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Abstract

Fluorescence microscopy enables simultaneous observation of the dynamics of single

molecules in a large region of interest. Most traditional techniques employ either the

geometry or the color of single molecules to uniquely identify (or barcode) di↵erent

species of interest. However, these techniques require complex sample preparation and

multicolor hardware setup. In this work, we introduce a time-based amplification-free

single-molecule barcoding technique using easy-to-design nucleic acid strands. A dye-

labeled complementary reporter strand transiently binds to the programmed nucleic

acid strands to emit temporal intensity signals. We program the DNA strands to

emit uniquely identifiable temporal signals for molecular-scale fingerprinting. Since

the reporters bind transiently to DNA devices, our method o↵ers relative immunity to

photo-bleaching. We use a single universal reporter strand for all DNA devices making

our design extremely cost-e↵ective. We show DNA strands can be programmed for

generating a multitude of uniquely identifiable molecular barcodes. Our technique

can be easily incorporated with the existing orthogonal methods that use wavelength
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or geometry to generate a large pool of distinguishable molecular barcodes thereby

enhancing the overall multiplexing capabilities of single-molecule imaging.

Keywords

DNA kinetics, Nanoscale fingerprinting, Temporal patterns, DNA barcodes, Single-molecule

imaging, TIRF

Optical multiplexing is defined as the ability to study, detect, or quantify multiple ob-

jects of interest simultaneously.1–3 It has wide-ranging applications in fields such as data

storage,4,5 security and cryptography,6,7 cellular and molecular-scale imaging,1,2,8 high con-

tent multiplexed bio-assays,9 color-display technologies,10 detection of pathogens,11 cyto-

metrics,12 and Lidar applications.13 There are several ways to improve optical multiplexing,

namely, using orthogonal wavelengths, multiple mesoscale geometries, orthogonal nucleic

acid probes or a combination of these. The simplest technique is the use of orthogonal wave-

lengths and it is widely used for bio-imaging applications.14–17 However, such techniques

are limited by the number of spectrally distinct fluorescent colors and requires multicolor

hardware setup. Contrary to simple wavelength multiplexing, by leveraging the geometry

of a nanostructure and multiple fluorescent colors, Lin et al. self-assembled a large pool of

fluorescent barcodes.1 Similar to other geometry-based techniques, their barcode pool scales

exponentially, however, the barcodes are several hundreds of micrometers tall and require

complex nanostructure self-assembly.

A new class of passive imaging technique was introduced by the advent of super-resolution

imaging technique, namely, the Exchange-PAINT.2,18 They were able to achieve high single-

color optical multiplexing by moving the reporter programming from dye color to the DNA

sequence. Although their goal was high resolution fluorescence imaging, it can potentially

be used for molecular barcoding. In order to perform single-color imaging, they imaged

sequentially in time batches. Di↵erent reporter was used in each time batch to report the
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regions containing the complementary DNA strands. A given reporter is washed o↵ after

imaging the assigned specie to be replaced by the next reporter. This process is repeated

several times until all the species have been reported to reconstruct a high-quality image.

This technique has a theoretical upper bound of 4N on the number of available orthogonal

imaging channels, where N is the number of nucleotide bases used in the fluorescent probe.

Exchange-PAINT is a well-established technique, however, it requires multiple fluorescent

reporters, sophisticated flow-chamber, and advanced drift-correction steps.

In this letter, we report a novel time-based fluorescence microscopy technique using simple

nucleic acid devices for barcoding single-molecules. The basic workflow of our technique is

illustrated in Fig. 1. We design short DNA strands, referred hereby as DNA devices, and

attach them on a glass surface, as shown in Fig. 1a. The free-floating fluorescent reporters in

the solution transiently bind to these designed devices and emit fluorescence upon binding,

as shown in Fig. 1d. We design a set of DNA devices such that the hybridization kinet-

ics produce distinct output temporal intensity signals, referred as temporal DNA barcodes.

Although the observed temporal barcodes are stochastic, the underlining probability distri-

bution is unique and can be identified from the temporal barcode, as shown in Fig. 1e. Our

method is inspired from super-resolution imaging technique DNA-PAINT,2 which also uses

DNA strands and fluorescent reporters. However, unlike Exchange-PAINT, which achieves

multiplexed single-color imaging by changing the sequence of fluorescent reporter, we keep

the DNA sequences same and change device parameters such as the length and number of

domains. This simple design decision makes data acquisition simpler, reduces the experi-

mental cost and, yet, only requires single fluorescent channel. Such technique is compatible

with prior techniques and can be easily incorporated into other works.3,19,20 Note that in the

DNA-PAINT literature, they refer to the short DNA strands on the nanostructure surface

as the docker strands since their goal is to use these short strands as a docking platform for

attaching reporters to do super-resolution imaging. Here, we refer to short strands attached

on the glass surface as DNA devices since they are programmed to be used as taggants for
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single molecule fingerprinting.

Device A temporal barcode
ton

Device B temporal barcode

........

Image stacks with localizations

Es
ti.

  p
ar

am
et

er
 (o

n-
tim

e)

sample #

device Bdevice A

Temporal barcode classification 

(a)

(c)

Ev
an

es
ce

nt
 w

av
ef

ro
nt

time

Streptavidin
BSA-biotin

Tween-20

(b)

(d)

(e)
0 200 400 600 800 1000 1200

time (s)
1800

2000

2200

2400

2600

In
te

ns
ity

 (a
.u

.)

0 200 400 600 800 1000 1200

time (s)
1800

2000

2200

2400

In
te

ns
ity

 (a
.u

.) ton

kon

koff

Figure 1: Overview of the temporal barcoding framework. (a) Several short DNA devices are
attached on the glass surface. A complementary fluorescent reporter floats in the solution
and reports the device activity transiently when it attaches to the device. TIRF microscopy
is used for imaging as the evanescent wave-front can improve signal-to-noise ratio. (b) The
devices are biotin-labeled and use biotin-streptavidin chemistry to attach on the glass surface.
(c) Image stack are acquired for each device and localization coordinates are extracted to
generate their intensity time trace shown in (d). (d) An illustration of a raw time signature
for device A (10 nt) and device B (9 nt) collected at 10 Hz. (e) These temporal traces are
analyzed in the parameter space plot to demonstrate their distinct behavior.

In fact, temporal signals have been used previously in literature for di↵erent studies. The

upconversion nanocrystals by Lu et al.7 and the chromophore network arrangement by Wang

et al.13 use the photon count signals for improved multiplexing. These studies, however, use
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a more advanced detection technology with the capability of collecting photons at a much

faster rate. Other works that demonstrate tunable time-signals include the single-molecule

DNA-based clock and micro-RNA fingerprinting based on hybridization kinetics.20,21 Several

other kinetic studies have been conducted in the single-molecule FRET community using two

dyes, one acting as a donor and the other as a receptor, with energy transfer between the

dyes.22,23 Although FRET probes o↵er much higher signal-to-noise ratio than our probing

technique, the experimental design and acquisition hardware is much more complex because

multiple detectors and a sophisticated dye choice are required.

For experimental verification, we design three simple ssDNA devices of length 8, 9 and 10

nt exploiting the well-established behavior of the DNA devices that their melting tempera-

ture scales with their length.24,25 We modified these devices with a biotin-label on one end

to attach them on a glass surface using a streptavidin molecule attached to BSA-biotin.

Imaging was performed using an inverted fluorescence microscope in total internal reflection

fluorescence (TIRF) mode. This o↵ers the benefit of relatively higher signal-to-noise ratio

as the background scattering due to the free-floating fluorescent reporters is minimized. The

free-floating fluorescent strands were labeled with an ATTO 647N dye (646 nm excitation

peak). In order to extract the temporal barcodes from the raw image stack, a multistage

pipeline is introduced, as shown in supplementary Fig. S5. This pipeline detects the localiza-

tion coordinates, extracts the temporal barcodes and denoises using machine learning. For

full experimental details such as sample preparation, data acquisition, nucleotide sequence

of devices, and image processing pipeline, refer to the supplementary methods and tables.

A simple ssDNA device will be temporarily fluorescent when the reporter attaches, and it

will go dark once the reporter dehybridizes. If the activity of this device is observed over

time, we should observe a noisy intensity trace as shown Fig. 2b. This process can be mod-

eled with a two state Markov chain, as demonstrated in theoretical studies.26 A compact

reaction network of the process is shown in Fig. 2a along with how device looks like in each

state. An denoised signal with two states, constructed using the mean shift clustering al-
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Figure 2: Programming the length of DNA device to tune their temporal DNA barcodes. (a)
The chemical reaction showing the binding and unbinding of the fluorescent reporter with a
short DNA device. The dotted lines demonstrate modifying the length to program device’s
temporal DNA barcode. (b) A sample temporal DNA barcode collected from a device with
length 10 nt. Mean shift clustering is applied on the filtered signal to find two peaks (on-state
and o↵-state) and obtain the hidden state chain. (c) The histogram of the temporal barcode
shown in (b) along with the identified peak locations. (d) A control experiment demonstrat-
ing a tighter bound on the estimated on-time of a single 10 nt device with increased data
collection time (or the number of collected samples). The same experiment was conducted
twice to verify reproducible behavior. (e) Data for three devices, namely, 8 nt, 9 nt and
10 nt was collected and the estimated on-time for multiple localizations was analyzed. Full
scatter plot and histogram counts are shown for visualization purposes demonstrating their
distinguishable behavior.

gorithm,27 is shown in Fig. 2b. The dotted lines indicates the location of peaks identified

by the unsupervised clustering algorithm. The histogram of intensity counts along with the

identified peak location is also shown in Fig. 2c. We then estimate the on-times for each

blink from denoised barcode for device classification (refer to supplementary Fig. S6 for the

definition of on-time in a temporal DNA barcode).

First, we identify an operable device and reporter concentration range. In particular, we

choose low device concentration to avoid the spatial overlap of multiple devices in a di↵rac-
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tion limited region. The reporter, however, was kept much higher concentration than the

device to allow for the continuous replenishment of reporters from the solution. The laser

intensity was set su�ciently low to ensure relative immunity to photo-bleaching (refer sup-

plementary Fig. S3).

We next acquire microscopy data for 8 nt, 9 nt and 10 nt devices to verify the distin-

guishability of devices, previously predicted by the theoretical studies.26 We analyze several

localization spots for each device using our software scripts and plot the estimated mean on-

time for each device at several data collection times. We observe that the estimated mean

on-time for several localizations of each device has higher variance for shorter data collection

time (refer to supplementary Fig. S8). However, as the data collection time is increased to

60 minutes, a better separation is achieved, as shown in Fig 2e.

We also studied the variance of on-time estimates for the device population. We observe that

the variance of the on-time estimate decreases as expected, as we collect longer temporal

barcodes. The rate of decrease of the variance was fast enough to achieve the separation in

the devices of di↵erent length by simple state-of-the-art clustering methods such as k-means.

In other words, we can use these device as a single molecule barcodes for molecular-scale

fingerprinting. The expected exemplary temporal barcode for all three devices is shown in

supplementary Fig. S9 for reference purposes.

Next, we analyze some exemplary temporal barcodes of a device to verify whether the on-

time random variable follows the exponential distribution, as modeled by the Markov chain

in prior theoretical works.26 Once verified (refer to supplementary Fig. S7), we used the

model to estimate the 95% confidence interval of our on-time estimates. In Fig. 2d, we ob-

serve that the 95% confidence interval of the mean value estimate gets tighter and tighter as

the data collection time increased. This implied that the on-time parameter can be reliably

used for the task.

Some additional remarks on the on-time estimates for the simple devices are in order. First,

we observed an up-shift in the estimates than our theoretical estimates.26 However, the the-
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oretical study ignored the hardware limitations in their calculations. In particular, they

ignored the loss of short lived events because of the detector’s limit on the rate of data

acquisition especially at high signal-to-noise ratio. Nevertheless, the rough exponential de-

pendence of DNA hybridization kinetics on its length generates distinct temporal patterns,

as observed in prior sections, demonstrating the robustness of our framework.20,22,24

After successfully classifying DNA devices using the domain length, we extended our barcod-

ing idea on multiple domains. We designed new DNA devices each containing two domains

where the length of each domain can be tuned to program the output temporal DNA bar-

code. An additional domain means up to two reporters can attach to one device at the same

time, leading to an additional bright state in the temporal barcode. The dynamic flow of

a double-domain device along with the simplified reaction network is shown in Fig. 3a. As

shown in the figure, the fluorescent reporter can attach to either domain initially leading

to a fluorescent state. If another reporter also attaches to the device during this time, the

fluorescent intensity will nearly double28 as both the reporters are attached at the same

time. Note that we cannot distinguish which domain the reporter attaches to, and instead

we only observe two fluorescent states.

We designed three devices with double-domain: 9-9 nt, 9-10 nt and 10-10 nt. Each sample

was prepared for imaging, however, the device concentration was further reduced to account

for the increased fluorescence activity due to double domain. The expected typical temporal

intensity signals for all three devices is shown in supplementary Fig. S10. The collected data

was processed to extract temporal barcode using our information extraction pipeline. The

denoised three-state approximate state chain was analyzed for two parameters: on-time and

double-blink time (refer supplementary Fig. S6 for definition). The results of the estimated

mean on-time and double-blink time for several localizations of each device are shown in

Fig. 3b.

The temporal signatures of devices 9-9 nt and 9-10 nt are separated by their overall fluorescent-

ON activity whereas the temporal signatures of devices 9-10 nt and 10-10 nt are separated
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by their double-blink activity. Note the use of two parameters to analyze a temporal in-

tensity signal helps with the faster separation of DNA devices even if the data collection

time is short. Clearly, from the Fig. 3b at our current data collection time, a single pa-

rameter on-time cannot distinguish the 9-10 nt and 10-10 nt device, which is not the case

when we analyze it in the second dimension. Such additional parameter extraction can be

especially useful when the temporal signal is multi-dimensional or longer data collection is

di�cult. Finally, the variance of the estimated data points can be easily reduced by longer

data collection times (refer supplementary Fig. S8), faster detection hardware and stronger

laser powers.25,29

Several other devices can be easily designed using our idea of tuning the number of domains

and length as seen in the prior theoretical work.26 The desired set of devices depend on

the available hardware setup and detection technology. If the hardware has fast detection

capability and high power laser, shorter devices are preferred. If the hardware has slower

detection capability and low power laser, longer devices are preferred as the overall pro-

cess becomes slower. This makes our time-based framework easy to adopt and versatile. If

further tuning is desired, more domains can be added to the device, however, the task of

classifying the collected temporal barcodes will require training a machine learning model as

the decoding process becomes more complex.26

In addition to programming the bright-time activity, we controlled the dark time of devices

by using a secondary structure such as DNA hairpin. Prior works have tuned the dark time

of temporal intensity traces by controlling the reporter concentration as the binding process

follows a second order kinetics.24 In this work, we instead exploit the programmable sec-

ondary structure of DNA to achieve this. It is well-known that if a DNA sequence contains a

complementary sub-sequence then it can self-fold into a hairpin-like structure.30–32 As shown

in Fig. 3c, we change the neck length of the hairpin to control the availability of the domain

complementary to the fluorescent reporter. This is because the reporter can only bind to the

hairpin neck when it is open thereby reducing the total available device time (or increasing
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Figure 3: Programming the secondary structure of DNA devices and the number of reporter
domains. (a) The chemical reactions showing di↵erent states for tuning the number of
domains along with their lengths. (b) Several localizations of three devices were analyzed
for their on-time and double-blink time to verify their distinguishable behavior. (c) The
chemical reactions showing di↵erent states for tuning the length of a secondary structure. (d
- e) The raw unprocessed images of each device along with their spot count indicating that
longer hairpin lengths reduce the probability of reporter binding (or increases the hairpin
downtime). (f) A histogram plot containing the analyzed number of on-peaks for several
localizations of each device. Scale bars in (d) are 5µm.

the device downtime).

To demonstrate this idea, we designed two hairpin devices with neck length of 7 nt and 10

nt (for sequence details, refer to supplementary tables). The device with a neck length of 7

nt should behave almost like a standard ssDNA device as the average binding time of such

DNA device is very short.18,22 The device with neck length of 10-nt should have large chunks
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of down times as DNA devices with 10 nt hybridize for a much longer time on average. As

expected, the di↵erence in the number of fluorescent localizations is directly visible from the

raw image data of both the devices shown in Fig. 3d and Fig. 3e. The number of localiza-

tions in a typical frame of 7 nt device is much higher than 10 nt device at a given device and

reporter concentration demonstrating the increased down time of 10 nt device. Additionally,

after processing the image stack of these devices using our information extraction pipeline,

there is also a clear di↵erence observed in the number of blinking peaks observed for the

respective temporal barcodes as shown in Fig. 3f. The number of fluorescent-ON peaks in a

given time is much less for a device with longer stem length, as seen in the Fig. 3f, acting as

a parameter for easy classification of these devices.

Although our temporal framework o↵ers a new potential venue to study single molecule,

there are several important challenges in the field that should be noted. Longer data ac-

quisition, and higher signal-to-noise ratio is always desirable and while this is possible to

some extent by tuning the laser power, detector gain, capture rate and better dyes, there is

an upper wall. A potential solution to analyze such under-sampled and noisy data includes

training a machine learning model such as generative adversarial networks (GAN)17,27 on the

microscopy data for image denoising and signal identification process. This has a potential

to further improve our software pipeline process by making it faster and robust. Addition-

ally, by learning the structure of data from the noisy stack, it may be possible to be able

to reconstruct high-quality signals even if data is highly under-sampled. The field of super-

resolution imaging has already seen benefits of deep learning17 and these can applied to a

broader field of DNA nanoscience and single-molecule imaging.

In conclusion, we have introduced a new reporting framework that uses the time domain for

barcoding single molecules. Our framework consists of a programmable simple DNA device

that can be attached to the specie of interest and a complementary universal reporter strand

that can transiently bind with DNA devices to report their activity. The device reporter

combination together creates a temporal barcode as the temporal intensity signals emitted
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are distinct and can act as a fingerprint. We move the programming from fluorescent reporter

and dye color to the DNA devices as our goal is to develop an economical and simple-yet-

powerful method. Our framework can work with as few as one dye, greatly simplifying the

hardware setup and data acquisition for single molecule systems. The introduction of the

use of the time domain for reporting provides an additional channel for multiplexing that

can substantially increase the number of barcodes. Further, prior techniques such as use the

geometry of a nanostructure or multiple dyes, can be easily incorporated with our work to

scale the number of molecular barcodes exponentially. Finally, we have also designed a set

of open-source MATLAB script to simplify the data extraction from image stack which we

believe will aid beyond our barcoding framework to the general community of fluorescence

microscopy and super-resolution imaging.

In general, the ability to design a reporting system that can report real-time breathing activ-

ity of a cellular or molecular object can o↵er numerous future applications in the nanoscience

field. For example, this can be used to observe real-time behavior of localized DNA circuits

by carefully integrating our reporting DNA devices with the existing logic circuits.30 Several

other applications such as error-correcting temporal barcodes and cellular tagging are also

possible.26
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