2018 IEEE International Parallel and Distributed Processing Symposium Workshops

PyGB: GraphBLAS DSL in Python
with Dynamic Compilation into Efficient C++

Jesse Chamberlin®, Marcin ZalewskiT, Scott McMillan¥, and Andrew Lumsdaine* '
jessec18 @uw.edu, marcin.zalewski @pnnl.gov, smcmillan@sei.cmu.edu, andrew.lumsdaine @pnnl.gov

*University of Washington
Seattle, Washington, USA

Abstract—We present PyGB, a high-level Python domain-
specific language (DSL) for GraphBLAS building blocks for
graph algorithms. GraphBLAS is based on a small number
of linear algebra operations, and it is described using math-
ematical notation and concepts. However, the concrete real-
izations of GraphBLAS concentrate on efficiency and widely
usable programming interfaces. The GraphBLAS C language
API standardized by the GraphBLAS Forum is the major
example of such a realization, and our GraphBLAS Template
Library (GBTL) implemented in the C++ language is another.
PyGB exposes the C++ interface of GBTL through a DSL that
leverages Python’s mature scientific computing ecosystem and
high-level syntax. The syntax of PyGB more closely resembles
the GraphBLAS mathematical notation than GBTL. The DSL
dispatches to dynamically compiled templated classes to achieve
comparable performance to the native GBTL code. We highlight
the features of PyGB through code examples and discuss how
Python’s syntax and dynamic execution enable us to provide
the high-level abstraction with minimal performance penalty.
We demonstrate the stages of execution, from type inference to
template compilation, to dynamic linking and invocation from
the Python interpreter. Our experimental evaluation shows that
for sufficiently large inputs, the overhead of PyGB is negligible
and compilation times are not worse than for native GBTL
implementation. Last, we outline concrete features we plan to
implement in the future to extend PyGB.

Index Terms—GraphBLAS, HPC, C++, graph algorithms,
Python, DSL

I. INTRODUCTION

GraphBLAS [1], [2], [3], [4], [5], [6] is an emerging
set of building blocks for graph algorithms, based on a
small number of linear algebra operations. In the context
of GraphBLAS, a graph is represented as an adjacency (or
incidence) matrix, and operations on graphs correspond to
linear algebra operations on the graph matrix. In contrast
to BLAS (Basic Linear Algebra Subprograms) [7], which
targets numerical computation, GraphBLAS parameterizes its
operations with arbitrary semirings, allowing a wide range of
computations on the edges of the graph. For example, Fig. 1
shows how a graph represented by an adjacency matrix can be
multiplied by a vector representing a frontier of a breadth-first
search (BFS) to obtain the next frontier using the semiring of
Boolean algebra.

The GraphBLAS Forum [1], a diverse group with represen-
tatives across government, academia and industry, standardized
a GraphBLAS API for the C programming language [5].

978-1-5386-5555-9/18/$31.00 ©2018 IEEE
DOI 10.1109/IPDPSW.2018.00059

TNorthwest Institute for Advanced Computing
Pacific Northwest National Laboratory
Seattle, Washington, USA

310

fSoftware Engineering Institute
Carnegie Mellon University
Pittsburgh, PA, USA

start vertex
. startvertex
1234567 VY

end vertex
NOoO oA W=
°
e oo

Fig. 1: One ply of BFS from source vertex 4 [4]

Av

1 : graph, frontier, levels
2 depth < 0

3 while nvals(frontier) > 0:

4 depth < depth + 1

s levels<frontier,merge> < depth

6 frontier<—levels,replace> <+ graph? @&.® frontier
7 where &.® = @.Q)(LogicalSemiring)

(a) Pseudocode

1 def bfs(graph, frontier, levels):

2 depth = 0

3 while frontier.nvals > 0:

4 depth += 1

5 levels[front][:] = depth

6 with gb.LogicalSemiring, gb.Replace:

7 frontier[“levels] = graph.T @ frontier

(b) PyGB

template<class Mat, class Frontier, class Levels>

void bfs(Mat& graph, Frontier frontier, Levels& levels)

1
2
3
4 GB::IndexType depth = 0;
5 while (frontier.nvals(Q) > 0) {
6 ++depth;

7 GB::assign(levels, frontier, GB::NoAccumulate(),
8 depth, GB::AllIndices(), false);

9 GB: :mxv(frontier, GB::complement(levels),

10 GB: :NoAccumulate(),
11 GB: :LogicalSemiring<GB: : IndexType>(),
12 GB: :transpose(graph), frontier, true);
13}
14}

(c) C++

Fig. 2: BFS in math pseudocode, PyGB, and C++

IEEE
computer
® psoaety

TABLE I: Comparison of GraphBLAS operations written in mathematical notation from C API [5] and PyGB notation

PyGB Notation

Operation Name Mathematical Notation
mxm C(M,z) = C o
mxv w(m,z) = w O
eWiseMult CM,z) = C o
w(m,z) = w O

eWiseAdd C(M,z) = C o
w(m,z) = w O

reduce (row) w(m,z) = w O
reduce (scalar) s = s ©
s = s ©

apply C(M,z) = C o
w(m,z) = w 0O

transpose C(M,z) = C o
extract C(M,z) = C o
w(m,z) = w O

C(M72>(l,J) = C@,j) ©

w(m,2)(i) = w(i) ©

Currently, the SuiteSparse library is the only complete imple-
mentation of the C API. In addition, there are several projects
developing GraphBLAS implementations [8], [9], [10], [11],
[12], [13], including our C++ GraphBLAS Template Library
(GBTL) [14], [15]. Despite the ongoing efforts, there is no
easily accessible, high-performance DSL for GraphBLAS.
The main contribution of this paper is such a GraphBLAS
DSL, implemented in Python [16] and called PyGB (Python
GraphBLAS)!, that provides a high-level programming inter-
face, and at the same time dynamically compiles to a highly-
performing C++ implementation. Figure 2 shows the simplified
BFS algorithm in math-based pseudocode based on the notation
in C API Specification (Fig. 2a), the corresponding code in
PyGB, and the C++ code in GBTL. PyGB provides a notation
that is very close to the pseudocode, and, at the same time,
it achieves the efficiency of the GBTL code to which it is
compiled.

PyGB leverages the advantages of Python, which has a strong
foothold in the scientific community. A mature ecosystem of
existing matrix and graph libraries and tools is made avail-
able by Python. The pseudocode-like syntax and interpreted
execution model make Python a popular language for rapid
prototyping. Tools such as Jupyter [17] make it possible to
prototype GraphBLAS code interactively from a web browser.
Python is also well-suited for piping data between disparate
libraries and tools. PyGB provides convenience constructors
for copying data from NumPy arrays, SciPy sparse matrices,
and NetworkX graphs. In the future (see Sec. VIII) we plan
to further integrate PyGB with the Python HPC stack. Python
provides a large set of overloadable operators, which we utilize
to provide simple, expressive syntax that is as powerful as the
more complex syntax of GBTL and the C API. Last, we make
PyGB efficient and future proof by compiling operations in

IRepository at https://github.com/jessecoleman/gbtl-python-bindings.

Ac.@B C[M, zZ] =A @B
A®.Qu wim, z] = ACQu
A®B C[M, z] =A *B
u®v wim, z] =u * v
A®B C[M, z] =A +B
udv wm, z] =u+ v
[®;A(:5)] wlm, z] = reduce(monoid, A)
[®:,;A(i,5)] | s = reduce(A)
[Biu(i)] s = reduce(u)
fu(A) C[M, z] = apply(A)
fu(u) wim, z] = apply(w)
AT CIM, z] = A.T
A(i,5) CMM, z] = A[i, jI
u(i) wim, zI[i, j1 = u
A CM, z]1[i, j] = A
u wim, z]J[i] =u

311

the Python DSL to GBTL code, taking a similar approach to
other high-performance Python libraries that rely on lower-level
languages for performance-critical sections of code.

Contributions:

« We provide PyGB, a high-level Python DSL for Graph-
BLAS that closely corresponds to pseudocode math-
like notation. Our DSL relies on Python syntax features
such as magic methods [18] and context managers [19]
and integrates with NumPy, SciPy and NetworkX to
deliver a user-friendly development experience. We give
an example-driven overview of the DSL in Sec. III and
we discuss design considerations in Sec. IV.

o PyGB is dynamically compiled to GBTL (see Sec. V). The
dynamic compilation process keeps track of C++ types and
templates that have been already compiled, and invokes
the C++ compiler as necessary, dynamically binding the
symbols in the binary files generated by the C++ compiler.
While the current implementation compiles to GBTL, our
method can be generalized to target any other library
written in C or C++, making our DSL future proof by
being able to draw upon developments in the field. Our
methodology can also be used to develop other DSLs in
Python.

« We show that the overhead of PyGB becomes negligible as
the problem size scales. In Sec. VI, we present empirical
evidence by evaluating several algorithms, comparing the
run time of PyGB generated code where outer loops are
performed in Python, PyGB code where outer loops are
performed in C++, and native GBTL code.

II. GRAPHBLAS MATHEMATICAL NOTATION

The GraphBLAS C API Specification is based on the
mathematical behavior of the GraphBLAS operations that
was defined by Kepner, et al. [3]. The specification added

a number of extensions and provides a mathematical notation
that captures this behavior. The C API Specification notation
for many of the GraphBLAS operations can be found in column
1 of Table I. As in the math document, the operations denoted
by & and ® on the right-hand side are analogous to traditional
arithmetic addition and multiplication from linear algebra, but
can be replaced by any pair of semiring operators where the
identity of & is the annihilator of ®. Although not shown in the
table, input matrices A and B may be optionally transposed. An
optional accumulate specified by © allows the user to specify
a separate binary operator that governs how the results of the
operation are “added” to existing values in the output object.
Fig. 4a has examples of both the transpose and accumulation
operations in PyGB and GBTL for comparison.

The other major extension supported by the specification is
the use of a write mask and replace flag. In the expression
C(M, z) the output matrix, C, is masked by a boolean matrix
M of the same dimension whose values control which elements
resulting from the operation are written to C. The elements
of the mask can be optionally complemented to invert the set
of elements that can be written. When specified, the “replace”
flag, z, indicates that all values in the output object are cleared
(“zeroed”) prior to the masked assignment. When the z flag is
not specifed and a mask has been specified, “merge” behavior
occurs where elements in the output matrix that are “masked
out” retain their original contents.

Although there is only one official language specification at
this time, it is intended that all compliant implementations of
GraphBLAS adhere to the behavior defined by this notation
regardless of the language. The goal of this Python DSL is to
not only adhere to the behavior specified but also to replicate
the mathematical notation. The latter will lessen the learning
curve as the notation is similar to linear algebra. It also results
in a simpler more compact notation than has been possible
with the C API, which is characterized by function signatures
with many parameters which bear little resemblance to the
mathematical notation.

III. PYGB

The Matrix and Vector classes in PyGB contain mutable
graph data which can be constructed both from sparse data
in coordinate format and dense data in 2D array format, as
in Fig. 3a. The user may optionally specify a data type to
cast the values to. Containers can also be constructed from
NumPy arrays, SciPy.sparse matrices, and NetworkX graphs
as in Fig. 3b. This allows the user access to a wide range of
well documented graph-generating routines. PyGB currently
performs a data copy at construction, but methods are being
explored to avoid this (see Sec. VIII).

Matrices and Vectors act as the operands to PyGB operation
functions. Table I provides a comprehensive list of the opera-
tions defined by GraphBLAS and their equivalent PyGB syntax.
At execution, these expressions are evaluated by machine code
that is compiled on-demand based on operand data types. With
all expensive matrix/vector operations optimized by the DSL,
higher-level logic such as outer loops and control flow can be

312

1 #
am

construction from sparse data
= gb.Matrix((vals, (row_idx, col_idx)), shape=(r, c))

3v = gb.Vector((vals, idx), shape=(1,))
4 # construction from dense data
sm = gb.Matrix([[1, 2, 31, [4, 5, 6], [7, 8, 91D
¢ v = gb.Vector([1, 2, 3, 4, 51)
(a) copy from Python lists
1 # construction from NumPy random matrix
>m = gb.Matrix(np.random.rand(3, 3))
3 # construction from SciPy sparse diagonal matrix

4m = gb.Matrix(sc.sparse.diags([1, 1, 1], [-1, O, 1],
5 shape=(3,3)))
6 # construction from NetworkX balanced tree

7m = gb.Matrix(nx.balanced_tree(r=4, h=8)))

(b) copy from other library containers

Fig. 3: Constructing PyGB containers

written in concise Python syntax with minimal overhead. We
will demonstrate some of the more complex syntax of PyGB
through code examples.

The single-source shortest path algorithm (Fig. 4a) demon-
strates the use of a semiring and accumulator used in con-
junction. path is multiplied by graph.T (transpose) and

then accumulated back into path . Inside the with block, a
PyGB pre-defined semiring and an anonymous user-defined
accumulator are brought into context. The Accumulator is
constructed with the "Min" binary operator. All pre-defined
PyGB operators can be constructed manually by the user
via similar syntax. gb.MinPlusSemiring is the same as
gb.Semiring(gb.MinMonoid, "Plus"), and gb.MinMonoid
is the same as gb.Monoid("Min", "MinIdentity") . A list
of unary and binary operators defined by GBTL is in Fig. 6.
These are currently the only operators that can be used in the
construction of PyGB operators, but future work is planned to
allow more customizable user-defined operators.

1 def sssp(graph, path):

> with gb.MinPlusSemiring, gb.Accumulator("Min"):
3 for i in range(graph.shape[0]):

path[None] += graph.T @ path

(a) PyGB

template<class MatrixT, class PathVectorT>
void sssp(MatrixT const &graph, PathVectorT &path) {
for (GB::IndexType k = 0; k < graph.nrows(); ++k) {
GB: :mxv(path, GB::NoMask(), GB::Min<T>(),
GB: :MinPlusSemiring<T>(Q),
GB: :Transpose(graph), path);

(b) GBTL
Fig. 4: Single-source shortest path (SSSP) algorithm

Python’s with statement provides an abstraction for as-
sociating state with a particular block of code. For ex-
ample, the recommended syntax in Python for file /O is
with open(...): , which closes the file automatically at the
end of the block. In PyGB, we utilize this language feature to

allow a PyGB operation to infer the operator from its context.
An operation will use the corresponding operator with the
highest precedence, i.e. lowest nested with block with a
matching operator. The Accumulator("Min") operator can
be excluded without changing the behavior of Fig. 4a, since
the path[None] += ... accumulation step in Fig. 4a will
fall back to the MinMonoid from the MinPlusSemiring . In
the case that the accumulation operator is different from the
semiring binary operator, the Accumulator must be explicitly
declared, as in Fig. 7 lines 20-21.

A boolean mask can be applied to the output container during
the accumulation step via square bracket notation as in line 4 of
Fig. 4a. The default None argument (equivalent to NoMask in
GBTL) will overwrite all data in the pre-existing container with
the output from the right-hand-side of the operation. Another
PyGB container of the same shape as the output container can
replace None and its data will be coerced to boolean values,
as in Fig. 5a on line 4.

PyGB operators are Python objects that can be constructed as
shown in Fig. 6 by providing a string naming a corresponding
GBTL function or identity element. Fig. 4a has examples of
PyGB operators being constructed ahead of time and then
brought into context (MinSelectlstSemiring), and being
anonymously brought into context (Accumulator("Min")).
The GraphBLAS C API defines operations on matrices and
vectors that are parameterized by these operators. These
operations can be invoked from Python using the syntax shown
in column 3 of Table I.

Figure 5 shows the triangle counting algorithm implemented
in both PyGB and GBTL. This algorithm counts triangles
formed by triplets of vertices that are interconnected by perform-
ing a matrix-matrix multiply and a reduce to scalar. The Matrix

B is masked by L, the lower-triangular portion of the undi-
rected adjacency matrix, and assigned the output of L @ L.T .
Reduce uses the PlusMonoid from Arithmetic Semiring to
sum the values of B . The corresponding GBTL code is more
convoluted, even though the logic is identical.

Fig. 8 shows a more complex algorithm in GraphBLAS,
demonstrating nested operator context managers, apply and

reduce operations, constant assignment, and mask comple-
ments. In Fig. 7 the ArithmeticSemiring is brought into
context on lines 20-21, and is subsequently used on lines 22
and 30 for matrix-vector product and vector-vector product op-
erations, respectively. But on line 28 the BinaryOp("Minus")
operator takes precedence over the semiring. In this example,
the operator nesting is primarily for demonstrative purposes,
and is questionably beneficial, since it makes no difference
to the underlying GBTL and does not improve readability.
Nevertheless, this extra nesting is possible and behaves as
expected. On lines 25 and 31, the apply and reduce PyGB
operations are used on vectors, and infer the corresponding
unary and binary operators the same way as before. On lines
33 and 37, vector assignment is performed using the same
square bracket notation used for masks, but providing a Python
slice object instead of a PyGB container. The expression

313

1 def triangle_count(L):

2 B = gb.Matrix(shape=L.shape, dtype=L.dtype)
3 with gb.ArithmeticSemiring:

4 B[L] =L @L.T
5
6

triangles = gb.reduce(B)
return triangles

(a) PyGB

1 template<class T, class MatrixT>
2 T triangle_count (MatrixT const &L)
3 {

4 GB::IndexType rows(L.nrows());

5 GB::IndexType cols(L.ncols(Q));

6 MatrixT B(rows, cols);

7 GB::mxm(B, L, GB::NoAccumulate(),

8 GB: :ArithmeticSemiring<T>(),

9 L, GB::transpose(L));

T triangles 0;

GB: :reduce(triangles, GB::NoAccumulate(),
GB: :PlusMonoid<T>(), B);

return triangles;

(b) GBTL

Fig. 5: Triangle counting algorithm

unary operators
"Identity"
"LogicalNot"

"AdditiveInverse"
"MultiplicativeInverse"

binary operators

© ® NN AW —

"LogicalOr" "LessThan" "Second"
"LogicalAnd" "GreaterEqual" "Min"
"LogicalXor" "LessEqual” "Max"
"Equal" "Times" "Plus"
10 "NotEqual" "Div" "Minus"
11 "GreaterThan" "First"

12

13 # example operator constructors

14 AdditiveInv gb.UnaryOp("AdditiveInverse")

15 P1usOp gb.BinaryOp("Plus™)

16 TimesOp gb.BinaryOp("Times")

17 PlusAccumulate gb.Accumulator (PlusOp)

18 PlusMonoid gb.Monoid(PlusOp, 0)

19 ArithmeticSR gb.Semiring(PlusMonoid, TimesOp)

Fig. 6: using GBTL operators in PyGB

new_rank[:] = (1.0 - damping_factor) / rows on line 37
results in the scalar value on the right-hand-side being assigned
to all elements of new_rank . In line 39, the complement of
page_rank is aquired by prepending Python’s ~ operator to
the vector.

An exhaustive list of the operators defined by GBTL is
presented in Fig. 6. The DSL can only reference operators
defined in GBTL’s algebra.hpp file. If a user needs to write
their own operator while developing an algorithm, they must
directly edit the PyGB C++ code. Future work (see Sec. VIII) is
planned to support operator definitions from PyGB by reifying
Python syntax and translating it to C++.

IV. DESIGN

In this section, we discuss design considerations that influ-
ence the PyGB DSL. Our goal is to keep PyGB as close to the
GraphBLAS math notation as possible, while working within

def page_rank(graph, page_rank,
damping_factor = 0.85,
threshold = 1.e-5,
max_iters 100000) :

rows, cols = graph.shape

m = gb.Matrix(shape=graph.shape, dtype=float)

m[None] = graph

gb.utilities.normalize_rows (m)

with gb.UnaryOp("Times", damping_factor):
m[None] = gb.apply(m)

1
2
3
4
5
6
7
8
9

page_rank[:] = 1.0 / rows
new_rank = gb.Vector(shape=page_rank.shape,
dtype=m.dtype)

16 delta = Vector (shape=page_rank.shape,
17 dtype=m.dtype)

18

19 while i != max_iters:

with gb.Accumulator("Second"),
gb.Semiring(gb.PlusMonoid, "Times"):
new_rank[None] += page_rank @ m

with gb.UnaryOp("Plus", (1.0-damping_factor)/rows):
new_rank[None] = gb.apply(new_rank)

with gb.BinaryOp("Minus"):
delta[None] = page_rank + new_rank

delta[None] = delta * delta
squared_error = gb.reduce(delta)

page_rank[:] = new_rank
if (squared_error / rows) < threshold:
return page_rank

new_rank[:] = (1.0 - damping_factor) / rows
with gb.BinaryOp("Plus"):
page_rank[“page_rank] = page_rank + new_rank

Fig. 7: PageRank in PyGB

the constraints of the Python language. Python’s magic methods
and dynamic module imports allow for a domain-specific
language with cleaner syntax and less boilerplate than C++,
increasing ease of use and productivity during the prototyping
phase of development. In certain circumstances, we are forced
to make pragmatic choices due to limitations of the Python
interpreter. Magic methods [18] are a syntax-driven override of
certain elements of the Python syntax, such as operators and
constructors, and module imports allow processing of file-sized
blocks of code. In this section, we focus on the design decisions
taken in PyGB, and in Sec. VIII we outline future directions
of PyGB design that can provide finer-grained control over
PyGB syntax.

The Python DSL exposes nearly all of GBTL’s opera-
tions through expressions with return values as opposed to
the pass-by-reference signatures used in GBTL. Standard
matrix algebra is performed via overriding the +, *, @
operators. The assign and the extract operations are
performed through the (C[i,jl = A) and
the __getitem__ (C = A[i,j]) magic methods, respec-
tively. The apply (C[M] = apply(A)) and the reduce
(¢ = reduce(A)) operations are simply function calls. An
unfortunate and notable absence from the Python language

__setitem__

314

| template<typename MatrixT, typename RealT = double>

> void page_rank(MatrixT const &graph,

3 GB: :Vector<RealT> &page_rank,

4 RealT damping_factor = 0.85,
5 RealT threshold = 1.e-5,

6 unsigned int max_iters = 100000)

7 {

s using T = typename MatrixT::ScalarType;

9

10 GB::IndexType rows(graph.nrows()), cols(graph.ncols());
11 GB::Matrix<RealT> m(rows, cols);

GB::apply(m, GB::NoMask(), GB::NoAccumulate(),

GB: :Identity<T,RealT>(), graph);

GB: :normalize_rows(m);

GB::apply(m, GB::NoMask(), GB::NoAccumulate(),
GB: :BinaryOp_Bind2nd<RealT,

GB: :Times<RealT>>(damping_factor), m);

GB: :BinaryOp_Bind2nd<RealT, GB::Plus<RealT> >
add_scaled_teleport((1.0 - damping_factor)
/ static_cast<T>(rows));

GB::assign(page_rank, GB::NoMask(), GB::NoAccumulate(),
1.0 / static_cast<RealT>(rows),
GB::AllIndices());

GB: :Vector<RealT> new_rank(rows), delta(rows);
for (GB::IndexType i = 0; i < max_iters; ++i)

GB: :vxm(new_rank, GB::NoMask(), GB::Second<RealT>(),
GB: :ArithmeticSemiring<RealT>(),
page_rank, m);

GB::apply(new_rank, GB::NoMask(), GB::NoAccumulate(),
add_scaled_teleport, new_rank);

RealT squared_error(0);

GB: :eWiseAdd(delta, GB::NoMask(), GB::NoAccumulate(),
GB: :Minus<RealT>(), page_rank, new_rank);

GB: :eWiseMult(delta, GB::NoMask(), GB::NoAccumulate(),
GB: :Times<RealT>(), delta, delta);

GB: :reduce(squared_error, GB::NoAccumulate(),
GB: :PlusMonoid<RealT>(), delta);

page_rank = new_rank;
if (squared_error/((RealT)rows) < threshold)

break;
56 }
57}

GB: :assign(new_rank, GB::NoMask(), GB::NoAccumulate(),
(1.0 - damping_factor)/static_cast<T>(rows),
GB::AllIndices());

GB: :eWiseAdd(page_rank, GB::complement(page_rank),
GB: :NoAccumulate(), GB::Plus<RealT>(),
page_rank, new_rank);

Fig. 8: PageRank in GBTL

is an equivalent to the assignment operator of C++. In the
Python expression C = A @ B, the reference C to the pre-
existing GBTL container is lost, whereas the equivalent C++
code invokes the operator=() method on C, preserving
the reference to C. Although PyGB’s default behavior of
constructing a new output container is usually correct, it may
be an efficient use of resources. Relying on several Python
syntactical tricks to reuse containers when possible allows the
user to write better-performing code.

Modifying an existing container in-place is desirable when
accumulating the result of a sequence of operations or
merging multiple containers. To retain a reference to the
original container in PyGB, the user can write the expression
C[None] = ... to invoke the __setitem__ magic method
on C. The None term corresponds to the GBTL class
NoMask , and it has no effect on the assigned values, but
the invocation of the magic method before assignment ensures
that the existing C is modified rather than replaced by an
entirely new container. The += operator can be used in
conjunction with a binary operator to add right-hand-side values
to elements already in the left-hand-side container. This will
invoke Python’s __iadd__ method on C. PyGB users will
need a basic understanding of Python and C++ object lifecycles
to know when touse C = A @ B vs. C[None] = A @ B, as
the peformance differences between the two are not negligible.

PyGB uses deferred operator evaluation to enable the
expression syntax without excessive copying of data. A naive
implementation of C[None] = A + B might first construct a
temporary matrix to store the results of A + B, and then
assign that temporary matrix into C. This will produce the
correct output, and calling each C++ operation at the site of the
corresponding Python method significantly reduces complexity
of the DSL. But the creation of a temporary matrix is costly. To
eliminate the copy, the A + B operator returns an expression
object wrapping the A and B operands, which then evaluates
A + B inside of C.__setitem__() , without temporaries. The
expression object also captures the value of the binary operator
from the context of the A + B expression (the binary operator
is set in an enclosing with block) to allow for lazy evaluation.
Our lazy expression evaluation paradigm closely corresponds
to expression templates in C++ [20], [21] where a compile-time
type representation of an expression is generated. In Python,
our expression objects are runtime objects that are created
through Python syntax reification, using magic methods.

In some circumstances, it is not possible to avoid the
intermediate evaluation step due to restrictions of GBTL’s
evaluation strategy. For example, if a user calculates a matrix-
matrix product and assigns it as a submatrix to a larger output
matrix, they may write the PyGB code C[2:4,2:4] = A @ B.
While this PyGB code appears like it should evaluate without
a copy, GBTL has no way to express it as a single merged
operation. GBTL instead requires two separate operation calls,
one to mxm and then one to assign . This behavior is made
opaque to the user by the DSL. There are several other instances
throughout the DSL where this extraneous copy is forced. If

315

at some point in the future GBTL enables more sophisticated
fusing of operations, it will be trivial to add the support to
PyGB. Furthermore, a future GBTL implementation may be
able to seamlessly fuse such separate operations through its
own lazy evaluation techniques, and such optimization would
be immediately available to PyGB users through compiled
GBTL code.

Our lazy evaluation system can lead to expressions being
left unevaluated indefinitely, so we define a set of terminating
operations that force expression evaluation. Any operation that
treats the expression like a matrix (assigning to it, extracting
from it, combining it with another container) will cause it
to be evaluated. The non-blocking mode specified by The
GraphBLAS C API has the potential to further improve the
performance of lazy evaluation through operation fusion (for
example, in the case of element assignment into a sparse
matrix). Unfortunately, this non-blocking functionality is not
implemented in GBTL, so further exploration of lazy evaluation
is left for future work. The deferred expression evaluation
system currently employed by PyGB is extensible enough to
incorporate future non-blocking optimizations that are added
into GBTL.

When the user writes an expression such as C = A @ B,
the semiring to be used must be declared elsewhere. The tactic
of passing the semiring object directly to the mxm function,
used in GBTL, cannot be used with the expression (operator)
syntax we support in PyGB. An alternative method would
be to configure all operators at the global scope where every
GraphBLAS operation has access to them, but this approach
removes functionality present in the C++ operations. Many of
the example algorithms use a variety of operators, and mixing
and matching them would be more difficult with the approach
of a globally determined environment. Even though a semiring
may not be used for every operation within a routine, it is often
used more than once in close proximity. Specifying the semiring
once at the start of a code block where it is used is more concise
and easier to understand. Python’s context managers provide
an abstraction for encapsulating some context within a block.
In PyGB, following code brings an operator (monoid in this
case) into context:
with Semiring(PlusMonoid, "Times"): C = A @ B

Behind the scenes, this with statement modifies a global
stack of operators. Every operation requires an operator of a
specific type. When an operation is called, it searches through
the stack to find the first operator that it can use. The expression
C = A + B requires a binary operator. When the expression is
evaluated, the __add__ method finds the BinaryOp , Monoid
or Semiring object nearest to its scope. While this approach
is intuitive for the types of algorithms we present in this paper,
some assumptions must be made about the program execution.
There is currently no support for multi-threading with PyGB.
In multi-threaded environment, each thread would need to keep
track of its own operator stack and other complications would
ensue. Due to the Global Interpreter Lock (GIL) in Python,
many of the benefits of writing multi-threaded code are already

lost?. To circumvent the GIL, many Python programmers use
the multiprocessing library, which spawns new processes
with isolated memory spaces. The use of this library does not
interfere with the context managers in PyGB, since the global
operator stack is unique to each process. Last, since PyGB
compiles to GBTL, it may be more suitable in some situations
to use a multithreaded GBTL backend instead of multithreading
in Python, but there may be circumstances where a Python
program may require sequential GraphBLAS in multiple Python
threads.

We discuss some further design issues in Sec. VIII, where
we consider near-future PyGB extension options. In the next
section, we outline how PyGB DSL is translated to GBTL,
compiled, and executed from Python environment.

V. IMPLEMENTATION

The choice of G++ to implement GBTL was a practical one.
C++ is “close to the metal,” meaning there are fewer levels of
abstraction between source code and machine instructions than
in higher level languages. C++’s support for templated functions
and classes provides a mechanism for generic programming.
This means that containers and operations can be written
once and reused with different data types. Because template
instantiation happens at compile time, there is no runtime
performance cost for generic typing. But the dynamic execution
model PyGB requires these templated GBTL modules be
compiled on the fly. The DSL must inform the compiler which
version of the source code should be built at runtime, since
Python does not check data types ahead of time.

Python is dynamically typed, which means that variable

types are checked at runtime instead of compile time. Python
has tools for manually checking the types of objects, such as
the built-in isinstance and type functions, enabling us to
implement wrapper functions that pass the Python data type
information to the C++ preprocessor. Many high-performance
Python libraries allow the programmer to specify a wider range
of data types. For example, the NumPy library provides the
dtype class describing the type, size, and other metadata
of a data object. All common C++ Plain Old Data Types
have an equivalent NumPy dtype class (bool, int8_t,
.., int64_t, uint_8, ... uint_64, float, double).

PyGB uses NumPy’s dtype class to map container types
to GBTL backend template types. When two containers of
different types are combined in a binary operation, an upcast
will be performed automatically according to C++’s upcasting
rules, unless the output type is specified by the user. If the data
type is not specified during container construction, the DSL
will fall back to default Python types: 64-bit int s and 64-bit

float s. The user should explicitly specify the data type at
construction time if performance is a concern.

If the number of combinations of data types is limited,
precompiling a binary with instantiations for every combination
of data types is feasible. But the number of combinations of
typed operations grows exponentially with the number of data

Zhttps://wiki.python.org/moin/GloballnterpreterLock

316

expression construction

C++ module retrieval dispatch mxm evaluation

gcc

operation binding.cpp

w N -

[T VR -

L I T Y S T SR

[V R R

with ArithmeticSemiring:
C[M] =A @B

T

def __matmul__(A, B):
semiring = get_semiring()
return MXM(semiring, A, B)

T

class MXM(Expression):
def __init__(self, semiring, A, B):
self.semiring = semiring
self.A = A
self.B = B

1

def __setitem__(C, M, expr):
expr.eval(C, M)

T

class MXM(Expression):
def eval(self, C, M):
operate(func = "mxm",
op = self.semiring,
A self.A,
self.B,
c,
Ji9)

B
C
M

return C

1

def operator(func, **kwargs):
for kw, arg in kwargs.items():
kwargs[kw] = arg.dtype
m = get_module(kwargs)
getattr(m, func) (**kwargs)

1

def get_module(kwargs):
mod = hash(kwargs)
if mod in modules:
return modules[mod]
elif os.path.isfile(mod):
return import_module (mod)
else:
subprocess.call([
"g++ {-1} -o {0}.so".format(mod),
“("-D{0}={1}".format (kw, arg)
for kw, arg in kwargs.items())
1D)

return import_module (mod)

1

g++ -std=c++14 operation_binding.cpp -o <mod>.so
-DA_TYPE=int64_t -DB_TYPE=int64_t -DC_TYPE=int64_t
-DADD_BINOP=Plus -DIDENTITY=0 -DMULT_BINOP=Times

1

#1f defined(A_TYPE)

typedef GB::Matrix<A_TYPE> AMatrixT;

#endif

#if defined(MONOID) || defined(SEMIRING)

typedef GraphBLAS::ADD_BINOP<A_TYPE> BinaryOp;
GEN_GB_MONOID (Monoid, GB::ADD_BINOP, IDENTITY)
typedef Monoid<C_TYPE> MonoidT;

#endif

#1f defined(SEMIRING)

GEN_GB_SEMIRING(Semiring, Monoid, GB::MULT_BINOP)
typedef Semiring<A_TYPE, B_TYPE, C_TYPE> SemiringT;
#endif

Fig. 9: PyGB execution model

types. The mxm operation takes four containers, two inputs,
an output, and a mask. Each of these can be any of the 11
plain old data types, resulting in 11 combinations. From
the 17 built-in binary operators (Fig. 6), there are 17 * 113
accumulator types (specifying two input and one output type),
and 1020 semiring types. Each input container can also be
transposed, and the complement of the mask can be taken to
further increase the number of combinations. There are roughly
6 trillion combinations of template parameters for mxm alone,
making it infeasible to precompile GBTL templates ahead of
time.

While developing the DSL, we discussed possible
workarounds for this problem. One solution is to define a C++
union type that stores any of the 11 predefined data types and
use GBTL containers of that union type. This approach adds
execution overhead and inefficiency, since an additional step is
required to look up the container element values. It also prevents
us from extending the DSL in the future (see Sec. VIII) to
support user-defined types and operators. Another option is
to incorporate the Python C API into the C++ binding code,
so that container templates are instantiated with the generic
PyObject* data type. This approach is much more promising
for adding support for user-defined data types. Unfortunately
the performance will be even worse, since PyObject stores
auxiliary data for the Python interpreter beyond the primitive
value. The solution we settled on was to compile individual
GBTL functions just-in-time (JIT) as they are executed in the
DSL.

When a binary operation is called from PyGB, the data
types of each operand is checked to determine the output type
through standard typecasting rules. Then PyGB checks for a
compiled C module matching the operation types, first looking
in memory and then on disk. If the module has not been
compiled, PyGB will instantiate a templated source C++ file
with the corresponding data types, compile it with gcc , and
dynamically load it into the program. The cost of compiling
the code can be amortized over future runs of the same code.
Furthermore, the program caches the module in memory after
it has been imported once.

This compartmentalization of operations into separate mod-
ules makes the compiled binaries more reusable, but also causes
the program dependencies to grow. A planned feature of the
lazy evaluation system would allow a series of operations to
be deferred until a single binary module containing all the
previously deferred operations is compiled. This improvement
will allow a chain of steps in an algorithm to be compiled into a
single module. Grouping more operations into a single module
will reduce the overhead of function redirection in Python and
shorten compile times at the expense of reusability. Having
this control over the granularity of module compilation will
enable us to experiment in the future with more sophisticated
compiler optimizations and extensions to GBTL including
template expressions and operation fusion.

317

Breadth-first search

—— Python loops
C++ loops
—}— C++ native

1071 4

10—4 4

PageRank

1071 4

10—2 4

10—3 4

Single source shortest path

102 4

101 B

time in seconds (log scale)

100 4

1071 4

1072 4

Triangle counting

100 4

1071 4

1072 4

1073 4

.

27 28 29
number of vertices (log scale)

N
=

Fig. 10: Performance of four algorithms on Erdds-Rényi graphs
with density |E| = O(|V|!9)

Moving data around in PyGB

B read
construct

1.0 = extract

Time in seconds

29
Matrix size (log scale)

210 ol

Fig. 11: Operating on Matrix objects of various sizes, all
with density |E| = O(|V|!9)

VI. EXPERIMENTAL EVALUATION

Figure 11 shows the time it takes C++ and Python to read
a matrix from a file in disk, construct it from a container
(list in Python and std::vector in C++) in memory, and
then extract the data back out. The memory management is
currently one of the largest penalties PyGB over native GBTL.
The file read cost dominates the Python times, but once the
matrix has been constructed, operations performed on it from
PyGB and GBTL are comparable in performance.

To compare the performance of C++ with Python and measure
the abstraction penalty, we implement four algorithms in both
GBTL and PyGB and compare the performance with matrices
of increasing size. There are three versions of the experiment.
In the first version, Python calls C++ operations that were
compiled separately, using individual bindings and Python
loops. In the second version, Python calls a complete C++
algorithm where the data between GBTL calls is handled by
C++. The third version is GBTL C++ native code timed in G++.
We implement breadth-first search, PageRank, single-source
shortest path, and triangle counting algorithms, and compare
the performance for these three versions in Fig. 10.

Breadth-first search has an outer loop that performs assign
and mxv operations, iterating until every vertex has been
explored by the frontier vector. PageRank iterates until the
rank vector converges to a fixed point, with some specified
threshold tolerance. It performs seven GBTL operations in
the while loop. Single-source shortest path performs a single
mxv operation in a loop. Last, triangle counting performs
a sequence of operations with no loop. The benchmarks in
Fig. 10 indicate a performance penalty associated with the
extra Python function redirects, but that penalty becomes less
significant as the input scales. This result is expected since the
percentage of time spent in GBTL operations increases with
input size while the PyGB abstraction penalty remains constant.
These experiments show that PyGB is a viable approach to
high-performance prototyping with GraphBLAS.

318

VII. CONCLUSION

In summary, we have been able to develop a high-level
domain-specific language in Python, a popular language for
rapid prototyping and scientific computing. The DSL uses an
expression syntax that resembles the mathematical notation laid
out by the GraphBLAS C API, making it easier to read and
write than GBTL. Within the DSL, we use deferred evaluation
to enable this syntax, as well as open the door for future work
(see Sec. VIII) on the GraphBLAS non-blocking mode.

The implemention of PyGB’s interface with GBTL dynam-
ically determines the operand types when an expression is
evaluated, and generates templated C++ source code that gets
compiled into a binary and executed. This approach allows
PyGB to be extensible and support user-defined types and
operators in the future (see Sec. VIII). It also allows for code
reuse in routines that use the same subset of operations and
results in less code to compile when slight modifications are
made to PyGB code during development.

The performance of PyGB is comparable to GBTL in the
four algorithms that we benchmarked. The overhead of the
Python function dispatches is visible at small sizes, but becomes
negligible as the matrix size increases. We therefore believe
that the DSL is an effective alternative to GBTL that achieves
the goals of implementing the functionality of GraphBLAS
and simplifying the development of GraphBLAS routines.

VIII. FUTURE WORK

Currently, the biggest hindrance to using PyGB is the
complexity of the build system and GBTL dependencies
required by the Python library. The library depends on gcc and
cmake. Making PyGB portable and easily installable through
Python’s package manager pip will require us to revisit our
compiler toolchain.

Several major features of GBTL are still missing from PyGB.
The ability for users to define custom data types for the Matrix
and Vector classes paves the road for future implementions of
complex numbers and even more exotic types. One interesting
prospect is to define sets as the data type of a matrix, and a
semiring that performs set unions and intersections. Another
missing feature is user-defined operators for use in the PyGB
operations. Implementing this feature requires either using an
intermediate language such as Cython or forcing the user to
write code directly in C++.

Performance of PyGB is a top priority. There are a few
ways to address the disparity between Python and C++ when
it comes to moving data around in memory. Since a common
scenario when using the PyGB will be getting data into and out
of the Matrix and Vector objects, it is desirable to make
that operation faster. Figure 9 shows that the majority of the
time getting data into a PyGB container comes from reading
from disk. C++ is much faster at this operation, and wrapping
a C++ function to directly load a matrix instead of first loading
into Python lists would be trivial.

There are also circumstances where a matrix already lives in
memory in a different container. Python has an array buffer API
for sharing contiguous blocks of memory that would enable

PyGB to construct a container without copying all the data.
This complicates resource ownership and garbage collection
between Python and C++, but is something worth exploring.

ACKNOWLEDGMENTS

Scott McMillan was supported by the Department of Defense
under Contract No. FA8702-15-D-0002 with Carnegie Mellon
University for the operation of the Software Engineering
Institute, a federally funded research and development cen-
ter [DM18-0390]. The authors affiliated with DOE Pacific
Northwest National Laboratory (PNNL) were supported in
part by the Defense Advanced Research Projects Agency’s
(DARPA) Hierarchical Identify Verify Exploit Program and
the High Performance Data Analytics Program (HPDA) at
PNNL. PNNL is operated by Battelle Memorial Institute under
Contract DE-AC06-76RL01830. The authors affiliated with the
University of Washington were in part supported by the NSF
grant 1642439.

REFERENCES

“The Graph BLAS Forum,” 2018. [Online]. Available: http://graphblas.
org/

T. Mattson, D. Bader, J. Berry, A. Bulug, J. Dongarra, C. Faloutsos,
J. Feo, J. Gilbert, J. Gonzalez, B. Hendrickson, J. Kepner, C. Leiserson,
A. Lumsdaine, D. Padua, S. Poole, S. Reinhardt, M. Stonebraker,
S. Wallach, and A. Yoo, “Standards for Graph Algorithm Primitives,” in
Proc. IEEE High Performance Extreme Computing Conference (HPEC),
Sep. 2013, pp. 1-2.

J. Kepner, P. Aaltonen, D. Bader, A. Bulug, F. Franchetti, J. Gilbert,
D. Hutchison, M. Kumar, A. Lumsdaine, H. Meyerhenke, S. McMillan,
C. Yang, J. D. Owens, M. Zalewski, T. Mattson, and J. Moreira,
“Mathematical Foundations of the GraphBLAS,” in Proc. IEEE High
Performance Extreme Computing Conference (HPEC), Sep. 2016, pp.
1-9, 00018.

J. Kepner, “GraphBLAS Mathematics - Provisional Release 1.0 -
GraphBLAS.org, Tech. Rep., Apr. 2017. [Online]. Available: http:
/lwww.mit.edu/~kepner/GraphBLAS/GraphBLAS-Math-release.pdf

A. Bulug, T. Mattson, S. McMillan, J. Moreira, and C. Yang,
“The GraphBLAS C API Specification,” GraphBLAS.org, Tech.
Rep., 2017. [Online]. Available: https://people.eecs.berkeley.edu/~aydin/
GraphBLAS_API_ C.pdf

(2]

(3]

(4]

319

[11]

[12]

[13]

[14]

[15]

[16
[17]
[18]

[19]
[20]

[21]

Jeremy Kepner and John Gilbert, Eds., Graph Algorithms in the Language
of Linear Algebra, ser. Software, Environments and Tools. Society for
Industrial and Applied Mathematics, Jan. 2011.

J. J. Dongarra, J. Du Croz, S. Hammarling, and I. S. Duff, “A Set of
Level 3 Basic Linear Algebra Subprograms,” ACM Trans. Math. Softw.,
vol. 16, no. 1, pp. 1-17, Mar. 1990.

A. Bulug and J. R. Gilbert, “The Combinatorial BLAS: design, imple-
mentation, and applications,” International Journal of High Performance
Computing Applications, vol. 25, no. 4, pp. 496-509, Nov. 2011.

T. Davis, “SuiteSparse : A Suite of Sparse Matrix Software,”
http://faculty.cse.tamu.edu/davis/suitesparse.html, 2018.

V. Gadepally, J. Bolewski, D. Hook, D. Hutchison, B. Miller, and J. Kep-
ner, “Graphulo: Linear Algebra Graph Kernels for NoSQL Databases,” in
Proc. IEEE International Parallel and Distributed Processing Symposium
Workshop, May 2015, pp. 822-830.

J. Kepner, W. Arcand, W. Bergeron, N. Bliss, R. Bond, C. Byun,
G. Condon, K. Gregson, M. Hubbell, J. Kurz, A. McCabe, P. Michaleas,
A. Prout, A. Reuther, A. Rosa, and C. Yee, “Dynamic distributed
dimensional data model (D4M) database and computation system,” in
Proc. IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Mar. 2012, pp. 5349-5352.

K. Ekanadham, B. Horn, J. Jann, M. Kumar, J. Moreira, P. Pattnaik,
M. Serrano, G. Tanase, and H. Yu, “Graph Programming Interface:
Rationale and Specification,” IBM Research Division, Thomas J.Watson
Research Center, P.O. Box 218, Yorktown Heights, NY 10598 USA,
Tech. Rep. RC25508 (WAT1411-052), Nov. 2014.

M. J. Anderson, N. Sundaram, N. Satish, M. M. A. Patwary, T. L.
Willke, and P. Dubey, “GraphPad: Optimized Graph Primitives for Parallel
and Distributed Platforms,” in Proc. IEEE International Parallel and
Distributed Processing Symposium (IPDPS), May 2016, pp. 313-322.
P. Zhang, M. Zalewski, A. Lumsdaine, S. Misurda, and S. McMillan,
“GBTL-CUDA: Graph Algorithms and Primitives for GPUs,” in
Proc. IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). 1EEE, May 2016, pp. 912-920.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epicO3/wrapper.htm?
arnumber=7529957

“GraphBLAS Template Library (GBTL),” https://github.com/cmu-sei/gbtl,
2018.

“Python,” https://www.python.org/, 2018.

“Jupyter,” http://jupyter.org/, 2018.

B. Klein, “Magic methods and operator overloading,” https://www.
python-course.eu/python3__magic_ methods.php, 2018.

“ contextlib — Utilities for with -statement contexts,” https:/
docs.python.org/2/library/contextlib.html, 2018.

T. Veldhuizen, “Expression Templates,” C++ Report, vol. 7, no. 5, pp.
31, 26, 1995.

D. Vandevoorde and N. Josuttis, C++ Templates — the Complete Guide.
Addison-Wesley, 2003.

