
Improving First Level Cache Efficiency for GPUs Using Dynamic
Line Protection

Xian Zhu, Robert Wernsman, and Joseph Zambreno
Iowa State University
Ames, Iowa, USA

{xian, wernsman, zambreno}@iastate.edu

ABSTRACT
A modern Graphics Processing Unit (GPU) utilizes L1 Data (L1D)
caches to reduce memory bandwidth requirements and latencies.
However, the L1D cache can easily be overwhelmed by many mem-
ory requests from GPU function units, which can bottleneck GPU
performance. It has been shown that the performance of L1D caches
is greatly reduced for many GPU applications as a large amount of
L1D cache lines are replaced before they are re-referenced. By ex-
amining the cache access patterns of these applications, we observe
L1D caches with low associativity have difficulty capturing data
locality for GPU applications with diverse reuse patterns. These
patterns result in frequent line replacements and low data re-usage.

To improve the efficiency of L1D caches, we design a Dynamic
Line Protection scheme (DLP) that can both preserve valuable cache
lines and increase cache line utilization. DLP collects data reuse
information from the L1D cache. This information is used to predict
protection distances for each memory instruction at runtime, which
helps maintain a balance between exploitation of data locality and
over-protection of cache lines with long reuse distances. When
all cache lines are protected in a set, redundant cache misses are
bypassed to reduce the contention for the set. The evaluation result
shows that our proposed solution improves cache hits while reduc-
ing cache traffic for cache-insufficient applications, achieving up to
137% and an average of 43% IPC improvement over the baseline.

CCS CONCEPTS
•Computer systems organization→ Single instruction,mul-
tiple data;

KEYWORDS
GPU, L1 data cache, cache management

ACM Reference Format:
Xian Zhu, Robert Wernsman, and Joseph Zambreno. 2018. Improving First
Level Cache Efficiency for GPUs Using Dynamic Line Protection. In ICPP
2018: 47th International Conference on Parallel Processing, August 13–16, 2018,
Eugene, OR, USA. ACM, New York, NY, USA, 10 pages. https://doi.org/10.
1145/3225058.3225104

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPP 2018, August 13–16, 2018, Eugene, OR, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-6510-9/18/08. . . $15.00
https://doi.org/10.1145/3225058.3225104

1 INTRODUCTION
Graphics Processing Units (GPUs) are increasingly becoming the
preferred choice of accelerator for various scientific and engineering
applications [2–4, 19, 22], as they offer high floating-point through-
put by executing many threads concurrently. Similar to traditional
multi-threading systems, state-of-the-art GPUs also adopt data
caches in each GPU core to reduce the massive traffic generated by
parallel threads [9, 21]. However, recent studies show that some
GPU applications cannot effectively utilize the on-chip L1 Data
(L1D) caches due to high contention for cache lines [17, 24, 26].
This results in cache thrashing behavior, i.e., many cache lines are
replaced before they can receive a significant number of hits, even
if they will be reused in the future. Since GPU cores typically have
a small L1D cache and many concurrent threads, contention for
L1D cache entries is high and cache thrashing becomes a severe
problem.

Since the cache thrashing behavior causes L1D caches to fail to ef-
fectively handle data re-usage in certain GPU applications, the miss
rates of L1D caches are high in these scenarios. Consequently, addi-
tional memory pipeline stalls occur due to full reservations of miss
handler registers or cache sets. Additionally, cache thrashing causes
frequent evictions of L1D cache lines; this injects additional traffic
into the interconnection network. Previous work has observed that
this excessive eviction traffic also degrades GPU performance [13].

Several cache management methods have been proposed to mit-
igate cache thrashing behavior in L1D caches on a GPU platform.
[13, 27] utilize the compiler to analyze the GPU application and
estimate the cache lines that have less re-usage in the near fu-
ture. However, the compiler-based techniques only leverage static
application information for their usage estimations; they cannot
predict cache behaviors that depend on application inputs. As an
improvement, [17, 18, 26] introduce extra hardware to track the
reuse frequencies of cache lines dynamically and bypass memory
accesses for infrequently used cache lines. Instead of adjusting the
replacement policy to preserve more data locality, these works fo-
cus on identifying cache lines with low re-usage and bypassing
memory accesses to them to reduce cache traffic.

Based on the concepts of Reuse Distance (RD) and Reuse Distance
Distribution (RDD), [7] devises a Protecting Distance-based Policy
(PDP) for CPU platforms. This work utilizes the RDD of the program
to predict a Protecting Distance (PD). This method extends the
lifetime of all cache lines in the CPU’s Last Level Cache. However, it
is hard for a single PD to fully describe diverse reuse patterns within
GPU applications. Hence, we propose a Dynamic Line Protection
scheme (DLP) to manage the replacement and bypassing policies
of L1D caches on a GPU. Instead of applying a single PD to all
cache lines, DLP dynamically predicts an appropriate line lifetime

1

https://doi.org/10.1145/3225058.3225104
https://doi.org/10.1145/3225058.3225104
https://doi.org/10.1145/3225058.3225104

ICPP 2018, August 13–16, 2018, Eugene, OR, USA Xian Zhu, Robert Wernsman, and Joseph Zambreno

extension for each memory instruction based on both program-
level and instruction-level reuse information. By using a simple
bypass policy, the DLP scheme can improve the utilization of cache
lines with minimal overhead. The major contributions of this paper
are as follows:

• Through a detailed analysis on data reuse patterns for GPU
applications, we make the following observations: Firstly,
Data reuse patterns are diverse among different GPU applica-
tions. Insufficient L1D cache space causes many applications
to suffer locality loss. Secondly, The data reuse patterns with
distinct memory instructions in a GPU application can differ
wildly. A single PD for all cache lines may not fit every reuse
pattern of the application.

• We propose a Dynamic Line Protection solution to capture
the various reuse patterns from different memory instruc-
tions at runtime. Our design collects and uses the RD informa-
tion at both program level and instruction level, improving
the utilization of data locality for each memory instruction
and reducing the overhead of over-protection.

• Our evaluation results show that the DLP approach can
increase IPC performance of Cache Insufficient applications
by an average of 43.8% over the baseline configuration. In
contrast, the Global Protection scheme only improves the
performance by 34.7%. For Cache Sufficient applications, DLP
can achieve 99.8% IPC performance compared to baseline
architecture. The overall hardware cost of DLP is 7.5% of the
baseline cache.

The remainder of the paper is organized as follows: Section 2
discusses the background of GPU memory hierarchy. Section 3 ana-
lyzes the limitation of current L1D cache implementations. Section
4 provides a detailed description of our design. Section 5 presents
the experimental methodology. Section 6 studies various evaluation
results of our design and compares them to other schemes. Section
7 discusses related work in the field of cache management. Finally,
Section 8 concludes the paper and provides direction for future
work.

2 BASELINE GPU ARCHITECTURE
In order to execute many threads in parallel, a GPU chip typically
contains multiple cores, also referred to as Streaming Multiproces-
sors (SMs) in Nvidia terminology1. SMs process GPU workloads in
a Single Instruction Multiple Threads (SIMT) fashion. Initially, SMs
fetch and decode instructions for groups of threads, referred to as
warps. Instructions for the warps are issued by warp schedulers
based on a warp scheduling policy. The issued instructions are
executed by the corresponding Function Units (FUs). Specifically,
the Load/Store (LD/ST) unit processes all memory instructions,
generating one or more memory data requests for each memory
instruction. The SMs utilize multiple on-core caches to handle dif-
ferent types of memory accesses as shown in Figure 1. In this paper,
we only focus on the L1D cache.

Figure 1 shows the handling process of a memory request in a
L1D cache. When the L1D cache receives a memory request from
the LD/ST unit, it first checks the cache hit status of this request.
1While we use Nvidia terminology in this paper, the main concepts generally apply to
other GPU architectures.

Tag Data

Tag	and	Data	Array

…

Tag Data

Memory	Access	to	Interconnect

Entry

MSHR

…

Entry
Hit	

Check

Line
Allocate

LD
/ST

SP
SFU

L1D

L1T L1C
Shared	
Memory

W
arp	Scheduler

SM1
SM2

…Co
m
pi
le
r	
By
pa
ss

Figure 1: Baseline GPU architecture.

If the request is a hit, the L1D cache immediately responds with
the cached data. Otherwise, it inspects the Miss Status Holding
Registers (MSHRs) to check if the requested line has already been
registered by previous requests. If so, the L1D cache appends source
information, such as the request thread ID, to the corresponding
MSHR entry. If the requested line does not match any previous
entries, a new entry is added to MSHR. The L1D cache will then try
to reserve a line in the corresponding cache set for this miss request.
Due to the limited number of entries in MSHR and the cache set,
the MSHR or the targeted cache set may have no reservable space
left. In this case, the miss request will be blocked in the pipeline
register and continue to retry in the following cycles until the block
is resolved. Consequently, all future accesses to the L1D cache will
be stalled.

Modern GPU architectures have started supporting L1D cache
bypassing [9, 21]. Programmers can utilize compiler flags to switch
to a static bypassing path as shown in Figure 1. However, these flags
affect all memory requests from a GPU application. This forces the
application to use only one path at runtime, wasting the bandwidth
available in the alternative path.

3 MOTIVATION
3.1 Data Reuse Behavior of GPU Applications
To understand data reuse patterns of GPU applications, we make
use of the concept of Reuse Distances for measuring amemory line’s
re-referenced interval [7]. In [7], a RD is defined as the number
of other memory accesses to a cache set between two accesses
to the same cache line within that set. Based on this definition,
the RD is only related to the data access pattern of the program
and the set mapping of the cache. In other words, associativity
size will not affect RDs of a program if the number of cache sets
and set mapping method do not change. Figure 2 demonstrates

2

Improving First Level Cache Efficiency for GPUs Using Dynamic Line Protection ICPP 2018, August 13–16, 2018, Eugene, OR, USA

2 way Set 0

Addr 0 Old Data

Set 0
Accesses
Sequence

Addr 0 Miss

Entry 0 Entry 1

Addr 0 Addr 1

Addr 2 Addr 1

Addr 2 Addr 0

Addr 1 Miss

Addr 2 Miss

Addr 0 Miss

Figure 2: Examples of Reuse Distances(RD). The RD of Addr
0 is 3.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

HG HS

ST
EN SC BP

SR
AD NW

GE
M
M BT CF
D

PV
R SS BF
S

M
M

SY
RK

SY
R2

K

KM ST
R

Re
us
e
Di
st
an
ce
 D
ist
rib

ut
io
n

RD range 1~4 RD range 5~8 RD range 9~64 RD range > 65

Figure 3: Reuse Distance Distribution (RDD) of different ap-
plications

an example of counting RD within a 2-way set associative cache.
Under the Least Recently Used (LRU) replacement policy, there is
no guarantee that future re-visits will hit the requested cache line if
the RD is larger than the associativity size of the cache. In Figure 2,
the second access to cache line 0 is a miss because the requested
line had been replaced earlier. If most RDs within an application
are larger than the associativity size of the cache, many cache lines
will not be reused before they are evicted. The cache will keep
swapping data in and out frequently with little data re-usage; this
is known as cache thrashing behavior. Cache thrashing can lead
to excessive cache misses. The penalties of cache misses in L1D
of GPUs are extremely high since they block the whole memory
pipeline as mentioned in Section 2.

Figure 3 illustrates the Reuse Distance Distribution for a set
of benchmark applications. Here, we classify RDs into 4 different
ranges; each shaded portion of the bar represents the percentage
of RDs that falls into that range. Figure 3 unveils three data reuse
patterns for GPU applications. First, the RDD varies significantly
among different GPU applications. For example, HG and STEN
have mostly long RDs, while SC, and BP have short ones. Second,
many GPU applications do not fully utilize the L1D cache. The
majority of RDs in applications like HG and KM are greater than
the baseline associativity size of the L1D cache described in Table 1.
As discussed previously, these applications may suffer from cache
thrashing behaviors because the baseline cache is too small to
capture data localities. Third, RDs may be distributed across all
ranges. For instance, within application MM, the percentages of
RDs are 19.5, 35.8, 33.2 and 11.5 for RD ranges 1~4, 5~8, 9~64, and
>64 respectively.

0%

20%

40%

60%

80%

100%

HG HS

ST
EN SC BP

SR
AD NW

GE
M
M BT CF
D

PV
R SS BF
S

M
M SR
K

SR
2K KM ST
R

Re
us
e
da
ta
 M

iss
 R
at
e

16KB 32KB 64KB

Figure 4: Cachemiss rate of 16KB (4-way), 32KB (8-way) and
64KB (16-way) L1D caches.

0

1

2

3

4

HG HS

ST
EN SC BP

SR
AD NW

GE
M
M BT CF
D

PV
R SS BF
S

M
M SR
K

SR
2K KM ST
R

No
rm

al
ize

d
IP
C

16KB 32KB 64KB

Figure 5: IPC performance of 16KB (4-way), 32KB (8-way),
and 64KB (16-way) L1D caches, normalized to performance
of 16KB L1D cache.

3.2 Insufficiency of the Cache Size for GPU
Applications

A simple and direct method to alleviate cache thrashing behavior
is increasing the associativity of the L1D cache to hold more reuse
data. Figure 4 shows the miss rate of memory accesses to reuse
data for a set of benchmark applications with 4-way, 8-way, and
16-way set associative caches. Note that we exclude all compulsory
misses in Figure 4, as by definition these accesses will always miss
regardless of the L1D cache size. We can observe that the reuse data
miss rate for most applications is reduced when the associativity of
the L1D cache is increased. There are some exceptions to this obser-
vation, such as HG, STEN, SC and BP; most of their RDs are grouped
in either short ranges or long ranges. Figure 5 demonstrates the IPC
improvements of 8-way and 16-way set associative caches normal-
ized to a 4-way set associative cache. While some GPU applications
exhibit significant IPC improvement, applications like HS and NW
cannot benefit significantly from associativity increasing. The main
reason for this is that memory operations of these applications only
require a small portion of the overall execution time. Thus, the
improvement in the L1D cache may not be reflected in the final
IPC performance. We use an application’s memory access ratio to
estimate the importance of memory operations in this application,
which is calculated using the following equation:

Ratiomemory_access =
Nmemory_access

Ninsn
3

ICPP 2018, August 13–16, 2018, Eugene, OR, USA Xian Zhu, Robert Wernsman, and Joseph Zambreno

0%
2%
4%
6%
8%

10%
12%
14%
16%

HG HS

ST
EN SC BP

SR
AD NW

GE
M
M BT CF
D

PV
R SS BF
S

M
M SR
K

SR
2K KM ST
R

M
em

or
y
Ac
ce
ss

Ra
tio

Figure 6: Memory access ratio of GPU applications.

In the equation, Nmemory_access is the number of memory ac-
cesses generated by the GPU application, and Ninsn is the number
of thread instructions executed by the application. Figure 6 shows
sorted memory access ratios of different GPU applications. The
GPU applications on the right side have higher memory access
ratios, which indicates that they are more easily affected by the
memory sub-system than the applications on the left side. In this
paper, to better understand the impacts of the L1D cache, we em-
pirically classify the GPU applications into two categories based on
a memory access ratio threshold: Cache Sufficient (CS) applications
and Cache Insufficient (CI) applications. The memory access ratio
threshold is set as 1% in this paper.

Although increasing the associativity size of the L1D cache can
improve the performance of CI applications, the hardware costs are
high since the die size of the L1D cache is linearly correlated with
its associativity. Since the cache associativity cannot be changed
during runtime, it is not adaptable to all GPU applications.

3.3 Diverse Distributions of Reuse Distance
Among Memory Instructions

To address the cache thrashing problem caused by a shortage of as-
sociativity, the Protection Distance (PD) method has been proposed
as a solution that does not enlarge the cache size [7]. However, we
observe that a single PD cannot fit diverse data reuse patterns in
some GPU applications. As GPU applications execute instructions
in a SIMT fashion, memory accesses from the same program counter
(PC) have the same type of instruction and typically share a similar
data reuse pattern. Figure 7 illustrates the RDDs for all memory
instructions at different PCs in the application BFS. It is obvious
that the data re-references for different memory instructions vary
in RD distribution. On one hand, most RDs for instruction 2 and 3
are small; this indicates that most reuses of the cache lines brought
in by these instructions can be caught by the L1D cache. Therefore,
they do not need large PDs for the cache lines they brought in.
On the other hand, the majority of RDs for instruction 4 and 9 fall
into the range 9~64, which implies that a larger PD is needed to
capture data re-usage. As a result, using multiple instruction-based
PDs instead of a single PD can better accommodate diverse reuse
patterns inside GPU applications.

For certain memory instructions, adjusting the PDs improve the
hits for corresponding data re-references. However, if a cache line
is protected for an extended period of time, it could reduce cache

0%

20%

40%

60%

80%

100%

insn1 insn2 insn3 insn4 insn5 insn6 insn7 insn8 insn9 insn10

Re
us
e	
D
is
ta
nc
e	
D
is
tr
ib
ut
io
n

rd	1~4 rd	5~8 rd	9~64 rd	>65

Figure 7: RDD for different memory instructions of BFS.

availability for memory accesses to other lines mapped to the same
set. For instance, instruction 7 and 8 in Figure 7 bring in cache lines
with large RDs. It is required to set a long protecting time to capture
reuses of these cache lines; however, this prevents other cache lines
from replacing them during the protected period. Based on these
observations, the cache line protection scheme should keep balance
between data locality exploitation and over-protection for cache
lines with long reuse distances.

4 DYNAMIC LINE PROTECTION APPROACH
In this section, we propose the Dynamic Line Protection cache
management system, which accommodates data reuse patterns at
the instruction level. The DLP scheme can dynamically collect the
hit information from the L1D cache for each memory instruction,
accumulating them as global hit information. It uses this global
information to enable PD adjustment, and calculates the PD values
for each memory instruction based on its local information.

4.1 Architectural Modifications
DLP requires RDDs to estimate a PD adjustment for different mem-
ory instructions. However, it is hard to collect re-usage information
for data with long RDs using only the baseline L1D cache, since the
values of these RDs are larger than the associativity of the cache.
In order to capture the information of long RDs while maintaining
a low hardware cost, we modify the current Tag and Data Array
(TDA) and extend the TDA with a Victim Tag Array (VTA) to hold
the tags of recently evicted lines, as shown in Figure 8.

4.1.1 L1 Data Cache Modifications. In order to collect cache hit
information for different load instructions, we add an instruction ID
field to each TDA entry. This field records the hashed PC value of
the load instruction that brought in or last hit the cache line.When a
new memory request hits this cache line, the hit is attributed to the
previous instruction that used this cache line. For example, consider
a cache line that is originally brought into the cache by instruction
0. The cache line is then hit by instructions 1, 2, and 3 sequentially.
When analyzing the cache request for instruction 3, the Instruction
ID field attributes the cache hit to instruction 2 and not instruction
1 or 0. Another extra field in each TDA entry is Protected Life
(PL), which is a counter for storing the extra life awarded to the
cache line. Every time a memory request accesses the L1D cache,
the request will read the PD value from the Protection Distance

4

Improving First Level Cache Efficiency for GPUs Using Dynamic Line Protection ICPP 2018, August 13–16, 2018, Eugene, OR, USA

Tag

Victim	Tag Array
…

Insn. I.D.
Tag Insn.	I.D.

Tag Data

Tag	and	Data	Array

…

Protected	life
Tag Data Protected	life	

Insn. I.D.
Insn. I.D.

Evict

Hit	info. Hit	info.

Dynamic	Line	Protection	Cache

Memory	Access	to	Interconnect

Line	
Allocate Access

Memory	access	from	GPU	core

Entry
MSHR

…

Entry

By
pa
ss

Hit	
Check

Miss Protection	Distance	Prediction	Table

…

TDA hitsInsn. I.D. VTA	hits PD
TDA hitsInsn. I.D. VTA	hits PD

Figure 8: DLP Architecture

Prediction Table for the request’s instruction and write this value
to the PL field of the corresponding TDA entry.

When a set is queried, PL values of all TDA entries belonging
to this set are decreased by 1. If a request needs to be allocated in
a set where all TDA entries have positive PL values, the request
will be bypassed since the TDA entries with PL values greater than
0 cannot be replaced. Note that these entries within a set will not
be permanently locked in the TDA when they are hit infrequently,
since a bypassed request also queries and consumes PL values of
all entries in this set. Hence, as more requests are bypassed, some
entries will eventually be released.

4.1.2 Victim Tag Array. Due to the eviction of old cache lines,
it is difficult to monitor reuse patterns for the cache lines with
a RD greater than the associativity size of the baseline cache. To
collect reuse information for these cache lines, we add a VTA to
our L1D cache design. Similar to the TDA, the VTA has multiple
indexed sets where each set possesses several associative entries.
The only difference between the VTA and the TDA is that entries
in the VTA only contain address tags without any real data. All
tags in the VTA are received from evicted cache lines in the TDA.
The entries in a set are replaced in the VTA by a LRU policy. When
a memory request fails to hit any lines in the TDA, it will continue
searching in the VTA before being forwarded to the miss handling
system. The advantage of using the VTA is that we can track the hit
status for a larger data cache with only minor hardware costs. For
example, to track a data cache twice the size of the baseline L1D
cache, we would set the amount of VTA entries to be the same as
TDA entries. However, the cost of implementing this VTA tag array
is only 3% of the cost required to implement twice the number of
TDA entries. Similar to the TDA, we add an instruction ID field for
each victim entry in order to collect instructional hit information
from the VTA.

4.1.3 Protection Distance Prediction Table. In Section 3.3, we
demonstrated that the reuse pattern of cache lines is related to
the source instruction. Hence, we create a Protection Distance

Prediction Table (PDPT) to collect hit information from the TDA
and VTA, as showed in Figure 8. This table computes a PD for
each instruction based on the hit histories of the TDA and VTA.
The PDPT has 128 entries; each load instruction for L1D cache
has a corresponding entry inside the PDPT. Due to the limited
number of entries in the PDPT, the number of load instructions
for L1D cache in a GPU application cannot be larger than 128. Our
experiments show that this number is much less than 128 for most
GPU applications.

Each entry of the PDPT has 4 fields: The instruction ID field is
used for indexing; The TDA hits field records the number of hits for
each instruction in the TDA during the current sampling period;
Similarly, the VTA hits field records the number of hits in the VTA
during the current sampling period; The PD field calculates the life
extension for the next sample, which will be described in Section
4.2. When there is a hit in the TDA or the VTA, the value of the TDA
hits or VTA hits field of the corresponding entry will be increased
by 1. Whenever a sample is finished, the TDA hits and VTA hits
field of all entries in the PDPT is reset to 0.

4.1.4 Data Sample. We use the number of cache accesses as
a counter for our sampling. The number of cache accesses needs
to be large enough to accurately reflect the hit status of the TDA
and VTA. As a non-trivial amount of time is required to aggregate
sufficient cache accesses, we chose a sample limit of 200 based on
our empirical observations. In order to save sampling time, we also
reduce the relatively long sampling time for some CS applications
with few load instructions by setting a maximum sample amount
for the number of instructions executed. The impact of sampling
time on CS applications is trivial, since their performance is rarely
affected by memory accesses.

4.2 Protecting Distance Computation
The process of PD computation is demonstrated in Figure 9, which is
essential to DLP. The computation starts after a sample is taken, and
it compares the overall hits in the TDA and VTA. If the amount of

5

ICPP 2018, August 13–16, 2018, Eugene, OR, USA Xian Zhu, Robert Wernsman, and Joseph Zambreno

Sample	taken,	
start	calculation

Global	VTA	hits	
>	Global	TDA	

hits

Global	VTA	hits	
<	1/2	Global	
TDA	hits

No

For	all	PD:
PD=PD-Nasc

YesYes

For	each	PC:
PDadj=Nasc*HitVTA/HitTDA

PDPC= PDPC	+PDadj

End	calculation,	
waiting	for	next	

sample

No

Figure 9: Flow Chart of PD Computation

overall hits in the VTA (global VTA hits) is greater than in the TDA
(global TDA hits), it will follow the left path of the flowchart and
increase PD, since preserving older lines longer can capture more
data reuse than replacing them with new lines. If this is not the case,
increasing PD is unnecessary as it may reduce the availability of
TDA entries as discussed in Section 3.3. To accommodate the diverse
reuse patterns among memory instructions on the PD increasing
path, we calculate a PD for each memory instruction based on its
own hit information in the VTA and TDA as shown in the following
equation:

PDad j = Nasc ×

⌊
HitVTA
HitTDA

⌋
In the equation, Nasc represents the value of set associativity of the
VTA2, which is constant for a specific GPU configuration. HitVTA
and HitTDA are the number of hits in the VTA and TDA that are
credited to this memory instruction during the previous sample
period. Thus, if a memory instruction has a larger ratio of VTA hits
to TDA hits, the algorithm assigns a larger PD increment for this
instruction. In our implementation, we use step comparison to avoid
the high time complexity of the division operation. Specifically, we
sequentially compare HitVTA with the following values generated
by shiftingHitTDA: four timesHitTDA, two timesHitTDA,HitTDA,
and half ofHitTDA. Then, we shiftNasc according to the outcome of
the step comparison. Additionally, the step comparison also applies
an upper limit for incrementing PD (in the previous example, 4
times Nasc), which can prevent over-protection. This process takes
more than one cycle to complete, but is acceptable because the PD
is only updated once for each sample.

If the amount of global hits in the VTA is less than half of the
hits in the TDA, it is empirically estimated that the lines in the TDA
have already received sufficient hits and protection for them may
be unnecessary. In this case, we will decrease all PDs as the right
path shows in Figure 9. Different from the PD-increasing path, we
do not apply an instruction-based decision in the PD-decreasing
path due to few hits in the VTA.

2In our configuration, the VTA associativity is set to the associativity of the cache.

Table 1: The GPU configuration used in our experiments

Number of Cores 16
Warp Size 32
Max # of warps per core 48
Warp schedulers per core 2, GTO scheduling policy
of registers per 32768
Shared Memory 48KB
L1D cache 16KB, 32sets, 4-ways, Hash index
Core/ICNT/Memory Clock 650MHz/650MHz/924MHz
of memory partition 12
L2 cache 768KB, 64sets, 8-ways, Linear index

DRAM Chip Model 32bits bus width/Memory Partition, 6
Banks/Memory Partition, GDDR5 timing

Memory Bandwidth 177.4 GB/s

4.3 Hardware Overhead
As previously discussed, DLP requires additional storage space in
the L1D cache. For each entry in the TDA, the instruction ID field
needs 7 bits and the Protected Life field needs 4 bits; thus, the
extra size in the TDA for the baseline configuration is 176 bytes.
Each entry in the VTA requires 32 bits for the tag and 7 bits for
the instruction ID; thus, the total cache space for the VTA is 624
bytes. Each entry in the PDPT needs 7 bits for the instruction ID,
8 bits for TDA hits, 10 bits for VTA hits, and 4 bits for PD; this
sums to 464 bytes of space consumed for all entries of the PDPT. In
summary, the DLP scheme requires 1264 bytes of extra cache space.
Considering that the baseline cache has 16896 bytes for the TDA,
the overhead of our approach is only 7.48% of the baseline cache
size.

5 METHODOLOGY
5.1 GPU Simulator Settings
We evaluate the performance improvement of the DLP scheme
on GPGPU-Sim, a cycle-level GPU architecture simulator [1]. The
simulator is configured to match the hardware settings of a Tesla
M2090 [20], a Nvidia GPU with Fermi microarchitecture [9]. Table 1
provides the details of the baseline configuration used in our exper-
iments. In addition to the baseline configuration and our approach,
we also implement the Stall-Bypass and Global-Protection schemes
for comparison purposes.

5.2 Experimental Benchmarks
The GPU applications used for our evaluation are chosen from
Rodinia [5], CUDA Samples [23], Mars [11], Parboil [25], and Poly-
bench [10] benchmarks listed in Table 2. As discussed in Section
3.1, we group these GPU applications as Cache Sufficient (CS) and
Cache Insufficient (CI) based on their memory access ratio. CS ap-
plications are not restricted by the memory sub-system, so they can
already achieve good performance with the baseline configuration.
Consequently, CI applications require larger cache associativity to
maintain data localities; these are good candidates for performance
improvements with DLP.

5.3 Comparable Methods
Stall-Bypass: This scheme enables a bypass path when a stall is
detected in the L1D cache for any reason, such as no available

6

Improving First Level Cache Efficiency for GPUs Using Dynamic Line Protection ICPP 2018, August 13–16, 2018, Eugene, OR, USA

Table 2: Benchmark Applications

App. Name Abbr. Suite Type Input
Histogram HG CUDA Samples CS 67108864
Hotspot HS Rodinia CS 512x512
3-D Stencil Operation STEN Parboil CS 512x512x64
Separable Convolution SC Rodinia CS 2048x512
Back Propagation BP Rodinia CS 65536
Speckle Reducing
Anisotropic Diffusion SRAD Rodinia CS 512x512

Needleman-Wunsch NW Rodinia CS 1024x1024
Matrix Multiply-add GEMM Polybench CS 512X512X512
B+tree BT Rodinia CS 6000x3000
Computational Fluid
Dynamics CFD Rodinia CI 97046

Page View Rank PVR Mars CI 250000
Similarity Score SS Mars CI 512x128
Breadth-First Search BFS Rodinia CI 65536
Matrix Multiplication MM Mars CI 256x256
Symmetric Rank-k SRK Polybench CI 256x256
Symmetric Rank-2k SR2K Polybench CI 256x256
K-means KM Rodinia CI 204800
String Match STR Mars CI 354984

MSHR entry, no reservable slot in set, or a fully occupied miss
queue. The Stall-Bypass scheme eliminates delays in the L1D cache
regardless of the reuse patterns of applications.

Global-Protection: This scheme uses a single PD to preserve
data locality and improve re-usage of L1D cache lines, emulating the
PDP method found on CPU platform [7]. It applies a PD computing
algorithm similar to Figure 9; however, instead of an instruction-
based PD like the left-most path in Figure 9, this scheme computes
a global PD for all cache entries.

32KB L1D cache: This configuration doubles the amount of
set associativity of set in the L1D cache while keeping the other
parameters the same as the baseline configuration.

6 EXPERIMENTAL RESULTS
6.1 IPC Performance Improvement
Figure 10 compares the IPC performance of benchmark applications
for the baseline configuration, Stall-Bypass, Global-Protection, DLP,
and 32KB L1D cache. G.MEANS in Figure 10 indicates the geometric
mean of IPCs of all CS applications or CI applications.

6.1.1 CS Applications. Half of the 18 applications analyzed in
our experiments are CS applications. Performance improvements
for CS applications are not expected for any cache management
schemes; this is demonstrated in Figure 5 when significant in-
creases to cache size does not influence application performance.
Both Global-Protection and DLP can retain the performance for
most applications, while the Stall-Bypass fails to do so for applica-
tions SRAD and BT. Compared to the baseline configuration, the
Stall-Bypass decreases the IPC of SRAD and BT by 11% and 12%
respectively. The main factor of this performance drop is the over-
bypassing of the L1D cache accesses, which causes the L1D cache to
miss potential data reuses. We will detail this issue in the Section 6.2.
DLP performs worse than Global-Protection in the GEMM appli-
cation due to over-protection from specific instructions; however,
the performance loss is only 3%. As mentioned in Section 4.2, the
DLP scheme also applies a global check before instruction-based

3.1

CICS

0

0.5

1

1.5

2

2.5

H
G H
S

ST
EN SC BP

SR
AD N
W

G
EM

M BT
G
.M

EA
N
S

CF
D

PV
R SS BF
S

M
M

SR
K

SR
2K KM ST
R

G
.M

EA
N
S

N
or
m
al
ize

d
IP
C

16KB(Baseline) Stall-Bypass Global-Protection DLP 32KB

Figure 10: The IPC performance of using the baseline con-
figuration, Stall-Bypass, Global-Protection, DLP, and a 32KB
L1D cache. The performance results are normalized to cor-
responding IPCs achieved by using the baseline-configured
L1D cache.

PD adjustment, so the over-protection loss is typically trivial. On
average, Stall-Bypass loses 2.4% IPC performance while DLP only
sacrifices 0.2%. No CS application compromises its performance by
more than 3% with DLP.

6.1.2 CI Applications. For all CI applications, Stall-Bypass, Global-
Protection, and DLP can improve IPC performance. The speedup of
CI applications with Stall-Bypass is 1.14 on average and 1.46 at most.
The improvements when using Stall-Bypass are limited , as it simply
bypasses stalled memory accesses regardless of reuse patterns, miss
rates, or any internal cache information. Global-Protection adjusts
the global PD to accommodate the reuse patterns of GPU applica-
tions, leading to a more significant increase in IPC performance
over Stall-Bypass. Furthermore, Global-Protection can achieve an
average of a 34.7% performance improvement over the baseline. The
DLP scheme utilizes the different reuse patterns of memory instruc-
tions in GPU applications, so it can typically achieve an even greater
performance boost than Global-Protection for CI applications. Both
Global-Protection and DLP can achieve better performance than
the 32KB cache configuration for specific applications like CFD and
SR2K; the 32KB cache configuration can typically retain data local-
ity for 8 accesses, while Global-Protection and DLP can maintain
locality much longer for prioritized cache lines. Applying DLP to a
16KB cache can achieve an average of 43.8% performance gain over
the baseline configuration, which is only 6% less than the speedup
achieved by doubling the set associativity.

In general, the DLP scheme shares similar performance with the
baseline and Global-Protection for CS applications and outperforms
the baseline, Stall-Bypass, and Global-Protection schemes for CI
applications.

6.2 L1D Cache Traffic
Stall-Bypass, Global-Protection, and DLP use bypasses to alleviate
overwhelming accesses to the L1D cache. In this section, we will
analyze the reduction of L1D cache traffic and eviction when em-
ploying these methods on baseline-configured cache. Figure 11a
compares L1D cache traffic and evictions by applying the baseline

7

ICPP 2018, August 13–16, 2018, Eugene, OR, USA Xian Zhu, Robert Wernsman, and Joseph Zambreno

CICS

0

0.3

0.6

0.9

1.2

H
G H
S

ST
EN SC BP

SR
A
D

N
W

G
EM

M BT

G
.M

EA
N
S

CF
D

PV
R SS BF
S

M
M

SR
K

SR
2K KM ST
R

G
.M

EA
N
S

N
or
m
al
iz
ed

 L
1D

 T
ra
ff
ic

16KB(Baseline) Stall-Bypass Global-Protection DLP

(a) Cache Traffic

CICS

0

0.3

0.6

0.9

1.2

H
G H
S

ST
EN SC BP

SR
A
D

N
W

G
EM

M BT

G
.M

EA
N
S

CF
D

PV
R SS BF
S

M
M

SR
K

SR
2K KM ST
R

G
.M

EA
N
S

N
or
m
al
iz
ed

 L
1D

 E
vi
ct
io
n

16KB(Baseline) Stall-Bypass Global-Protection DLP

(b) Cache Eviction

Figure 11: The normalized traffic and normalized evictions
in the 16KB L1D cache with baseline configuration, Stall-
Bypass, Global-Protection, and DLP.

configuration, Stall-Bypass, Global-Protection, and DLP to a 16KB
L1D cache.

6.2.1 CS Applications. Both Global-Protection and DLP can
maintain similar cache traffic figures for CS applications with many
short RDs, i.e. SC, BP, SRAD, GEMM, and BT; both methods are
able to recognize their short reuse pattern and set short PDs ac-
cordingly. As a comparison, Stall-Bypass over-bypasses for SRAD
and BT, causing a performance penalty as mentioned in Section
6.1.1. Although DLP also bypasses additional cache traffic for some
applications such as HG, HS and STEN, our approach still satisfies
their reuse patterns without over-bypassing. As shown in Figure 3,
most of these applications have a majority of long RDs. A long RD
causes DLP to extend PDs for some memory instructions, resulting
in many memory accesses bypassed. However, DLP’s accommo-
dation of reuse patterns for these applications yield only trivial
performance increases; this due to a low memory access ratio and
the large portion of compulsory misses in these applications.

As Figure 11b shows, the reductions of L1D cache eviction that
Stall-Bypass, Global-Protection, and DLP provide for CS applica-
tions follow a trend similar to the reductions in cache traffic. On
average, Stall-Bypass, Global-Protection, and DLP reduce 8.9%, 2.3%,
and 20.0% cache eviction over the baseline configuration respec-
tively.

CICS

0

0.2

0.4

0.6

0.8

1

H
G H
S

ST
EN SC B
P

SR
A
D

N
W

G
EM

M B
T

CF
D

PV
R SS

B
FS

M
M

SR
K

SR
2K KM ST
R

N
or
m
al
iz
ed

 L
1D

 H
it
 R
at
e

16KB(Baseline) Stall-Bypass Global-Protection DLP

(a) Hit Rate

0

1

2

3

4

HG HS
ST
EN SC BP

SR
AD NW

GE
M
M BT

G.
M
EA

NS CF
D

PV
R SS BF
S

M
M

SR
K

SR
2K KM ST
R

G.
M
EA

NS

No
rm

al
ize

d
L1
D
Hi
ts

16KB(Baseline) Stall-Bypass Global-Protection DLP

CICS

4.6 7.8 7.9

(b) Number of Hits

Figure 12: The hit rate and normalized number of hits in
the 16KB L1D cache with the baseline configuration, Stall-
Bypass, Global-Protection, and DLP.

6.2.2 CI Applications. CI applications typically have long RDs
and a high memory access ratio, causing these applications to ex-
perience high cache contention and lengthy stall times in the L1D
cache. As a result, we observe that Stall-Bypass, Global-Protection,
and DLP bypass a significant amount of cache accesses in CI appli-
cations. However, the DLP scheme behaves the most aggressively
when it comes to bypassing. The average L1D cache traffic with
Stall-Bypass and Global-Protection schemes for CI applications is
71.6% and 59.8% of baseline cache traffic respectively, while DLP
only allows 47.5% of baseline cache traffic. Although similar in
pattern, the reduction of cache evictions is actually more signifi-
cant than the reduction of cache traffic under the three different
schemes; this is especially apparent with DLP. On average, Stall-
Bypass and Global-Protection use 71.6% and 59.8% of cache traffic
and generates 56.5% and 35.7% of cache evictions as compared to the
baseline, while DLP consumes 47.6% of cache traffic and produces
only 20.7% of cache evictions. This implies that the re-usage rate of
cache lines retained by DLP is higher than that of Stall-Bypass and
Global-Protection; fewer L1D cache evictions can reduce intercon-
nect traffic, which will be detailed in Section 6.4.

6.3 L1D Cache Hits
Figure 12a demonstrates the overall hit rates of the baseline con-
figuration, Stall-Bypass, Global-Protection, and DLP. To illustrate

8

Improving First Level Cache Efficiency for GPUs Using Dynamic Line Protection ICPP 2018, August 13–16, 2018, Eugene, OR, USA

CICS

0

0.3

0.6

0.9

1.2

1.5

HG HS
ST
EN SC BP

SR
AD NW

GE
M
M BT

G.
M
EA

NS CF
D

PV
R SS BF
S

M
M SR
K

SR
2K KM ST
R

G.
M
EA

NSNo
rm

al
ize

d
In
te
rc
on

ne
ct
 Tr
af
fic

16KB(Baseline) Stall-Bypass Global-Protection DLP

Figure 13: The normalized interconnect traffic with ap-
plying the baseline configuration, Stall-Bypass, Global-
Protection, and DLP on the 16KB L1D cache.

the effect these three schemes have on L1D cache hits in detail, the
normalized numbers of cache hits are plotted in Figure 12b.

6.3.1 CS Applications. Although the numbers of hits for the
HG, HS, and STEN applications vary significantly, the L1D cache
hits have trivial impact on performance; these applications are
dominated by compulsory misses and have a low L1D cache hit rate,
as shown in Figure 12b. For the SRAD, NW, and BT applications,
Global-Protection and DLP achieve an amount of L1D cache hits
similar to the baseline configuration; however, Stall-Bypass fails to
retain cache hits for these applications. Considering the relatively
high hit rate of SRAD and BT, the loss of cache hits in these two
applications can lead to overall performance penalties. Note that
the hit rate of Stall-Bypass in SRAD increases in Figure 12a, since
the bypassed memory accesses do not count towards the L1D cache
rate. In summary, Global-Protection and DLP can preserve more
cache hits for applications with many short RDs when compared
to Stall-Bypass.

6.3.2 CI Applications. The amount of hits of Global-Protection
and DLP exceeds that of Stall-Bypass on most CI applications, with
the exceptions of CFD, PVR, and SS. In CFD and PVR, the DLP
scheme has less cache hits even compared to the baseline con-
figuration. For other CI applications, Global-Protection and DLP
outperform Stall-Bypass in both the number of L1D cache hits and
the L1D cache hit rate. Although DLP does not always have more
L1D cache hits than Global-Protection and Stall-Bypass, it always
has less cache traffic for CI applications; it turns out that the hit
rate of DLP is always higher, as shown in Figure 12a. The higher
hit rate of DLP can reduce L1D cache stall time, which eventually
contributes to the improvement of overall performance.

6.4 Impact on Interconnect Traffic
In order to capture data locality and reduce L1D cache traffic, Stall-
Bypass, Global-Protection, and DLP bypass some memory accesses,
which will consequentially affect the interconnect traffic from the
L1D to the L2 cache. It should be noted that bypassing cache traffic
to the interconnect network can be potentially favorable or unfa-
vorable for overall performance. On one hand, bypassing cache
misses can reduce the number of eviction writes to the L2 cache.
On the other hand, memory accesses that bring in reusable cache

lines could be bypassed, which may result in fewer cache hits in
the L1D cache and more memory requests in the interconnect net-
work in the future. Figure 13 depicts the normalized interconnect
traffic generated by the baseline configuration, Stall-Bypass, Global-
Protection, and DLP. For CS applications, both Global-Protection
and DLP have a negligible impact on interconnect traffic. How-
ever, Stall-Bypass has considerably more traffic for applications like
BT, as it over-bypasses memory accesses and loses many reusable
cache lines that could have been brought into the L1D cache. For
CI applications, Global-Protection and DLP have a greater impact
on reducing interconnect traffic than Stall-Bypass and baseline
configuration. DLP outperforms other schemes by both bypassing
more L1D cache misses (shown in Figure 11a) and capturing more
L1D cache hits (shown in Figure 12b). The average decrease in
interconnect traffic is 6.2% with Stall-Bypass and 11.5% with DLP.
The degree of interconnect traffic reduction is much less than L1D
cache traffic because the interconnect network also serves other L1
caches like L1I, L1C, and L1T.

7 RELATEDWORK
7.1 Cache Management Policies in CPUs
Our work is inspired by Duong et al. [7], which describes the RDs
of a CPU application using statistical techniques. By selecting a
threshold slightly higher than most RDs, they can identify a PD that
extends the cache line’s lifetime to accommodate most RDs in the
application. They devise a Protecting Distance-based Policy (PDP)
to calculate this global PD. The PDP is optimized for maximizing the
cache hit rate based on a RDD collected at runtime. As Section 3.3
mentioned, the PDP is designed for a single-core CPU platform, and
cannot accommodate diverse reuse patterns in GPU applications.
Many other cache management policies have been proposed to
reduce cache thrashing in CPUs [12, 15]. These policies cannot be
applied to GPU’s L1D caches due to their capacity constraint.

7.2 Alleviating Cache Thrashing in GPUs
Jia et al. [13] characterize performance of applications on GPUswith
caches, providing a taxonomy for reasoning about different types of
access patterns and locality. They find that the interconnect traffic
from the L1D to L2 cache increases due to L1D cache thrashing
behavior for certain GPU applications, eventually harming the
overall IPC performance. Many works focus on addressing this
problem; we classify these works into two major categories.

Since cache thrashing is caused by many memory accesses from
parallel GPU threads, reducing the number of parallel GPU threads
is an option to alleviate this behavior. Rogers et al. [24] devise a
Cache-Conscious Warp Scheduling (CCWS) algorithm. This algo-
rithm also uses the VTA to collect locality loss statuses for building
a scoring system to track locality loss for each warp. If certain
warps lose many hits because of line replacements, the system will
throttle other warps to reduce their locality loss. They show that
their mechanism can improve the performance for highly cache-
sensitive workloads. Other works like [8, 14, 16] focus on limiting
the number of concurrent threads inside GPU cores. The major con-
cern with controlling thread parallelism is that it completely stops
parts of threads, potentially under-utilizing the memory bandwidth.

9

ICPP 2018, August 13–16, 2018, Eugene, OR, USA Xian Zhu, Robert Wernsman, and Joseph Zambreno

Another important strategy for mitigating cache thrashing be-
havior is to bypass some memory accesses based on cache informa-
tion. Li et al. [18] separate tags from data cache. By using a larger
tag array and applying the Least Frequent Used replacement policy
instead of the LRU replacement policy in the tag array, they can col-
lect the reuse frequency of the data lines; this allows them to bypass
memory accesses for lines with low-frequency usage. Since they
collect reuse information based on individual memory addresses
and GPU applications typically consume a large memory space, it
is challenging to predict each line’s reuse pattern accurately with
a small tag array. To aggregate more information, Tian et al. [26]
classify cache access information based on memory instructions.
They propose a design with a PC-based table, where each entry of
the table uses a saturating counter to record the access history of a
memory instruction. If the saturating counter of a specific memory
instruction passes a threshold, cache accesses from the this memory
instruction will be bypassed. Lee et al. [17] improve the method
proposed by [26] through bypassing only some cache accesses from
a certain memory instruction instead of all of them.

There are several works putting efforts towards combining both
the thread-limiting and the L1D-bypassing techniques. Xie et al. [27]
utilize the compiler to determine which load instructions to by-
pass. Furthermore, they also throttle memory accesses from certain
thread blocks based on runtime information. Chen et al. [6] inte-
grate PDP [7] with CCWS [24], which tunes both the PD and the
number of warps to keep interconnect traffic in a desired range.

8 CONCLUSION
In this work, we demonstrate that the L1D cache size is not sufficient
for many GPU applications, resulting in many L1D cache lines
getting replaced before they are re-referenced. By examining the
cache access patterns of these applications, we determine that a
L1D cache with low associativity cannot retain data locality to
satisfy their diverse reuse behaviors; this leads to frequent line
replacements with low data re-usage. To improve the efficiency of
the L1D cache, we design a DLP scheme to preserve valuable cache
lines and increase data locality utilization. DLP predicts protection
distances for each memory instruction at runtime, which helps keep
a balance between data locality exploitation and over-protection
for cache lines with longer reuse distances. Our evaluation shows
that DLP can reduce the cache congestion and improve overall IPC
performance for Cache Insufficient applications.

ACKNOWLEDGMENTS
This work is supported in part by the National Science Foundation
(NSF) under award CCF-1149539.

REFERENCES
[1] Ali Bakhoda, George L Yuan, Wilson WL Fung, Henry Wong, and Tor M Aamodt.

2009. Analyzing CUDAWorkloads Using a Detailed GPU Simulator. In Proc. of the
2009 IEEE Int. Symp. on Performance Analysis of Systems and Software. 163–174.

[2] Muthu Manikandan Baskaran, Jj Ramanujam, and P Sadayappan. 2010. Auto-
matic C-to-CUDA code generation for affine programs. In Compiler Construction.
Springer, 244–263.

[3] Bryan Catanzaro, Narayanan Sundaram, and Kurt Keutzer. 2008. Fast support
vector machine training and classification on graphics processors. In Proc. of the
25th Int. Conf. on Machine Learning. 104–111.

[4] Bryan Catanzaro, Narayanan Sundaram, and Kurt Keutzer. 2008. A map reduce
framework for programming graphics processors. In the 3rdWorkshop on Software

Tools for MultiCore Syst.
[5] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer,

Sang-Ha Lee, and Kevin Sokadron. 2009. Rodinia: A Benchmark Suite for Het-
erogeneous Computing. In Proc. of the 2009 IEEE Int. Symp. on Workload Charac-
terization. 44–54.

[6] Xuhao Chen, Li-Wen Chang, Christopher I Rodrigues, Jie Lv, Zhiying Wang,
and Wen-Mei Hwu. 2014. Adaptive cache management for energy-efficient gpu
computing. In Proc. of the 47th annual IEEE/ACM Int. Symp. on Microarchitecture.
IEEE, 343–355.

[7] Nam Duong, Dali Zhao, Taesu Kim, Rosario Cammarota, Mateo Valero, and
Alexander V Veidenbaum. 2012. Improving cache management policies using
dynamic reuse distances. In Proc. of the 45th Annual IEEE/ACM Int. Symp. on
Microarchitecture. IEEE, 389–400.

[8] Mark Gebhart, Daniel R Johnson, David Tarjan, Stephen W Keckler, William J
Dally, Erik Lindholm, and Kevin Skadron. 2011. Energy-efficient mechanisms for
managing thread context in throughput processors. In Proc. of the 38th Annual
Int. Symp. on Computer Architecture. 235–246.

[9] Peter N Glaskowsky. 2009. NVIDIA’s Fermi: the first complete GPU computing
architecture. White Paper. (2009). http://www.nvidia.com/content/PDF/fermi_
white_papers/P.Glaskowsky_Nvidia’s_Fermi-The_First_Complete_GPU_
Architecture.pdf

[10] Scott Grauer-Gray, Lifan Xu, Robert Searles, Sudhee Ayalasomayajula, and John
Cavazos. 2012. Auto-tuning a high-level language targeted to GPU codes. In Proc.
of the 2012 Innovative Parallel Computing. IEEE, 1–10.

[11] Bingsheng He, Wenbin Fang, Qiong Luo, Naga K Govindaraju, and TuyongWang.
2008. Mars: a MapReduce framework on graphics processors. In Proc. of the 17th
Int. Conf. on Parallel Architectures and Compilation Techniques. ACM, 260–269.

[12] Aamer Jaleel, Kevin B Theobald, Simon C Steely Jr, and Joel Emer. 2010. High
performance cache replacement using re-reference interval prediction (RRIP). In
ACM SIGARCH Computer Architecture News, Vol. 38. ACM, 60–71.

[13] Wenhao Jia, Kelly A Shaw, and Margaret Martonosi. 2012. Characterizing and
improving the use of demand-fetched caches in GPUs. In Proc. of the 26th ACM
Int. Conf. on Supercomputing. ACM, 15–24.

[14] Onur Kayıran, Adwait Jog, Mahmut Taylan Kandemir, and Chita Ranjan Das.
2013. Neither more nor less: Optimizing thread-level parallelism for GPGPUs. In
Proc. of the 22nd Int. Conf. on Parallel Architectures and Compilation Techniques.

[15] Samira Manabi Khan, Yingying Tian, and Daniel A Jimenez. 2010. Sampling dead
block prediction for last-level caches. In Proc. of the 43rd Annual IEEE/ACM Int.
Symp. on Microarchitecture. IEEE, 175–186.

[16] Minseok Lee, Seokwoo Song, Joosik Moon, John Kim, Woong Seo, Yeongon
Cho, and Soojung Ryu. 2014. Improving GPGPU resource utilization through
alternative thread block scheduling. In Proc. of 20th IEEE Int. Symp. on High
Performance Computer Architecture. 260–271.

[17] Shin-Ying Lee and Carole-Jean Wu. 2016. Ctrl-C: Instruction-Aware Control
Loop Based Adaptive Cache Bypassing for GPUs. In Proc. of The 34th Int. Conf.
on Computer Design. IEEE, 133–140.

[18] Chao Li, Shuaiwen Leon Song, Hongwen Dai, Albert Sidelnik, Siva Kumar Sastry
Hari, and Huiyang Zhou. 2015. Locality-driven dynamic GPU cache bypassing.
In Proc. of the 29th ACM Int. Conf. on Supercomputing. ACM, 67–77.

[19] John Nickolls and William J Dally. 2010. The GPU computing era. IEEE Micro
Magazine 30, 2 (2010), 56–69.

[20] Nvidia. 2011. Tesla M2090 Dual-Slot Computing Processor Module. White Paper.
(2011). http://www.nvidia.com/docs/IO/43395/Tesla-M2090-Board-Specification.
pdf

[21] Nvidia. 2012. NVIDIA Kepler GK110 Architecture Whitepaper.
White Paper. (2012). http://www.nvidia.com/content/PDF/kepler/
NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf

[22] Nvidia. 2017. Developer Zone. (2017). https://developer.nvidia.com
[23] Nvidia. 2017. Nvidia CUDA Samples. (2017). http://docs.nvidia.com/cuda/

cuda-samples/index.html
[24] Timothy G Rogers, Mike O’Connor, and Tor M Aamodt. 2012. Cache-conscious

wavefront scheduling. In Proc. of the 45th Annual IEEE/ACM Int. Symp. on Mi-
croarchitecture. IEEE, 72–83.

[25] John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen Chang,
Nasser Anssari, Geng Daniel Liu, and Wen-Mei W Hwu. 2012. Parboil: A revised
benchmark suite for scientific and commercial throughput computing. Center for
Reliable and High-Performance Computing 127 (2012).

[26] Yingying Tian, Sooraj Puthoor, Joseph L. Greathouse, Bradford M. Beckmann,
and Daniel A. Jiménez. 2015. Adaptive GPU Cache Bypassing. In Proc. of the 8th
Workshop on General Purpose Processing Using GPUs. ACM, 25–35.

[27] Xiaolong Xie, Yun Liang, Yu Wang, Guangyu Sun, and Tao Wang. 2015. Coordi-
nated static and dynamic cache bypassing for GPUs. In Proc. of the 21st Int. Symp.
on High Performance Computer Architecture. IEEE, 76–88.

10

http://www.nvidia.com/content/PDF/fermi_white_papers/P.Glaskowsky_Nvidia's_Fermi-The_First_Complete_GPU_Architecture.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/P.Glaskowsky_Nvidia's_Fermi-The_First_Complete_GPU_Architecture.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/P.Glaskowsky_Nvidia's_Fermi-The_First_Complete_GPU_Architecture.pdf
http://www.nvidia.com/docs/IO/43395/Tesla-M2090-Board-Specification.pdf
http://www.nvidia.com/docs/IO/43395/Tesla-M2090-Board-Specification.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
https://developer.nvidia.com
http://docs.nvidia.com/cuda/cuda-samples/index.html
http://docs.nvidia.com/cuda/cuda-samples/index.html

	Abstract
	1 Introduction
	2 Baseline GPU Architecture
	3 Motivation
	3.1 Data Reuse Behavior of GPU Applications
	3.2 Insufficiency of the Cache Size for GPU Applications
	3.3 Diverse Distributions of Reuse Distance Among Memory Instructions

	4 Dynamic Line Protection Approach
	4.1 Architectural Modifications
	4.2 Protecting Distance Computation
	4.3 Hardware Overhead

	5 Methodology
	5.1 GPU Simulator Settings
	5.2 Experimental Benchmarks
	5.3 Comparable Methods

	6 Experimental Results
	6.1 IPC Performance Improvement
	6.2 L1D Cache Traffic
	6.3 L1D Cache Hits
	6.4 Impact on Interconnect Traffic

	7 Related Work
	7.1 Cache Management Policies in CPUs
	7.2 Alleviating Cache Thrashing in GPUs

	8 Conclusion
	Acknowledgments
	References

