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Abstract— Current knowledge of coordinated motor con-
trol of multiple muscles is derived primarily from invasive
stimulation-recording techniques in animal models. Similar
studies are not generally feasible in humans, so a modeling
framework is needed to facilitate knowledge transfer from
animal studies. We describe such a framework that uses a
deep neural network model to map finite element simulation
of transcranial magnetic stimulation induced electric fields (E-
fields) in motor cortex to recordings of multi-muscle activation.
Critically, we show that model generalization is improved when
we incorporate empirically derived physiological models for
E-field to neuron firing rate and low-dimensional control via
muscle synergies.

I. INTRODUCTION

How the human brain controls multiple muscles to pro-
duce coordinated movement remains an essential, but still
unresolved, question in neuroscience. It is a classic structure-
function biology problem. To date our understanding of
this control comes primarily from animal models using a
variety of elegant methods including tract tracing [1], neural
recording [2], and intracortical microstimulation [3]. These
techniques have suggested the presence of motor control
for individual muscles as well as coordinated control of
coherent muscle groups [4]. Empirical evidence suggests
that these coherent muscle groups can be represented as
low dimensional bases (known as muscle synergies), and
that synergistic motor output can be represented as a linear
combination of the these bases notwithstanding known neural
circuit non-linearities [5]. However, without availability of
results from such highly invasive methods, translation of
these insights to humans has been slow and uncertain.

Transcranial magnetic stimulation (TMS) is a non-invasive
stimulation modality that has shown promise to bridge this
gap. For example, TMS studies of human motor control have
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shown that evoked hand movements can be well-described by
a low dimensional representation of postural synergies [6].
However, the use of TMS as a tool to investigate motor
neurophysiology has been limited by our poor understanding
of how TMS-induced electric fields (E-fields) are dispersed
in the motor cortex (M1) and how resulting directional
current densities produce multi-muscle responses.

Here we propose an experimental and mathematical frame-
work for a forward model to predict TMS-evoked multi-
muscle activation based on stimulus parameters and anatom-
ical imaging. The full framework incorporates a sequence of
input-output models as follows:
• A finite element (FE) model that maps TMS parame-

ters (coil geometry/position/orientation, magnetic pulse
characterization) to a volumetric E-field on a subject-
specific multi-tissue mesh.

• A deep neural network (DNN) model that provides a
lower-dimensional representation of the E-fields.

• A second DNN model that maps stimuli (E-fields or
firing rates) to muscle activations.

We used this framework to test two empirically derived
physiological phenomena. We tested whether the incorpora-
tion of a nonlinear function (derived from macaque studies)
that maps local E-fields to expected neural ensemble firing
rates improved generalization performance compared to a
model that uses E-fields directly. We also tested whether the
incorporation of low dimensional bases (derived from human
data), representing muscle synergies (Fig. 1, blue dashed
lines), improved generalization performance compared to a
model of direct cortical-to-muscle connections (Fig. 1, red
dashed lines). Additionally, we trained direct cortical-to-
muscle connections on the residual information unexplained
by synergies to test for further improvements in model
performance.

II. EXPERIMENTAL METHODS

A 35 year old, right-handed, healthy male, eligible for
TMS [7], participated in the study following informed
consent. The subject was seated, with forearms supported.
Surface EMG (Trigno, Delsys, 2kHz) was recorded from
15 hand-arm muscles during TMS: 1st dorsal interosseus
(FDI), 3rd dorsal interosseous (3DI), 3rd lumbrical (3Lum),
extensor indicus (EI), abductor pollicis brevis (AbPB),
adductor pollicis brevis (AdPB), abductor digiti minimi
(ADM), flexor digiti minimi (FDM), flexor carpi radialis
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Fig. 1. Conceptual overview of the experimental and computational framework for modeling multi-muscle responses to TMS of the human motor cortex.

(FCR), flexor carpi ulnaris (FCU), flexor digitorum su-
perficialis (FDS), extensor digitorum (EDC), and extensor
carpi radialis (ECR), extensor carpi ulnaris (ECU), Brachio-
radialis (BRD). A previously-acquired T1-weighted image
(TI=1100ms, TE=2.63ms, TR=2000ms, FOV=256x192mm,
256x192x160 acquisition matrix, 1mm3 voxels) was used
for neuronavigation (Brainsight, Rogue Research) and FE
Modeling. The TMS coil (Magstim 200, 70mm figure-8)
was held tangential to the scalp with the handle posterior
and 45◦ to midline. The right FDI hotspot was found via
a coarse map of the hand knob area. Peak-to-peak EMG
amplitude 20-50msec after the TMS pulse (motor evoked
potential, MEP) was measured (Matlab, The Mathworks).
TMS intensity was set at 120% of resting motor threshold,
the minimum intensity required to elicit MEPs >50 µV on
3/6 consecutive trials.

TMS maps consisted of 300 stimuli (4sec ISI) delivered on
a 7cm2 square grid centered on the hotspot. One stimulus was
delivered to each of 49 equidistant grid points, followed by
delivery of the remaining stimuli based on real-time feedback
from neuronavigated MEPs, focusing on excitable and border
regions rather than distant, non-responsive, ones [8].

III. MODEL FRAMEWORK

A. Finite Element (FE) Model Component

FE computation was carried out per established proce-
dures [9]: tissue segmentation (scalp, skull, cerebrospinal
fluid, gray and white matter) of the subject’s high resolution
structural MRI (using Freesurfer, Seg3D), using a hexahedral
mesh, assignment of isotropic conductivity values [10] to
each mesh element based on tissue type, and simulation of
TMS using a quasi-static FE framework (BrainStimulator,
SCIRun) [9], [11]. TMS coil output was approximated as
the magnetic vector potential from small magnetic dipoles
distributed across the coil [12], [13]. The E-field distribution

in the cortex was calculated for each coil position, spatially
resampled, and used as input for the next stage of the model.

B. Nonlinear E-field to Neural Firing Rate Component

A nonlinear mapping that predicts neural ensemble firing
rates for volumetric units in M1, given local E-field values,
was developed using nonhuman primate experimental data
based on previous studies with concurrent TMS and single
neuron recording in alert macaques [14], [15]. Spikes within
a few ms of TMS stimulus artifact were recorded with a
custom TMS coil that fit around a chamber as a microdrive
advanced an electrode into the E-field in M1 and adjacent
premotor areas from 243 neurons in two macaques. To
classify the neurons, action potential waveforms were fit
using a Gaussian mixture model technique [16] resulting in
clusters of putative axons, excitatory neurons, and inhibitory
neurons. The main effect of TMS in all three clusters was
a dose-dependent, short-latency burst of activity followed,
in most cases, by an extended pause. As TMS intensity
increased, the short-latency burst approached motor threshold
(approx. .8 V/m in these macaques). The middle panel of
Fig. 2 shows the dose-response curve for putative excitatory
neurons in the sample, representing how TMS dose translated
to induction of spiking activity in neurons that may project
to spinal circuits.

Fig. 2. Left-to-Right: FE model of the TMS-induced E-field in human;
transfer function from E-field to neural firing rate based on macaque M1
recordings; resulting estimation of TMS-induced firing rates used as inputs
to a refined DNN.
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C. Deep Neural Net Model Components

The spatial E-field distribution (with / without refinements
from estimated ensemble neural firing rate) was processed
with feedforward multilayer perceptron (MLP) DNN models.
A convolutional autoencoder was employed to build a lower
dimensional representation of the brain stimulation map after
resampling the E-field to a uniform 3D grid (80× 80× 80
with 1mm3 voxels), with a field-of-view containing M1.
The encoder was trained with mean squared error as the
cost function and Adagrad as the optimizer [17] and output
a 10× 10× 10 intermediate spatial representation using a
combination of convolution, pooling, and exponential linear
activation functions. Convolutional neural networks (CNNs)
were used to extract texture features characterizations of spa-
tial fluctuations in input field, followed by a fully connected
MLP layer to project high dimensional spatial convolution
features onto the lower dimensional target variables [18].
CNN models using spatially localized feature extraction in a
hierarchical/multiscale fashion were chosen since we know
from physiology that M1 is spatially organized. We used
statistical model order selection procedures to prevent over-
fitting to calibration data; in addition the CNN structure also
has the benefit that repeated use of identical convolution
modules specifically controls model complexity [19].

D. Linear Low Dimensional Component (Muscle Synergies)

A low dimensional linear structure, representing muscle
synergies, was extracted using non-negative matrix factoriza-
tion (NMF) [20], [21] applied on TMS-induced MEPs. NMF
solutions can be understood as constrained maximum likeli-
hood estimates for a statistical generative model of observed
EMG features: mt = Sat +wt where mt < 0, t ∈ {1, . . . ,T}
are the 15-dimensional measured non-negative EMG features
per trial (T = 300 TMS trials; S is the unknown 15× R
synergy basis matrix, where each column sr, r ∈ {1, . . . ,R}
indicates the relative activation level of each muscle in
each synergy basis, at is the unknown activation vector that
linearly combines synergy bases, and wt ∼ N (0,σ2I) is
spatiotemporal white additive Gaussian noise. Under this
model, maximum likelihood parameter estimation reduces to:

minimize
{...,at ,...},S

1
2 ∑

n
||mt −Sat ||22 subject to

at < 0 ∀t and S < 0 and ST1 = 1
(1)

An iterative algorithm was used to estimate optimal model
parameters with the stopping criterion based on relative
reduction in squared error [21]. The choice of rank (R ∈
{1, . . . ,15}) controls model complexity. As is typical in
the literature, we chose R as the minimum rank needed to
describe 90% of the overall ”variance accounted for”, (R2),
where R2 = 1 - RSS/SST, RSS is the residual sum of squares,
and SST is the total sum of squares [22].

IV. RESULTS & DISCUSSION

The autoencoder output was used as an input to a fully
connected 3-layer MLP, and both the MLP layers and the
encoder parameters were further optimized using binary

cross-entropy loss and weight decay regularization (assuming
a zero-mean Gaussian prior for MLP model parameters) to
estimate muscle activity directly (Fig. 1, thick red dashed
lines), through activations of NMF synergy matrices (Fig. 1,
thick blue dashed lines), or with a combination of both.
The muscle activity data was normalized to the unit interval
[0,1]; therefore, we used sigmoid non-linearities σ(.) in
the final layer. Specifically, given the input E-field εt to
the model, the output layer of the MLP took one of three
forms to produce muscle activity estimates m̂t from the
input xt = f(εt) to this final layer: (Directly) m̂t = σ(Wdxt );
(Via synergy activation) m̂t = σ(SWaxt); (Accounting for
residuals from synergy activations) m̂t = σ(Wr +SWaxt).

Fig. 3. Forward model comparisons: (A)-(C) Map of response of muscles
(rows) vs stimulus location (columns): (A) Measured MEPs for 30 TMS
locations. (B) MEP estimates using E-field distributions as inputs to DNNs;
direct-to-muscle (top), via synergy (middle), and combined (bottom) output
layer connections in the model. (C) MEP estimates as in panel B using neu-
ron firing rate distributions (obtained by passing E-field values in each voxel
through the firing rate transfer function. See Fig. 2 for E-field-to-Neuron
transfer function effects on modeled activation. (D) Summary comparison
of result using metrics of alignment (Cosine Angle) and magnitude (Scale
Factor) as described in the text.

The three model variations were trained using 10-fold
cross-validation using the E-field or neuron firing rate (see
Fig. 2) as inputs. The performance of all six models is
compared quantitatively and visually in Fig. 3, which pro-
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vides a quantitative comparison of all model outputs with the
ground truth. To quantify model performance (Fig. 3D), we
computed accuracy of model alignment using dot products
between model outputs and ground truth; we report align-
ment accuracy by the cosine of the angle between them
and accuracy of model magnitude, using the amplitude scale
factor (closer to 1 indicates better match for both measures).
Error bars in panel D show 90% confidence intervals com-
puted based on the jackknife estimation procedure [23].

Results of NMF applied to TMS-induced multi-muscle
MEPs, and rank determination as describe above, indicated
that 9 synergies accounted for >90% of the variance. In-
corporation of synergies (Fig. 3B,C middle/green rows and
Fig. 3D middle/green bars) and training of direct connections
to account for information poorly characterized by synergies
(Fig. 3B,C bottom/yellow rows and Fig. 3D right/yellow
bars) each led to improvement in model prediction. This is in
accordance with current theories of motor control that predict
reduced redundancy and control complexity is provided by
synergies and supplemented via direct cortico-motor connec-
tions for fractionated non-synergistic control [24].

Use of neural firing rates as inputs improved generalization
in all models. In the E-field models error accumulated
due to weak E-fields at the periphery of the stimulation,
which in a neurophysiological sense are unlikely to result in
cortical activation. Previous investigations which have used
FE modeling of E-fields to depict an activated region in re-
sponse to TMS used arbitrary thresholds to bound the E-field
zone. Our pilot data suggest that using an experimentally
derived transfer function from E-field to neural firing rate
significantly improved model accuracy.

V. CONCLUSIONS

We believe that this kind of systematic application of
modeling techniques will improve interpretation of TMS
data and has the promise to yield meaningful insights into
human corticospinal organization. These insights have the
potential for clinical translation by improving presurgical
mapping, tracking of reorganization with pathology and
rehabilitation, prescription of synergy-based interventions,
and neuroprosthetic control.
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