
PyGB: GraphBLAS DSL in Python
with Dynamic Compilation into Efficient C++

Jesse Chamberlin∗, Marcin Zalewski†, Scott McMillan‡, and Andrew Lumsdaine∗†
jessec18@uw.edu, marcin.zalewski@pnnl.gov, smcmillan@sei.cmu.edu, andrew.lumsdaine@pnnl.gov

∗University of Washington

Seattle, Washington, USA

†Northwest Institute for Advanced Computing

Pacific Northwest National Laboratory

Seattle, Washington, USA

‡Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA, USA

Abstract—We present PyGB, a high-level Python domain-
specific language (DSL) for GraphBLAS building blocks for
graph algorithms. GraphBLAS is based on a small number
of linear algebra operations, and it is described using math-
ematical notation and concepts. However, the concrete real-
izations of GraphBLAS concentrate on efficiency and widely
usable programming interfaces. The GraphBLAS C language
API standardized by the GraphBLAS Forum is the major
example of such a realization, and our GraphBLAS Template
Library (GBTL) implemented in the C++ language is another.
PyGB exposes the C++ interface of GBTL through a DSL that
leverages Python’s mature scientific computing ecosystem and
high-level syntax. The syntax of PyGB more closely resembles
the GraphBLAS mathematical notation than GBTL. The DSL
dispatches to dynamically compiled templated classes to achieve
comparable performance to the native GBTL code. We highlight
the features of PyGB through code examples and discuss how
Python’s syntax and dynamic execution enable us to provide
the high-level abstraction with minimal performance penalty.
We demonstrate the stages of execution, from type inference to
template compilation, to dynamic linking and invocation from
the Python interpreter. Our experimental evaluation shows that
for sufficiently large inputs, the overhead of PyGB is negligible
and compilation times are not worse than for native GBTL
implementation. Last, we outline concrete features we plan to
implement in the future to extend PyGB.

Index Terms—GraphBLAS, HPC, C++, graph algorithms,
Python, DSL

I. INTRODUCTION

GraphBLAS [1], [2], [3], [4], [5], [6] is an emerging

set of building blocks for graph algorithms, based on a

small number of linear algebra operations. In the context

of GraphBLAS, a graph is represented as an adjacency (or

incidence) matrix, and operations on graphs correspond to

linear algebra operations on the graph matrix. In contrast

to BLAS (Basic Linear Algebra Subprograms) [7], which

targets numerical computation, GraphBLAS parameterizes its

operations with arbitrary semirings, allowing a wide range of

computations on the edges of the graph. For example, Fig. 1

shows how a graph represented by an adjacency matrix can be

multiplied by a vector representing a frontier of a breadth-first

search (BFS) to obtain the next frontier using the semiring of

Boolean algebra.

The GraphBLAS Forum [1], a diverse group with represen-

tatives across government, academia and industry, standardized

a GraphBLAS API for the C programming language [5].

6

4

3

21

57

A
1

3
2

4
5
6
7

4 5 6 7321

en
d

ve
rt

ex

start vertex
T

=

v A vT

Fig. 1: One ply of BFS from source vertex 4 [4]

1 Input: graph, frontier, levels
2 depth ← 0
3 while nvals(frontier) > 0:
4 depth ← depth + 1
5 levels<frontier,merge> ← depth
6 frontier<¬levels,replace> ← graphT ⊕.⊗ frontier
7 where ⊕.⊗ =

⊕
.
⊗

(LogicalSemiring)

(a) Pseudocode

1 def bfs(graph, frontier, levels):
2 depth = 0
3 while frontier.nvals > 0:
4 depth += 1
5 levels[front][:] = depth
6 with gb.LogicalSemiring, gb.Replace:
7 frontier[˜levels] = graph.T @ frontier

(b) PyGB

1 template<class Mat, class Frontier, class Levels>
2 void bfs(Mat& graph, Frontier frontier, Levels& levels)
3 {
4 GB::IndexType depth = 0;
5 while (frontier.nvals() > 0) {
6 ++depth;
7 GB::assign(levels, frontier, GB::NoAccumulate(),
8 depth, GB::AllIndices(), false);
9 GB::mxv(frontier, GB::complement(levels),

10 GB::NoAccumulate(),
11 GB::LogicalSemiring<GB::IndexType>(),
12 GB::transpose(graph), frontier, true);
13 }
14 }

(c) C++

Fig. 2: BFS in math pseudocode, PyGB, and C++

310

2018 IEEE International Parallel and Distributed Processing Symposium Workshops

978-1-5386-5555-9/18/$31.00 ©2018 IEEE
DOI 10.1109/IPDPSW.2018.00059

TABLE I: Comparison of GraphBLAS operations written in mathematical notation from C API [5] and PyGB notation

Operation Name Mathematical Notation PyGB Notation

mxm C〈M, z〉 = C � A⊕ .⊗B C[M, z] = A @ B

mxv w〈m, z〉 = w � A⊕ .⊗ u w[m, z] = A @ u

eWiseMult C〈M, z〉 = C � A⊗B C[M, z] = A * B

w〈m, z〉 = w � u⊗ v w[m, z] = u * v

eWiseAdd C〈M, z〉 = C � A⊕B C[M, z] = A + B

w〈m, z〉 = w � u⊕ v w[m, z] = u + v

reduce (row) w〈m, z〉 = w � [⊕jA(:, j)] w[m, z] = reduce(monoid, A)

reduce (scalar) s = s � [⊕i,jA(i, j)] s = reduce(A)

s = s � [⊕iu(i)] s = reduce(u)

apply C〈M, z〉 = C � fu(A) C[M, z] = apply(A)

w〈m, z〉 = w � fu(u) w[m, z] = apply(u)

transpose C〈M, z〉 = C � AT C[M, z] = A.T

extract C〈M, z〉 = C � A(i, j) C[M, z] = A[i, j]

w〈m, z〉 = w � u(i) w[m, z][i, j] = u

C〈M, z〉(i, j) = C(i, j) � A C[M, z][i, j] = A

w〈m, z〉(i) = w(i) � u w[m, z][i] = u

Currently, the SuiteSparse library is the only complete imple-

mentation of the C API. In addition, there are several projects

developing GraphBLAS implementations [8], [9], [10], [11],

[12], [13], including our C++ GraphBLAS Template Library

(GBTL) [14], [15]. Despite the ongoing efforts, there is no

easily accessible, high-performance DSL for GraphBLAS.

The main contribution of this paper is such a GraphBLAS

DSL, implemented in Python [16] and called PyGB (Python

GraphBLAS)1, that provides a high-level programming inter-

face, and at the same time dynamically compiles to a highly-

performing C++ implementation. Figure 2 shows the simplified

BFS algorithm in math-based pseudocode based on the notation

in C API Specification (Fig. 2a), the corresponding code in

PyGB, and the C++ code in GBTL. PyGB provides a notation

that is very close to the pseudocode, and, at the same time,

it achieves the efficiency of the GBTL code to which it is

compiled.
PyGB leverages the advantages of Python, which has a strong

foothold in the scientific community. A mature ecosystem of

existing matrix and graph libraries and tools is made avail-

able by Python. The pseudocode-like syntax and interpreted

execution model make Python a popular language for rapid

prototyping. Tools such as Jupyter [17] make it possible to

prototype GraphBLAS code interactively from a web browser.

Python is also well-suited for piping data between disparate

libraries and tools. PyGB provides convenience constructors

for copying data from NumPy arrays, SciPy sparse matrices,

and NetworkX graphs. In the future (see Sec. VIII) we plan

to further integrate PyGB with the Python HPC stack. Python

provides a large set of overloadable operators, which we utilize

to provide simple, expressive syntax that is as powerful as the

more complex syntax of GBTL and the C API. Last, we make

PyGB efficient and future proof by compiling operations in

1Repository at https://github.com/jessecoleman/gbtl-python-bindings.

the Python DSL to GBTL code, taking a similar approach to

other high-performance Python libraries that rely on lower-level

languages for performance-critical sections of code.

Contributions:
• We provide PyGB, a high-level Python DSL for Graph-

BLAS that closely corresponds to pseudocode math-

like notation. Our DSL relies on Python syntax features

such as magic methods [18] and context managers [19]

and integrates with NumPy, SciPy and NetworkX to

deliver a user-friendly development experience. We give

an example-driven overview of the DSL in Sec. III and

we discuss design considerations in Sec. IV.

• PyGB is dynamically compiled to GBTL (see Sec. V). The

dynamic compilation process keeps track of C++ types and

templates that have been already compiled, and invokes

the C++ compiler as necessary, dynamically binding the

symbols in the binary files generated by the C++ compiler.

While the current implementation compiles to GBTL, our

method can be generalized to target any other library

written in C or C++, making our DSL future proof by

being able to draw upon developments in the field. Our

methodology can also be used to develop other DSLs in

Python.

• We show that the overhead of PyGB becomes negligible as

the problem size scales. In Sec. VI, we present empirical

evidence by evaluating several algorithms, comparing the

run time of PyGB generated code where outer loops are

performed in Python, PyGB code where outer loops are

performed in C++, and native GBTL code.

II. GRAPHBLAS MATHEMATICAL NOTATION

The GraphBLAS C API Specification is based on the

mathematical behavior of the GraphBLAS operations that

was defined by Kepner, et al. [3]. The specification added

311

a number of extensions and provides a mathematical notation

that captures this behavior. The C API Specification notation

for many of the GraphBLAS operations can be found in column

1 of Table I. As in the math document, the operations denoted

by ⊕ and ⊗ on the right-hand side are analogous to traditional

arithmetic addition and multiplication from linear algebra, but

can be replaced by any pair of semiring operators where the

identity of ⊕ is the annihilator of ⊗. Although not shown in the

table, input matrices A and B may be optionally transposed. An

optional accumulate specified by � allows the user to specify

a separate binary operator that governs how the results of the

operation are “added” to existing values in the output object.

Fig. 4a has examples of both the transpose and accumulation

operations in PyGB and GBTL for comparison.

The other major extension supported by the specification is

the use of a write mask and replace flag. In the expression

C〈M, z〉 the output matrix, C, is masked by a boolean matrix

M of the same dimension whose values control which elements

resulting from the operation are written to C. The elements

of the mask can be optionally complemented to invert the set

of elements that can be written. When specified, the “replace”

flag, z, indicates that all values in the output object are cleared

(“zeroed”) prior to the masked assignment. When the z flag is

not specifed and a mask has been specified, “merge” behavior

occurs where elements in the output matrix that are “masked

out” retain their original contents.

Although there is only one official language specification at

this time, it is intended that all compliant implementations of

GraphBLAS adhere to the behavior defined by this notation

regardless of the language. The goal of this Python DSL is to

not only adhere to the behavior specified but also to replicate

the mathematical notation. The latter will lessen the learning

curve as the notation is similar to linear algebra. It also results

in a simpler more compact notation than has been possible

with the C API, which is characterized by function signatures

with many parameters which bear little resemblance to the

mathematical notation.

III. PYGB

The Matrix and Vector classes in PyGB contain mutable

graph data which can be constructed both from sparse data

in coordinate format and dense data in 2D array format, as

in Fig. 3a. The user may optionally specify a data type to

cast the values to. Containers can also be constructed from

NumPy arrays, SciPy.sparse matrices, and NetworkX graphs

as in Fig. 3b. This allows the user access to a wide range of

well documented graph-generating routines. PyGB currently

performs a data copy at construction, but methods are being

explored to avoid this (see Sec. VIII).

Matrices and Vectors act as the operands to PyGB operation

functions. Table I provides a comprehensive list of the opera-

tions defined by GraphBLAS and their equivalent PyGB syntax.

At execution, these expressions are evaluated by machine code

that is compiled on-demand based on operand data types. With

all expensive matrix/vector operations optimized by the DSL,

higher-level logic such as outer loops and control flow can be

1 # construction from sparse data
2 m = gb.Matrix((vals, (row_idx, col_idx)), shape=(r, c))
3 v = gb.Vector((vals, idx), shape=(l,))
4 # construction from dense data
5 m = gb.Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
6 v = gb.Vector([1, 2, 3, 4, 5])

(a) copy from Python lists

1 # construction from NumPy random matrix
2 m = gb.Matrix(np.random.rand(3, 3))
3 # construction from SciPy sparse diagonal matrix
4 m = gb.Matrix(sc.sparse.diags([1, 1, 1], [-1, 0, 1],
5 shape=(3,3)))
6 # construction from NetworkX balanced tree
7 m = gb.Matrix(nx.balanced_tree(r=4, h=8)))

(b) copy from other library containers

Fig. 3: Constructing PyGB containers

written in concise Python syntax with minimal overhead. We

will demonstrate some of the more complex syntax of PyGB

through code examples.
The single-source shortest path algorithm (Fig. 4a) demon-

strates the use of a semiring and accumulator used in con-

junction. path is multiplied by graph.T (transpose) and

then accumulated back into path . Inside the with block, a

PyGB pre-defined semiring and an anonymous user-defined

accumulator are brought into context. The Accumulator is

constructed with the "Min" binary operator. All pre-defined

PyGB operators can be constructed manually by the user

via similar syntax. gb.MinPlusSemiring is the same as

gb.Semiring(gb.MinMonoid, "Plus") , and gb.MinMonoid

is the same as gb.Monoid("Min", "MinIdentity") . A list

of unary and binary operators defined by GBTL is in Fig. 6.

These are currently the only operators that can be used in the

construction of PyGB operators, but future work is planned to

allow more customizable user-defined operators.

1 def sssp(graph, path):
2 with gb.MinPlusSemiring, gb.Accumulator("Min"):
3 for i in range(graph.shape[0]):
4 path[None] += graph.T @ path

(a) PyGB

1 template<class MatrixT, class PathVectorT>
2 void sssp(MatrixT const &graph, PathVectorT &path) {
3 for (GB::IndexType k = 0; k < graph.nrows(); ++k) {
4 GB::mxv(path, GB::NoMask(), GB::Min<T>(),
5 GB::MinPlusSemiring<T>(),
6 GB::Transpose(graph), path);
7 }
8 }

(b) GBTL

Fig. 4: Single-source shortest path (SSSP) algorithm

Python’s with statement provides an abstraction for as-

sociating state with a particular block of code. For ex-

ample, the recommended syntax in Python for file I/O is

with open(...): , which closes the file automatically at the

end of the block. In PyGB, we utilize this language feature to

312

allow a PyGB operation to infer the operator from its context.

An operation will use the corresponding operator with the

highest precedence, i.e. lowest nested with block with a

matching operator. The Accumulator("Min") operator can

be excluded without changing the behavior of Fig. 4a, since

the path[None] += ... accumulation step in Fig. 4a will

fall back to the MinMonoid from the MinPlusSemiring . In

the case that the accumulation operator is different from the

semiring binary operator, the Accumulator must be explicitly

declared, as in Fig. 7 lines 20-21.

A boolean mask can be applied to the output container during

the accumulation step via square bracket notation as in line 4 of

Fig. 4a. The default None argument (equivalent to NoMask in

GBTL) will overwrite all data in the pre-existing container with

the output from the right-hand-side of the operation. Another

PyGB container of the same shape as the output container can

replace None and its data will be coerced to boolean values,

as in Fig. 5a on line 4.

PyGB operators are Python objects that can be constructed as

shown in Fig. 6 by providing a string naming a corresponding

GBTL function or identity element. Fig. 4a has examples of

PyGB operators being constructed ahead of time and then

brought into context (MinSelect1stSemiring), and being

anonymously brought into context (Accumulator("Min")).

The GraphBLAS C API defines operations on matrices and

vectors that are parameterized by these operators. These

operations can be invoked from Python using the syntax shown

in column 3 of Table I.

Figure 5 shows the triangle counting algorithm implemented

in both PyGB and GBTL. This algorithm counts triangles

formed by triplets of vertices that are interconnected by perform-

ing a matrix-matrix multiply and a reduce to scalar. The Matrix

B is masked by L , the lower-triangular portion of the undi-

rected adjacency matrix, and assigned the output of L @ L.T .

Reduce uses the PlusMonoid from Arithmetic Semiring to

sum the values of B . The corresponding GBTL code is more

convoluted, even though the logic is identical.

Fig. 8 shows a more complex algorithm in GraphBLAS,

demonstrating nested operator context managers, apply and

reduce operations, constant assignment, and mask comple-

ments. In Fig. 7 the ArithmeticSemiring is brought into

context on lines 20-21, and is subsequently used on lines 22

and 30 for matrix-vector product and vector-vector product op-

erations, respectively. But on line 28 the BinaryOp("Minus")

operator takes precedence over the semiring. In this example,

the operator nesting is primarily for demonstrative purposes,

and is questionably beneficial, since it makes no difference

to the underlying GBTL and does not improve readability.

Nevertheless, this extra nesting is possible and behaves as

expected. On lines 25 and 31, the apply and reduce PyGB

operations are used on vectors, and infer the corresponding

unary and binary operators the same way as before. On lines

33 and 37, vector assignment is performed using the same

square bracket notation used for masks, but providing a Python

slice object instead of a PyGB container. The expression

1 def triangle_count(L):
2 B = gb.Matrix(shape=L.shape, dtype=L.dtype)
3 with gb.ArithmeticSemiring:
4 B[L] = L @ L.T
5 triangles = gb.reduce(B)
6 return triangles

(a) PyGB

1 template<class T, class MatrixT>
2 T triangle_count(MatrixT const &L)
3 {
4 GB::IndexType rows(L.nrows());
5 GB::IndexType cols(L.ncols());
6 MatrixT B(rows, cols);
7 GB::mxm(B, L, GB::NoAccumulate(),
8 GB::ArithmeticSemiring<T>(),
9 L, GB::transpose(L));

10 T triangles = 0;
11 GB::reduce(triangles, GB::NoAccumulate(),
12 GB::PlusMonoid<T>(), B);
13 return triangles;
14 }

(b) GBTL

Fig. 5: Triangle counting algorithm

1 # unary operators
2 "Identity" "AdditiveInverse"
3 "LogicalNot" "MultiplicativeInverse"
4

5 # binary operators
6 "LogicalOr" "LessThan" "Second"
7 "LogicalAnd" "GreaterEqual" "Min"
8 "LogicalXor" "LessEqual" "Max"
9 "Equal" "Times" "Plus"

10 "NotEqual" "Div" "Minus"
11 "GreaterThan" "First"
12

13 # example operator constructors
14 AdditiveInv = gb.UnaryOp("AdditiveInverse")
15 PlusOp = gb.BinaryOp("Plus")
16 TimesOp = gb.BinaryOp("Times")
17 PlusAccumulate = gb.Accumulator(PlusOp)
18 PlusMonoid = gb.Monoid(PlusOp, 0)
19 ArithmeticSR = gb.Semiring(PlusMonoid, TimesOp)

Fig. 6: using GBTL operators in PyGB

new_rank[:] = (1.0 - damping_factor) / rows on line 37

results in the scalar value on the right-hand-side being assigned

to all elements of new_rank . In line 39, the complement of

page_rank is aquired by prepending Python’s ˜ operator to

the vector.

An exhaustive list of the operators defined by GBTL is

presented in Fig. 6. The DSL can only reference operators

defined in GBTL’s algebra.hpp file. If a user needs to write

their own operator while developing an algorithm, they must

directly edit the PyGB C++ code. Future work (see Sec. VIII) is

planned to support operator definitions from PyGB by reifying

Python syntax and translating it to C++.

IV. DESIGN

In this section, we discuss design considerations that influ-

ence the PyGB DSL. Our goal is to keep PyGB as close to the

GraphBLAS math notation as possible, while working within

313

1 def page_rank(graph, page_rank,
2 damping_factor = 0.85,
3 threshold = 1.e-5,
4 max_iters = 100000):
5

6 rows, cols = graph.shape
7 m = gb.Matrix(shape=graph.shape, dtype=float)
8 m[None] = graph
9 gb.utilities.normalize_rows(m)

10 with gb.UnaryOp("Times", damping_factor):
11 m[None] = gb.apply(m)
12

13 page_rank[:] = 1.0 / rows
14 new_rank = gb.Vector(shape=page_rank.shape,
15 dtype=m.dtype)
16 delta = Vector(shape=page_rank.shape,
17 dtype=m.dtype)
18

19 while i != max_iters:
20 with gb.Accumulator("Second"),
21 gb.Semiring(gb.PlusMonoid, "Times"):
22 new_rank[None] += page_rank @ m
23

24 with gb.UnaryOp("Plus", (1.0-damping_factor)/rows):
25 new_rank[None] = gb.apply(new_rank)
26

27 with gb.BinaryOp("Minus"):
28 delta[None] = page_rank + new_rank
29

30 delta[None] = delta * delta
31 squared_error = gb.reduce(delta)
32

33 page_rank[:] = new_rank
34 if (squared_error / rows) < threshold:
35 return page_rank
36

37 new_rank[:] = (1.0 - damping_factor) / rows
38 with gb.BinaryOp("Plus"):
39 page_rank[˜page_rank] = page_rank + new_rank

Fig. 7: PageRank in PyGB

the constraints of the Python language. Python’s magic methods

and dynamic module imports allow for a domain-specific

language with cleaner syntax and less boilerplate than C++,

increasing ease of use and productivity during the prototyping

phase of development. In certain circumstances, we are forced

to make pragmatic choices due to limitations of the Python

interpreter. Magic methods [18] are a syntax-driven override of

certain elements of the Python syntax, such as operators and

constructors, and module imports allow processing of file-sized

blocks of code. In this section, we focus on the design decisions

taken in PyGB, and in Sec. VIII we outline future directions

of PyGB design that can provide finer-grained control over

PyGB syntax.

The Python DSL exposes nearly all of GBTL’s opera-

tions through expressions with return values as opposed to

the pass-by-reference signatures used in GBTL. Standard

matrix algebra is performed via overriding the +, *, @

operators. The assign and the extract operations are

performed through the __setitem__ (C[i,j] = A) and

the __getitem__ (C = A[i,j]) magic methods, respec-

tively. The apply (C[M] = apply(A)) and the reduce

(c = reduce(A)) operations are simply function calls. An

unfortunate and notable absence from the Python language

1 template<typename MatrixT, typename RealT = double>
2 void page_rank(MatrixT const &graph,
3 GB::Vector<RealT> &page_rank,
4 RealT damping_factor = 0.85,
5 RealT threshold = 1.e-5,
6 unsigned int max_iters = 100000)
7 {
8 using T = typename MatrixT::ScalarType;
9

10 GB::IndexType rows(graph.nrows()), cols(graph.ncols());
11 GB::Matrix<RealT> m(rows, cols);
12

13 GB::apply(m, GB::NoMask(), GB::NoAccumulate(),
14 GB::Identity<T,RealT>(), graph);
15

16 GB::normalize_rows(m);
17

18 GB::apply(m, GB::NoMask(), GB::NoAccumulate(),
19 GB::BinaryOp_Bind2nd<RealT,
20 GB::Times<RealT>>(damping_factor), m);
21

22 GB::BinaryOp_Bind2nd<RealT, GB::Plus<RealT> >
23 add_scaled_teleport((1.0 - damping_factor)
24 / static_cast<T>(rows));
25

26 GB::assign(page_rank, GB::NoMask(), GB::NoAccumulate(),
27 1.0 / static_cast<RealT>(rows),
28 GB::AllIndices());
29

30 GB::Vector<RealT> new_rank(rows), delta(rows);
31

32 for (GB::IndexType i = 0; i < max_iters; ++i)
33 {
34 GB::vxm(new_rank, GB::NoMask(), GB::Second<RealT>(),
35 GB::ArithmeticSemiring<RealT>(),
36 page_rank, m);
37

38 GB::apply(new_rank, GB::NoMask(), GB::NoAccumulate(),
39 add_scaled_teleport, new_rank);
40

41 RealT squared_error(0);
42

43 GB::eWiseAdd(delta, GB::NoMask(), GB::NoAccumulate(),
44 GB::Minus<RealT>(), page_rank, new_rank);
45

46 GB::eWiseMult(delta, GB::NoMask(), GB::NoAccumulate(),
47 GB::Times<RealT>(), delta, delta);
48

49 GB::reduce(squared_error, GB::NoAccumulate(),
50 GB::PlusMonoid<RealT>(), delta);
51

52 page_rank = new_rank;
53 if (squared_error/((RealT)rows) < threshold)
54 {
55 break;
56 }
57 }
58

59 GB::assign(new_rank, GB::NoMask(), GB::NoAccumulate(),
60 (1.0 - damping_factor)/static_cast<T>(rows),
61 GB::AllIndices());
62

63 GB::eWiseAdd(page_rank, GB::complement(page_rank),
64 GB::NoAccumulate(), GB::Plus<RealT>(),
65 page_rank, new_rank);
66 }

Fig. 8: PageRank in GBTL

314

is an equivalent to the assignment operator of C++. In the

Python expression C = A @ B , the reference C to the pre-

existing GBTL container is lost, whereas the equivalent C++
code invokes the operator=() method on C , preserving

the reference to C . Although PyGB’s default behavior of

constructing a new output container is usually correct, it may

be an efficient use of resources. Relying on several Python

syntactical tricks to reuse containers when possible allows the

user to write better-performing code.

Modifying an existing container in-place is desirable when

accumulating the result of a sequence of operations or

merging multiple containers. To retain a reference to the

original container in PyGB, the user can write the expression

C[None] = ... to invoke the __setitem__ magic method

on C . The None term corresponds to the GBTL class

NoMask , and it has no effect on the assigned values, but

the invocation of the magic method before assignment ensures

that the existing C is modified rather than replaced by an

entirely new container. The += operator can be used in

conjunction with a binary operator to add right-hand-side values

to elements already in the left-hand-side container. This will

invoke Python’s __iadd__ method on C . PyGB users will

need a basic understanding of Python and C++ object lifecycles

to know when to use C = A @ B vs. C[None] = A @ B , as

the peformance differences between the two are not negligible.

PyGB uses deferred operator evaluation to enable the

expression syntax without excessive copying of data. A naive

implementation of C[None] = A + B might first construct a

temporary matrix to store the results of A + B , and then

assign that temporary matrix into C . This will produce the

correct output, and calling each C++ operation at the site of the

corresponding Python method significantly reduces complexity

of the DSL. But the creation of a temporary matrix is costly. To

eliminate the copy, the A + B operator returns an expression

object wrapping the A and B operands, which then evaluates

A + B inside of C.__setitem__() , without temporaries. The

expression object also captures the value of the binary operator

from the context of the A + B expression (the binary operator

is set in an enclosing with block) to allow for lazy evaluation.

Our lazy expression evaluation paradigm closely corresponds

to expression templates in C++ [20], [21] where a compile-time

type representation of an expression is generated. In Python,

our expression objects are runtime objects that are created

through Python syntax reification, using magic methods.

In some circumstances, it is not possible to avoid the

intermediate evaluation step due to restrictions of GBTL’s

evaluation strategy. For example, if a user calculates a matrix-

matrix product and assigns it as a submatrix to a larger output

matrix, they may write the PyGB code C[2:4,2:4] = A @ B .

While this PyGB code appears like it should evaluate without

a copy, GBTL has no way to express it as a single merged

operation. GBTL instead requires two separate operation calls,

one to mxm and then one to assign . This behavior is made

opaque to the user by the DSL. There are several other instances

throughout the DSL where this extraneous copy is forced. If

at some point in the future GBTL enables more sophisticated

fusing of operations, it will be trivial to add the support to

PyGB. Furthermore, a future GBTL implementation may be

able to seamlessly fuse such separate operations through its

own lazy evaluation techniques, and such optimization would

be immediately available to PyGB users through compiled

GBTL code.

Our lazy evaluation system can lead to expressions being

left unevaluated indefinitely, so we define a set of terminating

operations that force expression evaluation. Any operation that

treats the expression like a matrix (assigning to it, extracting

from it, combining it with another container) will cause it

to be evaluated. The non-blocking mode specified by The

GraphBLAS C API has the potential to further improve the

performance of lazy evaluation through operation fusion (for

example, in the case of element assignment into a sparse

matrix). Unfortunately, this non-blocking functionality is not

implemented in GBTL, so further exploration of lazy evaluation

is left for future work. The deferred expression evaluation

system currently employed by PyGB is extensible enough to

incorporate future non-blocking optimizations that are added

into GBTL.

When the user writes an expression such as C = A @ B ,

the semiring to be used must be declared elsewhere. The tactic

of passing the semiring object directly to the mxm function,

used in GBTL, cannot be used with the expression (operator)

syntax we support in PyGB. An alternative method would

be to configure all operators at the global scope where every

GraphBLAS operation has access to them, but this approach

removes functionality present in the C++ operations. Many of

the example algorithms use a variety of operators, and mixing

and matching them would be more difficult with the approach

of a globally determined environment. Even though a semiring

may not be used for every operation within a routine, it is often

used more than once in close proximity. Specifying the semiring

once at the start of a code block where it is used is more concise

and easier to understand. Python’s context managers provide

an abstraction for encapsulating some context within a block.

In PyGB, following code brings an operator (monoid in this

case) into context:

with Semiring(PlusMonoid, "Times"): C = A @ B

Behind the scenes, this with statement modifies a global

stack of operators. Every operation requires an operator of a

specific type. When an operation is called, it searches through

the stack to find the first operator that it can use. The expression

C = A + B requires a binary operator. When the expression is

evaluated, the __add__ method finds the BinaryOp , Monoid

or Semiring object nearest to its scope. While this approach

is intuitive for the types of algorithms we present in this paper,

some assumptions must be made about the program execution.

There is currently no support for multi-threading with PyGB.

In multi-threaded environment, each thread would need to keep

track of its own operator stack and other complications would

ensue. Due to the Global Interpreter Lock (GIL) in Python,

many of the benefits of writing multi-threaded code are already

315

lost2. To circumvent the GIL, many Python programmers use

the multiprocessing library, which spawns new processes

with isolated memory spaces. The use of this library does not

interfere with the context managers in PyGB, since the global

operator stack is unique to each process. Last, since PyGB

compiles to GBTL, it may be more suitable in some situations

to use a multithreaded GBTL backend instead of multithreading

in Python, but there may be circumstances where a Python

program may require sequential GraphBLAS in multiple Python

threads.

We discuss some further design issues in Sec. VIII, where

we consider near-future PyGB extension options. In the next

section, we outline how PyGB DSL is translated to GBTL,

compiled, and executed from Python environment.

V. IMPLEMENTATION

The choice of C++ to implement GBTL was a practical one.

C++ is “close to the metal,” meaning there are fewer levels of

abstraction between source code and machine instructions than

in higher level languages. C++’s support for templated functions

and classes provides a mechanism for generic programming.

This means that containers and operations can be written

once and reused with different data types. Because template

instantiation happens at compile time, there is no runtime

performance cost for generic typing. But the dynamic execution

model PyGB requires these templated GBTL modules be

compiled on the fly. The DSL must inform the compiler which

version of the source code should be built at runtime, since

Python does not check data types ahead of time.

Python is dynamically typed, which means that variable

types are checked at runtime instead of compile time. Python

has tools for manually checking the types of objects, such as

the built-in isinstance and type functions, enabling us to

implement wrapper functions that pass the Python data type

information to the C++ preprocessor. Many high-performance

Python libraries allow the programmer to specify a wider range

of data types. For example, the NumPy library provides the

dtype class describing the type, size, and other metadata

of a data object. All common C++ Plain Old Data Types

have an equivalent NumPy dtype class (bool , int8_t ,

. . . , int64_t , uint_8 , . . . uint_64 , float , double).

PyGB uses NumPy’s dtype class to map container types

to GBTL backend template types. When two containers of

different types are combined in a binary operation, an upcast

will be performed automatically according to C++’s upcasting

rules, unless the output type is specified by the user. If the data

type is not specified during container construction, the DSL

will fall back to default Python types: 64-bit int s and 64-bit

float s. The user should explicitly specify the data type at

construction time if performance is a concern.

If the number of combinations of data types is limited,

precompiling a binary with instantiations for every combination

of data types is feasible. But the number of combinations of

typed operations grows exponentially with the number of data

2https://wiki.python.org/moin/GlobalInterpreterLock

1 with ArithmeticSemiring:
2 C[M] = A @ B

↓

ex
p

re
ss

io
n

co
n

st
ru

ct
io

n

1 def __matmul__(A, B):
2 semiring = get_semiring()
3 return MXM(semiring, A, B)

↓
1 class MXM(Expression):
2 def __init__(self, semiring, A, B):
3 self.semiring = semiring
4 self.A = A
5 self.B = B

↓
1 def __setitem__(C, M, expr):
2 expr.eval(C, M)

↓

m
x

m
ev

al
u

at
io

n

1 class MXM(Expression):
2 def eval(self, C, M):
3 operate(func = "mxm",
4 op = self.semiring,
5 A = self.A,
6 B = self.B,
7 C = C,
8 M = M)
9 return C

↓
d

is
p

at
ch

1 def operator(func, **kwargs):
2 for kw, arg in kwargs.items():
3 kwargs[kw] = arg.dtype
4 m = get_module(kwargs)
5 getattr(m, func)(**kwargs)

↓

C
++

m
o

d
u

le
re

tr
ie

v
al

1 def get_module(kwargs):
2 mod = hash(kwargs)
3 if mod in modules:
4 return modules[mod]
5 elif os.path.isfile(mod):
6 return import_module(mod)
7 else:
8 subprocess.call([
9 "g++ {-1} -o {0}.so".format(mod),

10 *("-D{0}={1}".format(kw, arg)
11 for kw, arg in kwargs.items())
12])
13 return import_module(mod)

↓

g
cc

1 g++ -std=c++14 operation_binding.cpp -o <mod>.so
2 -DA_TYPE=int64_t -DB_TYPE=int64_t -DC_TYPE=int64_t
3 -DADD_BINOP=Plus -DIDENTITY=0 -DMULT_BINOP=Times

↓

o
p
e
r
a
t
i
o
n
b
i
n
d
i
n
g
.
c
p
p

1 #if defined(A_TYPE)
2 typedef GB::Matrix<A_TYPE> AMatrixT;
3 #endif
4 #if defined(MONOID) || defined(SEMIRING)
5 typedef GraphBLAS::ADD_BINOP<A_TYPE> BinaryOp;
6 GEN_GB_MONOID(Monoid, GB::ADD_BINOP, IDENTITY)
7 typedef Monoid<C_TYPE> MonoidT;
8 #endif
9 #if defined(SEMIRING)

10 GEN_GB_SEMIRING(Semiring, Monoid, GB::MULT_BINOP)
11 typedef Semiring<A_TYPE, B_TYPE, C_TYPE> SemiringT;
12 #endif

Fig. 9: PyGB execution model

316

types. The mxm operation takes four containers, two inputs,

an output, and a mask. Each of these can be any of the 11

plain old data types, resulting in 114 combinations. From

the 17 built-in binary operators (Fig. 6), there are 17 ∗ 113

accumulator types (specifying two input and one output type),

and 1020 semiring types. Each input container can also be

transposed, and the complement of the mask can be taken to

further increase the number of combinations. There are roughly

6 trillion combinations of template parameters for mxm alone,

making it infeasible to precompile GBTL templates ahead of

time.

While developing the DSL, we discussed possible

workarounds for this problem. One solution is to define a C++
union type that stores any of the 11 predefined data types and

use GBTL containers of that union type. This approach adds

execution overhead and inefficiency, since an additional step is

required to look up the container element values. It also prevents

us from extending the DSL in the future (see Sec. VIII) to

support user-defined types and operators. Another option is

to incorporate the Python C API into the C++ binding code,

so that container templates are instantiated with the generic

PyObject* data type. This approach is much more promising

for adding support for user-defined data types. Unfortunately

the performance will be even worse, since PyObject stores

auxiliary data for the Python interpreter beyond the primitive

value. The solution we settled on was to compile individual

GBTL functions just-in-time (JIT) as they are executed in the

DSL.

When a binary operation is called from PyGB, the data

types of each operand is checked to determine the output type

through standard typecasting rules. Then PyGB checks for a

compiled C module matching the operation types, first looking

in memory and then on disk. If the module has not been

compiled, PyGB will instantiate a templated source C++ file

with the corresponding data types, compile it with gcc , and

dynamically load it into the program. The cost of compiling

the code can be amortized over future runs of the same code.

Furthermore, the program caches the module in memory after

it has been imported once.

This compartmentalization of operations into separate mod-

ules makes the compiled binaries more reusable, but also causes

the program dependencies to grow. A planned feature of the

lazy evaluation system would allow a series of operations to

be deferred until a single binary module containing all the

previously deferred operations is compiled. This improvement

will allow a chain of steps in an algorithm to be compiled into a

single module. Grouping more operations into a single module

will reduce the overhead of function redirection in Python and

shorten compile times at the expense of reusability. Having

this control over the granularity of module compilation will

enable us to experiment in the future with more sophisticated

compiler optimizations and extensions to GBTL including

template expressions and operation fusion.

Fig. 10: Performance of four algorithms on Erdős-Rényi graphs

with density |E| = O(|V |1.5)

317

Fig. 11: Operating on Matrix objects of various sizes, all

with density |E| = O(|V |1.5)

VI. EXPERIMENTAL EVALUATION

Figure 11 shows the time it takes C++ and Python to read

a matrix from a file in disk, construct it from a container

(list in Python and std::vector in C++) in memory, and

then extract the data back out. The memory management is

currently one of the largest penalties PyGB over native GBTL.

The file read cost dominates the Python times, but once the

matrix has been constructed, operations performed on it from

PyGB and GBTL are comparable in performance.

To compare the performance of C++ with Python and measure

the abstraction penalty, we implement four algorithms in both

GBTL and PyGB and compare the performance with matrices

of increasing size. There are three versions of the experiment.

In the first version, Python calls C++ operations that were

compiled separately, using individual bindings and Python

loops. In the second version, Python calls a complete C++
algorithm where the data between GBTL calls is handled by

C++. The third version is GBTL C++ native code timed in C++.

We implement breadth-first search, PageRank, single-source

shortest path, and triangle counting algorithms, and compare

the performance for these three versions in Fig. 10.

Breadth-first search has an outer loop that performs assign

and mxv operations, iterating until every vertex has been

explored by the frontier vector. PageRank iterates until the

rank vector converges to a fixed point, with some specified

threshold tolerance. It performs seven GBTL operations in

the while loop. Single-source shortest path performs a single

mxv operation in a loop. Last, triangle counting performs

a sequence of operations with no loop. The benchmarks in

Fig. 10 indicate a performance penalty associated with the

extra Python function redirects, but that penalty becomes less

significant as the input scales. This result is expected since the

percentage of time spent in GBTL operations increases with

input size while the PyGB abstraction penalty remains constant.

These experiments show that PyGB is a viable approach to

high-performance prototyping with GraphBLAS.

VII. CONCLUSION

In summary, we have been able to develop a high-level

domain-specific language in Python, a popular language for

rapid prototyping and scientific computing. The DSL uses an

expression syntax that resembles the mathematical notation laid

out by the GraphBLAS C API, making it easier to read and

write than GBTL. Within the DSL, we use deferred evaluation

to enable this syntax, as well as open the door for future work

(see Sec. VIII) on the GraphBLAS non-blocking mode.

The implemention of PyGB’s interface with GBTL dynam-

ically determines the operand types when an expression is

evaluated, and generates templated C++ source code that gets

compiled into a binary and executed. This approach allows

PyGB to be extensible and support user-defined types and

operators in the future (see Sec. VIII). It also allows for code

reuse in routines that use the same subset of operations and

results in less code to compile when slight modifications are

made to PyGB code during development.

The performance of PyGB is comparable to GBTL in the

four algorithms that we benchmarked. The overhead of the

Python function dispatches is visible at small sizes, but becomes

negligible as the matrix size increases. We therefore believe

that the DSL is an effective alternative to GBTL that achieves

the goals of implementing the functionality of GraphBLAS

and simplifying the development of GraphBLAS routines.

VIII. FUTURE WORK

Currently, the biggest hindrance to using PyGB is the

complexity of the build system and GBTL dependencies

required by the Python library. The library depends on gcc and

cmake. Making PyGB portable and easily installable through

Python’s package manager pip will require us to revisit our

compiler toolchain.

Several major features of GBTL are still missing from PyGB.

The ability for users to define custom data types for the Matrix

and Vector classes paves the road for future implementions of

complex numbers and even more exotic types. One interesting

prospect is to define sets as the data type of a matrix, and a

semiring that performs set unions and intersections. Another

missing feature is user-defined operators for use in the PyGB

operations. Implementing this feature requires either using an

intermediate language such as Cython or forcing the user to

write code directly in C++.

Performance of PyGB is a top priority. There are a few

ways to address the disparity between Python and C++ when

it comes to moving data around in memory. Since a common

scenario when using the PyGB will be getting data into and out

of the Matrix and Vector objects, it is desirable to make

that operation faster. Figure 9 shows that the majority of the

time getting data into a PyGB container comes from reading

from disk. C++ is much faster at this operation, and wrapping

a C++ function to directly load a matrix instead of first loading

into Python lists would be trivial.

There are also circumstances where a matrix already lives in

memory in a different container. Python has an array buffer API

for sharing contiguous blocks of memory that would enable

318

PyGB to construct a container without copying all the data.

This complicates resource ownership and garbage collection

between Python and C++, but is something worth exploring.

ACKNOWLEDGMENTS

Scott McMillan was supported by the Department of Defense

under Contract No. FA8702-15-D-0002 with Carnegie Mellon

University for the operation of the Software Engineering

Institute, a federally funded research and development cen-

ter [DM18-0390]. The authors affiliated with DOE Pacific

Northwest National Laboratory (PNNL) were supported in

part by the Defense Advanced Research Projects Agency’s

(DARPA) Hierarchical Identify Verify Exploit Program and

the High Performance Data Analytics Program (HPDA) at

PNNL. PNNL is operated by Battelle Memorial Institute under

Contract DE-AC06-76RL01830. The authors affiliated with the

University of Washington were in part supported by the NSF

grant 1642439.

REFERENCES

[1] “The Graph BLAS Forum,” 2018. [Online]. Available: http://graphblas.
org/

[2] T. Mattson, D. Bader, J. Berry, A. Buluç, J. Dongarra, C. Faloutsos,
J. Feo, J. Gilbert, J. Gonzalez, B. Hendrickson, J. Kepner, C. Leiserson,
A. Lumsdaine, D. Padua, S. Poole, S. Reinhardt, M. Stonebraker,
S. Wallach, and A. Yoo, “Standards for Graph Algorithm Primitives,” in
Proc. IEEE High Performance Extreme Computing Conference (HPEC),
Sep. 2013, pp. 1–2.

[3] J. Kepner, P. Aaltonen, D. Bader, A. Buluç, F. Franchetti, J. Gilbert,
D. Hutchison, M. Kumar, A. Lumsdaine, H. Meyerhenke, S. McMillan,
C. Yang, J. D. Owens, M. Zalewski, T. Mattson, and J. Moreira,
“Mathematical Foundations of the GraphBLAS,” in Proc. IEEE High
Performance Extreme Computing Conference (HPEC), Sep. 2016, pp.
1–9, 00018.

[4] J. Kepner, “GraphBLAS Mathematics - Provisional Release 1.0 -,”
GraphBLAS.org, Tech. Rep., Apr. 2017. [Online]. Available: http:
//www.mit.edu/∼kepner/GraphBLAS/GraphBLAS-Math-release.pdf

[5] A. Buluç, T. Mattson, S. McMillan, J. Moreira, and C. Yang,
“The GraphBLAS C API Specification,” GraphBLAS.org, Tech.
Rep., 2017. [Online]. Available: https://people.eecs.berkeley.edu/∼aydin/
GraphBLAS API C.pdf

[6] Jeremy Kepner and John Gilbert, Eds., Graph Algorithms in the Language
of Linear Algebra, ser. Software, Environments and Tools. Society for
Industrial and Applied Mathematics, Jan. 2011.

[7] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. S. Duff, “A Set of
Level 3 Basic Linear Algebra Subprograms,” ACM Trans. Math. Softw.,
vol. 16, no. 1, pp. 1–17, Mar. 1990.

[8] A. Buluç and J. R. Gilbert, “The Combinatorial BLAS: design, imple-
mentation, and applications,” International Journal of High Performance
Computing Applications, vol. 25, no. 4, pp. 496–509, Nov. 2011.

[9] T. Davis, “SuiteSparse : A Suite of Sparse Matrix Software,”
http://faculty.cse.tamu.edu/davis/suitesparse.html, 2018.

[10] V. Gadepally, J. Bolewski, D. Hook, D. Hutchison, B. Miller, and J. Kep-
ner, “Graphulo: Linear Algebra Graph Kernels for NoSQL Databases,” in
Proc. IEEE International Parallel and Distributed Processing Symposium
Workshop, May 2015, pp. 822–830.

[11] J. Kepner, W. Arcand, W. Bergeron, N. Bliss, R. Bond, C. Byun,
G. Condon, K. Gregson, M. Hubbell, J. Kurz, A. McCabe, P. Michaleas,
A. Prout, A. Reuther, A. Rosa, and C. Yee, “Dynamic distributed
dimensional data model (D4M) database and computation system,” in
Proc. IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Mar. 2012, pp. 5349–5352.

[12] K. Ekanadham, B. Horn, J. Jann, M. Kumar, J. Moreira, P. Pattnaik,
M. Serrano, G. Tanase, and H. Yu, “Graph Programming Interface:
Rationale and Specification,” IBM Research Division, Thomas J.Watson
Research Center, P.O. Box 218, Yorktown Heights, NY 10598 USA,
Tech. Rep. RC25508 (WAT1411-052), Nov. 2014.

[13] M. J. Anderson, N. Sundaram, N. Satish, M. M. A. Patwary, T. L.
Willke, and P. Dubey, “GraphPad: Optimized Graph Primitives for Parallel
and Distributed Platforms,” in Proc. IEEE International Parallel and
Distributed Processing Symposium (IPDPS), May 2016, pp. 313–322.

[14] P. Zhang, M. Zalewski, A. Lumsdaine, S. Misurda, and S. McMillan,
“GBTL-CUDA: Graph Algorithms and Primitives for GPUs,” in
Proc. IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). IEEE, May 2016, pp. 912–920.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=7529957

[15] “GraphBLAS Template Library (GBTL),” https://github.com/cmu-sei/gbtl,
2018.

[16] “Python,” https://www.python.org/, 2018.
[17] “Jupyter,” http://jupyter.org/, 2018.
[18] B. Klein, “Magic methods and operator overloading,” https://www.

python-course.eu/python3 magic methods.php, 2018.

[19] “ contextlib — Utilities for with -statement contexts,” https://
docs.python.org/2/library/contextlib.html, 2018.

[20] T. Veldhuizen, “Expression Templates,” C++ Report, vol. 7, no. 5, pp.
31, 26, 1995.

[21] D. Vandevoorde and N. Josuttis, C++ Templates – the Complete Guide.
Addison-Wesley, 2003.

319

