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Abstract—Channel charting (CC) has been proposed recently
to enable logical positioning of user equipments (UEs) in
the neighborhood of a multi-antenna base-station solely from
channel-state information (CSI). CC relies on dimensionality
reduction of high-dimensional CSI features in order to construct
a channel chart that captures spatial and radio geometries so
that UEs close in space are close in the channel chart. In this
paper, we demonstrate that autoencoder (AE)-based CC can
be augmented with side information that is obtained during
the CSI acquisition process. More specifically, we propose to
include pairwise representation constraints into AEs with the
goal of improving the quality of the learned channel charts.
We show that such representation-constrained AEs recover the
global geometry of the learned channel charts, which enables CC
to perform approximate positioning without global navigation
satellite systems or supervised learning methods that rely on
extensive and expensive measurement campaigns.

I. INTRODUCTION

Autoencoders (AEs) are single- or multi-layer neural net-

works widely used for dimensionality-reduction tasks [1]–[4].

AEs learn low-dimensional representations (embeddings) of

a given high-dimensional dataset and have been shown to

accurately preserve spatial relationships in both high- and low-

dimensional space for a broad range of synthetic and real-world

datasets [2]. With the success of deep neural networks, AEs

are also gaining increased attention for unsupervised learning

tasks [5]. Notable application examples of AEs include learning

word embeddings [6], image compression [7], generative

models [8], and channel charting [9], [10]. AEs are typically

trained in an unsupervised manner, i.e., no labels are used,

while potential side information on the training data is routinely

ignored or application-specific representation structure is not

imposed during training.

AEs that impose structural constraints on the latent variables

include sparse AEs [11] and variational AEs [12]. Sparse

AEs enforce sparsity on the representations, which enables

one to learn embeddings with low effective dimensionality.

Variational AEs learn an embedding drawn from a distribution

that represents the high-dimensional input [12]; such AEs
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have been shown to be able to generate complex data, such

as handwritten digits [13], faces [14], or physical scenes [14].

A. Representation-Constrained Autoencoders for Positioning

A range of dimensionality-reduction applications provide

valuable side information that can be imposed on the low-

dimensional representations. Such side information may stem

either from the dataset itself or from the way data was collected.

One example arises when data is acquired over time, where

it may be natural to enforce constraints between representa-

tions by exploiting the fact that, for temporally correlated

datapoints, the associated low-dimensional representations

should be similar. Another example arises when a subset of the

representations are known a-priori, e.g., when a small part of

the training data has been annotated. The obtained information

can then be translated into representation constraints, which

leads to semi-supervised training of AEs.

Representation constraints are important for positioning

users in wireless systems using channel charting (CC) [9], [10].

CC measures high-dimensional channel-state information (CSI)

of user equipments (UEs) transmitting data to an access point

or cell tower. By collecting CSI at multiple spatial locations

over time, one can train an AE for which the low-dimensional

representations reflect relative UE positions. While the original

CC method [9] enables relative localization without access

to global navigation satellite systems (GNSS) and without

dedicated measurement campaigns [15], [16], valuable side

information should not be ignored when available. As UEs

move with finite velocity, one could consider this information

when training an AE to ensure that temporally correlated

datapoints are nearby in the representation space. One could

also imagine that certain points in space with known location

(e.g., a coffee shop) can be associated with measured CSI;

this helps to pin down a subset of spatial locations in the

representation space, which enables absolute positioning. Put

simply, enforcing constraints between representations may

improve the efficacy of AE-based CC.

B. Contributions

This paper investigates representation constraints for AEs

and provides a framework for including these during training.

We propose constraints on pairs of representations in which

either the absolute or relative distance among (a subset of)



representations is enforced. We formulate these constraints

as nonconvex regularizers, which can easily be included into

well-established deep-learning frameworks. We highlight the

efficacy of representation constraints for the application of

CC-based positioning in wireless systems: in particular, we

demonstrate that by combining partially-annotated locations

with temporal UE constraints, the positioning performance of

CC [9] can be improved significantly.

C. Relevant Prior Art

Autoencoders provide excellent dimensionality-reduction

performance with real-world datasets [2]. Despite their success,

AEs do not aim at preserving geometric properties on the

representations (such as distances between points); this is in

stark contrast to, e.g., Sammon’s mapping [17] or multidimen-

sional scaling [18]. Furthermore, AEs commonly ignore side

information that stems from the application at hand. We will

extend AEs with pairwise representation constraints that can

improve performance of dimensionality reduction tasks.

The efficacy of deep learning has been explored recently

for wireless positioning [19]–[21]. The methods in these

papers rely on extensive measurement campaigns and require

CSI measurements annotated with exact position information.

To avoid the drawback of such supervised methods, CC, as

put forward in [9], uses dimensionality reduction to extract

relative position information of users without the necessity

of costly measurement campaigns. CC exploits the fact that

CSI is high-dimensional, but strongly depends on UE position,

which is low-dimensional. Dimensionality reduction applied

to CSI measurements learns a channel chart, in which nearby

points represent nearby locations in true space—exact position

information is not available. However, CC naturally provides

representation constraints originating from the acquisition

process, which have been ignored in prior work. We will

include such constraints into AEs to significantly improve CC.

II. REPRESENTATION-CONSTRAINED AUTOENCODERS

We briefly summarize the basics of AEs and then introduce

the concept of pairwise representation constraints.

A. Autoencoders in a Nutshell

AEs take a high-dimensional dataset consisting of N
datapoints (vectors) xn ∈ R

D, n = 1, . . . , N , of dimension D,

and learn two functions: the encoder fe : RD → R
D′

and the

decoder fd : RD′

→ R
D. The encoder maps datapoints onto

low-dimensional representations yn ∈ R
D′

, n = 1, . . . , N ,

where D′ ≪ D is the dimension of the representation, and

the decoder maps representations back to datapoints:

yn = fe(xn) and xn = fd(yn), n = 1, . . . , N.

The encoder and decoder functions of AEs are implemented

as multilayer (shallow or deep) feed-forward neural networks

that are trained to minimize the mean-square error (MSE)

between the input and the output of the network, specifically:

L(We,Wd) =
1

N

N
∑

n=1

‖xn − fd(fe(xn))‖
2. (1)

The parameters to be learned from {xn}
N
n=1 are the weights

and bias terms contained in the sets We and Wd, which define

the encoder and decoder neural networks, respectively.

The D′-dimensional output of the encoder fe is typically of

lower dimension than the intrinsic dimension of the manifold

embedding the inputs xi in D dimensions. Hence, we have

that xn ≈ fd(fe(xn)), n = 1, . . . , N , unless the dataset

{xn}
N
n=1 was D′-dimensional and we were able to learn

the underlying structure. Nevertheless, AEs often find low-

dimensional representations {yn}
N
n=1 with small loss that

capture the intrinsic dimensionality of the input datapoints.

B. Pairwise Representation Constraints

In Table I, we propose four distinct pairwise representation

constraints, where the underlined quantities represent constant

scalars or vectors that are known a-priori and used during AE

training; non-underlined quantities are optimization variables.

1) Fixed Distance Constraints: The fixed absolute distance

(FAD) and fixed relative distance (FRD) constraints enforce a

known distance di,j on a pair of representations according to

‖yi−yj‖ = di,j . The difference between FAD and FRD is that,

for FAD, one of the two representations, e.g., y
j
, is a constant

known prior to AE learning; for FRD, both representations yi

and yj are optimization variables. To facilitate the inclusion of

these constraints in deep learning frameworks, we propose to

use regularizers (see Table I) for which generalized gradients

exist. Concretely, the generalized gradient of the FAD and

FRD constraints with respect to the representation yi is

∇yi
(‖yi−yj‖−di,j)

2 = 2(‖yi−yj‖−di,j)
yi−yj

‖yi−yj‖
, (2)

where the representation y
j

is known. If di,j = 0, then the

FRD regularizer promotes equality among yi and yj , whereas

the FAD regularizer will learn a representation yi that is close

to the constant vector y
j
. Intuitively, the FAD constraint for

di,j = 0 acts as a semi-supervised extension in which a subset

of representations are known a-priori.

2) Maximum Distance Constraints: The maximum absolute

distance (MAD) and maximum relative distance (MRD)

constraints enforce a maximum a-priori known distance di,j
between a pair of representations according to ‖yi−yj‖ ≤ di,j .

For MAD, one of the two vectors in the constraint, e.g., y
j
,

is known a-priori; for MRD, both representations are learned.

We include these constraints as regularizers (see Table I) with

the generalized gradient

∇yi
max{‖yi − yj‖ − di,j , 0}

2

= 2max{‖yi − yj‖ − di,j , 0}
yi − yj

‖yi − yj‖
, (3)

where y
j

is known for MAD. Note, when di,j = 0 the FAD,

MAD, FRD, and MRD are all equivalent.

3) Practical Considerations: We implemented a stochastic

optimizer to minimize the sum of the AE fidelity term (1)

and the regularized constraint penalties using the Keras and

TensorFlow frameworks [22], [23]. Because penalty terms may

represent pairwise constraints that involve two data points, the



TABLE I
SUMMARY OF PROPOSED REPRESENTATION CONSTRAINTS FOR AES (KNOWN QUANTITIES ARE UNDERLINED).

Name Constraint Regularizer

Fixed absolute distance (FAD) ‖yi − y
j
‖ = di,j (‖yi − y

j
‖ − di,j)

2

Fixed relative distance (FRD) ‖yi − yj‖ = di,j (‖yi − yj‖ − di,j)
2

Maximum absolute distance (MAD) ‖yi − y
j
‖ ≤ di,j max{‖yi − y

j
‖ − di,j , 0}

2

Maximum relative distance (MRD) ‖yi − yj‖ ≤ di,j max{‖yi − yj‖ − di,j , 0}
2

stochastic approximation of the regularizers was formed by

randomly sampling constraints rather than datapoints.

C. Performance Metrics

In order to measure the performance of dimensional-

ity reduction, we use two standard metrics for the local

neighborhood-preserving performance: trustworthiness (TW)

and continuity (CT). TW measures whether mapping high-

dimensional datapoints to the representation space introduces

new (false) neighbors. TW is defined as

TW(K) = 1− 2
NK(2N−3K−1)

∑N

i=1

∑

j∈UK

i

(r(i, j)−K),

where r(i, j) represents the rank of the representation yi

among the pairwise distances between the other representations.

The set UK
i contains the points that are among the K

nearest neighbors in representation space, but not in the

high-dimensional space. CT measures if similar datapoints in

original space remain similar in the representation space, and

is defined as

CT(K) = 1− 2
NK(2N−3K−1)

∑N

i=1

∑

j∈VK

i

(r̂(i, j)−K),

where r̂(i, j) represents the rank of the datapoint xi among the

pairwise distances between the other datapoints. The set VK
i

contains the points that are among the K nearest neighbors

in the high-dimensional space, but not in the representation

space. Both TW and CT have values in the range [0, 1] and

large values indicate that neighborhoods are better preserved.

Besides measuring the local-neighborhood-preservation

properties via TW and CT, we also consider Kruskal’s stress

(KS) [24], [25], which measures how well the global structure

in the high-dimensional dataset {xn}
N
n=1 is mapped to the

low-dimensional embedding {yn}
N
n=1. KS is defined as

KS =

√

√

√

√

∑

n,m(δn,m − βδ̂n,m)2
∑

n,m δ2n,m
,

where δn,m = ‖xn − xm‖, δ̂n,m = ‖yn − ym‖, and β =
∑

n,m δn,mδ̂n,m/
∑

n,m δ2n,m is the optimal distance scaling

factor. KS is in the range [0, 1] and smaller values indicate

that global geometrical structure is preserved better. If KS = 0,

then the geometry is perfectly preserved.

III. CHANNEL CHARTING WITH

REPRESENTATION-CONSTRAINED AUTOENCODERS

We now augment the original CC framework [9] with repre-

sentation constraints that naturally arise from the application.

We start by outlining the concept of CC and then explain how

representation constraints are included. We then demonstrate

the efficacy in comparison to the original CC framework.

A. Channel Charting in a Nutshell

CC measures CSI from users at different spatial locations

and learns a low-dimensional channel chart that preserves

locally the original spatial geometry. Put simply, users that are

physically nearby will be placed nearby in the channel chart

and vice versa—global geometry is typically not preserved. In

this framework, high-dimensional features are extracted from

CSI, then processed with dimensionality-reduction methods to

obtain the low-dimensional channel chart. CC operates in an

unsupervised manner, i.e., learning is only based on CSI that

is passively collected at an infrastructure base-station (BS),

but from multiple user locations in the service area over time.

CC opens up many location-based applications as it provides

BS providers with relative user location information without

access to GNSS or fingerprinting methods [15].

The technical concepts behind channel charting are as

follows. Suppose that we have N single-antenna users located

in real space with coordinates zn ∈ R
3. If the nth user

at location zn is transmitting data to a BS, then the BS

first extracts high-dimensional CSI in the form of a high-

dimensional vector hn ∈ C
D, which represents multi-path

scattering and path loss of the wireless channel. From the CSI

vector hn, one can extract features xn ∈ R
D that represent

large-scale fading properties of the wireless channel. The

main assumption of CC is that large-scale fading properties

are mostly static and are strongly tied to user location.

Specifically, due to the underlying physics of electromagnetic

wave propagation, each CSI feature is a (noisy) function

of the user position, a function that represents the effect

of the (unknown) physical environment on the transmitted

signal. One can then learn the channel chart from the set

of channel features {xn}
N
n=1 in an unsupervised manner by

means of dimensionality-reduction methods. If AEs are used

in this procedure, the encoder fe corresponds to the forward

charting function that maps CSI features xn to relative position

information yn in the representation space.

Reference [9] proposed the use of Sammon’s mapping (SM)

and AEs to learn the channel charts. While SM exhibited

good performance, AEs scale well to large problem sizes

and provide a parametric mapping that enables one to map

new, unseen CSI features to a relative location. Despite the

advantages of AEs, valuable side information that arises from

the application itself has been ignored. First, in contrast to

SM, conventional AEs do not enforce any geometric structure





TABLE II
TW, CT, AND KS RESULTS FOR CHANNEL CHARTING WITH AND WITHOUT

REPRESENTATION CONSTRAINTS.

Q-LoS Q-NLoS

Plain FAD FAD&MRD Plain FAD FAD&MRD

TW

K = 1 0.8468 0.8516 0.8576 0.8480 0.8492 0.8597

K = 51 0.8597 0.8570 0.8651 0.8502 0.8560 0.8665

K = 102 0.8609 0.8642 0.8736 0.8546 0.8626 0.8739

CT

K = 1 0.9700 0.9195 0.9321 0.9281 0.8924 0.9110

K = 51 0.9440 0.9067 0.9215 0.9168 0.8928 0.9128

K = 102 0.9358 0.9081 0.9216 0.9155 0.8964 0.9151

KS 0.3548 0.2652 0.2598 0.4096 0.2749 0.2693

absolute distance constraints among pairs of representations

pertaining to this curve. FAD and MRD combined are able to

reproduce the original scenario: It is evident that points in the

channel chart approximately represent the true locations. We

also observe that the propagation conditions of the wireless

channel do not substantially affect the performance.

Table II lists the TW, CT, and KS results for the channel

charts shown in Figure 2. We see that including representation

constraints improves TW while slightly lowering the CT; note

that TW and CT are evaluated for K = 1, K = 51 (2.5% of

the dataset), and K = 102 (5% of the dataset). Hence, we

observe a tradeoff with respect to neighborhood-preserving

properties. More concretely, an increase in TW means that we

are introducing fewer “fake” near neighbors; a reduction in

CT means that neighborhoods in the original space are not as

well preserved in the channel chart as before. With respect to

the global geometric structure, we see that KS significantly

improves for all representation-constrained AEs; this implies

that the inclusion of constraints enables us to recover global

geometry. We note this is also visible in Figure 2, especially

in the AE results that include both FAD constraints (anchor

vectors) and MRD constraints (to enforce continuity of a user’s

motion). Once again, we see that the propagation conditions

do not substantially affect the performance.

IV. CONCLUSIONS

We have shown how to incorporate pairwise representation

constraints into autoencoders (AEs). To demonstrate effec-

tiveness of representation-constrained AEs, we have shown

an improvement to the channel charting (CC) framework

in [9], where we use side information on user motion and

anchor vectors to improve the positioning performance of CC.

Numerical results for this application have shown that the

use of representation constraints that are readily available

in wireless positioning scenarios yield (often significant)

improvements in recovered global geometry.

There are many opportunities for future work. While our

methods enable approximate positioning, AEs with represen-

tation constraints are still not sufficient to enable GNSS-grade

accuracy. Promising research directions towards this goal

are the development of improved CSI features as well as

the inclusion of additional geometric constraints, e.g., when

acquiring CSI from multiple cell-towers or access points.
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