenthesized value indicates time to prove that
no solution exists within this depth. “–” indicates timeout (>
30 minutes).

template in Equation (5) with the naive version in Equa-
tion (1). Table 2 compares the synthesis time of our original
synthesizer (Swizzle Inventor) with the modified version that
uses the naive template with depth 1 (Naive 1) and depth 2

Matrix dimensionsm × n Swizzle Compositions for Step 1–3

m = n
1. rot(m)(k = j)(i)
2. rot(n)(k = i)(j)
3. i

gcd(m, n) = 1
1. (rot(m)(k = j) ◦ fan(m))(i)
2. (rot(n)(k = i) ◦ fan(n))(j)
3. i

m , n ∧ n%m = 0
1. (rot(m)(k = j) ◦ fan(m))(i)
2. (rot(n)(k = i) ◦ fan(n))(j)
3. i

m , n ∧m%n = 0
1. (rot(m)(k = j) ◦ fan(m) ◦ rot(m)(k = j))(i)
2. rot(n)(k = i)(j)
3. rot(m)(k = j)(i)

1 < gcd(m, n) < m, n

1. Either (fan ◦ fan ◦ rot)(i) or
(group(дs, fan) ◦ fan ◦ fan ◦ rot)(i)

2. (cm2linear(m, n)(k = j) ◦ rot(m)(k = j))(i)
3. rot(m)(k = j)(i)

Table 3. The compositions of swizzle primitives that
achieve the same effect as Catanzaro et al.’s
column-row-column shuffles, whenm and n ∈ [1, 64].

(Naive 2). The table shows that the synthesizer that uses the
naive template is much slower than our original version.

Comparison to NoCanonicalization Another key to our
fast synthesis is canonicalization using accumulators. In this
experiment, we synthesized the same benchmarks without
canonicalization, by letting the SMT solver reason about
actual algebraic operations directly. As a result, to verify
that a matrix program satisfies a specification, we have to
check that the post-condition holds on all concrete input
values (requiring for-all quantifier in SMT formulas). Table 2
shows that synthesizing without accumulators (No Acc) ex-
ceeds 30 minutes on many easy benchmarks. Therefore, our
accumulator encoding drastically reduces the synthesis time.

8 Further Analysis of Swizzle Template
The transformation swizzle template presented in this paper
covers many permutations but not all. We discover that we
cannot synthesize matrix transposition (AoS-load-store) for
some larger struct sizes. Therefore, we run an additional
analysis to characterize the expressiveness of our template
for the matrix transposition sketch in Listing 4, for allm and
n ∈ [1, 64]. We summarize our findings in Table 3. For each
case, we describe compositions of our swizzle primitives that
achieve the same effect as Catanzaro et al. Swizzle Inventor
can synthesize solutions for the first three cases as the com-
positions are covered by ?swxform, defined in Equation (5).

New Swizzle Primitives However, we find that the solu-
tion for Step 2 of the last case cannot be expressed by any
combination of our three primitives. We observe that it re-
quires column-major linearization:

cm2linear(n,m)(k)(i) = (k ∗ n + i) modm (8)

This primitive is handy for switching primary and secondary
indices. Observe in Table 3 that typically we apply swizzle
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primitives on the primary index (i for Step 1 and 3, and j for
Step 2); except in Step 2 of the last case, we apply rot on the
secondary index i , followed by cm2linear .
Another kind of permutations that our current template

does not cover is moving u consecutive elements together as
a unit when u divides n. To cover this kind of permutations,
we can introduce a unit primitive:

unit(n,u,p)(i) = p(⌊n/u⌋)(⌊i/u⌋) ∗ u + (i mod u) (9)

Similar to дroup, it takes a permutation p as an argument.

Template Extension To cover more swizzles, we can gen-
eralize our template to compose the swizzle primitives in any
arbitrary order with limited depth to define a finite search
space. Unfortunately, our synthesizer times out with this
new template because there are more unknown constants to
synthesize. We leave the problem of scaling up synthesis for
future work.

9 Related Work
Register Caching and Intra-Warp Shuffles Swizzle In-
ventor can help implement many algorithms that exploit
registers and intra-warp shuffles to accelerate GPU kernels,
including matrix transposition [7], finite field multiplica-
tion [3], SHA-3 [18], sorting algorithms [13], and sequence
alignment [29]. Similar in goals to Swizzle Inventor, Hou
et al. propose a framework, called GPU-UniCache, to auto-
matically generate code that accesses data buffered in regis-
ters and shared memory [14]. Unlike Swizzle Inventor, GPU-
UniCache is limited to stencil computations. GPU-UniCache
also requires more intra-warp data exchanges to fetch the
desired value from a register cache than does our approach.

Program Synthesis Program synthesis has been used to
synthesize parallel programs with swizzles. Barthe et al. [1]
synthesize SIMD code (including SSE shuffle instructions).
BitStream [25] can synthesize permutations for CPU cryp-
tography primitives. SynthCL [27] can verify and synthesize
OpenCL programs. Sketching Stencils [24] synthesizes high-
performance stencil implementations for CPUs. Raabe and
Bodik [23] adapt sketch-based synthesis to hardware design.
MSL [31] is a sketching language for developing SPMD pro-
grams, with a focus on bulk-synchronous parallelism. These
frameworks can be used to synthesize swizzles. Some of
these systems synthesize only constant mappings [1, 23, 25].
Others can (potentially) synthesize swizzles that are func-
tions of time and space (iterations and thread identifiers),
but do not address complex swizzling expressions needed
for advanced GPU kernels [24, 27, 31]. Our canonicalization
encoding is similar to techniques used in some prior program
synthesizers [5, 20, 23].

Polyhedral Model Swizzle Inventor is complementary to
polyhedral compilation [17, 19, 22, 30]. First, our framework
does not attempt to automatically find a combination of loop

optimizations created by developers of a polyhedral compiler.
Instead, we let programmers sketch target programs, so new
optimizations can be invented by the programmers even if
such optimizations cannot be expressed as a composition
of existing loop transformations. Second, Swizzle Inventor
can synthesize mappings that are more flexible than those
of polyhedral techniques because we allow non-affine map-
pings and a more permissive correctness condition (equality
of values rather than preservation of dependencies among
statements). These advantages come at the cost of restricting
ourselves to bounded kernels. In contrast, polyhedral compil-
ers transform loops with affine bounds and index accesses.
Here are a few samples of polyhedral techniques focus-

ing on generating efficient GPU kernels. Baskaran et al. [2]
design an automatic source-to-source polyhedral compiler
for GPUs, performing several GPU-specific optimizations in-
cluding coalescing global memory accesses; avoiding shared
memory bank conflicts; and optimizing copies from global
to shared memory. PPCG [28] generates CUDA code for a
given static control loop nest. Similar to [2], PPCG uses a
polyhedral model to select schedules that generate a maxi-
mum number of parallel dimensions for each statement, and
maps these parallel dimensions to CUDA threads. Holewin-
ski et al. [12] generate CUDA code for stencils using over-
lapped tiling.

10 Conclusion
Swizzle Inventor is a framework that helps developers im-
plement swizzle kernels. Developers write a program sketch
that expresses their high-level algorithm but leaves out the
data access patterns that determine how threads collabo-
ratively access data and/or how computations are mapped
onto loop iterations. The framework then synthesizes index
expressions in the program such that the program behaves
correctly with respect to a specification. We demonstrated
that Swizzle Inventor can help create kernels that are faster
than manually-written CUDA kernels.
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