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Abstract

Fluorescence microscopy enables simultaneous observation of the dynamics of single
molecules in a large region of interest. Most traditional techniques employ either the
geometry or the color of single molecules to uniquely identify (or barcode) different
species of interest. However, these techniques require complex sample preparation and
multicolor hardware setup. In this work, we introduce a time-based amplification-free
single-molecule barcoding technique using easy-to-design nucleic acid strands. A dye-
labeled complementary reporter strand transiently binds to the programmed nucleic
acid strands to emit temporal intensity signals. We program the DNA strands to
emit uniquely identifiable temporal signals for molecular-scale fingerprinting. Since
the reporters bind transiently to DNA devices, our method offers relative immunity to
photo-bleaching. We use a single universal reporter strand for all DNA devices making
our design extremely cost-effective. We show DNA strands can be programmed for
generating a multitude of uniquely identifiable molecular barcodes. Our technique

can be easily incorporated with the existing orthogonal methods that use wavelength



or geometry to generate a large pool of distinguishable molecular barcodes thereby

enhancing the overall multiplexing capabilities of single-molecule imaging.
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Optical multiplexing is defined as the ability to study, detect, or quantify multiple ob-
jects of interest simultaneously.!'® It has wide-ranging applications in fields such as data
storage,*® security and cryptography,®” cellular and molecular-scale imaging, 2% high con-

tent multiplexed bio-assays,® color-display technologies,'? detection of pathogens,!!

cyto-
metrics, '? and Lidar applications.'® There are several ways to improve optical multiplexing,
namely, using orthogonal wavelengths, multiple mesoscale geometries, orthogonal nucleic
acid probes or a combination of these. The simplest technique is the use of orthogonal wave-
lengths and it is widely used for bio-imaging applications.'* 1" However, such techniques
are limited by the number of spectrally distinct fluorescent colors and requires multicolor
hardware setup. Contrary to simple wavelength multiplexing, by leveraging the geometry
of a nanostructure and multiple fluorescent colors, Lin et al. self-assembled a large pool of
fluorescent barcodes.! Similar to other geometry-based techniques, their barcode pool scales
exponentially, however, the barcodes are several hundreds of micrometers tall and require
complex nanostructure self-assembly.

A new class of passive imaging technique was introduced by the advent of super-resolution
imaging technique, namely, the Exchange-PAINT.?18 They were able to achieve high single-
color optical multiplexing by moving the reporter programming from dye color to the DNA
sequence. Although their goal was high resolution fluorescence imaging, it can potentially
be used for molecular barcoding. In order to perform single-color imaging, they imaged

sequentially in time batches. Different reporter was used in each time batch to report the



regions containing the complementary DNA strands. A given reporter is washed off after
imaging the assigned specie to be replaced by the next reporter. This process is repeated
several times until all the species have been reported to reconstruct a high-quality image.
This technique has a theoretical upper bound of 4 on the number of available orthogonal
imaging channels, where N is the number of nucleotide bases used in the fluorescent probe.
Exchange-PAINT is a well-established technique, however, it requires multiple fluorescent
reporters, sophisticated flow-chamber, and advanced drift-correction steps.

In this letter, we report a novel time-based fluorescence microscopy technique using simple
nucleic acid devices for barcoding single-molecules. The basic workflow of our technique is
illustrated in Fig. 1. We design short DNA strands, referred hereby as DNA devices, and
attach them on a glass surface, as shown in Fig. 1a. The free-floating fluorescent reporters in
the solution transiently bind to these designed devices and emit fluorescence upon binding,
as shown in Fig. 1d. We design a set of DNA devices such that the hybridization kinet-
ics produce distinct output temporal intensity signals, referred as temporal DNA barcodes.
Although the observed temporal barcodes are stochastic, the underlining probability distri-
bution is unique and can be identified from the temporal barcode, as shown in Fig. 1le. Our
method is inspired from super-resolution imaging technique DNA-PAINT,? which also uses
DNA strands and fluorescent reporters. However, unlike Exchange-PAINT, which achieves
multiplexed single-color imaging by changing the sequence of fluorescent reporter, we keep
the DNA sequences same and change device parameters such as the length and number of
domains. This simple design decision makes data acquisition simpler, reduces the experi-
mental cost and, yet, only requires single fluorescent channel. Such technique is compatible
with prior techniques and can be easily incorporated into other works.?'%2° Note that in the
DNA-PAINT literature, they refer to the short DNA strands on the nanostructure surface
as the docker strands since their goal is to use these short strands as a docking platform for
attaching reporters to do super-resolution imaging. Here, we refer to short strands attached

on the glass surface as DNA devices since they are programmed to be used as taggants for



single molecule fingerprinting.
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Figure 1: Overview of the temporal barcoding framework. (a) Several short DNA devices are
attached on the glass surface. A complementary fluorescent reporter floats in the solution
and reports the device activity transiently when it attaches to the device. TIRF microscopy
is used for imaging as the evanescent wave-front can improve signal-to-noise ratio. (b) The
devices are biotin-labeled and use biotin-streptavidin chemistry to attach on the glass surface.
(c) Image stack are acquired for each device and localization coordinates are extracted to
generate their intensity time trace shown in (d). (d) An illustration of a raw time signature
for device A (10 nt) and device B (9 nt) collected at 10 Hz. (e) These temporal traces are
analyzed in the parameter space plot to demonstrate their distinct behavior.

In fact, temporal signals have been used previously in literature for different studies. The
upconversion nanocrystals by Lu et al.” and the chromophore network arrangement by Wang

et al.!3 use the photon count signals for improved multiplexing. These studies, however, use



a more advanced detection technology with the capability of collecting photons at a much
faster rate. Other works that demonstrate tunable time-signals include the single-molecule
DNA-based clock and micro-RNA fingerprinting based on hybridization kinetics. 22! Several
other kinetic studies have been conducted in the single-molecule FRET community using two
dyes, one acting as a donor and the other as a receptor, with energy transfer between the
dyes.?223 Although FRET probes offer much higher signal-to-noise ratio than our probing
technique, the experimental design and acquisition hardware is much more complex because
multiple detectors and a sophisticated dye choice are required.

For experimental verification, we design three simple ssDNA devices of length 8, 9 and 10
nt exploiting the well-established behavior of the DNA devices that their melting tempera-
ture scales with their length.?*?® We modified these devices with a biotin-label on one end
to attach them on a glass surface using a streptavidin molecule attached to BSA-biotin.
Imaging was performed using an inverted fluorescence microscope in total internal reflection
fluorescence (TIRF) mode. This offers the benefit of relatively higher signal-to-noise ratio
as the background scattering due to the free-floating fluorescent reporters is minimized. The
free-floating fluorescent strands were labeled with an ATTO 647N dye (646 nm excitation
peak). In order to extract the temporal barcodes from the raw image stack, a multistage
pipeline is introduced, as shown in supplementary Fig. S5. This pipeline detects the localiza-
tion coordinates, extracts the temporal barcodes and denoises using machine learning. For
full experimental details such as sample preparation, data acquisition, nucleotide sequence
of devices, and image processing pipeline, refer to the supplementary methods and tables.
A simple ssDNA device will be temporarily fluorescent when the reporter attaches, and it
will go dark once the reporter dehybridizes. If the activity of this device is observed over
time, we should observe a noisy intensity trace as shown Fig. 2b. This process can be mod-
eled with a two state Markov chain, as demonstrated in theoretical studies.?® A compact
reaction network of the process is shown in Fig. 2a along with how device looks like in each

state. An denoised signal with two states, constructed using the mean shift clustering al-



( a) ( b) 400 T T T T T
. 300 A .
Tune domain length =
k., =200 -
D+R = DR 2°F
Ky § 100 [
£ P S || PRSI | W B .
o 0 snlo 10100 lstlm 25:)0 3000

I
Stite
e

1 1 1 1
0 500 1000 1500 2000 2500 3000

time (s)
(c) (d) (e) ®08nt @®09nt @10nt
g
oS— 7 10° 7
6
104 10 °® 0% ° o
= = .
Zqp = . ° o 5
o, 103 E E - 2 ¢ oy
¢ : : = 2
o ;u s o0 %o ¢ °1 8,
£ 10 3 ¢ 0
10 £ 10 o0 o
1 o o o0 . ?
0 N o @ ° o e
10 nt device °e 1
00
500 50 100 150 200 250 300 350 10" 0

60 120 240 0 2 4 6 8 10 12 14 16 04 02 0 02 04 06 08 1 12 14

intensity (a.u.) ° 3
y (@) data collection time (mins) sample # (log) mean on-time (s)

Figure 2: Programming the length of DNA device to tune their temporal DNA barcodes. (a)
The chemical reaction showing the binding and unbinding of the fluorescent reporter with a
short DNA device. The dotted lines demonstrate modifying the length to program device’s
temporal DNA barcode. (b) A sample temporal DNA barcode collected from a device with
length 10 nt. Mean shift clustering is applied on the filtered signal to find two peaks (on-state
and off-state) and obtain the hidden state chain. (c¢) The histogram of the temporal barcode
shown in (b) along with the identified peak locations. (d) A control experiment demonstrat-
ing a tighter bound on the estimated on-time of a single 10 nt device with increased data
collection time (or the number of collected samples). The same experiment was conducted
twice to verify reproducible behavior. (e) Data for three devices, namely, 8 nt, 9 nt and
10 nt was collected and the estimated on-time for multiple localizations was analyzed. Full
scatter plot and histogram counts are shown for visualization purposes demonstrating their
distinguishable behavior.

gorithm,? is shown in Fig. 2b. The dotted lines indicates the location of peaks identified
by the unsupervised clustering algorithm. The histogram of intensity counts along with the
identified peak location is also shown in Fig. 2c. We then estimate the on-times for each
blink from denoised barcode for device classification (refer to supplementary Fig. S6 for the
definition of on-time in a temporal DNA barcode).

First, we identify an operable device and reporter concentration range. In particular, we

choose low device concentration to avoid the spatial overlap of multiple devices in a diffrac-



tion limited region. The reporter, however, was kept much higher concentration than the
device to allow for the continuous replenishment of reporters from the solution. The laser
intensity was set sufficiently low to ensure relative immunity to photo-bleaching (refer sup-
plementary Fig. S3).

We next acquire microscopy data for 8 nt, 9 nt and 10 nt devices to verify the distin-
guishability of devices, previously predicted by the theoretical studies.?® We analyze several
localization spots for each device using our software scripts and plot the estimated mean on-
time for each device at several data collection times. We observe that the estimated mean
on-time for several localizations of each device has higher variance for shorter data collection
time (refer to supplementary Fig. S8). However, as the data collection time is increased to
60 minutes, a better separation is achieved, as shown in Fig 2e.

We also studied the variance of on-time estimates for the device population. We observe that
the variance of the on-time estimate decreases as expected, as we collect longer temporal
barcodes. The rate of decrease of the variance was fast enough to achieve the separation in
the devices of different length by simple state-of-the-art clustering methods such as k-means.
In other words, we can use these device as a single molecule barcodes for molecular-scale
fingerprinting. The expected exemplary temporal barcode for all three devices is shown in
supplementary Fig. S9 for reference purposes.

Next, we analyze some exemplary temporal barcodes of a device to verify whether the on-
time random variable follows the exponential distribution, as modeled by the Markov chain
in prior theoretical works.?® Once verified (refer to supplementary Fig. S7), we used the
model to estimate the 95% confidence interval of our on-time estimates. In Fig. 2d, we ob-
serve that the 95% confidence interval of the mean value estimate gets tighter and tighter as
the data collection time increased. This implied that the on-time parameter can be reliably
used for the task.

Some additional remarks on the on-time estimates for the simple devices are in order. First,

we observed an up-shift in the estimates than our theoretical estimates.?® However, the the-



oretical study ignored the hardware limitations in their calculations. In particular, they
ignored the loss of short lived events because of the detector’s limit on the rate of data
acquisition especially at high signal-to-noise ratio. Nevertheless, the rough exponential de-
pendence of DNA hybridization kinetics on its length generates distinct temporal patterns,
as observed in prior sections, demonstrating the robustness of our framework. 20:22:24

After successfully classifying DNA devices using the domain length, we extended our barcod-
ing idea on multiple domains. We designed new DNA devices each containing two domains
where the length of each domain can be tuned to program the output temporal DNA bar-
code. An additional domain means up to two reporters can attach to one device at the same
time, leading to an additional bright state in the temporal barcode. The dynamic flow of
a double-domain device along with the simplified reaction network is shown in Fig. 3a. As
shown in the figure, the fluorescent reporter can attach to either domain initially leading
to a fluorescent state. If another reporter also attaches to the device during this time, the
fluorescent intensity will nearly double?® as both the reporters are attached at the same
time. Note that we cannot distinguish which domain the reporter attaches to, and instead
we only observe two fluorescent states.

We designed three devices with double-domain: 9-9 nt, 9-10 nt and 10-10 nt. Each sample
was prepared for imaging, however, the device concentration was further reduced to account
for the increased fluorescence activity due to double domain. The expected typical temporal
intensity signals for all three devices is shown in supplementary Fig. S10. The collected data
was processed to extract temporal barcode using our information extraction pipeline. The
denoised three-state approximate state chain was analyzed for two parameters: on-time and
double-blink time (refer supplementary Fig. S6 for definition). The results of the estimated
mean on-time and double-blink time for several localizations of each device are shown in
Fig. 3b.

The temporal signatures of devices 9-9 nt and 9-10 nt are separated by their overall fluorescent-

ON activity whereas the temporal signatures of devices 9-10 nt and 10-10 nt are separated



by their double-blink activity. Note the use of two parameters to analyze a temporal in-
tensity signal helps with the faster separation of DNA devices even if the data collection
time is short. Clearly, from the Fig. 3b at our current data collection time, a single pa-
rameter on-time cannot distinguish the 9-10 nt and 10-10 nt device, which is not the case
when we analyze it in the second dimension. Such additional parameter extraction can be
especially useful when the temporal signal is multi-dimensional or longer data collection is
difficult. Finally, the variance of the estimated data points can be easily reduced by longer
data collection times (refer supplementary Fig. S8), faster detection hardware and stronger
laser powers. 229

Several other devices can be easily designed using our idea of tuning the number of domains
and length as seen in the prior theoretical work.?® The desired set of devices depend on
the available hardware setup and detection technology. If the hardware has fast detection
capability and high power laser, shorter devices are preferred. If the hardware has slower
detection capability and low power laser, longer devices are preferred as the overall pro-
cess becomes slower. This makes our time-based framework easy to adopt and versatile. If
further tuning is desired, more domains can be added to the device, however, the task of
classifying the collected temporal barcodes will require training a machine learning model as
the decoding process becomes more complex. 25

In addition to programming the bright-time activity, we controlled the dark time of devices
by using a secondary structure such as DNA hairpin. Prior works have tuned the dark time
of temporal intensity traces by controlling the reporter concentration as the binding process
follows a second order kinetics.?* In this work, we instead exploit the programmable sec-
ondary structure of DNA to achieve this. It is well-known that if a DNA sequence contains a
complementary sub-sequence then it can self-fold into a hairpin-like structure.3° 32 As shown
in Fig. 3c, we change the neck length of the hairpin to control the availability of the domain
complementary to the fluorescent reporter. This is because the reporter can only bind to the

hairpin neck when it is open thereby reducing the total available device time (or increasing
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Figure 3: Programming the secondary structure of DNA devices and the number of reporter
domains. (a) The chemical reactions showing different states for tuning the number of
domains along with their lengths. (b) Several localizations of three devices were analyzed
for their on-time and double-blink time to verify their distinguishable behavior. (c) The
chemical reactions showing different states for tuning the length of a secondary structure. (d
- e) The raw unprocessed images of each device along with their spot count indicating that
longer hairpin lengths reduce the probability of reporter binding (or increases the hairpin
downtime). (f) A histogram plot containing the analyzed number of on-peaks for several
localizations of each device. Scale bars in (d) are 5pm.

the device downtime).

To demonstrate this idea, we designed two hairpin devices with neck length of 7 nt and 10
t (for sequence details, refer to supplementary tables). The device with a neck length of 7

nt should behave almost like a standard ssDNA device as the average binding time of such

DNA device is very short.®22 The device with neck length of 10-nt should have large chunks
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of down times as DNA devices with 10 nt hybridize for a much longer time on average. As
expected, the difference in the number of fluorescent localizations is directly visible from the
raw image data of both the devices shown in Fig. 3d and Fig. 3e. The number of localiza-
tions in a typical frame of 7 nt device is much higher than 10 nt device at a given device and
reporter concentration demonstrating the increased down time of 10 nt device. Additionally,
after processing the image stack of these devices using our information extraction pipeline,
there is also a clear difference observed in the number of blinking peaks observed for the
respective temporal barcodes as shown in Fig. 3f. The number of fluorescent-ON peaks in a
given time is much less for a device with longer stem length, as seen in the Fig. 3f, acting as
a parameter for easy classification of these devices.

Although our temporal framework offers a new potential venue to study single molecule,
there are several important challenges in the field that should be noted. Longer data ac-
quisition, and higher signal-to-noise ratio is always desirable and while this is possible to
some extent by tuning the laser power, detector gain, capture rate and better dyes, there is
an upper wall. A potential solution to analyze such under-sampled and noisy data includes

17,27 5n the

training a machine learning model such as generative adversarial networks (GAN)
microscopy data for image denoising and signal identification process. This has a potential
to further improve our software pipeline process by making it faster and robust. Addition-
ally, by learning the structure of data from the noisy stack, it may be possible to be able
to reconstruct high-quality signals even if data is highly under-sampled. The field of super-
resolution imaging has already seen benefits of deep learning!” and these can applied to a
broader field of DNA nanoscience and single-molecule imaging.

In conclusion, we have introduced a new reporting framework that uses the time domain for
barcoding single molecules. Our framework consists of a programmable simple DNA device
that can be attached to the specie of interest and a complementary universal reporter strand

that can transiently bind with DNA devices to report their activity. The device reporter

combination together creates a temporal barcode as the temporal intensity signals emitted
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are distinct and can act as a fingerprint. We move the programming from fluorescent reporter
and dye color to the DNA devices as our goal is to develop an economical and simple-yet-
powerful method. Our framework can work with as few as one dye, greatly simplifying the
hardware setup and data acquisition for single molecule systems. The introduction of the
use of the time domain for reporting provides an additional channel for multiplexing that
can substantially increase the number of barcodes. Further, prior techniques such as use the
geometry of a nanostructure or multiple dyes, can be easily incorporated with our work to
scale the number of molecular barcodes exponentially. Finally, we have also designed a set
of open-source MATLAB script to simplify the data extraction from image stack which we
believe will aid beyond our barcoding framework to the general community of fluorescence
microscopy and super-resolution imaging.

In general, the ability to design a reporting system that can report real-time breathing activ-
ity of a cellular or molecular object can offer numerous future applications in the nanoscience
field. For example, this can be used to observe real-time behavior of localized DNA circuits
by carefully integrating our reporting DNA devices with the existing logic circuits.3? Several
other applications such as error-correcting temporal barcodes and cellular tagging are also

possible. 26
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