2017 1IEEE 24th International Conference on High Performance Computing (HiPC)

Parallel Asynchronous Distributed-Memory
Maximal Independent Set Algorithm with Work
Ordering

Thejaka Kanewala, Marcin Zalewski, Andrew Lumsdaine
Pacific Northwest National Laboratory & University of Washington
Seattle, WA, USA
Email: {thejaka.kanewala, marcin.zalewski, andrew.lumsdaine} @pnnl.gov

Abstract—The maximal independent set (MIS) graph problem
arises in many applications such as computer vision, information
theory, molecular biology, and process scheduling. The growing
scale of graph data suggests the use of distributed memory
hardware as a cost-effective approach to providing necessary
compute and memory resources. Existing distributed memory
parallel MIS algorithms rely on synchronous communication and
use techniques such as subgraph computations. In this paper,
we present an asynchronous distributed-memory parallel graph
algorithm that relies on a virtual directed acyclic graph (DAG)
that is created during the algorithm execution. We introduce
two additional algorithms that save computations by ordering
generated work. The first algorithm applies ordering globally to
reduce computations, and the second algorithm applies ordering
locally at the level of threads to minimize the synchronization
overhead. We use two different implementations of Luby’s
algorithm variants as baseline to compare the performance
of the presented algorithms: (1) vertex-centric Luby A and
Luby B implementations, and (2) the CombBLAS linear-algebra
Luby A implementation. Results show that proposed algorithms
outperform both implementations of Luby algorithms, especially
in distributed execution. Furthermore, we show that for low-
diameter graphs the algorithm that applies global ordering scales
better than other algorithms and for high diameter graphs
the original asynchronous algorithm and thread-level ordering
algorithm show better performance.

Keywords-maximal independent set (MIS); distributed-memory
graph algorithms

[. INTRODUCTION

The Maximal Independent Set (MIS) problem arises in many
application domains including computer vision, information
theory, molecular biology, and process scheduling. For a given
graph G = (V, E) where V represents the set of vertices and
E represents the set of edges in the graph, an independent set
or a stable set of G is a set of vertices in the graph where no
two vertices are adjacent. The largest possible independent
set is called the maximum independent set. Since finding
the maximum independent set is an NP-hard problem, most
applications settle for finding a maximal independent set (MIS).
Maximal independent set is an independent that is not a subset
of any other independent set(e.g., Figure 1). Although efficient
MIS algorithms are well-known [1], the increasing scale of data-
intensive applications requires the use of distributed-memory
hardware (clusters), which in turn requires distributed-memory
algorithms.

0-7695-6326-0/17/$31.00 ©2017 IEEE

DOI 10.1109/HiPC.2017.00016

52

Fig. 1: The gray nodes show a maximal independent set of this graph.

Existing research on parallel algorithms for the MIS problem
focuses primarily on theoretical analyses (most often in shared
memory settings), and this provides incomplete insight into
real-world performance. The available distributed-memory
parallel algorithms for MIS are based on Luby’s randomized
MIS|[2] algorithms. Luby’s algorithms were developed primarily
focusing on shared memory; they use techniques that do not
scale to distributed-memory. In this paper we propose an
asynchronous distributed-memory parallel MIS algorithm based
on a Directed Acyclic Graph (DAG) induced on the input
graph, using unique randomly assigned vertex identifiers. FIX,
the algorithm we propose, can further reduce the number of
computations by arranging the computations in a particular
order. We present two different orderings of FIX, FIX-Bucket
and FIX-PQ, and we experimentally evaluate their performance
against two different implementations of distributed-memory
parallel Luby’s algorithms.

The FIX algorithm we present in this paper is an asyn-
chronous distributed-memory parallel algorithm. It maintains a
state for every vertex, indicating whether the vertex is in MIS
(FIX1) or not in MIS (FIX0). FIX creates a virtual DAG based
on randomly assigned vertex identifiers. Processing starts from
the sources of this DAG, and state changes are propagated
towards the sinks of the DAG. We show that the algorithm
terminates, and that at termination vertices that have the state
FIX1 form an MIS.

The correctness of the FIX algorithm does not depend on the
order of changes to vertex states, and the execution can proceed
in any of the correct orders (the algorithm execution is not
deterministic, but the result is). We derive two algorithms from
the basic FIX algorithm by applying the following orderings:

1) Order work based on where it originates — First process

IEEE
computer
® psoaety

work originating from vertices in FIX1 and then process
work originating from vertices in FIXO0 (FIX-Bucket
algorithm);

Order work based on state and then order work based on
the monotonic distance from the vertex that started the
work (source of the DAG). In other words, the work that
is in FIX1 is processed immediately and the work that
is not in FIX1 is processed based on the distance from
the source. Vertices that have smaller distance from the
source gets priority over vertices that have higher distance
from the source when the work is in FIXO state (FIX-PQ
algorithm).

2)

We show that above two orderings reduce the number of
computations relative to the original FIX algorithm.

The performance of the proposed FIX algorithm (including
the two ordering variations) is evaluated and compared with
Luby’s algorithms for both weak scaling and strong scaling.
Direct implementations of the original Luby algorithms are
inefficient in distributed-memory runtimes, mainly because
of subgraph computation, random number generation, and
synchronization. [3] presented an efficient implementation of
two of Luby’s seminal algorithms with overlapping computation
and communication. In addition, CombBLAS[4] has an imple-
mentation of Luby’s algorithm that is implemented using linear
algebra primitives. We use these two implementations as our
baselines to compare the performance of the FIX algorithms.

Our results include two types of synthetic graph inputs to
evaluate the weak scaling performance and two synthetic graphs
and two natural graphs (one with a small diameter and one
with a higher diameter) to evaluate the strong scaling perfor-
mance. Results show that the three FIX algorithms outperform
Luby’s algorithms implemented in [3] and CombBLAS [4].
Furthermore, we show that for low-diameter connected graphs,
the FIX-Bucket algorithm has better performance than FIX
and FIX-PQ, and for higher diameter graphs, the FIX and
FIX-PQ algorithms have better performance than FIX-Bucket
algorithm.

In summary, the main contributions of this paper are:

1) Development and characterization of three distributed-
memory parallel MIS algorithms;

2) Comparison of weak scaling results to two different
implementations of distributed Luby algorithms;

3) Analysis of results showing that for low-diameter graphs
FIX-Bucket outperforms other algorithms and that for
high-diameter graphs the FIX or the FIX-PQ algorithm
outperforms other algorithms.

II. FIX ALGORITHM

The FIX algorithm begins by generating a directed acyclic
graph (DAG) on the input graph G. First, every vertex is
assigned a unique random identifier. Every undirected edge
(v,u) is given a direction based on the identifiers of v and u,
where the vertex with the greater identifier becomes a successor,
and the vertex with the lesser identifier becomes a predecessor
(see Fig. 2). The vertices without predecessors are the sources

53

of the induced DAG, and the vertices without successors are
the sinks.

The FIX algorithm is shown in Al-
gorithm 1. FIX has three main subrou-
tines: Initialize, Begin, and Receive. Every
Send call in the algorithm invokes the
Receive subroutine. The FIX algorithm
maintains a state per each vertex. The state
is represented using the maps mis and
count, where the mis map represents the
membership in MIS (FIXO indicates not
in MIS, and FIX1 indicates in MIS), and
the count map represents the number of
predecessors with state FIX1. In Initialize,
the mis state of every vertex is initialized
to UNFIX, indicating that the membership
of the vertex in the MIS is not decided
yet, and the count state is initialized to 0, indicating that no
predecessors are in MIS. The FIX algorithm first adds source
vertices to the MIS (Lines 1-5) by changing their state to FIX1.
Upon changing the state of a source, a message is sent to its
successors to notify them of the change.

The initial messages sent from Begin are handled by Receive.
The Receive routine is a message handler that is implicitly
invoked per every Send call. If a message comes from a vertex
with a state of FIX1, the state of the receiving vertex u is
immediately changed to FIXO, and all successors of v are
notified of this change (Lines 1 and 4). If a message comes
from a vertex in the FIXO state, the count of predecessors with
FIXO state is incremented. If all predecessors have the FIXO0
state (Line 7), then the vertex joins the MIS. Its state is set
to FIX1, and all of its neighbors are notified. The algorithm
traverses the DAG induced on the input graph G by following
the predecessor and successor links, and it terminates when
the states of all sinks are set to FIX0 or FIX1, or, equivalently,
when there are no vertices left in the state UNFIX.

At termination, vertices with state FIX1 form an MIS. To
prove this, we first need to show that at termination, all vertices
must either be in FIX1 or FIXO0 state. Suppose there is a vertex,
v, in the UNFIX state at termination. The vertex v can be
in any one of the following 4 situations within the induced
DAG: (1) v has neither predecessors nor successors; (2) v has
predecessors but not successors; (3) v has no predecessors
but it has successors; or (4) v has both predecessors and
successors. In cases (1) and (3) the Begin routine promotes
the state of v to FIX1 (Line 3 in Algorithm 1). In cases (2)
and (4), if v is in UNFIX state, then, there is no predecessor
with state FIX1 because of the message sent on Line 10 in
Algorithm 1. A message sent in Line 10 calls the Receive
procedure and it assures successor of a FIX1 vertex is in FIX0
(Lines 1 and 2). Then, either all the predecessors must be
in the FIXO state, or there is at least one predecessor that is
in the UNFIX state. If all the predecessors are in FIXO, v
must be in FIX1 (Lines 7 and 8 in Algorithm 1). Since we
assume v is in the UNFIX state, there must be at least one
predecessor in the UNFIX state. Let this predecessor of v be

Fig. 2: Successors
and predecessors of
a vertex.

Algorithm 1: FIX Algorithm
Initialize G = (V, E):

1: for each v in V do

2: mis[v] < UNFIX, count[v] < 0
Begin G = (V,E):

1: for each v in V do

2: if v is a source then

3: mis[v] « FIX1

4 for each w in Successors of v do

5: Send(u, FIX1)
Receive u, vstate:

1: if vstate == FIX1 then

mis[u] < FIX1
for each us in Successors of u do
Send(us, FIX1)

2: mis[u] + FIXO0

3: for each us in Successors of u do
4: Send(us, FIXO0)

5: else

6: count|u] < count[u] + 1

7. if count[u] == |Predecessors| then
8:

9:

0:

u. We can make a similar argument for « and can conclude
that u has a predecessor in the UNFIX state. We continue the
argument until we reach a vertex without predecessors (since
the DAG is finite and acyclic, we will reach a source level
vertex). However, by cases (1) and (3), we know that a vertex
without predecessors will be promoted to FIX1. Therefore, the
sources of the DAG (they are also predecessors) cannot be
in the UNFIX state. Therefore, our assumption that there is a
vertex in UNFIX state after termination causes a contradiction,
and we can conclude that every vertex is in either FIXO0 or
FIX1 after algorithm termination.

Furthermore, none of the vertices that are in the state FIX0
can be changed to FIX1 because a vertex’s state transitions to
FIXO if, and only if, it has a neighbor that is in FIX1. Therefore,
the set of vertices in the FIX1 state cannot be expanded any
further. Hence, a set of vertices that is in the FIX1 state is an
MIS.

Compared to Luby’s algorithms, the FIX algorithm avoids
the overhead of random number generation in every iteration
by assigning a random permutation of identifiers to vertices. In
addition, FIX also avoids the need to maintain a subgraph for
every iteration. Maintaining a subgraph requires O(n) space;
hence, compared to Luby’s algorithms, FIX is space efficient.

A. Distributed FIX

The distributed implementation of FIX divides vertices
equally among participating processes and stores those vertices
and their adjacencies locally. G'° represents the local sub-
graph. Every rank runs some number of threads, and distributed
messages are exchanged between ranks within epochs.

An epoch is a code region where distributed programs can
exchange messages. A global barrier is executed at the start
of an epoch and at the end of an epoch. Computation and
communication can be overlapped within epochs.

54

Our distributed implemen-

... Sources
tation is listed in Algo-
rithm 3. The implementa-
tion follows the single pro-

gram, multiple data (SPMD)
paradigm, in the sense that
every rank runs the same pro-
gram. Every rank maintains
two per-vertex counter maps
of counters (the counters are
indexed by the vertex iden-
tifier). The first counter, pre-
decessor count (predcount),
counts the number of prede-
cessors per each vertex and
this is calculated at the ini-
tialization of the algorithm
(Line 15). The second counter, predecessor completed count
(predcc) keeps track of the number of predecessors that were
moved to FIXO state. This counter is updated during algorithm
execution. These two counters are used to identify whether all
the predecessors of a vertex have been moved to FIXO state.
For a given vertex, v, predcount[v] = predcc[v] means that all
the predecessors of the vertex v are in FIX0, and v can be set
to FIXI.

The algorithm execution starts with the FIXMIS (Lines 12—
19) procedure. Inside an epoch, each rank goes through vertices
in the local graph in a parallel thread and changes the state
of vertices that have a zero predcount. When a vertex’s state
is changed, the vertex notifies all of its successors (Line 18).
The notification implicitly invokes the Receive procedure, as
in Algorithm 1. The Receive function first checks whether
the destination vertex’s state is already changed to either
FIX1 or FIX0 (Line 22). If not, it checks whether the source
vertex’s state has been changed from UNFIX to FIX1. If so, the
receiving vertex’s state is changed to FIXO0, and the receiving
vertex notifies, in turn, all of its successors (Lines 24-28). If
the source vertex’s state is changed from UNFIX to FIXO,
the receiving vertex increments its predcc counter. Then, if
all of the receiving vertex’s neighbors with higher priorities
are transferred to FIXO state (i.e., if predcc = predcount), the
receiving vertex is promoted to FIX1 state (Lines 21-36).

In our particular implementation of the FIX algorithm, we
did not use a thread-level distribution of vertices. Therefore,
counters and MIS states can be updated by two threads at the
same time. To avoid race conditions we use atomic operations.

As is, the Algorithm 3 suffers from load imbalance within
threads in shared memory execution. The algorithm processes
each vertex in parallel (Line 14), and some of the vertices,
that threads process are not sources (i.e., they do not satisfy
the condition predcount[v] == 0, Line 15). Because of that,
those threads do little work compared to threads that process
sources.

To balance the load between threads, we pre-calculate the
source vertices and insert them into an append buffer, and
FIXMIS procedure iterates over the sources instead of all

" Sinks
Fig. 3: The virtual DAG created

based on predecessors and succes-
SOrs.

A

Algorithm 2: Modified FIX for better load balance between
threads
1:

2: procedure Initialize(G""")

3: for each Vertex v in G in parallel do
4:

5: for each u in adjacencies(v, G"*') do
6: if (u < v) then

7: predcount[v] < predcount[v] + 1

8: if predcount[v] == 0 then

9: appendbuffer.insert(v)

10:

11: procedure FIXMIS(G)

12: ..

13: for each Vertex v in appendbuffer in parallel thread do
14:

15:

16: .

vertices in the graph. This way we make sure that every

thread processes about the same number of source vertices.

The modified distributed MIS with better thread level load
balance is given in Algorithm 2 (Lines 5-7 and Line 13).

Algorithm 3: Distributed Memory Parallel FIX Algorithm

1: predcount < {0...0}

2: predcc + {0...0}

3: procedure Initialize(G"°")

4; for each Vertex v in G in parallel do
5 mis[v] <~ UNFIX

6: predcount[v] < 0
7
8

predcc[v] < 0

for each u in adjacencies(v, G"*') do
9: if (u < v) then
predcount[v] < predcount[v] + 1

12: procedure FIXMIS(G"“*")

13: epoch {

14: for each Vertex v in G*“ in parallel thread do
15: if (predcount[v] == 0) then

16: mis[v] < FIX1

17: for each v in adjacencies(v, G**“') do

18: Send(u, v, mis[v])

19: }

20:

21: procedure Receive(destv, srcv, srcstate)

22: if mis[destv]! = UNFIX then

23: return

24: if srestate == F1X1 then

25 mis[destv] < FIX0

26: for each u in adjacencies(destv,) do
27: if (u > destv) then

28: Send(u, destv, mis|destv])

29: else > srcstate=FIX0
30: if (srcv < destv) then

31: predccdestv] < (predcc|destv] + 1)

32: if predcc|destv] == predcount|destv] then
33: mis[destv] < FIX1

34: for each u in adjacencies(destv, G'") do
35: if (u > destv) then

36: Send(u, destv, mis[destv])

55

III. ORDERING IN FIX

The FIX algorithm discussed above is an unordered algo-
rithm. Therefore, the order in which the states are updated does
not affect the correctness of the algorithm, but with certain
ordering schemes we can reduce the amount of computations
in FIX.

The FIX algorithm decides a vertex is in the MIS (FIX1) if
all of its predecessors are not in MIS. Therefore, the sooner
a vertex finds out that it is in MIS, the more computations
it can avoid. For example, in Figure 4, the vertex v has four
predecessors; out of those four, one predecessor is in state FIX1.
If v gets a state change from the vertex in FIX1 first, v will
not have to execute the logic relevant to increase predcc count
and the “if condition” that compares predcc and predcount. If
the thread level vertex distribution is random, the predcc count
will be a atomic variable and processing FIX1 predecessors
first will considerably reduce the contention when processing a
large graph, especially in shared memory execution. However,
if we process FIX0 predecessors before FIX1, the computation
we did for FIXO state changes have no effect on the final
outcome.

We came up with two forms
of orderings that reduce compu-
tations as described above. The
first approach orders the execution
on the state. That is, messages
generated are separated into two
buckets. The first bucket contains
the work originated from vertices
whose states transferred to FIX1.
The second bucket contains the
work originated from vertices who transferred their states to
FIX0. How execution proceeds in this ordering is depicted in
Figure 5. Implicitly, the bucket ordering traverse the DAG in a
level synchronous fashion. We call this algorithm FIX-Bucket
and it is discussed in detail in Section III-A.

Fig. 4: DAGs created by
FIX algorithm execution for
the graph input in 1.

Fig. 5: How DAG is executed in FIX-Bucket ordering.

FIX FIX-PQ FIX-Bucket
Skipped 84208408 119592110 112771147

(65.10%) (92.46%) (87.16%)
Called 45130908 9747206 16613655

(34.89%) (7.53%) (12.84%)
Total 129339316 129339316 129339316

TABLE I: Saved computations for FIX-Bucket and FIX-PQ algorithms,
relative to FIX. Results are for scale 23, RMAT-1 (refer Section IV-C
for details) graph with 4 cores running in parallel.

barrier

=

FIX1 Work FIX0 Work

=/

@ barrier

Fig. 6: An overview of the FIX-Bucket algorithm.

The above ordering involves a global barrier to be executed
in every level. The second ordering we propose (FIX-PQ), skips
global synchronization and performs local ordering on work.
The work generated is ordered based on the state of the source
vertex as well as on the distance from the originating source (in
the DAG). The work with FIX1 state is immediately processed
and work that has FIXO state is ordered by distance from the
relevant source. When the distance is higher the priority is also
high. The purpose of distance ordering is to propagate state
changes deeper into the DAG.

Both the FIX-Bucket and FIX-PQ algorithms require fewer
computations than the original FIX algorithm. Table I shows
the number of computations saved by each algorithm relative to
the original FIX algorithm. The “Skipped” denotes the number
of times the Receive function is invoked even though there
is no state change or increase in predcc count. The “Called”
denotes the number of times the Receive function was invoked
and there was a state change or predcc counter was increased.

As per the statistics in Table I, the FIX-PQ algorithm saves
the most amount of work. This is primarily because FIX-PQ is
ordered using both distance and state and so able to propagate
FIX1 state changes to successors faster than FIX-Bucket is
able to.

In the following section we discuss the FIX-Bucket and the
FIX-PQ algorithms in detail.

A. FIX-Bucket Algorithm

The FIX-Bucket algorithm maintains two distributed contain-
ers, called buckets (Figure 6). Locally, a bucket is implemented
as an append buffer, but before processing the append buffer
all ranks must globally synchronize. In other words an append
buffer is processed within an epoch. The first container,
which we call fixObucket, stores all the vertices where state is
transferred to FIX0. The second container, fix!bucket, stores
all the vertices where state is changed to FIX1.

The FIX-Bucket algorithm is listed in Algorithm 4. The
initialization code is the same as the initialization procedure

56

in Algorithm 3. The FIX-Bucket algorithm starts in the same
way as the FIX algorithm but at the end of the FIXBucketMIS
(Lines 7-15) procedure, FIXBucketMIS calls the HandleBuckets
procedure. In every rank, the HandleBuckets(Lines 17-30)
procedure iterates through each bucket in parallel threads and
sends state changes to successors. However, at a given time,
all the ranks iterate through only one bucket. Therefore, unlike
in the FIX algorithm, in the FIX-Bucket algorithm there are
no messages originating from FIXO0 vertices when processing
fixIbuckets. Also there are no messages originating from FIX1
vertices when processing fixObuckets. The Receive function
handles incoming messages and populates them to appropriate
buckets.

B. FIX-PQ Algorithm

The execution time of the FIX algorithm depends on the
maximum height of the virtual DAG (e.g., Figure 3). The
longest path of the DAG is important, especially when deciding
whether a vertex should be transferred to FIX1 state, because a
vertex’s state can only be updated to FIX1 if all predecessors of
the vertex are in FIXO state. Processing work generated by FIX1
vertices is straightforward since neighbors of FIX1 must be
transferred to FIXO irrespective of the number of predecessors.
Furthermore, notifying successors about a state change of a
vertex to FIX1 helps to save computations. Therefore, the FIX-
PQ algorithm processes FIX1 work immediately and orders
work generated by FIXO0 vertices based on the distance from a
source. The ordering is applied at the thread level to avoid the
overhead of synchronization.

The FIX-PQ algorithm is listed in Algorithm 5. The
algorithm keeps an array of priority queues and the size of
the array is equal to the number of threads (Line 3). The
function getnumthreads returns the number of threads the
algorithm is executing. The Initialize procedure is the same
as the Initialize procedure in Algorithm 3. The FIXPOMIS
procedure (Lines 6-14) adds source vertices to the MIS and
notifies state changes. In the same epoch the algorithm calls the
function HandlePQs (Line 13). Also, algorithm uses workitem
structure to encapsulate destination vertex, source vertex, source
state and distance.

For each shared memory thread, the HandlePQs(Lines 16—
27) procedure pop work from the priority queue and process
it. The priority queue only contains work related to FIX0
predecessors, therefore, the processing logic updates predcc
count and checks whether the destination vertex can be
promoted to FIX1. The HandlePQs procedure is executed until
there is work available in the system. The function terminate()
returns True when the termination detection detects that there
is no more work to be processed.

The Receive function (Lines 29-36) processes work items
originating from FIX1 vertices and work items originating from
FIXO vertices are added to the priority queue for the current
thread.

Note that HandlePQs’ procedure is invoked within the epoch
of the FIXPOMIS procedure. Therefore, Algorithm 5 executes
asynchronously, but work is ordered at the thread level.

Algorithm 4: Distributed Memory Parallel FIX-Bucket Algo-
rithm

1: predcount < {0...0}
2: predce <+ {0...0}
3: fixObucker < {}
4: fixIbucket + {}
5: procedure Initialize(G""")
> /*Same as the Initialization procedure in Algorithm 3%*/.

6:

7: procedure FIXBucketMIS(G")

8: epoch {

9: for each Vertex v in G in parallel do
10: if (predcount[v] == 0) then

11: mis[v] < FIX1

12: for each u in adjacencies(v, G"“") do
13: Send(u, v, mis[v])

14: }

15: HandleBuckets()

16:

17: procedure HandleBuckets(void)

18: while fixObucket not empty and fix/bucket not empty do
> /*Handle FIXO0 bucket.*/
19: epoch {
20: for each Vertex v in fixObucket in parallel do
21: for each v in adjacencies(v, G**“) do
22: if (u > v) then
23: Send(u, v, mis[v])
24: }
> /*Handle FIX1 bucket.*/
25: epoch {
26: for each Vertex v in fixIbucket in parallel thread do
27: for each u in adjacencies(v, G*) do
28: if (u > v) then
29: Send(u, v, mis[v])
30: }
31:

32: procedure Receive(destv, srcv, srcstate)

33: if mis[destv]! = UNFIX then

34: return

35: if srestate == FI1X1 then

36: mis[destv] «+ FIX0

37: fixObucket — push(destv)

38: else > srcstate=FIX0
39: if (srev < destv) then

40: predcc|destv] < (predccldestv] + 1)

41: if predccldestv] == predcount|destv] then
42: mis[destv] < FIX1

43 fix1bucket — push(destv)

IV. IMPLEMENTATION & EXPERIMENTS
A. Implementation

The proposed algorithms are implemented on top of an
MPI-wrapped, lightweight, active messaging framework called
AM++ [5]. Graph vertices are equally distributed among
participating nodes (/D block distribution). The local graph is
represented using a compressed sparse row format. In the local
graph each undirected edge is represented using two directed
edges.

Algorithm implementations are resilient to parallel edges
and self-loops. Both parallel edges and self-loops are handled

57

Algorithm 5: Distributed Memory Parallel FIX-PQ Algorithm

1: predcount < {0...0}

2: predcc < {0...0}

3: pgs[getnumthreads()

4: procedure Initialize(G'
> /*Same as the Initialization procedure in Algorithm 3%*/.

S:

6: procedure FIXPQMIS(G*")

J{)L‘Ul)

7: epoch {

8: for each Vertex v in G in parallel do
9: if (predcount[v] == 0) then

10: mis[v] < FIX1

11: for each u in adjacencies(v, G**") do
12: Send(u, v, mis[v])

13: HandlePQs()

14: }

15:

16; procedure HandlePQs(void)

17: while terminate() is False do

18: while pgs|getthreadid()] not empty do

19: workitem wi < pgs|getthreadid()].pop()

20: if (wi.srev < wi.destv) then

21: predcc|wi.destv] < (predcclwi.destv] + 1)

22: if predcc|wi.destv] == predcount|wi.destv] then
23: mis|wi.destv] + FIX1

24: for each u in adjacencies(wi.destv, G*“") do
25: if (u > wi.destv) then

26: workitem wn(u, wi.destv, mis[wi.destv], (wi.dist+1))
27: Send(wn)

28:

29: procedure Receive(wi : workitem)

30: if wisrcstate == F1X1 then

31: mis[wi.destv] < FIX0

32: for each u in adjacencies(wi.destv, ") do

33: if (u > wi.destv) then

34: Send(u, wi.destv, mis|wi.destv))

35: else > wi.srcstate=FIXO0
36: pgs|getthreadid()] — push(wi)

within algorithms. Whenever there is code that iterates through
adjacencies of a vertex, the algorithm inserts adjacent vertices
to a local set. The body of the loop is executed only if the
adjacent vertex is not present in the set (See the code below).

1.

2: adjacentvertices < {}

3: for each u in adjacencies(v, G'") do

4 if (u! = v) then > /*Exclude self-loops*/

5: if u not in adjacentvertices then > /*Exclude parallel
edges™*/

6: adjacentvertices.insert(u)

7:

B. Experiment Setup

We ran our experiments on a Cray XC system that has 2
Broadwell 22-core Intel Xeon processors. Our experiments
only used up to 16 cores to uniformly double the problem
size and to double the number of processors in weak scaling.
Each node consists of 128 GB DDR4-2400 memory. The MPI
implementation we used is Cray MPICH (version 7.4.4).

Graph Vertices Edges
Friendster 65608366 1806067135
US Road 23947347 58333344
RMAT-1(26)(rmatl) 67108864 1073741824
RMAT-2(26)(rmat2) 67108864 1073741824

TABLE II: Graph inputs and their attributes used in strong scaling
experiments

Preliminary results show that to get the best performance
results for all the algorithms, we need to run two processes per
node (because there are two sockets per node) in MPI thread
multiple mode.

C. Graph Input

We evaluate the MIS algorithms in terms of strong scaling
and weak scaling. For weak scaling experiments, we use R-MAT
[6] synthetic graphs. Two types of RMAT synthetic graphs are
used. They are:

e RMAT-1: Graphs based on the current Graph500 [7]
Breadth First Search benchmark specification with R-MAT
parameters A = 0.57, B=C = 0.19 and D = 0.05.

e RMAT-2: Graphs generated based on the proposed
Graph500 [8] SSSP benchmark specification with R-MAT
parameters A = 0.50, B=C = 0.1 and D = 0.3.

Strong scaling experiments were carried out on the graphs
listed in Table II.

V. RESULTS

The weak scaling results of the proposed algorithms are
compared against two different implementations of Luby
algorithms : 1. Luby(A) and Luby(B) discussed in [3] and; 2.
Luby(A) in CombBLAS library. Section V-A discusses these
results. In the results, when we use FIX* we refer to FIX,
FIX-Bucket and FIX-PQ algorithms collectively.

A. Weak Scaling Results

1) Comparison with Vertex-Centric Luby Algorithms:
Weak scaling results of FIX* algorithms are presented in
Figure 7 on RMAT-1 and RMAT-2 graph inputs. Both in
shared memory and in distributed memory FIX* algorithms
outperform Luby(A). Luby(B) shows better performance for
few initial scales in shared memory and as the execution
moves to distributed memory, FIX* algorithms supersede the
performance of Luby(B). We were unable to collect Luby(A)
results for scale 32 graphs at 64 nodes due to an “out of
memory” error.

Ordering helps to improve the performance of FIX* algo-
rithms by reducing the required number of computations (See
Section III). In shared memory, we see that FIX-PQ shows
better performance than FIX. In shared memory FIX-PQ is able
to avoid more computations than FIX algorithm, but, when the
execution becomes distributed, performance improvement in
FIX-PQ is not prominent compared to FIX. As the execution
becomes distributed, the compute / communication ratio
decreases and more time is spent on communication. Therefore,
the performance improvement gained by reducing computation
is small relative to the much higher overhead cost of distributing
execution.

58

Scale

21 22 23 24 25 26 27 28 29 30 31 32
T T T T T T T T
B S A —

100 - b
O N
Y <
£ =
[o

T T
_ -
e

100 b
@ o
Py <
£ =
= o

L 1 1 1 1 Il Il Il Il Il
N 1Y L) o v X > © 4 ™ e
v I SN R R4 q/ob(
Cores
fix-bucket fix-pq luby-B —~—
fix luby-A

Fig. 7: FIX* & Luby algorithms weak scaling results for RMAT-1 and
RMAT-2 graphs. Shaded region shows the shared memory execution.

The FIX-Bucket algorithm shows better weak scaling results
in distributed execution. Starting from the sources of the DAG,
The FIX-Bucket algorithm progress by processing vertices
in each level. This way, algorithm assures that predecessors
are always processed and hence it is able to avoid most
of the redundant computations. However, the FIX-Bucket
algorithm requires a barrier synchronization after processing
each level in the graph. Overhead of this barrier synchronization
is not as significant as RMAT graphs generally have fewer
synchronization levels. Also, RMAT graphs are well-connected;
therefore, there is enough work to keep all processors busy.

2) Comparison with CombBLAS Luby Algorithms: The
FilteredMIS [9] algorithm runs Luby(A) with edge filtering.
However, implementations presented in this paper do not
perform any edge filtering. We show FilteredMIS results with
0% and 50% edge filtering where no edges and half of the
edges are ignored, respectively. The more edges are ignored,
the better FilteredMIS performs.

Distributed execution of FilteredMIS results show a zig-
zag pattern (when cores > 32). The CombBLAS version we
use only supports a square number of tasks; therefore, when
executing on a non-square number of nodes (2, 8, 32) we
used two tasks per node to make the execution on a square
number of processes. When the number of tasks per node
is two, FilteredMIS execution time decreases and when the
number of tasks per node is 1, the execution time increases.

B. Strong Scaling Results

For strong scaling experiments, we ran MIS algorithms on
graphs listed in Table II over 1-1024 cores. To have better
understanding about how algorithms scale relative to each other,

Scale

30
100 E
@ 3
Y <
£ =
[o
10 3
100 E
> o
Py <
£ =
[o
10 3
L 1 1 L 1 Il Il Il Il Il
N 1 L) o v X > © Q@ X N
v N o N IS \QO, q,QD(
Cores
fix-bucket fix-pq blas(0%) ——
fix blas(50%)

Fig. 8: FIX* & CombBLAS FilteredMIS algorithms, weak scaling
results for RMAT-1 and RMAT-2 graphs. Shaded region shows the
shared memory execution.

1000 T T T T T T
Fastest sequential: FIX-Bucket (610 sec)

100 | —rt

5
.
RMAT-1

1 / k|

1000 t t t t t t t t t t
Fastest sequential: FIX-Bucket (615.29 sec)

100 |- T

RMAT-2

Fastest sequential: Luby(B) (675.07 sec)
100 | k|

5
|
Friendster

i i i : 1
NS
Cores

fix-bucket fix-pq
fix luby-A

Fig. 9: Strong scaling results of FIX* algorithms and vertex centric
Luby’s algorithms

luby-B ——

T T
Fastest sequential: FIX (16.42 sec)
100 | k!

10 | v "§
e o
1
\ﬁ\ it - L I I I I L
N v b 2 o Vv > > © N2 D D
D AR R A
Cores
fix-bucket fix-pq luby-B ——
fix luby-A

Fig. 10: Strong scaling results of FIX* algorithms and vertex centric
Luby’s algorithms.

we measured Relative Speedup, = T"’;;f -1 j.e., the ratio of the

execution time of the fastest sequentiaf algorithm, T’..y | and
the parallel execution time on n processing elements, 7;,.

1) Low diameter graphs: Strong scaling results of FIX*
algorithms and Luby’s algorithms on RMAT graphs are shown
in Figure 9. For both RMAT-1 and RMAT-2 graphs we see
better speedup in FIX* algorithms than Luby’s algorithms. We
see some drop in speedup when algorithm execution moves
from shared memory to distributed memory. When execution
reaches 2048 cores, the Luby B algorithm speedup decrease
due to overhead of barrier synchronization. Further, we see an
unusual scaling behavior of Luby(B) on the Friendstr network
both in shared memory and for some cores in distributed
memory. However, we validated our results. FIX* algorithms
show better scaling behavior compared to both Luby algorithms.

2) Higher diameter graphs: In general, both RMAT-1 and
RMAT-2 generate low diameter graphs (diameter 10-50, the
diameter is estimated using the approximate diameter algorithm)
relative to road networks. Further, Friendster graph’s diameter
is 32 [10]. Compared to the diameters of those graphs, road
networks have larger diameters. Figure 10 shows strong scaling
results for US road networks. The approximate diameter of a
US road network is 850 [10].

As per Figure 10, both FIX and FIX-PQ show sound,
strong scaling results for US road networks. Due to large
diameter in road networks, the FIX-Bucket algorithm executes
many synchronization phases (/=850 barriers). Because of
the overhead of barrier synchronization FIX and FIX-PQ
outperform FIX-Bucket. We see the FIX algorithm achieving
slightly better speedup compared to FIX-PQ. Unlike the RMAT
and the Friendstr graphs, road networks is not a well- connected
graph and it has a higher-diameter compared to RMAT and
Friendstr. Therefore, the number of saved computations in FIX-
PQ in road network is less and it is unable to gain performance
over the FIX algorithm.

VI. RELATED WORK

Many parallel algorithms have been proposed to solve the
MIS problem. Most of the work is focused on shared memory,
using the PRAM model for parallel complexity analysis (e.g.,

[11], [12], [13], [14], [15], [16]). Some of these algorithms
use randomization to break symmetry. Four related randomized
algorithms were introduced by Luby [2]. Luby’s algorithms
select an arbitrary nonempty independent set from the original
graph and remove all the selected vertices and their neighboring
vertices from the original graph. This process is repeated in
iterations until all the graph vertices are removed from the
original graph. Luby presented four different ways to select
an independent set in an iteration (based on randomization).
Luby’s algorithms steps are executed in a synchronized fashion,
i.e., each step (examining neighbor states and updating current
state) is carried out in a single lockstep. Furthermore, the
algorithm needs to synchronize after each iteration.

Luby provides a detailed analysis of his algorithm using the
PRAM machine model. Later Luby’s algorithm’s concepts were
used to implement distributed versions. Lynch et al.discuss
a distributed version of Luby’s algorithm for synchronous
distributed networks in [17]. [18] presented a version of
[17] with improved communication message complexity. [19]
provided a deterministic distributed MIS algorithm. However,
they assume a synchronous communication model and provide
no experimental results.

Luby also showed that the MIS problem can be generalized
to a Maximal Coloring Problem. Some of the overheads of
Luby’s approach are discussed in [20], in the context of
graph coloring. Further, [20] presented an asynchronous graph
coloring heuristic and a distributed implementation of this
algorithm is presented in [21]. However, deriving an MIS
from the output of coloring requires additional post processing.
Furthermore, those implementations do not discuss the notion
of ordering to reduce computations.

The Combinatorial BLAS library [4] implements a dis-
tributed version of Luby’s algorithm (Luby A). Their implemen-
tation uses linear algebra primitives in implementing Luby’s
algorithm and also the algorithm works on filtered graphs [9].
An efficient distributed implementation of Luby’s algorithm is
presented in [3]. The implementation provided in [3] overlaps
computation and communication to reduce synchronization
overhead and uses parallel data structures to avoid subgraph
computations. [22] implemented a distributed version of Luby’s
algorithm for Pregel graph processing system. They used
Luby’s MIS algorithm to solve the graph coloring problem.
[23] compares the performance of Luby’s implementation in
Pregel with a parallel algorithm designed in [16].

The parallel MIS algorithm in [16] shows that a trivial
parallelization of the sequential greedy algorithm, also called
lexicographically first MIS, is in fact highly parallel (polyloga-
rithmic time) when the order of vertices is random. In particular,
simply by processing each vertex as in the sequential algorithm
but as soon as it has no earlier neighbors, gives a parallel
linear work algorithm. The algorithms discussed in[16] use a
priority DAG over the vertices of the input graph, where the
DAG edges connect higher-priority to lower-priority endpoints
based on random values assigned to vertices. Each step adds
the nodes with no incoming edges in the DAG to the MIS
and removes them and their neighbors from the input graph.

60

This process continues until no vertices remain.However, they
assumed shared memory execution and the algorithm relies on
computing a subset of vertices based on a predefined function
to execute greedy MIS in parallel. Further, each round and
step in the algorithm needs to be synchronized, which may not
be efficient in distributed execution.

Most of the MIS algorithms are designed for PRAM
architectures with synchronous communication, and so most
of the algorithms assume a synchronized step (for example
reading neighboring vertex states and updating the current
vertex state done in a single lockstep). Another important fact
about the above algorithms is that they are iterative; at the end
of each iteration all processes need to be synchronized. This
synchronization causes significant overhead in large scale graph
processing that is proportional to the size of the distributed
machine. This synchronization wastes computation resources
in distributed settings due to straggler effects in a distributed
setting. Further, most of the distributed MIS algorithms are
focused on process communication, not on large scale data
graphs.

The algorithms we present in this paper are designed specif-
ically for large-scale static graph processing in a distributed
memory setting and they focus on deriving MIS without
using any form of reduction. Further, exploration of different
orderings to derive efficient algorithms is not common in the
existing literature.

VII. CONCLUSIONS

Maximal Independent Set (MIS) is a well-studied graph
problem, and there are parallel algorithms to solve it. However,
most of those algorithms show poor performance in distributed
settings due to synchronous communication, subgraph construc-
tion, and random number generation.

In this paper, we presented three MIS algorithms suitable for
distributed memory parallel execution. The FIX algorithm is
an asynchronous algorithm designed for distributed execution
and FIX-Bucket and FIX-PQ algorithms make use of ordering
to reduce computations. While FIX-Bucket performs ordering
at a global level, the FIX-PQ algorithm performs ordering at
the thread level to avoid global synchronization.

Weak scaling results on RMAT graphs show that FIX*
algorithms outperform both vertex-centric Luby implemen-
tations as well as CombBLAS FilteredMIS algorithm. Weak
scaling results and strong scaling results (except road network)
show that the FIX-Bucket algorithm performs well for low-
diameter graphs. For higher-diameter graphs FIX and FIX-PQ
outperform other algorithms.

VIII. ACKNOWLEDGMENTS

The research is in part supported by the Defense Advanced
Research Projects Agency’s (DARPA) Hierarchical Identify
Verify Exploit Program at the DOE Pacific Northwest National
Laboratory (PNNL) and National Science Foundation grant
1716828. PNNL is operated by Battelle Memorial Institute
under Contract DE-AC06-76RL01830. Access to computational
resources was supported in part by Lilly Endowment, Inc.,

through its support for the Indiana University Pervasive
Technology Institute, and in part by the Indiana METACyt
Initiative. The Indiana METACyt Initiative at IU was also
supported in part by Lilly Endowment, Inc.

(1]
(2]

[10]

[11]

REFERENCES

S. A. Cook, “A taxonomy of problems with fast parallel algorithms,”
Information and control, vol. 64, no. 1, pp. 2-22, 1985.

M. Luby, “A simple parallel algorithm for the maximal independent set
problem,” SIAM journal on computing, vol. 15, no. 4, pp. 1036-1053,
1986.

T. Kanewala, M. Zalewski, and A. Lumsdaine, “Distributed-memory fast
maximal independent set,” in 2017 IEEE High Performance Extreme
Computing Conference. 1EEE, 2017, accepted for publication.

A. Bulug and J. R. Gilbert, “The combinatorial blas: Design, implemen-
tation, and applications,” International Journal of High Performance
Computing Applications, p. 1094342011403516, 2011.

J. J. Willcock, T. Hoefler, N. G. Edmonds, and A. Lumsdaine, “AM++:
A Generalized Active Message Framework,” in Proc. 19th Internat.
Conference on Parallel Architectures and Compilation Techniques. ACM,
2010, pp. 401-410.

D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-mat: A recursive model
for graph mining.” in SDM, vol. 4. SIAM, 2004, pp. 442-446.

R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang, “Introducing
the graph 500 benchmark,” Cray User’s Group (CUG), 2010.
Graph500Contributors. (2016) Graph 500 benchmark 1 (“search”).
[Online]. Available: http://www.cc.gatech.edu/ jriedy/tmp/graph500/

A. Buluc, E. Duriakova, A. Fox, J. R. Gilbert, S. Kamil, A. Lugowski,
L. Oliker, and S. Williams, “High-productivity and high-performance
analysis of filtered semantic graphs,” in Parallel & Distributed Processing
(IPDPS), 2013 IEEE 27th International Symposium on. 1EEE, 2013,
pp. 237-248.

J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

M. Goldberg and T. Spencer, “Constructing a maximal independent set
in parallel,” SIAM Journal on Discrete Mathematics, vol. 2, no. 3, pp.
322-328, 1989.

61

[12]

[13]

(14]

[15]

[16]

(17]
(18]

(19]

[20]

(21]

(22]

(23]

and Knowledge Management.

A. Goldberg, S. Plotkin, and G. Shannon, “Parallel symmetry-breaking in
sparse graphs,” in Proceedings of the nineteenth annual ACM symposium
on Theory of computing. ACM, 1987, pp. 315-324.

M. K. Goldberg, “Parallel algorithms for three graph problems,” Con-
gressus Numerantium, vol. 54, no. 111-121, pp. 4-1, 1986.

N. Alon, L. Babai, and A. Itai, “A fast and simple randomized
parallel algorithm for the maximal independent set problem,” Journal of
algorithms, vol. 7, no. 4, pp. 567-583, 1986.

R. M. Karp and A. Wigderson, “A fast parallel algorithm for the maximal
independent set problem,” Journal of the ACM (JACM), vol. 32, no. 4,
pp. 762-773, 1985.

G. E. Blelloch, J. T. Fineman, and J. Shun, “Greedy Sequential
Maximal Independent Set and Matching Are Parallel on Average,” in
Proceedings of the Twenty-fourth Annual ACM Symposium on Parallelism
in Algorithms and Architectures. ACM, 2012, pp. 308-317.

N. A. Lynch, Distributed algorithms. Morgan Kaufmann, 1996.

Y. Métivier, J. M. Robson, N. Saheb-Djahromi, and A. Zemmari, “An
optimal bit complexity randomized distributed mis algorithm,” Distributed
Computing, vol. 23, no. 5-6, pp. 331-340, 2011.

F. Kuhn, T. Moscibroda, T. Nieberg, and R. Wattenhofer, “Fast determinis-
tic distributed maximal independent set computation on growth-bounded
graphs,” in International Symposium on Distributed Computing. Springer,
2005, pp. 273-287.

M. T. Jones and P. E. Plassmann, “A parallel graph coloring heuristic,”
SIAM Journal on Scientific Computing, vol. 14, no. 3, pp. 654—-669,
1993.

S. Sallinen, K. Iwabuchi, S. Poudel, M. Gokhale, M. Ripeanu, and
R. Pearce, “Graph colouring as a challenge problem for dynamic graph
processing on distributed systems,” in High Performance Computing,
Networking, Storage and Analysis, SC16: International Conference for.
IEEE, 2016, pp. 347-358.

S. Salihoglu and J. Widom, “Optimizing graph algorithms on pregel-
like systems,” Proceedings of the VLDB Endowment, vol. 7, no. 7, pp.
577-588, 2014.

K. Garimella, G. De Francisci Morales, A. Gionis, and M. Sozio,
“Scalable facility location for massive graphs on pregel-like systems,” in
Proceedings of the 24th ACM International on Conference on Information
ACM, 2015, pp. 273-282.

3

