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Abstract— This study proposes a novel approach for evaluat-
ing the task invariance of muscle synergies, vital for potential
implementation in improving prosthetic hand control. We
do this by using a transfer learning paradigm to test for
invariance across a relatively small set of hand/forearm muscle
synergies, derived from electromyographic (EMG) activation
patterns during voluntary behaviors such as finger spelling
and grasp mimicking postures and unconstrained exploration.
EMG for each task were decomposed using non-negative matrix
factorization into synergy and weight matrices, and cross-task
weights for each task were then reconstructed by employing
the base matrices from different tasks. Support Vector Machine
and Extreme Learning Machine classifiers were used to classify
the resulting weights in order to compare their performance,
as well as their behaviors as a function of synergy rank. Both
algorithms showed robust and significantly higher performance,
compared to two distinct randomized controls, with lower rank
EMG representations, both within and between tasks/postures,
supporting hypotheses of functional invariance of multi-muscle
synergies. Our results suggest that this invariance could be
leveraged to efficiently calibrate postures for prosthetic hand
implementation by transferring learned EMG patterns from
unconstrained movements to other tasks.

I. INTRODUCTION

Availability of dexterous upper limb prostheses that intu-
itively respond to a users intention is an ambitious goal that
could dramatically improve the lives of millions worldwide.
Recording surface electromyography (EMG) provides access
to a user’s voluntary neuromuscular drive and can be used
to myoelectrically control a powered prostheses. However,
despite decades of research, most commercially available
devices utilize a simple two muscle, binary-based controller
to actuate a simple hand posture (i.e., open vs close [1]).
Development of more dexterous multifunctional myoelectric
control requires pattern classification of multi-muscle EMG
to derive movement intent [2]. To this end, evidence that the
complexity of human voluntary control may be reduced via
identifying multi-muscle patterns with a fixed relative bal-
ance of activation that act as ”modules”, commonly referred
to as muscle synergies, has received substantial attention
in the myoelectric powered prostheses community [3], [4].
It has been suggested that accurate capture of these low
dimensional control features could offer potential advantages
over single muscle direct drive, including reduced control
complexity, lower sensitivity to amplitude cancellations, and
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greater robustness to slight shifts in electrode position [5],
as well as offer a richer set of prosthetic movement options.
Gesture classification from EMG muscle synergies has been
successfully implemented for task-dependent problems [6],
[7], [5]. However, the gap between the synergy assumption
and practical cross-task implementation remains an open area
of investigation. Key to bridging this gap is testing the extent
to which synergies transfer across tasks and postures, as well
as finding a reliable methodology to classify labeled postures
from synergy representations. We address these two open
problems using a machine learning approach.

Several machine learning methods, including artificial
neural networks (ANN), linear discriminant analysis (LDA),
support vector machines (SVM), and Gaussian mixture mod-
els have been previously used in myoelectric-based motion
control using EMG data, with variable but generally favor-
able accuracy. To the best of our knowledge, the only meth-
ods previously applied specifically to synergy-based gesture
classification are SVMs [8] and a variant of ANN’s called
Extreme Learning Machines (ELMs) [7]. However as noted
above, they have only been tested in settings where the low
dimensional structure of muscle activations was derived from
the same data set that was used for gesture classification.
Here we investigate the ability to transfer synergy patterns
across three different task domains, as described below. We
compare SVM vs. ELM classifiers for this purpose and report
on the sensitivity of ELM to the particular set of random
initialization weights.

II. METHODOLOGY

A. Data Collection

Five healthy, right-handed, subjects (4 males; mean age
25.6 ± 3.2) participated after providing institutionally ap-
proved informed consent. Subjects were seated comfortably
with the elbow supported and wrist free to move. Surface
EMG (Delsys Inc. Trigno, Natick, MA, USA) was recorded
at 2kHz from the 16 lower arm muscles shown in Fig. 1.

(a) Posterior View (b) Anterior View

Fig. 1. Visualization of muscles targeted during experiment.
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Each participant performed the following three tasks:
• American Sign Language (ASL): All subjects were

naı̈ve to American Sign Language prior to participation.
Subjects shaped their right hand into letters and numbers
of the ASL posture set (Fig. 2(a)) presented as pictures
on a computer screen (33 postures, 3x/posture, 99 trials).
Dynamic letters ‘J’ and ‘Z’ were omitted, along with the
number ‘0’, which is visually the same as the letter ‘O’.

• Grasp Mimicking (GM): Subjects mimicked 13 grasps
and an open palm position (Fig. 2(b)), presented as
pictures on a computer screen (14 postures, 3x/posture,
84 trials).

• Unconstrained Movement (Free): Subjects were in-
structed to take 2 minutes to freely explore the move-
ment space with their fingers, hand, and wrist, avoiding
maintaining any specific posture for more than 1 second
(3x, 6 minutes total).

For ASL and GM tasks, participants were given 2 seconds
to form the posture, 6 seconds to maintain it, and 2 seconds to
rest between trials. Participants were instructed to form each
character or grasp with force sufficient to form and maintain
the posture as if they were signing to someone or holding
the depicted item, respectively. Participants were instructed
to limit motion at the elbow during the experiment.

(a) ASL (modified from [6]) (b) Grasp Mimicking

Fig. 2. ASL (a) and Grasp (b) postures presented to subjects

B. Preprocessing and Feature Extraction

EMG data were filtered offline with 5-th order Butter-
worth band-pass (0.1 Hz to 400 Hz) and 60 Hz notch
filters using custom written software (Matlab, Mathworks).
For ASL and GM tasks, only data from the 6 second
”posture maintenance” potion of each trial were used for
further analysis. Given the instructions for maintaining the
posture (constant-force, constant-angle, non-fatiguing con-
traction), we assumed steady muscle activity. In [9], it has
been mathematically and experimentally shown that EMG
amplitude can be statistically represented using the root
mean square (RMS), given assumptions of stationarity and
Gaussianity. We note that if the distribution is Laplacian,
maximum likelihood estimates of the EMG amplitude would
be obtained using the mean absolute value (MAV) of the
time series signal. However our prior work confirmed that
RMS yielded higher classification accuracy [10], implying a
Gaussian distribution, so we employed RMS as the principled
approach in the current study. For the ASL and GM tasks,
where we had stationary epochs, the 6 second-long EMG

time series of each posture was cut into non-overlapping
300 ms epochs, with 100 ms data between the above epochs
eliminated as buffer periods. This yielded 15 sample epochs
per trial. For the free movement task, which clearly was not
stationary, the entire 2 minute time series was cut into 300
ms epochs. The RMS value for each 300 ms epoch was
calculated and submitted to further analysis.

The basic assumption in previous work on muscle syner-
gies is that there are underlying groupings of muscles with
fixed relative activation strengths, and that EMG activity can
be described as a linear weighted sum of these groupings. In
this model, both the synergies bases and activation weights
are intrinsically non-negative. Identifying muscle synergies
that sufficiently explain the aggregate EMG activity can
be considered mathematically as a dimensionality reduction
problem, and solved under the non-negativity constraint.
For this reason, non-negative matrix factorization (NMF) is
widely used for synergy analysis. The input to the NMF
algorithm is a muscle by time (C× T1) matrix X and the
factorized outputs are a base matrix W of size C×R where
R≤C and an activation matrix H which is R×T1.

Two different feature extraction techniques were imple-
mented in this study. The first was an inter-class classifica-
tion, in which we selected one of three datasets as the basis
data (Xbase ∈ RC×T1 ) and applied NMF to extract the base
(Wbase ∈ RC×R) and activation matrices (Hactivation ∈ RR×T1 )
such that:

Xbase ≈WbaseHactivation (1)

The bases obtained from this analysis were used to esti-
mate activation weights from one of the other tasks (Xest ∈
RC×T2 ) using a non-negative least squares (NNLS) algorithm
so as to satisfy the non-negativity constraint (see (2)). We
note that for classification purposes, the free movement
data does not have labels and thus cannot be classified,
so we used that data only for obtaining base matrices but
not for obtaining activation weights. We also note that we
differentiate between T1 and T2 since the number of epoch
samples differs across the three different types of activity.

minimize
W,H

1
2
||Xest −WbaseH̃est ||2F

subject to H̃est ≥ 0
(2)

In the second technique, intra-class classification, we de-
rived synergy bases in order to classify data obtained from
the same task. For this part of the work, which can be
considered as a control analysis to compare to the results
of inter-class technique, we used a slightly different feature
extraction technique. In order to diversify data selection, one
group of data were randomly split into 10-folds. Equation
(1) was applied across 9 training folds and then Hest was
calculated over the 10th fold ((2)). Again, this approach was
only applicable for the grasp mimicking and ASL datasets
since Free movement data did not have labels.

C. Gesture Classification

SVM: We employed a nonlinear, one-vs-one SVM clas-
sifier with a radial basis function kernel to evaluate the
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Fig. 3. SVM classification results as a function of the number of synergies estimated (rank). In each panel the solid, dashed and dotted lines represent
classification using actual synergies and activations (both estimated from data), using activations estimated from random bases (RB) scaled to match the
real bases, and using random activations (RA) scaled to match the real activations, respectively (see text for details). In panel (a) we show results for
classification of ASL data, and in panel (b) for classification of the grasp mimicking data. The first word listed in the legend, along with the color, identifies
the task from which bases and activations were estimated, and the second word, along with the line type, identifies whether bases and activations were
estimated from data or randomized using the RA or RB methods. In panel (a) the intra-class classification is given in blue, whereas, all other colors are
inter-class decoding results. Similarly, the intra-class results are represented in green in panel (b) and other colors represent inter-class results. Error bars
show standard error of the mean.

transferred information learned from different datasets. Since
all t ∈ T2 columns of Hest had a specific label, this matrix
was randomly divided into ten groups. At each step, the
model was trained on nine groups and tested on the last
group. The validation performance measure was defined as
the probability of correct classification; this was estimated
by averaging results over the 10 folds. Selection of the base
matrix rank (R ∈ {1, . . . ,15}) is an important model order
selection issue; here we used the validation performance
measure estimate, in a process in which each classification
problem was exhaustively repeated for all 15 possible values
of R.

To evaluate classification performance using the esti-
mated bases and activations, we compared to randomized
bases and activations, employing two different randomization
techniques. First, we evaluated the element-wise mean and
variance of the Hest matrices used for each classifier and
then replaced them by random matrices with independent
entries generated from a Gaussian distribution with the same
mean and variance. This comparison condition is referred
to below as random activation (RA) classification. Second,
mean and variance calculations were applied to the Wbase
matrices calculated from the data to generate random base
matrices with matching element-wise means and variances.
NNLS was then used to calculate Hest for classification. We
refer to this condition as random base (RB) classification.
Another dimensionality reduction technique was not em-
ployed for bench marking, since it has been shown that NMF
outperforms principal component analysis [10].

ELM: We carried out the same classification tasks using
ELMs. The number of hidden layer neurons was selected as
150 and a sigmoid function was employed as the non-linear
activation function. Since ELMs have an additional level of
variability due to their use of random weights in their first
layer, in addition to using the same 10-fold cross-validation
process described above, for each fold we trained 10 separate
ELMs with different draws of randomized first layer weights,
in order to assess the sensitivity of ELM performance to this
random effect.

III. RESULTS

A. Classification Results

In order to evaluate predictability, base matrices evaluated
on all three datasets were used to calculate the activation
matrices of the labelled datasets (ASL and GM). The group
mean SVM classification performance as a function of
number of synergies (rank) for 10 fold-cross validation for
actual data as well as RA and RB chance level conditions
(see Sec. II-C) are shown in Fig. 3. Panel (a) of Fig. 3
illustrates how the classification accuracy changed for the
ASL data prediction problem as the rank of the base matrix
increased from one to fifteen while Fig. 3(b) shows the
corresponding results on the grasp mimicking data. A two-
way repeated measures ANOVA with factors DataType (Real,
Random Bases) and Rank (1-15) was used to evaluate if
classification performance was significantly different from
chance. Significant interactions were followed with pairwise
t-test with Bonferroni correction for multiple comparisons (p
= .05/15 = .0033) to determine if classification accuracy cal-
culated from measured data was significantly different from
RB data for each rank. For classification of ASL postures,
DataType X Rank interactions were significant when the
bases were derived from ASL (F(14,149)=23.61, p<.001),
GM (F(14,149)=6.45, p<.001), and Free (F(14,149)=6.52,
p<.001). Post-hoc pairwise t-test indicated significant dif-
ferences between real data and RB data for ranks (ASL, [1-
15]; GM [7,8,9,11,13]; Free [4,5,7,10,12]). Classification of
grasp postures found that their DataType X Rank interactions
were significant when the bases were derived from ASL
(F(14,149)=2.65, p=.002), GM (F(14,149)=20.71, p<.001),
and Free (F(14,149)=2.73, p=.002). Post-hoc pairwise t-test
indicated significant differences between real data and RB
data for ranks (ASL, [6]; GM [2-15]; Free [6,7,8]).

Since the number of possible classes for ASL classification
was higher than that of the grasp mimicking task, it is not
surprising that accuracy was lower for ASL classification. We
also observed that any rank (number of synergies) between
5−7 yielded the highest performance for both problems. Fur-
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Fig. 4. Results from ELM classifier compared to SVM results for both classification tasks. SVM curves (dotted) are repeated from Fig 3. ELM curves
follow the same format but using dashed lines. Error bars show standard errors across subjects.

thermore, the effect of over-fitting with higher rank was more
dramatic when classifying a task from its own data (when
the base matrix and the estimation activation weights were
calculated on the same data). Overall, results d that when
SVM was used for classification, derivation of synergies
from a different dataset than the target of classification not
only yielded comparable accuracy to the within-classification
condition but was also more resistant to over-fitting. Perhaps
most importantly, we found that a low-dimensional structure
of muscle activation derived from an unlabeled/unconstrained
task (here, free movement) could possibly be used to reduce
the long daily calibration time necessary for prosthetic hand
applications when utilized for gesture classification.

Comparison between SVM and ELM classifier results are
shown in Fig. 4. SVM curves are repeated from Fig. 3 for
ease of comparison. ELM performance is lower than SVM
for small ranks (below 7), but higher at larger ranks, as
SVM seems to suffer from overfitting more than ELM, whose
performance declines only at ranks above 12 for same-task
classification and not at all for cross-task classification. This
suggests that the tradeoff between low-dimensionality and
classification accuracy is classifier dependent and must be
treated carefully. The SVM architecture seemed to make
better use of the low dimensional nature of synergies, and
therefore may be more suited to a synergy based classifier. In
contrast, ELM performed best at full-rank, perhaps because
neural networks inherently exploit information abundance.

Our study of the sensitivity of the ELM algorithm to
random weight initialization found that its effect on clas-
sification performances was negligible (∼100 times lower
than the lowest classification accuracy), indicating ELM
performance was robust to the random weight initialization.

IV. CONCLUSION

We developed a transfer learning scheme utilizing muscle
synergies across different classification tasks, and compared
the performance of two popular classifiers for this purpose.
Direct comparisons of classification performance results
evaluated on the data collected from 5 subjects during ASL,
grasp mimicking and unconstrained hand gesture sessions
revealed that NMF derived synergies were functionally task-

invariant. Cumulatively, our results indicate that an uncon-
strained data collection session, even of a short duration,
may be possible for prosthetic hand controller calibration
for implementation across other untrained functional tasks.
We speculate that the muscle synergy classification problem
is ripe for investigation using newer classifiers, which might
improve on SVM performance while obtaining better low-
rank performance than ELM.
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