Distributed-Memory Fast Maximal Independent Set

Thejaka Kanewala, Marcin Zalewski, Andrew Lumsdaine
Pacific Northwest National Laboratory & University of Washington
Seattle, WA, USA
Email: {thejaka.kanewala, marcin.zalewski, andrew.lumsdaine} @pnnl.gov

Fig. 1: The gray nodes show a maximal independent set of this graph.

Abstract—The Maximal Independent Set (MIS) graph problem
arises in many applications such as computer vision, information
theory, molecular biology, and process scheduling. The growing
scale of MIS problems suggests the use of distributed-memory
hardware as a cost-effective approach to providing necessary
compute and memory resources. Luby proposed four randomized
algorithms to solve the MIS problem. All those algorithms are
designed focusing on shared-memory machines and are analyzed
using the PRAM model. These algorithms do not have direct
efficient distributed-memory implementations. In this paper, we
extend two of Luby’s seminal MIS algorithms, “Luby(A)” and
“Luby(B),” to distributed-memory execution, and we evaluate
their performance. We compare our results with the “Filtered
MIS” implementation in the Combinatorial BLAS library for
two types of synthetic graph inputs.

I. INTRODUCTION
Let G = (V,E) be a graph where V represents the set

of vertices and E represents the set of edges in the graph.

An independent set in G is a set of vertices in a graph
such that no two vertices in the set are adjacent. The largest
independent sets (there may be more than one) are called
the maximum independent sets. Since finding a maximum
independent set is NP-hard, most applications settle for finding
a maximal independent set. A maximal independent set (MIS)
of a graph is an independent set that is not a subset of any other
independent set (see Figure 1). Finding a MIS is an important
graph problem used in many applications, including computer

vision, coding theory, molecular biology and process scheduling.

Although efficient MIS algorithms are well-known [1], the
increasing scale of data-intensive applications suggests the
use of distributed-memory hardware (clusters), which in turn
requires distributed-memory algorithms.

Luby’s Monte Carlo[2] MIS algorithms are often used
for parallel MIS implementations. Luby MIS algorithms are
designed focusing on shared memory machines and analyzed

using the Parallel Random Access Machine (PRAM) model.

Luby’s algorithms do not immediately lend itself to efficient

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

distributed memory parallel algorithms due to overhead incurred
by synchronization and distributed subgraph computations. In
this paper, we present distributed versions of Luby’s Monte
Carlo algorithms (Algorithm A and Algorithm B) that minimize
these overheads. Furthermore, we derive a variation of Luby(A)
that avoids computing random numbers in every iteration. All
presented algorithms are implemented in the AM++ runtime [3]
and their performance is evaluated. Our results show that the
proposed algorithms scale well in distributed settings. We
also compare our results with the FilteredMIS implementation
in the Combinatorial BLAS library [4], and we show that
our implementations are several times faster compared to
FilteredMIS algorithm.

II. RELATED WORK

Most parallel MIS algorithms focus on shared memory, using
the PRAM model for parallel complexity analysis (e.g., [5],
[6], [71, [8], [9], [10]). In this work, we specifically focus
on Luby’s [2] randomized algorithms (see Section III for
details). Luby provided a detailed analysis of his algorithms
using the PRAM machine model. Later, Luby’s algorithm
concepts were used to implement distributed versions. Lynch et
al. [11] discuss a distributed version of Luby’s algorithm
for synchronous distributed networks. Métivier et al. [12]
present an improved version of Lynch’s algorithm, improving
communication message complexity. Kuhn et al. [13] provide
a deterministic distributed MIS algorithm. However, they
assume a synchronous communication model and provide no
experimental results.

The Combinatorial BLAS library[4] implements a distributed
version of Luby’s algorithm. Their implementation uses linear
algebra primitives in implementing Luby’s algorithm and also
the algorithm works on filtered graphs[14]. Salihoglu et al. [15]
implemented a distributed version of Luby’s algorithm for
Pregel-like systems. They used Luby’s MIS algorithm to solve
the graph coloring problem. Garimella et al. [16] compare the
performance of Luby’s implementation in Pregel with a parallel
algorithm designed by Blelloch et al. [10]. Blelloch et al.,
parallelize the sequential greedy lexicographically-first MIS
algorithm. This algorithms uses a priority DAG constructed
over the vertices of the input graph, where the DAG edges
connect higher-priority to lower-priority endpoints based on
random values assigned to vertices.

The problem of parallel MIS has been the focus of much
theoretical research. Part of the related work discussed above

Algorithm 1: General Iterative Scheme in Luby MIS

Input: Graph G = (V, E)
Output: Maximal Independent Set Syys
1: Spmis < 1]
2: S,’S «— 0
1 Gs(Vs « V,Es + E)
while G5 # () do
Sis < Select an independent set from G
Smis <~ Smm U S1€
Vi < Sis U {neighbors of vertices in Sjs}
E, < {edges incident on vertices inV;.}
Gs + Gs(Vs < (Vs = V;),Es < (Es — Ey))

> initializing the independent set

LRI NREW

involves analyzing parallel time complexity or bit complex-
ity of the algorithm discussed. Existing implementations of
parallel MIS mostly adopt Luby’s algorithms or they use an
algorithm based on Luby’s MIS. However, Luby’s MIS does
not immediately extend to efficient distributed memory parallel
algorithm due to reasons we discuss in Section III.

A distributed implementation of Luby’s MIS is openly avail-
able in CombBLAS library. However, CombBLAS algorithm
is designed to work on “filtered” graphs. Further, it performs
several pre-processing steps including removing self-edges and
load balancing. The distributed Luby algorithms we present in
this paper are designed specifically for large-scale static graph
processing under a distributed memory setting and capable of
processing unstructured graphs without preprocessing.

III. LUBY’S ALGORITHMS

Luby’s algorithms are the most widely used parallel algo-
rithms for finding a MIS in shared memory. In his original
publication, Luby discussed a general iterative scheme and four
particular variations based on it. The general iterative scheme
is listed in Algorithm 1. In every iteration, the general iterative
scheme selects a non-empty independent set (Line 5) and
merges it to the output (S,,;5). Then, the selected independent
set and its neighbors are removed from the input graph, and
the resulting subgraph is fed into the scheme for the next
iteration (Lines 7—9). This process is repeated until the resulting
subgraph is empty. In every iteration, the general iterative
scheme generates a new independent set. Luby proved that the
union of all those independent sets is a maximal independent
set.

To select an independent set from a subgraph in an iteration,
Luby proposed two Monte Carlo algorithms: Select A and
Select B. Select B is further enhanced to create two more
variations, Select C and Select D. All four of those variations
use randomization to calculate an independent set. Select
algorithms A, B, and C are non-deterministic, while Select D
is deterministic. In this paper, we focus on Select algorithms
A and B (since C and D are variations of B). Select A and
Select B algorithms are summarized in Table L.

Select A is the simplest of the algorithms. It considers all
the vertices (V) in the subgraph to be in an independent set.
Then, it assigns a random number, 7 (1 < 7 < |V;|*) to each
vertex in the subgraph. Then, for every edge in the subgraph
(edges in Ej), Select A removes the vertex in the edge that
has the greater random value.

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

Select A
1. Assume all the vertices in
the subgraph are independent
2. Assign random values to
vertices in Vg
3. Calculate the independent
set based on assigned random
values
TABLE I: Independent set selection criteria for Select A and Select
B algorithms

Select B

1. Assume vertices that satisfy the coin
random variable test are independent
2. Calculate the independent set based
on the degree distribution of the sub-
graph

Unlike Select A, Select B does not consider all vertices
in the subgraph to be in the independent set in an iteration.
Instead, Select B uses a random variable (coin) to decide
whether a vertex in the subgraph should be selected to be in an
independent set. The value of the coin is determined based on a
probability distribution defined using degree distribution of the
subgraph. More precisely, if d(v) is the degree associated with
a vertex v € V’, then coin(v) = 1 with probability 1/2d(v).
If d(v) = 0, then coin(v) is always 1. For more details about
Algorithm B, we refer the reader to Luby’s original publication
in [2].

A. Luby’s Algorithms in Distributed Memory

The Luby algorithms do not lend themselves directly to
efficient distributed-memory parallel implementations. Luby’s
algorithms are designed focusing on shared memory machines
and are analyzed using the PRAM model. In the PRAM model,
all processors need to synchronize after reading from the shared
memory and also before writing to the shared memory. A
natural way to extend a shared-memory Luby algorithm to
distributed memory is to use the Bulk Synchronous Parallel
(BSP) approach. In BSP [17], shared memory operations
can be converted to compute, communication and barrier
synchronization phases. However, this approach results in many
barrier synchronization phases.

Another issue is that the “general iterative scheme” (Al-
gorithm 1) depends on subgraph computations. That is, in
every iteration, the algorithm constructs a new subgraph the by
removing vertices and edges of the independent set calculated in
the current iteration from the graph. Constructing a subgraph in
every iteration is inefficient in distributed memory as it involves
communication and synchronization even if the subgraph is
maintained implicitly through vertex masking.

In addition, the Select A algorithm requires a new choice of
random numbers in every iteration. The range of the numbers
depends on the number of vertices remaining in the subgraph.
Therefore, the random number generation requires a reduction
over the number of vertices in the subgraph and a barrier in
every iteration. Furthermore, random number generation incurs
a significant computational overhead.

In the next section, we discuss how we extend Luby’s algo-
rithms to distributed execution while avoiding the drawbacks
discussed above. In the proposed algorithm, the overhead of
barrier synchronization phases are minimized by overlapping
computation and communication. The subgraph computation
is achieved through vertex filtering. However, vertex filtering
cripples the ability to iterate over the graph data structure in

parallel. Therefore, in our implementation, we use a parallel
data structure. We also present a variation of Select A algorithm
that avoids random number generation in each iteration and
uses random numbers generated initially.

IV. DISTRIBUTED MEMORY PARALLEL LUBY ALGORITHMS

The proposed distributed-memory parallel Luby algorithms
use a 1D distribution to distribute the graph vertices among
participating ranks. Every rank gets a subset of vertices and
an edge subset relevant to the vertices. Within a rank, a vertex
subset and its associated edge subset is represented using a local
graph representation (G'°°® = (V! E')). A vertex is “owned”
by a rank and vertices owned by different ranks communicate
by passing messages. Message passing communication between
ranks is designed based on BSP processing, but with overlapped
communication and computation for improved efficiency.

A. Distributed General Iterative Scheme

Algorithm 2: Distributed General Iterative Scheme

1: procedure Lubylterate(Go¢o | select/™)

2: buffer < {}

3: delete + {}

4: while there are NIL vertices in G do

5: select!™ (&buffer, &delete)

6 epoch {

7 for each Vertex v in buffer in parallel do
8 if v is not in delete then

9: mias[v] < IN

10: for each in adjacencies(v, G do
11: Send(u, OUT)

12: }

13:

14: procedure Receive(v : Vertex,s : State)
15: mis[v] < s

The distributed general iterative scheme (Algorithm 2)
requires subgraph computation. Though explicit subgraph
computation may be practical in sequential and shared-memory
parallel environments, it is inefficient in distributed memory
due to overheads of creating and distributing a new subgraph
at every iteration. Equivalent distributed subgraph computation
functionality can be achieved with vertex filtering (i.e., apply
a filtering predicate to indicate whether a vertex is to be
considered in the current computation). Although with vertex
filtering more edges then strictly necessary are traversed in
every iteration, the increased parallel efficiency outweighs the
cost of the unnecessary traversals.

To alleviate the overhead of subgraph computations in
distributed memory, we use two data structures:

1) An append buffer (buffer) — for efficient parallel access;

and

2) A set structure (delete set).

These two data structures are created by the general iterative
scheme and are passed into a specific Select (A or B) algorithm.
The Select algorithm is responsible for populating the append
buffer and delete set. When the Select algorithm decides a
vertex is a candidate to be in the MIS, it adds the vertex to
the buffer. Next, after buffer contains the initial MIS candidate

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

vertex set, all vertices that have a neighbor with a lesser random
value assigned to it, are placed in the delete set. The general
iterative scheme traverses the append buffer in parallel and
checks whether a vertex is in the delete set; if the vertex is not
present in the delete set, then the vertex is added to the result
MIS. To reduce the contention when operating on the delete
set we implement delete set as a collection of sets, where
each thread maintains a set local to the thread. Insertion to
a delete set is local to the invoking thread. When querying
an element from the delete set, we first check whether the
element resides in the thread-local set, and then we search
for the element in sets belonging to other threads. During the
search phase the sets are only read, so they can be safely shared
between threads. The two-step design (buffer and then delete
set) limits contention between threads to the low-overhead
insert contention on the append buffer.

During computation, a vertex can be in one of three states
(stored in a property map)

1) IN- vertex is in MIS;
2) OUT- vertex is not in MIS; and
3) NIL— vertex is not yet processed.

Initially, all the vertices are in state NIL. When the algorithm
terminates, all vertex states are changed either to IN or OUT.
Whether a vertex state should be changed from NIL to IN
or NIL to OUT is decided within the general iterative scheme
(Lubylterate in Algorithm 2). First, the general iterative scheme
invokes the appropriate “Select” algorithm select’/™ (Select”
or Select®). The specific select algorithm is responsible for
populating the append buffer and the delete set (Line 5). The
general iterative scheme iterates through the append buffer in
parallel and checks whether a vertex is present in the delete set
(Lines 7-11). If a vertex is not in the delete set then that vertex
state is updated to IN (Line 9). When a vertex state is changed
to IN state, all its neighbors’ states are to changed to OUT state
(Line 11). The Send operation determines to which rank the
message should be sent based on the destination vertex and the
graph distribution. Messages sent through Send are received in
the Receive (Lines 14-15) function. Traversing through vertices
in the append buffer and updating vertex states takes place
within a single super-step (i.e., within a single epoch).

B. Distributed Select A

Select A (Luby(A)) algorithm takes a local graph representa-
tion, an append buffer, and a delete set. Select A algorithm is
listed in Algorithm 3. G is the local graph representation,
abuffer represents the append buffer and deleteset represents
the delete set. Select A algorithm first calculates the number
of vertices in NIL state using a global reduction (Lines 4—
7). Then, for each vertex in NIL state, a random value, k
1< k< globalcount4), is assigned (Lines 10-13). When
generating random values, a combination of rank id and thread
id is used to generate a unique random value seed for every
thread (Seed() on Line 8). Random values are stored in a
property map; a rank only stores random values for vertices in
its local graph. While assigning a random value to each local

Algorithm 3: Distributed Select”

: procedure Select® (G ref abuffer, ref deleteser)
localcount < 0
globalcount < 0
for each Vertex v in G/ in parallel do

if mis[v] == NIL then

localcount < (localcount + 1)

globalcount <— Reduce(localcount,SUM)
random <— RandomDist(1, globalcount*, Seed())
: /*Assign random values to vertices in NIL statex/
10: for each Vertex v in G/ in parallel do
11: if mis[v] == NIL then
12: w[v] < random.Value()
13: abuffer.add(v)

14: /+Use random values to remove conflicting
verticesx*/

R AR A R ol e

15: epoch {

16: for each Vertex ¢ in abuffer in parallel do
17: for each j in adjacencies(v, G***!) do
18: if u belongs to G then

19: if 7[i] >= 7[j] then

20: deleteset.add(1)

21: else

22: deleteset.add(j)

23: else

24: Send(j, i, w[i], COMPARE)

25: }

26: /+Every Send call invokes a Receivex/

27: procedure Receive(j: Vertex, i:Vertex, irnd:Real, act:Action)
28: if act == COMPARE then

29: if irnd >= 7[j] then

30: Send(i, j, 7[5, REMOV E)
31: else

32: deleteset.add(j)

33: else

34: if act == REMOVE then

35: deleteset.add(j)

vertex in a NIL state, Select A algorithm inserts those vertices
to the append buffer (Line 13).

In the next phase, the algorithm traverses through vertices
in the append buffer in parallel and inserts adjacencies with
higher random values that are in NIL state to the delete set
(Lines 16-24). If the adjacent vertex does not belong to G'°¢%!,
then a message is sent to the appropriate locality (Line 24),
including the source vertex id ¢ and its random value. The rank
that owns the destination vertex j checks whether the received
random value is less than the random value of j. If so, j is
added to the delete set, otherwise a message is sent back to ¢
to add ¢ to the delete set. The first message is denoted using
the action COMPARE and the second action is represented
using the action REMOVE. Every Send call corresponds to
a Receive function (Lines 27-35) invocation. At the end of
the execution of epoch in Lines 15-25, vertices in the append
buffer but not in the delete set represent an independent set.

C. Select AV (A variation of Select A)

The Select A algorithm generates random numbers in
every iteration. Random number generation is computationally
expensive, also, to generate random numbers we need to
calculate the total subgraph vertex set size (across all distributed

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

ranks) which incurs additional communication overhead due
to distributed reduction and barrier synchronization.

Select AV (Luby(AV)) is almost same as Select A, except
that, we do not generate random numbers to calculate an
independent set. Instead, we use graph representation vertex
IDs to break the symmetry and calculate an independent set. In
other words, 7[i] =i Vi € V5, where V; represents the vertex
set of a subgraph. This method depends on the distribution
of vertex identifiers in the graph data structure, but it works
well with our representation which randomly permutes vertices
before the algorithm begins.

D. Distributed Select B

Algorithm 4: Distributed Select”

: procedure Select® (G ref abuffer, ref deleteser)
degree < {} /+«Calculate vertex degrees relative to
the subgraphx/

N —

3: epoch {

4 for each Vertex v in G'°® in parallel do
5 if mis[v] == NIL then

6: for each w in adjacencies(v, G'°) do
7: if u belongs to G then

8 if mis[u] == NIL then

9 degree[v] < (degree[v] + 1)

10: else

11: Send* (u, v, ISNIL)

12}

13: /*Build independent set based on coin valuex/
14: for each Vertex v in G°? in parallel do

15: if coin(v, degree[v]) == 1 then

16: abuffer.add(v)
/*Remove conflicting vertices=/
17: epoch {
18: for each Vertex ¢ in abuffer in parallel do
19: for each j in adjacencies(v, G'°) do
20: if j belongs to G*°® then
21: if j is in abuffer then
22: if degree[i] <= degree[j] then
23: deleteset.add(1)
24: else
25: deleteset.add(j)
26: else
27: Send(j, 1, degree[i|, COMPARE)
28: }

29: /«Every Send! call invokes a Receivelx/
30: procedure Receivel(u.'\/ertex, v:Vertex, act:Action)

31: if act == ISNIL then

32: if mis[u] == NIL then

33: Send" (v, u, NILTRUE)

34: else

35: if act == NILTRUE then

36: degree[u] «— (degree[u] + 1)

37. /*Every Send call invokes a Receivex/
38: procedure Receive(j:Vertex, i:Vertex, irnd:Real, act:Action)
> /*Same as the Receive procedure in Algorithm 3*/.

Select B (or Luby(B)) algorithm does not add all the vertices
in NIL state to the append buffer, instead it only adds a subset
of vertices in NIL state. The subset is calculated based on the
random variable coin. The random variable coin has two values
0 and 1 that are assigned based degree distribution of vertices.
Therefore, Select B algorithm first calculates the degree of each
vertex relative to the subgraph. Then, the algorithm selects

subset vertices in NIL state for an independent set based on
the coin value. Afterwards, the algorithm checks in parallel
if any adjacent vertices were selected. If so, the algorithm
uses degrees of vertices to resolve the conflict and remove any
non-independent vertices. Algorithm pseudocode for Select B
algorithm is presented in Algorithm 4.

Calculating vertex degrees in the current subgraph requires
communicating with remote ranks. Lines 4-11 show the degree
calculation. If an adjacent vertex is not in current locality, the
algorithm sends a message to the remote locality to check the
status of the adjacent vertex (Line 11), using the ISNIL action to
query the status of the adjacent vertex. These messages invoke
the Receive! procedure on the remote locality (Lines 30-36).
If the adjacent vertex is in the NIL state, the remote rank sends
back a reply NILTRUE.

Lines 14—-16 show how Select B algorithm invokes coin, a
random variable, to select a subset of vertices as a candidate
for an independent set. The coin function takes a vertex and
its degree to decide whether the random variable value is 1
or 0. If the coin function returns 1, the vertex is added to the
append buffer.

After adding a subset of vertices in the subgraph to the
append buffer, Select B algorithm iterates through the content
in the append buffer in parallel. If a vertex in the append buffer
has an adjacent vertex that is also in the append buffer, then
the vertex with the smaller degree is removed. The vertex that
has a lower degree is added to the delete set (Lines 18-27). If
the adjacent vertex is in a remote locality a message is sent
(Line 27). The receive code to handle messages sent (Line 27)
is similar to the Receive procedure in Select A (Lines 27-35,
in Algorithm 3). Like in Select A, when Select B finishes
executing the epoch in Lines 17-28, vertices in the append
buffer but not in the delete set represents an independent set.

V. EXPERIMENTS & RESULTS
A. Implementation

The proposed algorithms are implemented on top of an active
messaging framework AM++ [3], using pthreads for in-node
threading.

Graph vertices are equally distributed among participating
nodes (1D block distribution). The local graph is represented
using compressed sparse row (CSR) format. Every undirected
edge is represented using two directed edges.

Algorithm implementations do not require pre-processing
of inputs and can deal with parallel edges and self-loops
(common artifacts in synthetic inputs). Whenever there is code
that iterates through adjacencies of a vertex, the algorithm
inserts adjacent vertices to a local set. The body of the loop is
executed only if the adjacent vertex is not present in the set
(See the code below).

1: ...
2: adjacentvertices < {}

3: for each u in adjacencies(v, G**") do

4: if (u! = v) then > /*Exclude self-loops*/
5 if u not in adjacentvertices then> /*Exclude parallel edges*/
6: adjacentvertices.insert(u)

7.

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

19 20 21 22 23 24 25 26 27 28 29 30
T T T T Py T —F T 1 >
R
» 100 £ 1 ERN
° ' <
£ - : z
10 7 ' E
v 1
T T T T i g T T T w1
S~
@100 £ ' 4o
o : g
£ /’/ : =
(= / ! o
10 :/ ! .
R 1
1 1 1 1 1 1 1 1 1 1
N Y > D O O > @
%Coresb AL
Luby(A) CombBLAS(50%)
Luby(AV) CombBLAS(100%) ——
Luby(B)

Fig. 2: Weak scaling results of MIS algorithms for RMAT graphs,
including FilteredMIS. The shaded area shows the shared memory
execution.

B. Experimental Setup

We ran our experiments on a Cray XC system with 2
Broadwell 22-core Intel Xeon processors and 128 GB DDR4-
2400 memory per node. For scaling results, we used only up
to 32 cores per node to provide uniform scaling. We used Cray
MPICH MPI (version 7.4.4) and GCC 6.3.0. We used two
processes per node (one per NUMA domain), and we used
MPI in thread-multiple mode.

C. Graph Input

We evaluate the MIS algorithms in-terms of weak scaling
and strong scaling. We use RMAT [18] synthetic graphs. Two
types of RMAT synthetic graphs are used. They are:

¢ RMAT-1: Graphs based on the current Graph500 [19]
Breadth First Search benchmark specification with RMAT
parameters A = 0.57, B =C = 0.19 and D = 0.05.

o RMAT-2: Graphs generated based on the proposed
Graph500 [20] SSSP benchmark specification with RMAT
parameters A = 0.50, B=C = 0.1 and D = 0.3.

Both types of graphs have 16 undirected edges per vertex.
Strong scaling experiments were carried on RMAT-1 and
RMAT-2 scale 25 graphs (largest possible before memory
exhaustion).

D. Weak Scaling Results

For weak scaling we compare our implementation to
FilteredMIS[14] implementation in the CombBLAS [4] library.
The FilteredMIS algorithm runs Luby(A) with edge filtering.
However, implementation presented in this paper does not
perform any edge filtering. We show FilteredMIS results with
0% and 50% edge filtering where no edges and half of the
edges are ignored, respectively. The more edges are ignored,
the better FilteredMIS performs.

Figure 2 shows weak-scaling results for of Luby(A),
Luby(AV), Luby(B), and FilteredMIS for RMAT-1 and RMAT-2
graph inputs. For both graph inputs distributed Luby algorithms

presented in this paper outperform CombBLAS,FilteredMIS
(for both 50% and 100% edge filtering).

Results from distributed execution of FilteredMIS show a
zig-zag pattern (when cores > 32). The CombBLAS version
we use only supports a square number of tasks; therefore, when
executing on a non-square number of nodes (2, 8, 32) we used
two tasks per node to make the execution on a square number
of processes. When the number of tasks per node is two,
FilteredMIS execution time decreases and when the number of
tasks per node is 1, the execution time increases. We enabled
multi-threading in CombBLAS so the tasks can take advantage
of multiple cores. We observed that CombBLAS performed
the worst with one task per core (no multi-threading).

As per Figure 2, Luby(B) performs better in shared memory
(when, cores < 32) for both graph inputs. Unlike Luby(A),
Luby(B) does not consider all vertices in the subgraph to be
in the initial approximation to the independent set. Luby(B)
has a choice step, where it calculates a subset from the
subgraph vertices based on the probability distribution (See
Section III, “coin” function). Since Luby(B) selects subset
from the subgraph vertices, Luby(B) is able to calculate an
independent set faster than Luby(A) in an iteration. On the other
hand, Luby(A) does not have a choice step and it considers all
the vertices in the subgraph as a candidate for an independent
set. The data statistics we collected shows that Luby(A) spends
most of its time in calculating an independent set in the first
iteration, especially in shared-memory execution. For example,
the statistics in Table II are collected for scale 20 RMAT-1
graph on 2 cores. Other scales behave in the same way.

Luby(A)
Exec. Time (sec.) 7.13 4.17
Time for Oth iteration (sec.) 6 0.01
No.of Iterations 5 20
Vertices in Oth iteration 1048576 517394

Deleted Set Sz. 917623 2043
TABLE II: Runtime statistics for Luby(A) and Luby(B) on RMAT-1,
Scale 20 graph on 2 cores.

Luby(B)

Luby(A), however, converges much faster than Luby(B). As
shown in Table II, Luby(A) takes 6 iterations to terminate while
Luby(B) takes 20 iterations. When the number of iterations are
higher, the overhead of global synchronization also increases.
At scale 24 (when cores = 32) we see a sudden increase in
Luby(B)’s runtime. This is because at scale 24 execution runs
in 2 processes and the overhead of communication become
significant. The performance of Luby(B) is more affected at
scale 24 than the performance of Luby(A). Since the number
of iterations are higher in Luby(B), synchronization overhead
is more important in Luby(B) than in Luby(A).

The difference between Luby(A) and Luby(AV) are not
prominent. Luby(AV) is able to achieve a slight improvement
over Luby(A) in distributed execution. This is mainly because
Luby(AV) avoid the need to calculate vertex set size using a
global reduction and also avoids the need to generate random
numbers.

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

[Fastest sequential: Luby(B) (3D4.51 sec).]

_
o
o

_
o
T

| | | |
[Fastest sequential: Luby(B) (305.17 sec).]

-
|

—_
o
o

_
o
T

Relative Speedup Relative Speedup
RMAT-2 (Scale 25) RMAT-1 (Scale 25)

-

L L L L 1 Il Il Il Il Il
N X) X © x
v A N SR IR
Cores

Luby(A) Luby(AV) Luby(B)
Fig. 3: Strong scaling results of MIS algorithms for RMAT-1 and
RMAT-2, Scale 25 graph inputs. Shaded region shows the shared
memory execution.

All the Luby algorithms (A, AV, B) presented in this paper
do not show perfect weak scaling performance in shared
memory due to the contention created on data structures with
the increasing number of threads. However, we see good
weak scaling in distributed memory for all Luby (A, AV, B)
algorithms.

E. Strong Scaling Results

For strong scaling experiments, we ran MIS algorithms
on RMAT-1 and RMAT-2 scale 25 graphs. To have better
understanding about how algorithms scale relative to each
other, we measured Relative Speedup, = Trepn i.e., the ratio
of the execution time of the fastest sequential glgorithm, Trer 1
and the parallel execution time on n processing elements, 7,.

Figure 3 shows the strong scaling results of MIS algorithms
presented in this paper for the graph inputs discussed above.
Due to synchronization overhead discussed in the context of
weak-scaling results, Luby(B) shows better speedup in shared
memory, but in distributed memory Luby(B) speedup drops at
higher scales due to higher synchronization overhead.

VI. CONCLUSIONS

Most of the existing research on MIS focuses on theoret-
ical analysis than practical implementation. Further, the few
practical implementations mostly implement Luby’s MIS algo-
rithms. Luby’s MIS does not immediately extend as efficient
distributed-memory parallel algorithm due to synchronization
overheads and subgraph computation overheads.

In this paper we presented distributed versions of parallel
Luby’s algorithms. The algorithms we propose minimize the
synchronization overhead by overlapping communication and
computation and minimizes the subgraph computation overhead
using vertex filtering and by maintaining parallel data structures.
Our results show that the algorithms we present are several
times faster than existing MIS algorithms.

VII. ACKNOWLEDGMENTS

The research is in part supported by the Defense Advanced
Research Projects Agencys (DARPA) Hierarchical Identify

Verify Exploit Program at the DOE Pacific Northwest National
Laboratory (PNNL) and National Science Foundation grant
1716828. PNNL is operated by Battelle Memorial Institute
under Contract DE-AC06-76RL01830. Access to computational
resources was supported in part by Lilly Endowment, Inc.,
through its support for the Indiana University Pervasive
Technology Institute, and in part by the Indiana METACyt
Initiative. The Indiana METACyt Initiative at IU was also
supported in part by Lilly Endowment, Inc.

[1]
[2]

[3]

[4]

[5]

[6]

[7]
[8]

REFERENCES

S. A. Cook, “A taxonomy of problems with fast parallel algorithms,”
Information and control, vol. 64, no. 1, pp. 2-22, 1985.

M. Luby, “A simple parallel algorithm for the maximal independent set
problem,” SIAM journal on computing, vol. 15, no. 4, pp. 1036-1053,
1986.

J. J. Willcock, T. Hoefler, N. G. Edmonds, and A. Lumsdaine, “AM++:
A Generalized Active Message Framework,” in Proc. 19th Internat.
Conference on Parallel Architectures and Compilation Techniques. ACM,
2010, pp. 401-410.

A. Bulug and J. R. Gilbert, “The combinatorial blas: Design, implemen-
tation, and applications,” International Journal of High Performance
Computing Applications, p. 1094342011403516, 2011.

M. Goldberg and T. Spencer, “Constructing a maximal independent set
in parallel,” STAM Journal on Discrete Mathematics, vol. 2, no. 3, pp.
322-328, 1989.

A. Goldberg, S. Plotkin, and G. Shannon, “Parallel symmetry-breaking in
sparse graphs,” in Proceedings of the nineteenth annual ACM symposium
on Theory of computing. ACM, 1987, pp. 315-324.

M. K. Goldberg, “Parallel algorithms for three graph problems,” Con-
gressus Numerantium, vol. 54, no. 111-121, pp. 4-1, 1986.

N. Alon, L. Babai, and A. Itai, “A fast and simple randomized
parallel algorithm for the maximal independent set problem,” Journal of
algorithms, vol. 7, no. 4, pp. 567-583, 1986.

978-1-5386-3472-1/17/$31.00 ©2017 IEEE

[9]

[10]

(1]
[12]

[13]

[14]

[15]

[16]

(17]
(18]
[19]

[20]

R. M. Karp and A. Wigderson, “A fast parallel algorithm for the maximal
independent set problem,” Journal of the ACM (JACM), vol. 32, no. 4,
pp. 762-773, 1985.

G. E. Blelloch, J. T. Fineman, and J. Shun, “Greedy Sequential
Maximal Independent Set and Matching Are Parallel on Average,” in
Proceedings of the Twenty-fourth Annual ACM Symposium on Parallelism
in Algorithms and Architectures. ACM, 2012, pp. 308-317.

N. A. Lynch, Distributed algorithms. Morgan Kaufmann, 1996.

Y. Métivier, J. M. Robson, N. Saheb-Djahromi, and A. Zemmari, “An
optimal bit complexity randomized distributed mis algorithm,” Distributed
Computing, vol. 23, no. 5-6, pp. 331-340, 2011.

F. Kuhn, T. Moscibroda, T. Nieberg, and R. Wattenhofer, “Fast determinis-
tic distributed maximal independent set computation on growth-bounded
graphs,” in International Symposium on Distributed Computing. Springer,
2005, pp. 273-287.

A. Buluc, E. Duriakova, A. Fox, J. R. Gilbert, S. Kamil, A. Lugowski,
L. Oliker, and S. Williams, “High-productivity and high-performance
analysis of filtered semantic graphs,” in Parallel & Distributed Processing
(IPDPS), 2013 IEEE 27th International Symposium on. 1EEE, 2013,
pp. 237-248.

S. Salihoglu and J. Widom, “Optimizing graph algorithms on pregel-
like systems,” Proceedings of the VLDB Endowment, vol. 7, no. 7, pp.
577-588, 2014.

K. Garimella, G. De Francisci Morales, A. Gionis, and M. Sozio,
“Scalable facility location for massive graphs on pregel-like systems,” in
Proceedings of the 24th ACM International on Conference on Information
and Knowledge Management. ACM, 2015, pp. 273-282.

L. G. Valiant, “A bridging model for parallel computation,” Communica-
tions of the ACM, vol. 33, no. 8, pp. 103-111, 1990.

D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-mat: A recursive model
for graph mining.” in SDM, vol. 4. SIAM, 2004, pp. 442-446.

R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang, “Introducing
the graph 500 benchmark,” Cray User’s Group (CUG), 2010.

Graph500Contributors. (2016) Graph 500 benchmark 1 (”search”).

[Online]. Available: http://www.cc.gatech.edu/ jriedy/tmp/graph500/

