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a  b  s  t  r  a  c  t

This paper  reports  a new  micromachined  two-axis  water-immersible  scanning  mirror  using  BoPET
(biaxially-oriented  polyethylene  terephthalate)  hinges.  A  new  fabrication  process  based  on  deep  plasma
etching  on a  hybrid  silicon-BoPET  substrate  was developed  to enable  high-resolution  patterning  and
batch  fabrication  capability.  For  demonstration,  a prototype  scanning  mirror  was designed,  fabricated
and  tested.  It  has  an  overall  size  of  5 × 5 × 5 mm3, which  is comparable  to that  of  a typical  silicon-based
micro  scanning  mirror.  With  a short-hinge  design,  the  size  of  the mirror  plate  reaches  4 ×  4 mm2 to  pro-
vide  an  even  larger  aperture  for optical  or  acoustic  beam  steering.  In the air,  the  resonance  frequencies
of  the fast  and slow  axes  are  420  Hz and  190  Hz  respectively.  When  immersed  in water,  the  resonance
ges
ing
tion

frequencies  are  reduced  to  330  Hz and  160 Hz,  respectively.  The  tilting  angles  of  the  mirror  around  the
fast  and  slow  axes  follow  a linear  relationship  with  the driving  current  up to ±3.5◦. With  both  axes  driven
simultaneously,  stable  and repeatable  raster scanning  patterns  were  obtained  in  both  air  and  water.  The
micromachined  water-immersible  scanning  mirrors  could  be  useful  for  various  scanning  optical  and
acoustic  microscopic  imaging  applications  in  both  air and  liquid  environments.

© 2019  Elsevier  B.V.  All  rights  reserved.
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TLY, new scanning mirrors have been developed and
 in water to provide enlarged scanning angles (based
ell’s law) [1] or fast co-scanning of focused optical and
d beams [2,3]. Different from conventional silicon-based

 mirrors [4–7], torsional hinges made of flexible and
ngth thick BoPET (biaxially-oriented polyethylene tereph-
lms were used to avoid possible shock damage in water
ever, due to the excellent chemical stability of BoPET,

lution patterning of the BoPET hinges still poses a chal-
eviously, different methods for BoPET patterning have
ied, including CO2 laser cutting or excimer laser ablation

nd oxygen plasma etching [12]. Although it can achieve
tting speed and a depth of several millimeters, the CO2
ing has low lateral resolution of a few hundred microns.

er laser ablation can achieve very high spatial resolu-
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ut, which makes it unsuitable for batch fabrication. Oxy-

a etching could provide a practical solution for BoPET
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g [12]. However, the etch rate achieved so far is low,
kes the plasma etching process mainly useful for thin-film
g. As a result, current fabrication process for the water-
le scanning mirror with BoPET hinges still relies on laser

nd mechanical dicing followed by multiple steps of man-
bly. It is a serial process with low spatial resolution and
t accuracy, which prevents the miniaturization and batch
n of the mirror modules [13].

is paper, we  report a new micromachined water-
le scanning mirror using BoPET hinges. The overall size
rror package was reduced down to 5 × 5 × 5 mm3 (from

 15 mm3 with previous fabrication process [13]), which
 with a typical silicon-based micro scanning mirror. To
his, a new deep plasma etching process on hybrid BoPET-
bstrates has been developed and characterized. It can
igh spatial resolution and reasonable etch rates and sig-

 reduce the number of manual assembly steps, making
turization and batch fabrication of possible. In addition,

lows several technical performance improvements over
y-fabricated mirror modules. First, with a smaller mir-
ure, higher scanning frequency can be achieved; Second,

uch higher patterning resolution (e.g., a few microns

of microns), the dimension of the mirror structures can
ely defined to facilitate performance tuning and control.
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hematic Design of the Two-Axis Water-Immersible Scanning Mirror.

th better alignment accuracy and less steps of manual
, more uniform scanning performances can be expected.
nstration, a prototype scanning mirror was  designed,

 and tested. The small footprint of the micromachined
mersible scanning mirror makes it suitable for the devel-
f compact ultrasound and photoacoustic imaging systems
eld, head-mounted, and even endoscopic applications.

n

 shows the schematic design of the two-axis water-
le scanning mirror. The mirror plate is supported onto

 frame by two BoPET hinges (to form the fast axis). The
e and the outer frame are connected by the other two

ges (to form to the slow axis). Compared with the brittle
nges used in conventional MEMS  scanning mirrors, the
nges are more flexible and impact resistant. Therefore,
uitable for under-water operations where shock or turbu-
ld occur. In addition, the low Young’s modulus (2–2.7 GPa

 high flexibility of BoPET makes it possible to achieve desir-
ion stiffness and scanning angle without using long and
inge structures. This brings two benefits: 1) More effi-

ge of the mirror surface area. With shorter hinges, the gap
the mirror plate and frames can be reduced. Larger mirror

 be accommodated without increasing the overall module
etter suppression of the vertical vibration of the mirror
the first-order estimation, the bending and torsion force

 of a micro cantilever beam can be calculated as

3EI
l3

= Ewt3

4l3
(1)

GJ

l
=
Gwt3[ 16

3 − 3.36 t
w (1 − t4

12w4 )]

l
(2)

 is Young’s modulus, I is moment of inertia, J is torsional
of inertia, and G is shear modulus. Suppose the beam width
ness are kept constant, the ratio between the bending and
rce constants as a function of the beam length can be

ed as

2(1 + �)

4l2[ 16
3 − 3.36 t

w (1 − t4

12w4 )]
(3)

 is Poisson’s ratio. According to Eq. (3), the ratio between
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mated nu
was calcu
simulated
magnetic
Fig. 2. Dynamic filtering effect.

ve both fast and slow axes, a water-compatible electro-
 actuator is used [13], which consists of two pairs of
nt magnets (marked in red and yellow) and one induc-
n each pair, the two  magnets are inversely magnetized
hed to the backside of the mirror plate. When a current is
hrough the inductor coil, a magnetic torque will be gen-

 rotate the mirror plate around the fast-axis hinges and
nner frame around the slow-axis hinges. The use of single
(instead of multiple ones) to drive both the fast and slow
result in a significant reduction of the mirror module size.
, the scanning motion around the two axes is mechanically
nd cannot be independently controlled.
ress this issue, we  have investigated a dynamic filtering

enable independent two-axis driving with a single induc-
13]. As shown in Fig. 2, the resonance frequency of the
(f fast), is made much higher than that of the slow axis
hen two  AC driving currents with different frequencies

 fslow) are passed through the inductor coil, the fast and
s will be driven simultaneously by the two  currents. The

 motion of the fast and slow axes can be represented by
low and Rslow + R′

fast , respectively. When ffast and f slow are
far enough, Rfast � R′

slow and Rslow � R
′
fast . As a result, the

esponses (R′
fast and R′

slow) will become negligible when
d with the actuated responses (Rfast and Rslow). Capitalizing

 intrinsic dynamic filtering effect, the coupling between
xes can be largely suppressed to allow independent con-

e two  scanning motions even with a single inductor coil.
ke the resonance frequencies of the two  scanning axes
tly different, the fast-axis hinges are designed to be both
d shorter than slow-axis hinges to provide a larger tor-
nstant. At the same time, the area of the inner frame is

 to increase moment of inertia around the slow axis to fur-
ce its resonance frequency. It should be mentioned that
e low Young’s modulus and high flexibility of BoPET, a

ge of dimensions (both length and width) can be chosen
e desirable mechanical stiffness for the fast- and slow-axis

1 lists the main design parameters of the scanning mir-
erification, the scanning behavior of both fast and slow

 simulated in COMSOL Multiphysics®. The AC/DC mod-
used to calculate the magnetic fields from the inductor
permanent magnets and the resulting magnetic forces.
was  set to be homogenized and numerical with an esti-
mber of turns of 5̃000. The magnetic flux from the coil

lated from the driving current. Permanent magnets were

 by the Ampere’s Law. After selecting the domain, the
 field was  defined by remnant flux density, Br = 0.3 Tesla.
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Table  1
Main  Design Parameters of the Two-Axis Water-Immersible Scanning Mirror.

Fast-axis Slow-axis

Hinge (l × w × t) (mm3) 0.4 × 0.56 × 0.05 0.7 × 0.2 × 0.05
Rotational part (mm2) 4 × 4 4.5 × 4.5

BoPET film [14]
Shear modulus (GPa) 0.02
Density  (�c) (g/cm3) 1.455

Inductor Coil
Inductance (�H) 1
Length/diameter (mm2) 2 × 3
Estimated number of turns 5100

Permanent magnet
Diameter/height (mm2) 1.5 × 0.7
Density (g/cm3) 7.5
Remanent  flux density (T) 0.3
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g the magnetic fields generated by inductor coil and mag-
s introduced by permanent magnets (Fig. 3), the magnetic

plied onto the mirror plate were determined. Next, with
ural Mechanics module, the magnetic forces were applied
te the tilting angles of the mirror plate (Fig. 4).
ting angles of the mirror plate around the two  axes under
g conditions were determined by applying DC driving

with different amplitude. As shown in Fig. 5, linear rela-
between the driving signal amplitudes and tilting angles
rved. At small tilting angles, the gap between the inductor
he permanent magnets changes only slightly. As a result,
etic forces can remain almost constant for a certain DC
rrent. However, at larger tilting angles, non-linearity can
ed as the magnetic forces start to diminish when the gap
the inductor coil and permanent magnets increases. The
gle of the slow axis increases faster than that of the fast-
h is due to its lower stiffness. This means a smaller driving
r the slow axis will be needed to generate the same tilt-

 as that of the fast axis. This is helpful for enhancing the
filtering by reducing the mechanical coupling to the fast

culate the resonance frequencies of the fast and slow axes
 and water, the driving signal frequency was swept from

 kHz, (Fig. 6). Around the resonance frequency, the step
quency sweep was set to the minimal value of 1 Hz. The
e frequency was defined as at which frequency the scan-
e reaches its maximum. The resonance frequencies of the
slow axes in the air were determined to be 445 Hz and
spectively. When immersed in water, the resonance fre-

were reduced to 367 Hz and 151 Hz, respectively. In both
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r scanning optical and acoustic microscopy, the repetition
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Fig. 5. Simulated DC driving responses.

er or ultrasound pulses is usually 101̃00 kHz. To maintain
sity of data points for good image resolution, the scan-
uencies of the fast and slow axes should be 10s–100 s Hz.
, the above resonance frequencies of the scanning mirror
le for such applications.

ation and assembly

cussed in the introduction, the main issues in current
tching processes for BoPET are low etch rates and poor
 plasma etching of polymer materials, oxygen is the main
gas. However, with the presence of high oxygen concen-

 the plasma, the side-wall protection with polymer film
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Fig. 6. Resonance frequency simulation results of (a) the fast axis and (b) the slow
axis.
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Table 2
Etching Parameters for BoPET and Silicon.

BoPET Silicon

Temperature (◦ ) −80 −100
Pressure (mTorr) 30 30
Ar (sccm) 80 0
O2 (sccm) 30 30
SF6 (sccm) 0 90
RF power (W)  150 10
ICP power (W)  300 600
Etch rate
Aspect ra
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ratio of 7
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, which is commonly used in deep silicon etching, will
neffective. To obtain good aspect ratio, high-energy bom-
t is needed to enhance the anisotropic physical etching.
ork, a gas mixture consisting of argon and oxygen (3:1)

 to provide a good balance of physical and chemical etch-
sing the same gas mixture, the etch rate and aspect ratio

 under different ICP (inductive coupled plasma) and RF
quency) power levels were characterized. As shown in
th the etch rate and aspect ratio increase with the ICP

ower as a result of enhanced bombardment of ions with
nsity and energy. However, if the ICP and especially the RF

50 �
chro
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etch
a 0.4
as a 

inne
net d
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secu
rem
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e too high, the BoPET substrate can be overheated, which
rinkling and degradation of its mechanical properties. In
, an ICP power of 300 W and an RF power of 200 W were

bonded t
(Fig. 8g).
zoom-in 
 (�m/min) 0.21 1
tio 7.14 55

rovide an overall etch rate of 0.21 �m/min and an aspect
.7.

 illustrates the fabrication process flow of the scanning
he etching parameters for BoPET and silicon are listed
2. First, a 200-�m thick silicon wafer was bonded to a
ick BoPET film with epoxy (Fig. 8a). After evaporating a
opper seed layer on the backside of BoPET film, a 5 �m

kel layer was  electroplated to serve as a mask for BoPET
Fig. 8b). The BoPET film was etched with cryogenic plasma
ig. 8c). After the BoPET etching and removing the Ni mask,

 thick aluminum layer was deposited on the silicon wafer
k for cryogenic plasma etching to form the mirror plate,

e and outer frame (Fig. 8d). Next, four permanent mag-
 were assembled onto the mirror plate simultaneously by
hin acrylic template (Fig. 8e). The acrylic template was

 with laser cutting. After the permanent magnets were
bonded onto the mirror plate, the acrylic template was
. Lastly, the fabricated mirror plate was  bonded onto an
acer (Fig. 8f). The inductor coil was  embedded into an
ogether to complete the assembly of the mirror module
 Fig. 9 shows a fully assembled scanning mirror with a
view of one BoPET hinge for the slow axis. It should be



S. Xu et al. / Sensors and Actuators A 298 (2019) 111564 5

Fig. 9. An assembled prototype and zoom-in view of one slow-axis hinge.
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sonance frequencies of the fast and slow axes in the air
r were characterized. The amplitude of the AC driving cur-
the fast and slow axes (in air) was set to be 100 mA  and

were det
and the F
reduced 

tion resu
sonance frequency characterization of the fast and slow axes in the air

spectively. To overcome the stronger damping effect, the
rrents for the fast and slow axes (in water) were increased

A and 70 mA,  respectively. To ensure the repeatability of
g, the maximal tilting angle is limited to ±3.5◦ to avoid

plastic deformation and degradation of the BoPET hinges
cessive shear strain. With a proper setup, a ±3.5◦ scanning
ide a field of view of 1–3 mm,  which should be adequate

 scanning microscopy modalities. Fig. 11 shows the tilting
 the fast and slow axes at different driving frequencies. In
sonance frequencies of the fast and slow axes were deter-

 be 420 Hz and 190 Hz, respectively. The corresponding
ull width at half maximum) around the two resonance
ies is estimated to be 50 Hz and 20 Hz, respectively. When
d in water, the resonance frequencies were reduced to
nd 160 Hz, respectively. The corresponding FWHM (full

 half maximum) around the two resonance frequencies
ted to be 65 Hz and 25 Hz, respectively. In both cases, the

 resonance frequencies match well with the simulation

Fig. 12, the quality factors of the fast and slow axes in air
ermined (as the ratio between the resonance frequency

WHM)  to be 8.4 and 9.5, respectively. In water, they were
to 5.1 and 6.4, respectively. Compared with the simula-
lts, the quality factors of both axes are lower (with larger
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 micromachined two-axis water-immersible scanning
sing BoPET hinges has been demonstrated. Miniaturiza-
batch fabrication of the mirror package is made possible
development of a new micromachining process. The low
of the torsional polymer hinges allows easy tuning of the
e frequencies of the two  scanning axes without drastically

 geometries. The low quality factor of the resonance makes
e to drive the scanning mirror efficiently at frequencies
n the resonance. Such feature is useful in creating desired
nning patterns for different scanning microscopic imaging
ns.
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