
Parallel Asynchronous Distributed-Memory
Maximal Independent Set Algorithm with Work

Ordering

Thejaka Kanewala, Marcin Zalewski, Andrew Lumsdaine

Pacific Northwest National Laboratory & University of Washington

Seattle, WA, USA

Email: {thejaka.kanewala, marcin.zalewski, andrew.lumsdaine}@pnnl.gov

Abstract—The maximal independent set (MIS) graph problem
arises in many applications such as computer vision, information
theory, molecular biology, and process scheduling. The growing
scale of graph data suggests the use of distributed memory
hardware as a cost-effective approach to providing necessary
compute and memory resources. Existing distributed memory
parallel MIS algorithms rely on synchronous communication and
use techniques such as subgraph computations. In this paper,
we present an asynchronous distributed-memory parallel graph
algorithm that relies on a virtual directed acyclic graph (DAG)
that is created during the algorithm execution. We introduce
two additional algorithms that save computations by ordering
generated work. The first algorithm applies ordering globally to
reduce computations, and the second algorithm applies ordering
locally at the level of threads to minimize the synchronization
overhead. We use two different implementations of Luby’s
algorithm variants as baseline to compare the performance
of the presented algorithms: (1) vertex-centric Luby A and
Luby B implementations, and (2) the CombBLAS linear-algebra
Luby A implementation. Results show that proposed algorithms
outperform both implementations of Luby algorithms, especially
in distributed execution. Furthermore, we show that for low-
diameter graphs the algorithm that applies global ordering scales
better than other algorithms and for high diameter graphs
the original asynchronous algorithm and thread-level ordering
algorithm show better performance.

Keywords-maximal independent set (MIS); distributed-memory
graph algorithms

I. INTRODUCTION

The Maximal Independent Set (MIS) problem arises in many

application domains including computer vision, information

theory, molecular biology, and process scheduling. For a given

graph G = (V,E) where V represents the set of vertices and

E represents the set of edges in the graph, an independent set
or a stable set of G is a set of vertices in the graph where no

two vertices are adjacent. The largest possible independent

set is called the maximum independent set. Since finding

the maximum independent set is an NP-hard problem, most

applications settle for finding a maximal independent set (MIS).

Maximal independent set is an independent that is not a subset

of any other independent set(e.g., Figure 1). Although efficient

MIS algorithms are well-known [1], the increasing scale of data-

intensive applications requires the use of distributed-memory

hardware (clusters), which in turn requires distributed-memory

algorithms.

1

3

2

4

5 14

17

8

12

13

16

15

19

18

Fig. 1: The gray nodes show a maximal independent set of this graph.

Existing research on parallel algorithms for the MIS problem

focuses primarily on theoretical analyses (most often in shared

memory settings), and this provides incomplete insight into

real-world performance. The available distributed-memory

parallel algorithms for MIS are based on Luby’s randomized

MIS[2] algorithms. Luby’s algorithms were developed primarily

focusing on shared memory; they use techniques that do not

scale to distributed-memory. In this paper we propose an

asynchronous distributed-memory parallel MIS algorithm based

on a Directed Acyclic Graph (DAG) induced on the input

graph, using unique randomly assigned vertex identifiers. FIX,

the algorithm we propose, can further reduce the number of

computations by arranging the computations in a particular

order. We present two different orderings of FIX, FIX-Bucket

and FIX-PQ, and we experimentally evaluate their performance

against two different implementations of distributed-memory

parallel Luby’s algorithms.

The FIX algorithm we present in this paper is an asyn-

chronous distributed-memory parallel algorithm. It maintains a

state for every vertex, indicating whether the vertex is in MIS

(FIX1) or not in MIS (FIX0). FIX creates a virtual DAG based

on randomly assigned vertex identifiers. Processing starts from

the sources of this DAG, and state changes are propagated

towards the sinks of the DAG. We show that the algorithm

terminates, and that at termination vertices that have the state

FIX1 form an MIS.

The correctness of the FIX algorithm does not depend on the

order of changes to vertex states, and the execution can proceed

in any of the correct orders (the algorithm execution is not

deterministic, but the result is). We derive two algorithms from

the basic FIX algorithm by applying the following orderings:

1) Order work based on where it originates – First process

52

2017 IEEE 24th International Conference on High Performance Computing (HiPC)

0-7695-6326-0/17/$31.00 ©2017 IEEE
DOI 10.1109/HiPC.2017.00016

work originating from vertices in FIX1 and then process

work originating from vertices in FIX0 (FIX-Bucket
algorithm);

2) Order work based on state and then order work based on

the monotonic distance from the vertex that started the

work (source of the DAG). In other words, the work that

is in FIX1 is processed immediately and the work that

is not in FIX1 is processed based on the distance from

the source. Vertices that have smaller distance from the

source gets priority over vertices that have higher distance

from the source when the work is in FIX0 state (FIX-PQ
algorithm).

We show that above two orderings reduce the number of

computations relative to the original FIX algorithm.

The performance of the proposed FIX algorithm (including

the two ordering variations) is evaluated and compared with

Luby’s algorithms for both weak scaling and strong scaling.

Direct implementations of the original Luby algorithms are

inefficient in distributed-memory runtimes, mainly because

of subgraph computation, random number generation, and

synchronization. [3] presented an efficient implementation of

two of Luby’s seminal algorithms with overlapping computation

and communication. In addition, CombBLAS[4] has an imple-

mentation of Luby’s algorithm that is implemented using linear

algebra primitives. We use these two implementations as our

baselines to compare the performance of the FIX algorithms.

Our results include two types of synthetic graph inputs to

evaluate the weak scaling performance and two synthetic graphs

and two natural graphs (one with a small diameter and one

with a higher diameter) to evaluate the strong scaling perfor-

mance. Results show that the three FIX algorithms outperform

Luby’s algorithms implemented in [3] and CombBLAS [4].

Furthermore, we show that for low-diameter connected graphs,

the FIX-Bucket algorithm has better performance than FIX

and FIX-PQ, and for higher diameter graphs, the FIX and

FIX-PQ algorithms have better performance than FIX-Bucket

algorithm.

In summary, the main contributions of this paper are:

1) Development and characterization of three distributed-

memory parallel MIS algorithms;

2) Comparison of weak scaling results to two different

implementations of distributed Luby algorithms;

3) Analysis of results showing that for low-diameter graphs

FIX-Bucket outperforms other algorithms and that for

high-diameter graphs the FIX or the FIX-PQ algorithm

outperforms other algorithms.

II. FIX ALGORITHM

The FIX algorithm begins by generating a directed acyclic

graph (DAG) on the input graph G. First, every vertex is

assigned a unique random identifier. Every undirected edge

(v, u) is given a direction based on the identifiers of v and u,

where the vertex with the greater identifier becomes a successor,

and the vertex with the lesser identifier becomes a predecessor
(see Fig. 2). The vertices without predecessors are the sources

of the induced DAG, and the vertices without successors are

the sinks.

10

7
8

9

11
12

13

Successors of 10

Predecessors of 10

Fig. 2: Successors
and predecessors of
a vertex.

The FIX algorithm is shown in Al-

gorithm 1. FIX has three main subrou-

tines: Initialize, Begin, and Receive. Every

Send call in the algorithm invokes the

Receive subroutine. The FIX algorithm

maintains a state per each vertex. The state

is represented using the maps mis and

count, where the mis map represents the

membership in MIS (FIX0 indicates not

in MIS, and FIX1 indicates in MIS), and

the count map represents the number of

predecessors with state FIX1. In Initialize,

the mis state of every vertex is initialized

to UNFIX, indicating that the membership

of the vertex in the MIS is not decided

yet, and the count state is initialized to 0, indicating that no

predecessors are in MIS. The FIX algorithm first adds source

vertices to the MIS (Lines 1–5) by changing their state to FIX1.

Upon changing the state of a source, a message is sent to its

successors to notify them of the change.

The initial messages sent from Begin are handled by Receive.

The Receive routine is a message handler that is implicitly

invoked per every Send call. If a message comes from a vertex

with a state of FIX1, the state of the receiving vertex u is

immediately changed to FIX0, and all successors of v are

notified of this change (Lines 1 and 4). If a message comes

from a vertex in the FIX0 state, the count of predecessors with

FIX0 state is incremented. If all predecessors have the FIX0

state (Line 7), then the vertex joins the MIS. Its state is set

to FIX1, and all of its neighbors are notified. The algorithm

traverses the DAG induced on the input graph G by following

the predecessor and successor links, and it terminates when

the states of all sinks are set to FIX0 or FIX1, or, equivalently,

when there are no vertices left in the state UNFIX.

At termination, vertices with state FIX1 form an MIS. To

prove this, we first need to show that at termination, all vertices

must either be in FIX1 or FIX0 state. Suppose there is a vertex,

v, in the UNFIX state at termination. The vertex v can be

in any one of the following 4 situations within the induced

DAG: (1) v has neither predecessors nor successors; (2) v has

predecessors but not successors; (3) v has no predecessors

but it has successors; or (4) v has both predecessors and

successors. In cases (1) and (3) the Begin routine promotes

the state of v to FIX1 (Line 3 in Algorithm 1). In cases (2)

and (4), if v is in UNFIX state, then, there is no predecessor

with state FIX1 because of the message sent on Line 10 in

Algorithm 1. A message sent in Line 10 calls the Receive
procedure and it assures successor of a FIX1 vertex is in FIX0

(Lines 1 and 2). Then, either all the predecessors must be

in the FIX0 state, or there is at least one predecessor that is

in the UNFIX state. If all the predecessors are in FIX0, v
must be in FIX1 (Lines 7 and 8 in Algorithm 1). Since we

assume v is in the UNFIX state, there must be at least one

predecessor in the UNFIX state. Let this predecessor of v be

53

Algorithm 1: FIX Algorithm

Initialize G = (V,E):

1: for each v in V do
2: mis[v] ← UNFIX, count[v] ← 0

Begin G = (V,E):

1: for each v in V do
2: if v is a source then
3: mis[v] ← FIX1
4: for each u in Successors of v do
5: Send(u, FIX1)

Receive u, vstate:

1: if vstate == FIX1 then
2: mis[u] ← FIX0
3: for each us in Successors of u do
4: Send(us, FIX0)

5: else
6: count[u] ← count[u] + 1
7: if count[u] == |Predecessors| then
8: mis[u] ← FIX1
9: for each us in Successors of u do

10: Send(us, FIX1)

u. We can make a similar argument for u and can conclude

that u has a predecessor in the UNFIX state. We continue the

argument until we reach a vertex without predecessors (since

the DAG is finite and acyclic, we will reach a source level

vertex). However, by cases (1) and (3), we know that a vertex

without predecessors will be promoted to FIX1. Therefore, the

sources of the DAG (they are also predecessors) cannot be

in the UNFIX state. Therefore, our assumption that there is a

vertex in UNFIX state after termination causes a contradiction,

and we can conclude that every vertex is in either FIX0 or

FIX1 after algorithm termination.

Furthermore, none of the vertices that are in the state FIX0

can be changed to FIX1 because a vertex’s state transitions to

FIX0 if, and only if, it has a neighbor that is in FIX1. Therefore,

the set of vertices in the FIX1 state cannot be expanded any

further. Hence, a set of vertices that is in the FIX1 state is an

MIS.

Compared to Luby’s algorithms, the FIX algorithm avoids

the overhead of random number generation in every iteration

by assigning a random permutation of identifiers to vertices. In

addition, FIX also avoids the need to maintain a subgraph for

every iteration. Maintaining a subgraph requires O(n) space;

hence, compared to Luby’s algorithms, FIX is space efficient.

A. Distributed FIX

The distributed implementation of FIX divides vertices

equally among participating processes and stores those vertices

and their adjacencies locally. Glocal represents the local sub-

graph. Every rank runs some number of threads, and distributed

messages are exchanged between ranks within epochs.

An epoch is a code region where distributed programs can

exchange messages. A global barrier is executed at the start

of an epoch and at the end of an epoch. Computation and

communication can be overlapped within epochs.

1 2 3 4

5

7

6

8

10

9

11

Sources

Sinks
Fig. 3: The virtual DAG created
based on predecessors and succes-
sors.

Our distributed implemen-

tation is listed in Algo-

rithm 3. The implementa-

tion follows the single pro-

gram, multiple data (SPMD)

paradigm, in the sense that

every rank runs the same pro-

gram. Every rank maintains

two per-vertex counter maps

of counters (the counters are

indexed by the vertex iden-

tifier). The first counter, pre-
decessor count (predcount),
counts the number of prede-

cessors per each vertex and

this is calculated at the ini-

tialization of the algorithm

(Line 15). The second counter, predecessor completed count
(predcc) keeps track of the number of predecessors that were

moved to FIX0 state. This counter is updated during algorithm

execution. These two counters are used to identify whether all

the predecessors of a vertex have been moved to FIX0 state.

For a given vertex, v, predcount[v] = predcc[v] means that all

the predecessors of the vertex v are in FIX0, and v can be set

to FIX1.

The algorithm execution starts with the FIXMIS (Lines 12–

19) procedure. Inside an epoch, each rank goes through vertices

in the local graph in a parallel thread and changes the state

of vertices that have a zero predcount. When a vertex’s state

is changed, the vertex notifies all of its successors (Line 18).

The notification implicitly invokes the Receive procedure, as

in Algorithm 1. The Receive function first checks whether

the destination vertex’s state is already changed to either

FIX1 or FIX0 (Line 22). If not, it checks whether the source

vertex’s state has been changed from UNFIX to FIX1. If so, the

receiving vertex’s state is changed to FIX0, and the receiving

vertex notifies, in turn, all of its successors (Lines 24–28). If

the source vertex’s state is changed from UNFIX to FIX0,

the receiving vertex increments its predcc counter. Then, if

all of the receiving vertex’s neighbors with higher priorities

are transferred to FIX0 state (i.e., if predcc = predcount), the

receiving vertex is promoted to FIX1 state (Lines 21–36).

In our particular implementation of the FIX algorithm, we

did not use a thread-level distribution of vertices. Therefore,

counters and MIS states can be updated by two threads at the

same time. To avoid race conditions we use atomic operations.

As is, the Algorithm 3 suffers from load imbalance within

threads in shared memory execution. The algorithm processes

each vertex in parallel (Line 14), and some of the vertices,

that threads process are not sources (i.e., they do not satisfy

the condition predcount[v] == 0, Line 15). Because of that,

those threads do little work compared to threads that process

sources.

To balance the load between threads, we pre-calculate the

source vertices and insert them into an append buffer, and

FIXMIS procedure iterates over the sources instead of all

54

Algorithm 2: Modified FIX for better load balance between

threads
1: ...
2: procedure Initialize(Glocal)
3: for each Vertex v in Glocal in parallel do
4: ...
5: for each u in adjacencies(v,Glocal) do
6: if (u < v) then
7: predcount[v] ← predcount[v] + 1

8: if predcount[v] == 0 then
9: appendbuffer.insert(v)

10:

11: procedure FIXMIS(Glocal)
12: ...
13: for each Vertex v in appendbuffer in parallel thread do
14: ...
15: ...
16: ...

vertices in the graph. This way we make sure that every

thread processes about the same number of source vertices.

The modified distributed MIS with better thread level load

balance is given in Algorithm 2 (Lines 5–7 and Line 13).

Algorithm 3: Distributed Memory Parallel FIX Algorithm

1: predcount ← {0...0}
2: predcc ← {0...0}
3: procedure Initialize(Glocal)
4: for each Vertex v in Glocal in parallel do
5: mis[v] ← UNFIX
6: predcount[v] ← 0
7: predcc[v] ← 0
8: for each u in adjacencies(v,Glocal) do
9: if (u < v) then

10: predcount[v] ← predcount[v] + 1

11:

12: procedure FIXMIS(Glocal)
13: epoch {
14: for each Vertex v in Glocal in parallel thread do
15: if (predcount[v] == 0) then
16: mis[v] ← FIX1
17: for each u in adjacencies(v,Glocal) do
18: Send(u, v,mis[v])
19: }
20:

21: procedure Receive(destv, srcv, srcstate)
22: if mis[destv]! = UNFIX then
23: return
24: if srcstate == FIX1 then
25: mis[destv] ← FIX0
26: for each u in adjacencies(destv, Glocal) do
27: if (u > destv) then
28: Send(u, destv,mis[destv])
29: else � srcstate=FIX0
30: if (srcv < destv) then
31: predcc[destv] ← (predcc[destv] + 1)

32: if predcc[destv] == predcount[destv] then
33: mis[destv] ← FIX1
34: for each u in adjacencies(destv, Glocal) do
35: if (u > destv) then
36: Send(u, destv,mis[destv])

III. ORDERING IN FIX

The FIX algorithm discussed above is an unordered algo-

rithm. Therefore, the order in which the states are updated does

not affect the correctness of the algorithm, but with certain

ordering schemes we can reduce the amount of computations

in FIX.

The FIX algorithm decides a vertex is in the MIS (FIX1) if

all of its predecessors are not in MIS. Therefore, the sooner

a vertex finds out that it is in MIS, the more computations

it can avoid. For example, in Figure 4, the vertex v has four

predecessors; out of those four, one predecessor is in state FIX1.

If v gets a state change from the vertex in FIX1 first, v will

not have to execute the logic relevant to increase predcc count

and the “if condition” that compares predcc and predcount. If

the thread level vertex distribution is random, the predcc count

will be a atomic variable and processing FIX1 predecessors

first will considerably reduce the contention when processing a

large graph, especially in shared memory execution. However,

if we process FIX0 predecessors before FIX1, the computation

we did for FIX0 state changes have no effect on the final

outcome.

v

F0 F0 F0 F1

Fig. 4: DAGs created by
FIX algorithm execution for
the graph input in 1.

We came up with two forms

of orderings that reduce compu-

tations as described above. The

first approach orders the execution

on the state. That is, messages

generated are separated into two

buckets. The first bucket contains

the work originated from vertices

whose states transferred to FIX1.

The second bucket contains the

work originated from vertices who transferred their states to

FIX0. How execution proceeds in this ordering is depicted in

Figure 5. Implicitly, the bucket ordering traverse the DAG in a

level synchronous fashion. We call this algorithm FIX-Bucket

and it is discussed in detail in Section III-A.

1 2 3 4

5

7

6

8

10

9

11

Sources

Sinks

FIX1-Bucket

FIX0-Bucket

FIX1-Bucket

Fig. 5: How DAG is executed in FIX-Bucket ordering.

55

FIX FIX-PQ FIX-Bucket
Skipped 84208408

(65.10%)
119592110
(92.46%)

112771147
(87.16%)

Called 45130908
(34.89%)

9747206
(7.53%)

16613655
(12.84%)

Total 129339316 129339316 129339316

TABLE I: Saved computations for FIX-Bucket and FIX-PQ algorithms,
relative to FIX. Results are for scale 23, RMAT-1 (refer Section IV-C
for details) graph with 4 cores running in parallel.

Process

FIX1 Work FIX0 Work

Process
barrier

barrier

Fig. 6: An overview of the FIX-Bucket algorithm.

The above ordering involves a global barrier to be executed

in every level. The second ordering we propose (FIX-PQ), skips

global synchronization and performs local ordering on work.

The work generated is ordered based on the state of the source

vertex as well as on the distance from the originating source (in

the DAG). The work with FIX1 state is immediately processed

and work that has FIX0 state is ordered by distance from the

relevant source. When the distance is higher the priority is also

high. The purpose of distance ordering is to propagate state

changes deeper into the DAG.

Both the FIX-Bucket and FIX-PQ algorithms require fewer

computations than the original FIX algorithm. Table I shows

the number of computations saved by each algorithm relative to

the original FIX algorithm. The “Skipped” denotes the number

of times the Receive function is invoked even though there

is no state change or increase in predcc count. The “Called”

denotes the number of times the Receive function was invoked

and there was a state change or predcc counter was increased.

As per the statistics in Table I, the FIX-PQ algorithm saves

the most amount of work. This is primarily because FIX-PQ is

ordered using both distance and state and so able to propagate

FIX1 state changes to successors faster than FIX-Bucket is

able to.

In the following section we discuss the FIX-Bucket and the

FIX-PQ algorithms in detail.

A. FIX-Bucket Algorithm

The FIX-Bucket algorithm maintains two distributed contain-

ers, called buckets (Figure 6). Locally, a bucket is implemented

as an append buffer, but before processing the append buffer

all ranks must globally synchronize. In other words an append

buffer is processed within an epoch. The first container,

which we call fix0bucket, stores all the vertices where state is

transferred to FIX0. The second container, fix1bucket, stores

all the vertices where state is changed to FIX1.

The FIX-Bucket algorithm is listed in Algorithm 4. The

initialization code is the same as the initialization procedure

in Algorithm 3. The FIX-Bucket algorithm starts in the same

way as the FIX algorithm but at the end of the FIXBucketMIS
(Lines 7–15) procedure, FIXBucketMIS calls the HandleBuckets
procedure. In every rank, the HandleBuckets(Lines 17–30)

procedure iterates through each bucket in parallel threads and

sends state changes to successors. However, at a given time,

all the ranks iterate through only one bucket. Therefore, unlike

in the FIX algorithm, in the FIX-Bucket algorithm there are

no messages originating from FIX0 vertices when processing

fix1buckets. Also there are no messages originating from FIX1

vertices when processing fix0buckets. The Receive function

handles incoming messages and populates them to appropriate

buckets.

B. FIX-PQ Algorithm

The execution time of the FIX algorithm depends on the

maximum height of the virtual DAG (e.g., Figure 3). The

longest path of the DAG is important, especially when deciding

whether a vertex should be transferred to FIX1 state, because a

vertex’s state can only be updated to FIX1 if all predecessors of

the vertex are in FIX0 state. Processing work generated by FIX1

vertices is straightforward since neighbors of FIX1 must be

transferred to FIX0 irrespective of the number of predecessors.

Furthermore, notifying successors about a state change of a

vertex to FIX1 helps to save computations. Therefore, the FIX-

PQ algorithm processes FIX1 work immediately and orders

work generated by FIX0 vertices based on the distance from a

source. The ordering is applied at the thread level to avoid the

overhead of synchronization.

The FIX-PQ algorithm is listed in Algorithm 5. The

algorithm keeps an array of priority queues and the size of

the array is equal to the number of threads (Line 3). The

function getnumthreads returns the number of threads the

algorithm is executing. The Initialize procedure is the same

as the Initialize procedure in Algorithm 3. The FIXPQMIS
procedure (Lines 6–14) adds source vertices to the MIS and

notifies state changes. In the same epoch the algorithm calls the

function HandlePQs (Line 13). Also, algorithm uses workitem
structure to encapsulate destination vertex, source vertex, source

state and distance.

For each shared memory thread, the HandlePQs(Lines 16–

27) procedure pop work from the priority queue and process

it. The priority queue only contains work related to FIX0

predecessors, therefore, the processing logic updates predcc

count and checks whether the destination vertex can be

promoted to FIX1. The HandlePQs procedure is executed until

there is work available in the system. The function terminate()
returns True when the termination detection detects that there

is no more work to be processed.

The Receive function (Lines 29–36) processes work items

originating from FIX1 vertices and work items originating from

FIX0 vertices are added to the priority queue for the current

thread.

Note that HandlePQs’ procedure is invoked within the epoch

of the FIXPQMIS procedure. Therefore, Algorithm 5 executes

asynchronously, but work is ordered at the thread level.

56

Algorithm 4: Distributed Memory Parallel FIX-Bucket Algo-

rithm

1: predcount ← {0...0}
2: predcc ← {0...0}
3: fix0bucket ← {}
4: fix1bucket ← {}
5: procedure Initialize(Glocal)

� /*Same as the Initialization procedure in Algorithm 3*/.

6:

7: procedure FIXBucketMIS(Glocal)
8: epoch {
9: for each Vertex v in Glocal in parallel do

10: if (predcount[v] == 0) then
11: mis[v] ← FIX1
12: for each u in adjacencies(v,Glocal) do
13: Send(u, v,mis[v])
14: }
15: HandleBuckets()
16:

17: procedure HandleBuckets(void)
18: while fix0bucket not empty and fix1bucket not empty do

� /*Handle FIX0 bucket.*/
19: epoch {
20: for each Vertex v in fix0bucket in parallel do
21: for each u in adjacencies(v, Glocal) do
22: if (u > v) then
23: Send(u, v,mis[v])
24: }

� /*Handle FIX1 bucket.*/
25: epoch {
26: for each Vertex v in fix1bucket in parallel thread do
27: for each u in adjacencies(v, Glocal) do
28: if (u > v) then
29: Send(u, v,mis[v])
30: }
31:

32: procedure Receive(destv, srcv, srcstate)
33: if mis[destv]! = UNFIX then
34: return
35: if srcstate == FIX1 then
36: mis[destv] ← FIX0
37: fix0bucket → push(destv)
38: else � srcstate=FIX0
39: if (srcv < destv) then
40: predcc[destv] ← (predcc[destv] + 1)

41: if predcc[destv] == predcount[destv] then
42: mis[destv] ← FIX1
43: fix1bucket → push(destv)

IV. IMPLEMENTATION & EXPERIMENTS

A. Implementation

The proposed algorithms are implemented on top of an

MPI-wrapped, lightweight, active messaging framework called

AM++ [5]. Graph vertices are equally distributed among

participating nodes (1D block distribution). The local graph is

represented using a compressed sparse row format. In the local

graph each undirected edge is represented using two directed

edges.

Algorithm implementations are resilient to parallel edges

and self-loops. Both parallel edges and self-loops are handled

Algorithm 5: Distributed Memory Parallel FIX-PQ Algorithm

1: predcount ← {0...0}
2: predcc ← {0...0}
3: pqs[getnumthreads()]
4: procedure Initialize(Glocal)

� /*Same as the Initialization procedure in Algorithm 3*/.

5:

6: procedure FIXPQMIS(Glocal)
7: epoch {
8: for each Vertex v in Glocal in parallel do
9: if (predcount[v] == 0) then

10: mis[v] ← FIX1
11: for each u in adjacencies(v,Glocal) do
12: Send(u, v,mis[v])
13: HandlePQs()
14: }
15:

16: procedure HandlePQs(void)
17: while terminate() is False do
18: while pqs[getthreadid()] not empty do
19: workitem wi ← pqs[getthreadid()].pop()
20: if (wi.srcv < wi.destv) then
21: predcc[wi.destv] ← (predcc[wi.destv] + 1)

22: if predcc[wi.destv] == predcount[wi.destv] then
23: mis[wi.destv] ← FIX1
24: for each u in adjacencies(wi.destv, Glocal) do
25: if (u > wi.destv) then
26: workitem wn(u,wi.destv,mis[wi.destv], (wi.dist+1))
27: Send(wn)
28:

29: procedure Receive(wi : workitem)
30: if wi.srcstate == FIX1 then
31: mis[wi.destv] ← FIX0
32: for each u in adjacencies(wi.destv, Glocal) do
33: if (u > wi.destv) then
34: Send(u,wi.destv,mis[wi.destv])
35: else � wi.srcstate=FIX0
36: pqs[getthreadid()] → push(wi)

within algorithms. Whenever there is code that iterates through

adjacencies of a vertex, the algorithm inserts adjacent vertices

to a local set. The body of the loop is executed only if the

adjacent vertex is not present in the set (See the code below).

1: ...

2: adjacentvertices ← {}
3: for each u in adjacencies(v,Glocal) do
4: if (u! = v) then � /*Exclude self-loops*/

5: if u not in adjacentvertices then � /*Exclude parallel

edges*/

6: adjacentvertices.insert(u)
7: ...

B. Experiment Setup

We ran our experiments on a Cray XC system that has 2

Broadwell 22-core Intel Xeon processors. Our experiments

only used up to 16 cores to uniformly double the problem

size and to double the number of processors in weak scaling.

Each node consists of 128 GB DDR4-2400 memory. The MPI

implementation we used is Cray MPICH (version 7.4.4).

57

Graph Vertices Edges
Friendster 65608366 1806067135
US Road 23947347 58333344
RMAT-1(26)(rmat1) 67108864 1073741824
RMAT-2(26)(rmat2) 67108864 1073741824

TABLE II: Graph inputs and their attributes used in strong scaling
experiments

Preliminary results show that to get the best performance

results for all the algorithms, we need to run two processes per

node (because there are two sockets per node) in MPI thread

multiple mode.

C. Graph Input

We evaluate the MIS algorithms in terms of strong scaling
and weak scaling. For weak scaling experiments, we use R-MAT
[6] synthetic graphs. Two types of RMAT synthetic graphs are

used. They are:

• RMAT-1: Graphs based on the current Graph500 [7]

Breadth First Search benchmark specification with R-MAT

parameters A = 0.57, B = C = 0.19 and D = 0.05.

• RMAT-2: Graphs generated based on the proposed

Graph500 [8] SSSP benchmark specification with R-MAT

parameters A = 0.50, B = C = 0.1 and D = 0.3.

Strong scaling experiments were carried out on the graphs

listed in Table II.

V. RESULTS

The weak scaling results of the proposed algorithms are

compared against two different implementations of Luby

algorithms : 1. Luby(A) and Luby(B) discussed in [3] and; 2.

Luby(A) in CombBLAS library. Section V-A discusses these

results. In the results, when we use FIX* we refer to FIX,

FIX-Bucket and FIX-PQ algorithms collectively.

A. Weak Scaling Results

1) Comparison with Vertex-Centric Luby Algorithms:
Weak scaling results of FIX* algorithms are presented in

Figure 7 on RMAT-1 and RMAT-2 graph inputs. Both in

shared memory and in distributed memory FIX* algorithms

outperform Luby(A). Luby(B) shows better performance for

few initial scales in shared memory and as the execution

moves to distributed memory, FIX* algorithms supersede the

performance of Luby(B). We were unable to collect Luby(A)

results for scale 32 graphs at 64 nodes due to an “out of

memory” error.

Ordering helps to improve the performance of FIX* algo-

rithms by reducing the required number of computations (See

Section III). In shared memory, we see that FIX-PQ shows

better performance than FIX. In shared memory FIX-PQ is able

to avoid more computations than FIX algorithm, but, when the

execution becomes distributed, performance improvement in

FIX-PQ is not prominent compared to FIX. As the execution

becomes distributed, the compute / communication ratio

decreases and more time is spent on communication. Therefore,

the performance improvement gained by reducing computation

is small relative to the much higher overhead cost of distributing

execution.

���

�� �� �� �� �� �� �	 �
 �� �� �� ��

�
��
�
��
�

	

�
�
�

�
���

���

� � � � �� �� �� ��
�

��
�

��
�

��
��

��
��

	
��
�
��
�

	

�
	
��

�����

�����
���
��

�����
������

�����

Fig. 7: FIX* & Luby algorithms weak scaling results for RMAT-1 and
RMAT-2 graphs. Shaded region shows the shared memory execution.

The FIX-Bucket algorithm shows better weak scaling results

in distributed execution. Starting from the sources of the DAG,

The FIX-Bucket algorithm progress by processing vertices

in each level. This way, algorithm assures that predecessors

are always processed and hence it is able to avoid most

of the redundant computations. However, the FIX-Bucket

algorithm requires a barrier synchronization after processing

each level in the graph. Overhead of this barrier synchronization

is not as significant as RMAT graphs generally have fewer

synchronization levels. Also, RMAT graphs are well-connected;

therefore, there is enough work to keep all processors busy.

2) Comparison with CombBLAS Luby Algorithms: The

FilteredMIS [9] algorithm runs Luby(A) with edge filtering.

However, implementations presented in this paper do not

perform any edge filtering. We show FilteredMIS results with

0% and 50% edge filtering where no edges and half of the

edges are ignored, respectively. The more edges are ignored,

the better FilteredMIS performs.

Distributed execution of FilteredMIS results show a zig-

zag pattern (when cores > 32). The CombBLAS version we

use only supports a square number of tasks; therefore, when

executing on a non-square number of nodes (2, 8, 32) we

used two tasks per node to make the execution on a square

number of processes. When the number of tasks per node

is two, FilteredMIS execution time decreases and when the

number of tasks per node is 1, the execution time increases.

B. Strong Scaling Results

For strong scaling experiments, we ran MIS algorithms on

graphs listed in Table II over 1–1024 cores. To have better

understanding about how algorithms scale relative to each other,

58

��

���

�� �� �� �� �� �� �� �� �� �	 �� ��

��
�
��
�

	

�

�

�
���

��

���

� � � � �� �� �� ��
�

��
�

��
�

��
��

��
��

��
�
��
�

	

�

��

�����

�����
���
��

�����
���������

��������

Fig. 8: FIX* & CombBLAS FilteredMIS algorithms, weak scaling
results for RMAT-1 and RMAT-2 graphs. Shaded region shows the
shared memory execution.

�

��

���

����
������� �����	�
��� �
�������� ���� ����

�
�
�
�
��

�

��

���

����

������� �����	�
��� �
�������� ������� ����

�
�
�
�
��

�

��

���

� � � � �� �� �� ��
�

��
�

��
�

��
��

��
��

������� ���	�
����
 �	����� ������� ����

�
���
��
�	
��

!"��

#$
�	����
#$

#$
%�
�	��
&

�	��
�

Fig. 9: Strong scaling results of FIX* algorithms and vertex centric
Luby’s algorithms

�

��

���

� � � � �� �� �� ��
�

��
�

��
�

��
��

��
��

������� ���	�
����
 ��� ������ ����

�
��
�

����	

��
�����

�

����
��
���

��
���

Fig. 10: Strong scaling results of FIX* algorithms and vertex centric
Luby’s algorithms.

we measured Relative Speedup,=
Tref 1

Tn
i.e., the ratio of the

execution time of the fastest sequential algorithm, Tref 1 and

the parallel execution time on n processing elements, Tn.

1) Low diameter graphs: Strong scaling results of FIX*

algorithms and Luby’s algorithms on RMAT graphs are shown

in Figure 9. For both RMAT-1 and RMAT-2 graphs we see

better speedup in FIX* algorithms than Luby’s algorithms. We

see some drop in speedup when algorithm execution moves

from shared memory to distributed memory. When execution

reaches 2048 cores, the Luby B algorithm speedup decrease

due to overhead of barrier synchronization. Further, we see an

unusual scaling behavior of Luby(B) on the Friendstr network

both in shared memory and for some cores in distributed

memory. However, we validated our results. FIX* algorithms

show better scaling behavior compared to both Luby algorithms.

2) Higher diameter graphs: In general, both RMAT-1 and

RMAT-2 generate low diameter graphs (diameter 10-50, the

diameter is estimated using the approximate diameter algorithm)

relative to road networks. Further, Friendster graph’s diameter

is 32 [10]. Compared to the diameters of those graphs, road

networks have larger diameters. Figure 10 shows strong scaling

results for US road networks. The approximate diameter of a

US road network is 850 [10].

As per Figure 10, both FIX and FIX-PQ show sound,

strong scaling results for US road networks. Due to large

diameter in road networks, the FIX-Bucket algorithm executes

many synchronization phases (≈850 barriers). Because of

the overhead of barrier synchronization FIX and FIX-PQ

outperform FIX-Bucket. We see the FIX algorithm achieving

slightly better speedup compared to FIX-PQ. Unlike the RMAT

and the Friendstr graphs, road networks is not a well- connected

graph and it has a higher-diameter compared to RMAT and

Friendstr. Therefore, the number of saved computations in FIX-

PQ in road network is less and it is unable to gain performance

over the FIX algorithm.

VI. RELATED WORK

Many parallel algorithms have been proposed to solve the

MIS problem. Most of the work is focused on shared memory,

using the PRAM model for parallel complexity analysis (e.g.,

59

[11], [12], [13], [14], [15], [16]). Some of these algorithms

use randomization to break symmetry. Four related randomized

algorithms were introduced by Luby [2]. Luby’s algorithms

select an arbitrary nonempty independent set from the original

graph and remove all the selected vertices and their neighboring

vertices from the original graph. This process is repeated in

iterations until all the graph vertices are removed from the

original graph. Luby presented four different ways to select

an independent set in an iteration (based on randomization).

Luby’s algorithms steps are executed in a synchronized fashion,

i.e., each step (examining neighbor states and updating current

state) is carried out in a single lockstep. Furthermore, the

algorithm needs to synchronize after each iteration.

Luby provides a detailed analysis of his algorithm using the

PRAM machine model. Later Luby’s algorithm’s concepts were

used to implement distributed versions. Lynch et al.discuss

a distributed version of Luby’s algorithm for synchronous

distributed networks in [17]. [18] presented a version of

[17] with improved communication message complexity. [19]

provided a deterministic distributed MIS algorithm. However,

they assume a synchronous communication model and provide

no experimental results.

Luby also showed that the MIS problem can be generalized

to a Maximal Coloring Problem. Some of the overheads of

Luby’s approach are discussed in [20], in the context of

graph coloring. Further, [20] presented an asynchronous graph

coloring heuristic and a distributed implementation of this

algorithm is presented in [21]. However, deriving an MIS

from the output of coloring requires additional post processing.

Furthermore, those implementations do not discuss the notion

of ordering to reduce computations.

The Combinatorial BLAS library [4] implements a dis-

tributed version of Luby’s algorithm (Luby A). Their implemen-

tation uses linear algebra primitives in implementing Luby’s

algorithm and also the algorithm works on filtered graphs [9].

An efficient distributed implementation of Luby’s algorithm is

presented in [3]. The implementation provided in [3] overlaps

computation and communication to reduce synchronization

overhead and uses parallel data structures to avoid subgraph

computations. [22] implemented a distributed version of Luby’s

algorithm for Pregel graph processing system. They used

Luby’s MIS algorithm to solve the graph coloring problem.

[23] compares the performance of Luby’s implementation in

Pregel with a parallel algorithm designed in [16].

The parallel MIS algorithm in [16] shows that a trivial

parallelization of the sequential greedy algorithm, also called

lexicographically first MIS, is in fact highly parallel (polyloga-

rithmic time) when the order of vertices is random. In particular,

simply by processing each vertex as in the sequential algorithm

but as soon as it has no earlier neighbors, gives a parallel

linear work algorithm. The algorithms discussed in[16] use a

priority DAG over the vertices of the input graph, where the

DAG edges connect higher-priority to lower-priority endpoints

based on random values assigned to vertices. Each step adds

the nodes with no incoming edges in the DAG to the MIS

and removes them and their neighbors from the input graph.

This process continues until no vertices remain.However, they

assumed shared memory execution and the algorithm relies on

computing a subset of vertices based on a predefined function

to execute greedy MIS in parallel. Further, each round and

step in the algorithm needs to be synchronized, which may not

be efficient in distributed execution.

Most of the MIS algorithms are designed for PRAM

architectures with synchronous communication, and so most

of the algorithms assume a synchronized step (for example

reading neighboring vertex states and updating the current

vertex state done in a single lockstep). Another important fact

about the above algorithms is that they are iterative; at the end

of each iteration all processes need to be synchronized. This

synchronization causes significant overhead in large scale graph

processing that is proportional to the size of the distributed

machine. This synchronization wastes computation resources

in distributed settings due to straggler effects in a distributed

setting. Further, most of the distributed MIS algorithms are

focused on process communication, not on large scale data

graphs.

The algorithms we present in this paper are designed specif-

ically for large-scale static graph processing in a distributed

memory setting and they focus on deriving MIS without

using any form of reduction. Further, exploration of different

orderings to derive efficient algorithms is not common in the

existing literature.

VII. CONCLUSIONS

Maximal Independent Set (MIS) is a well-studied graph

problem, and there are parallel algorithms to solve it. However,

most of those algorithms show poor performance in distributed

settings due to synchronous communication, subgraph construc-

tion, and random number generation.

In this paper, we presented three MIS algorithms suitable for

distributed memory parallel execution. The FIX algorithm is

an asynchronous algorithm designed for distributed execution

and FIX-Bucket and FIX-PQ algorithms make use of ordering

to reduce computations. While FIX-Bucket performs ordering

at a global level, the FIX-PQ algorithm performs ordering at

the thread level to avoid global synchronization.

Weak scaling results on RMAT graphs show that FIX*

algorithms outperform both vertex-centric Luby implemen-

tations as well as CombBLAS FilteredMIS algorithm. Weak

scaling results and strong scaling results (except road network)

show that the FIX-Bucket algorithm performs well for low-

diameter graphs. For higher-diameter graphs FIX and FIX-PQ

outperform other algorithms.

VIII. ACKNOWLEDGMENTS

The research is in part supported by the Defense Advanced

Research Projects Agency’s (DARPA) Hierarchical Identify

Verify Exploit Program at the DOE Pacific Northwest National

Laboratory (PNNL) and National Science Foundation grant

1716828. PNNL is operated by Battelle Memorial Institute

under Contract DE-AC06-76RL01830. Access to computational

resources was supported in part by Lilly Endowment, Inc.,

60

through its support for the Indiana University Pervasive

Technology Institute, and in part by the Indiana METACyt

Initiative. The Indiana METACyt Initiative at IU was also

supported in part by Lilly Endowment, Inc.

REFERENCES

[1] S. A. Cook, “A taxonomy of problems with fast parallel algorithms,”
Information and control, vol. 64, no. 1, pp. 2–22, 1985.

[2] M. Luby, “A simple parallel algorithm for the maximal independent set
problem,” SIAM journal on computing, vol. 15, no. 4, pp. 1036–1053,
1986.

[3] T. Kanewala, M. Zalewski, and A. Lumsdaine, “Distributed-memory fast
maximal independent set,” in 2017 IEEE High Performance Extreme
Computing Conference. IEEE, 2017, accepted for publication.

[4] A. Buluç and J. R. Gilbert, “The combinatorial blas: Design, implemen-
tation, and applications,” International Journal of High Performance
Computing Applications, p. 1094342011403516, 2011.

[5] J. J. Willcock, T. Hoefler, N. G. Edmonds, and A. Lumsdaine, “AM++:
A Generalized Active Message Framework,” in Proc. 19th Internat.
Conference on Parallel Architectures and Compilation Techniques. ACM,
2010, pp. 401–410.

[6] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-mat: A recursive model
for graph mining.” in SDM, vol. 4. SIAM, 2004, pp. 442–446.

[7] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang, “Introducing
the graph 500 benchmark,” Cray User’s Group (CUG), 2010.

[8] Graph500Contributors. (2016) Graph 500 benchmark 1 (”search”).
[Online]. Available: http://www.cc.gatech.edu/ jriedy/tmp/graph500/

[9] A. Buluc, E. Duriakova, A. Fox, J. R. Gilbert, S. Kamil, A. Lugowski,
L. Oliker, and S. Williams, “High-productivity and high-performance
analysis of filtered semantic graphs,” in Parallel & Distributed Processing
(IPDPS), 2013 IEEE 27th International Symposium on. IEEE, 2013,
pp. 237–248.

[10] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[11] M. Goldberg and T. Spencer, “Constructing a maximal independent set
in parallel,” SIAM Journal on Discrete Mathematics, vol. 2, no. 3, pp.
322–328, 1989.

[12] A. Goldberg, S. Plotkin, and G. Shannon, “Parallel symmetry-breaking in
sparse graphs,” in Proceedings of the nineteenth annual ACM symposium
on Theory of computing. ACM, 1987, pp. 315–324.

[13] M. K. Goldberg, “Parallel algorithms for three graph problems,” Con-
gressus Numerantium, vol. 54, no. 111-121, pp. 4–1, 1986.

[14] N. Alon, L. Babai, and A. Itai, “A fast and simple randomized
parallel algorithm for the maximal independent set problem,” Journal of
algorithms, vol. 7, no. 4, pp. 567–583, 1986.

[15] R. M. Karp and A. Wigderson, “A fast parallel algorithm for the maximal
independent set problem,” Journal of the ACM (JACM), vol. 32, no. 4,
pp. 762–773, 1985.

[16] G. E. Blelloch, J. T. Fineman, and J. Shun, “Greedy Sequential
Maximal Independent Set and Matching Are Parallel on Average,” in
Proceedings of the Twenty-fourth Annual ACM Symposium on Parallelism
in Algorithms and Architectures. ACM, 2012, pp. 308–317.

[17] N. A. Lynch, Distributed algorithms. Morgan Kaufmann, 1996.

[18] Y. Métivier, J. M. Robson, N. Saheb-Djahromi, and A. Zemmari, “An
optimal bit complexity randomized distributed mis algorithm,” Distributed
Computing, vol. 23, no. 5-6, pp. 331–340, 2011.

[19] F. Kuhn, T. Moscibroda, T. Nieberg, and R. Wattenhofer, “Fast determinis-
tic distributed maximal independent set computation on growth-bounded
graphs,” in International Symposium on Distributed Computing. Springer,
2005, pp. 273–287.

[20] M. T. Jones and P. E. Plassmann, “A parallel graph coloring heuristic,”
SIAM Journal on Scientific Computing, vol. 14, no. 3, pp. 654–669,
1993.

[21] S. Sallinen, K. Iwabuchi, S. Poudel, M. Gokhale, M. Ripeanu, and
R. Pearce, “Graph colouring as a challenge problem for dynamic graph
processing on distributed systems,” in High Performance Computing,
Networking, Storage and Analysis, SC16: International Conference for.
IEEE, 2016, pp. 347–358.

[22] S. Salihoglu and J. Widom, “Optimizing graph algorithms on pregel-
like systems,” Proceedings of the VLDB Endowment, vol. 7, no. 7, pp.
577–588, 2014.

[23] K. Garimella, G. De Francisci Morales, A. Gionis, and M. Sozio,
“Scalable facility location for massive graphs on pregel-like systems,” in
Proceedings of the 24th ACM International on Conference on Information

and Knowledge Management. ACM, 2015, pp. 273–282.

61

