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Darwin recognized species as discontinuous, yet considered

them to be formed by an incremental process of natural

selection. Recent theoretical work on ‘genome-wide

congealing’ is bridging this gap between the gradualism of

divergent selection and rapid genome-wide divergence,

particularly during ecological speciation-with-gene-flow. Host

races and species of phytophagous insects, displaying a

spectrum of divergence and gene flow among member taxa,

provide model systems for testing predicted non-linear

transitions from ‘genic’ divergence at a few uncoupled loci to

‘genomic’ divergence with genome-wide coupling of selected

loci and strong reproductive isolation. Integrating across

natural history, genomics, and evolutionary theory, emerging

research suggests a tipping point from ‘genic’ to ‘genomic’

divergence between host races and species, during both

sympatric speciation and secondary contact.

Address

Department of Biological Sciences, University of Notre Dame, Notre

Dame, IN 46556, USA

Corresponding author: Doellman, Meredith M (mdoellma@nd.edu)

Current Opinion in Insect Science 2019, 31:84–92

This review comes from a themed issue on Insect genomics

Edited by John G Oakeshott, Charles Robin and Karl HJ Gordon

For a complete overview see the Issue and the Editorial

Available online 26th November 2018

https://doi.org/10.1016/j.cois.2018.11.006

2214-5745/ã 2018 Elsevier Inc. All rights reserved.

Introduction
Speciation is a continuous process with taxa often envi-

sioned as diverging along a continuum, as they evolve

from freely interbreeding populations to partially differ-

entiated races to fully reproductively isolated species

[1,2]. In the Darwinian world view, new species result

from natural selection causing differences, usually of

relatively small effect on fitness, to gradually accumulate

between populations and generate reproductive isolation

(RI) [3]. However, new forms sometimes appear suddenly

in the geological record [4]. As a result, some have cast the

process of speciation as more abrupt, involving non-

Darwinian processes other than natural selection. In

punctuated equilibrium, genetic drift associated with
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the founding of small peripheral populations has been

hypothesized to cause rapid transitions to new species

[4,5]. Can these seemingly different views concerning the

dynamics of speciation be reconciled?

Recent theoretical and empirical work on the coupling of

barriers to gene flow during speciation have helped to

address this question and paradoxically imply that non-

linear temporal dynamics involving rapid transitions from

races to species are actually predicted by gradual Dar-

winian natural selection [6��,7,8��,9��]. Research on

insects and, in particular, phytophagous specialists that

form host races on different plants, is helping shape this

emerging view about how the accumulation of small

changes may, at certain points in time, push populations

past tipping points and lead to the rapid origin of new

species [8��]. Here, we discuss recent theoretical models

describing non-linear transition dynamics, review empiri-

cal work consistent with these models, and lay out a plan

for comprehensive testing of these models with empirical

data, with an emphasis on host races and speciation in

phytophagous insects.

The idea of rapid genome-wide congealing
Phytophagous insects have been studied as models of

ecological speciation-with-gene-flow, with partially repro-

ductively isolated host races representing early stages of

divergence [1,10–13]. Whether and when host races

diverge into species depends on the antagonism between

gene flow and divergent natural selection, usually due to

host-associated ecological or environmental fitness trade-

offs [14]. When the magnitude of divergent selection (s)
acting on a gene between host races is less than the

migration rate (m), then little allele frequency divergence

will occur for the locus [6]. Hence, the majority of the

genome is expected to be homogenous between host

races of phytophagous insects experiencing high gene

flow. Only those mutations having large effects on fitness

greater than the migration rate (s > m) will establish,

attain high levels of allele frequency differentiation

between races, and generate RI [15]. This has led to a

‘genic’ view of divergence, with the majority of the

genetic differences between host races reflecting large

effect genes that establish due to strong direct selection

overpowering m [16]. If the rate at which such large effect

differences arise due to mutation is roughly uniform

through time, then host races will also diverge and

become reproductively isolated from one another at a

generally constant rate.
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However, genomic data have implied that host races are

often also differentiated by polygenic traits encoded by

many small effect loci [17�,18��,19,20,21]. When gene

flow between host races is high and each small effect

locus is subject to relatively weak selection (s < m), then

genetic divergence may be expected to be generally low

and dispersed through the genome. However, theory

implies that as many small effect mutations gradually

accumulate between populations through time, a thresh-

old or tipping point can be reached where their effects

combine to collectively reduce the effective rate of gene

flow (me) below their individually small s values. At this

point, a rapid non-linear transition can occur from low to

high genome-wide divergence for selected loci and RI

termed ‘genome-wide congealing’ (GWC) [6��,7]. Essen-

tially, the genome increasingly becomes the unit of

divergent selection between populations, as the indirect

effects of selection on small effect loci become coupled

and whole migrant and hybrid genotypes are selected

against rather than just individual loci. As a consequence,

allele frequency differences for these selected loci dra-

matically increase and, accordingly, so do the levels of

linkage disequilibrium (LD) they display among each

other both within and between populations [6��,7,9��]. In

this regard, LD within and between populations can be a

particularly informative metric of the extent to which the

genome as a whole is affected differentially by selection

[6��]. Natural selection on polygenic adaptations encoded

by many small effect loci therefore actually predicts rapid

evolutionary transitions from races to species under cer-

tain conditions of divergence with gene flow (see below

for discussion about allopatric divergence).

It is important to note that not all loci need be of small

effect to see such rapid transitions. A number of large

effect loci, as well as structural features of the genome

such as inversions and translocations that can reduce

recombination between genes and enhance their com-

bined indirect effects on reducing gene flow, may facili-

tate initial race formation [22–25]. By increasing LD

among loci under divergent selection, these genome

rearrangements can promote progress toward the tipping

point, which may otherwise be a slow process if predi-

cated only on the accumulation of new, small effect

mutations [26]. However, when many subsequent

changes are based on mutations of small effect, tempo-

rally non-linear dynamics will still be observed in patterns

of genomic divergence as races evolve into new species.

After a lag period, neutral mutations can also show non-

linear patterns of temporal divergence much like selected

sites, as RI increasingly becomes a genome-wide property

and me reduces significantly below the inverse of twice

the effective population size (1/2ne), elevating the role of

genetic drift in population divergence [9��].

It is also worth stressing that GWC theory is not restricted

to cases where population divergence is initiated in the
www.sciencedirect.com 
face of gene flow in sympatry or parapatry. Similar con-

siderations likely also apply to secondary contact follow-

ing allopatric divergence. Although divergence in allopa-

try is expected to proceed linearly in time (but see Refs.

[27,28]), non-linear temporal dynamics can be observed in

the outcomes of gene flow upon secondary contact.

Fusion versus persistence can depend on whether or

not populations have reached a threshold of coupling

among loci underlying RI sufficient to prevent large scale

genomic introgression [8��,18��]. Moreover, RI in allopa-

try may also be the result of inherent genomic incompati-

bilities [29]. Alternate alleles could be fixed under genetic

drift, directional selection in similar ecological conditions

or, most common in cases of speciation-with-gene-flow,

divergent selection between differing habitats. The pre-

diction of a rapid transition from races to species, under

scenarios of both primary divergence in the face of gene

flow and maintenance of species boundaries upon sec-

ondary contact may ultimately help to explain punctuated

patterns of biodiversity in nature and the fossil record, and

are not anomalous with respect to Darwinian theory.

Genome-wide congealing: theoretical
predictions and empirical support
The GWC framework provides-specific predictions

regarding the expected genome-wide patterns of popula-

tion genetics statistics, for both selected and neutral sites

(see Box 1 for roadmap for testing GWC). During the

‘genic’ phase characteristic of partially isolated host races,

a comparatively long period of build-up of genome-wide

standing variation can occur [7]. Genome-wide diver-

gence is expected to be weak, with genetic differentiation

concentrated primarily around selected loci and little to

no between or within deme (population) LD among

physically unlinked loci [6,9��] (Figure 1). Apple and

hawthorn host races of Rhagoletis pomonella (see Box 2)

[17�,30�,31,32], Adenostoma and Ceanothus attacking popu-

lations of Timema cristinae stick insects [18��,33], and

alfalfa (Medicago sativa), clover (Trifolium pratense), and

pea (Pisum sativum) races of pea aphids (Acyrthosiphon
pisum) [34,35,36�,37] appear to reside within this ‘genic’

phase, showing relatively high ongoing gene flow and

heterogeneous patterns of differentiation at selected

sites, while background genomic divergence remains

low. R. pomonella host races also display low LD among

selected loci on different chromosomes [32], and both

R. pomonella and Timema spp. host races fail to cluster

globally by host affiliation [18] (see Table 1).

As the rapid transition from host race to species occurs,

emergent genomic processes can negate gene flow and

foster rapid genome-wide divergence through positive

feedback mechanisms. Coupling among selected loci

occurs, as a combination of direct and indirect selection

facilitates accelerated differentiation and the build-up of

both between and within deme LD for these loci

[6��,7,9��] (Figure 1). Consistent with classic spatial
Current Opinion in Insect Science 2019, 31:84–92
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Box 1 Road map for testing GWC theory.

One challenge in linking theoretical predictions of GWC to empirical

data lies in finding tractable systems for testing the hypothesis. The

ideal system would allow for sampling the full speciation continuum,

all within one clade of related populations with members in spatial

contact currently and throughout their divergence. This system

should have a rich history of ecological and evolutionary research, in

which the important reproductive isolating barriers and axes of

divergence are well characterized and history of gene flow is known

[7]. Putative loci under selection can be identified in a variety of ways,

through outlier analysis (although see Refs. [44,48,49]), scans for

signatures of selection [36,50], genome-wide association studies

(GWAS) [17,18��,51], quantitative trait locus (QTL) mapping [52], and

genomic and geographic cline analyses [43]. Manipulative experi-

ments should also be used both to confirm that identified loci do

indeed change in response to selection as predicted and to estimate

the strength of selection (s) for model parameterization [19,21,30�

,33,53,54�,55]. Gene flow (m) can be estimated in field studies and

from genomic data, and demographic modeling can be used to

reconstruct the history of gene flow in the system to establish its

suitability for testing GWC theory [56].

Using empirical parameter estimates (m and s), system-specific

GWC predictions can be generated, and diagnostic patterns of

population genetic statistics, for both selected and neutral classes of

loci, established (see discussion of theoretical predictions). Genome-

wide patterns of divergence can be described by scanning the

genome with traditional dxy and FST approaches and hidden Markov

models (HMM) to identify regions of enhanced differentiation [18��

,57].

Comparisons can then be drawn between theoretical and empirical

distributions of these statistics as well as genome-wide LD [9��], for

both selected and neutral classes of loci. Finally, species that have

transitioned past the GWC threshold and are in the ‘genomic’ phase

of divergence should cluster distinctly across their ranges. In con-

trast, while differing locally at sympatric sites host races still in the

‘genic’ phase of speciation, where the direct effects of selection on

individual loci are mainly responsible for divergence, will tend not to

cluster globally across the entirety of their ranges. Both model-based

and model free clustering analyses, such as STRUCTURE (and

related models [58–60]) and discriminant analysis of principal com-

ponents (DAPC) can be used to assess the level of clustering from

host races to species [32,61].

Figure 1
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Predicted non-linear transitions during GWC in (a) effective migration

rate (me), (b) FST, (c) between deme LD, and (d) within deme LD.

Expected patterns for selected loci are depicted in red, while neutral

loci are grey. Figures adapted from Refs. [6��,9��], based on GWC

simulations with s = 0.005 and m = 0.01.
coupling models developed for geographic clines, these

non-linear temporal transitions occur only if loci are

allowed to build-up LD (i.e. not if loci are selected in

a ‘bean bag genetics’ fashion) [6��,38,39�]. Higher gene

flow requires stronger coupling for GWC [9��]; however, if

the ratio of migration to selection is too high, coupling and

divergence will not occur [6��]. As GWC is rapid on an

evolutionary or geological scale, taxa actually in the

transitional stage may be relatively rare in nature, and

therefore, not often observed [8��,18��].

In the ‘genomic’ phase of divergence RI has transitioned

from being a property of specific loci to an increasing

property of the genome. Crossing this tipping point can

signify the formation of a new species [14,40]. A con-

gealed genome is expected to show genome-wide ele-

vated allele frequency differences, FST and between

deme LD (including between loci on different
Current Opinion in Insect Science 2019, 31:84–92 www.sciencedirect.com
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Box 2 Case study: Rhagoletis pomonella species complex.

The R. pomonella species complex provides an appropriate model

for testing GWC theory. This well-characterized ongoing radiation

displays a spectrum of divergence and gene flow among member

taxa; in addition to the well-known apple and hawthorn host races,

the R. pomonella species complex includes several native hawthorn

races, three other named species, Rhagoletis mendax, Rhagoletis

zephyria, and Rhagoletis cornivora, several undescribed species,

and an isolated hawthorn-infesting R. pomonella population in the

Mexican highlands [62–65]. Microsatellite work has shown that levels

of genome-wide differentiation do indeed span the speciation con-

tinuum; named species cluster distinctly across their entire range,

while host races do not, and divergence between R. pomonella and

the undescribed flowering dogwood fly likely lies near the transition

point from host races to species [66,67]. Recent selection experi-

ments and GWAS have identified loci underlying key life history traits

under differential selection between apple and hawthorn host races

of R. pomonella [17�,30�,32]. Future work should evaluate LD rela-

tionships among these loci and between these and putatively neutral

loci within and between the host races and species in the complex

for evidence of rapid transitions between ‘genic’ and ‘genomic’

phases of ecological divergence supporting the GWC hypothesis

(Figure 3).
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chromosomes) for selected loci [6��,7] (Figure 1). In

contrast, within deme LD is predicted to transiently

elevate as migrants with increasingly diverged genomes

are exchanged between host races but then fall as effec-

tive gene flow of whole genomes is curtailed by selection

(note that this does not consider LD from structural

variants) [9��]. Early in the ‘genomic’ phase, neutral sites

will show less genome-wide differentiation and lower LD

than selected sites [9��]. Thus, from the example above,

alfalfa, clover, and pea attacking host races of the aphid

A. pisum display hot spots of increased genetic divergence

distributed throughout the genome that contain many

candidate chemosensory genes [34,35,36�,37]. If strong

LD were to be shown among candidate genes in any host

race comparison, those aphids might be early in the

‘genomic’ phase of divergence despite low background

(neutral) divergence. Neutral loci are expected to show

non-linear temporal dynamics eventually but after a lag

period, with rapid divergence occurring 10 s–100 s–1000 s

of generations after selected sites [9��]. In this regard, a

recent targeted sequencing study demonstrated that

A. pisum associated with Lathyrus pratensis (meadow

vetchling) displays genome-wide elevated divergence

among putatively selected chemosensory genes, as well

as putative neutral loci [41�], suggesting a transition into

the ‘genomic’ phase of divergence. Combined with

evidence of low gene flow (very few hybrids) with the

other A. pisum host races, this reinforces the likelihood

that L. pratensis-associated A. pisum is nearing complete

speciation [34,35].

However, caution is warranted because neutral processes

can, in some cases, produce similar non-linear divergence

patterns, especially with long periods of reduced gene

flow between allopatric populations [42�]. However,
www.sciencedirect.com Current Opinion in Insect Science 2019, 31:84–92
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when a history of gene flow is known, non-linear transi-

tions in divergence are good indicators of GWC dynamics.

This highlights the importance of knowing the demo-

graphic histories of populations, the historical role of gene

flow in divergence, and the loci or gene regions under

divergent selection (ideally corroborated by manipulative

experiments and GWAS) before interpreting patterns of

differentiation and the significance of outlier loci

generated in genome scan studies of natural populations

(see Box 1).

Genome-wide congealing: beyond strict
sympatry
The genome-wide congealing framework extends to

other modes of speciation beyond sympatry, informing

predictions in scenarios of parapatry and secondary con-

tact following allopatric divergence, as well [8��,18��]
(see Table 1). Taxa that may require a degree of geo-

graphic separation to speciate, such as many species of

Timema stick insects, show a range of levels of differenti-

ation, in which intermediate stages of divergence may be

transient or remain intact when challenged with increased

levels of gene flow in nature or through manipulative field

transplant experiments [18��]. The shape of spatial and

genomic clines can be used to infer the degree to which

coupling has occurred and genome-wide divergence dis-

plays non-linear patterns in space [43]. However, non-

linear dynamics in time are also predicted by GWC
Figure 2
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theory, given the threshold of divergence and coupling

required to prevent fusion [8��,18��]. Riesch et al. [18��]
showed discontinuities in FST values in between host race

and species level population comparisons, and conducted

selection and association experiments to identify loci

putatively under selection. Putatively selected loci

showed higher FST in sympatric host race comparisons

in the ‘genic’ phase of divergence, while FSTwas elevated

genome-wide for both selected and neutral loci, as

expected for congealed genomes, in sympatric species

level comparisons (Figure 2).

Divergence among Heliconius butterflies, which form

geographic and mimicry-related rather than host-

associated races and species, may also have involved

periods of past allopatry. Recent work has shown that

FST outliers (putatively selected loci) between the

strongly divergent sympatric species Heliconius melpomene
and either Heliconius cydno galanthus or Heliconius pachinus
have increased intrachromosomal within deme LD com-

pared to within the more weakly divergent H. cydno
galanthus and H. pachinus [9��]. H. melpomene also showed

evidence of coupling among outlier loci across chromo-

somes, supported by a peak of higher pairwise LD among

some loci. No coupling was observed among chromo-

somes in the weakly diverged parapatric pair H. cydno
galanthus and H. pachinus. Thus, H. melpomene has possibly

transitioned into the ‘genomic’ phase of divergence from

H. cydno galanthus and H. pachinus, while the latter less
es within species

pecies pair

Genomic position (LG)

T.sp. 'Cuesta ridge' (Ceanothus / Cupressus) 

T. californicum / T. poppensis (Loma Prieta site)
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. stick insects, showing regions of accentuated differentiation (red loci)

s (red) identified by HMM analysis likely contain genes differentially

parisons between host-associated ecotypes within species (‘genic’

entuated divergence around color pattern genes on linkage group 8

ed divergence and the genomic background between species T.

hase of divergence). Divergent selection on highly polygenic traits, such

omparisons. Figure modified from Ref. [18��].
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Figure 3
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Non-linear divergence dynamics during GWC, modeled based on empirical R. pomonella data (s = 0.03, m = 0.05). (a) The fitness of the average

immigrant (purple) and average resident (orange) within a deme diverge rapidly during the transition from ‘genic’ to ‘genomic’ phases of GWC. (b–

g) Predicted distributions of allele frequency differences, between deme LD, and FST for selected loci for populations in the ‘genic’ and ‘genomic’

phases of divergence. (b–d) Comparisons between R. pomonella and other species, such as the blueberry maggot R. mendax, should resemble

the ‘genomic’ phase of divergence (green). (e–g) Patterns of differentiation among apple and hawthorn host races of R. pomonella should

resemble the ‘genic’ phase of divergence (black). Figure modified from Ref. [7].
divergent pair appears to be in the ‘genic’ phase of

divergence. Such patterns may prove to be common in

nature, as genome-wide data accumulate more support for

complex histories of alternating allopatry and gene flow or

mixed modes of speciation [44–47].

Conclusions
Both theoretical and empirical challenges remain con-

cerning the role GWC plays in population divergence and

speciation. Future modeling work on GWC should incor-

porate the recombination landscape more fully, examine

the effects of pleiotropy and epistasis on the process,

extend existing models more formally to scenarios of

secondary contact (but see Ref. [6��]), and investigate

alternative forms of selection and reproductive isolation

(e.g. inherent genomic incompatibilities, sexual selection,

and reinforcement). When assessing empirical data gen-

erated by genomic sequencing studies, the combination

of forward-time simulations, coalescent simulations, and

model-based parameter inference necessary for good null

models may pose a computational burden to testing the

predictions of GWC. Finally, much empirical work is still

based solely on genome scans [57,68–71], and elucidating

the demographic history of a population and characteriz-

ing the timing and extent of past and ongoing gene flow

remain non-trivial challenges [56].
www.sciencedirect.com 
In conclusion, host races and species of phytophagous

insects offer a wealth of opportunities for investigating

speciation. The increasing ease with which high through-

put DNA sequence data can be cheaply and quickly

generated no longer greatly impedes connecting genomic

patterns of differentiation with the population genetic

processes driving divergence and speciation. Broad sup-

port for non-linear dynamics and tipping points between

host races and species of phytophagous insects would

imply that emergent processes of selection acting on the

genome beyond its direct effects on individual genes may

contribute greatly to speciation. Such non-linear temporal

dynamics of the coupling of reproductive barriers to gene

flow would link micro- and macro-evolutionary processes

and help further elucidate how Darwinian theory of

evolution by natural selection generates perceived gaps

between species in nature and discontinuities in the fossil

record [4,8��].
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