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Abstract—Channel charting (CC) has been proposed recently
to enable logical positioning of user equipments (UEs) in
the neighborhood of a multi-antenna base-station solely from
channel-state information (CSI). CC relies on dimensionality
reduction of high-dimensional CSI features in order to construct
a channel chart that captures spatial and radio geometries so
that UEs close in space are close in the channel chart. In this
paper, we demonstrate that autoencoder (AE)-based CC can
be augmented with side information that is obtained during
the CSI acquisition process. More specifically, we propose to
include pairwise representation constraints into AEs with the
goal of improving the quality of the learned channel charts.
We show that such representation-constrained AEs recover the
global geometry of the learned channel charts, which enables CC
to perform approximate positioning without global navigation
satellite systems or supervised learning methods that rely on
extensive and expensive measurement campaigns.

I. INTRODUCTION

Autoencoders (AEs) are single- or multi-layer neural net-
works widely used for dimensionality-reduction tasks [1]-[4].
AEs learn low-dimensional representations (embeddings) of
a given high-dimensional dataset and have been shown to
accurately preserve spatial relationships in both high- and low-
dimensional space for a broad range of synthetic and real-world
datasets [2]. With the success of deep neural networks, AEs
are also gaining increased attention for unsupervised learning
tasks [5]. Notable application examples of AEs include learning
word embeddings [6], image compression [7], generative
models [8], and channel charting [9], [10]. AEs are typically
trained in an unsupervised manner, i.e., no labels are used,
while potential side information on the training data is routinely
ignored or application-specific representation structure is not
imposed during training.

AE:s that impose structural constraints on the latent variables
include sparse AEs [11] and variational AEs [12]. Sparse
AEs enforce sparsity on the representations, which enables
one to learn embeddings with low effective dimensionality.
Variational AEs learn an embedding drawn from a distribution
that represents the high-dimensional input [12]; such AEs
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have been shown to be able to generate complex data, such
as handwritten digits [13], faces [14], or physical scenes [14].

A. Representation-Constrained Autoencoders for Positioning

A range of dimensionality-reduction applications provide
valuable side information that can be imposed on the low-
dimensional representations. Such side information may stem
either from the dataset itself or from the way data was collected.
One example arises when data is acquired over time, where
it may be natural to enforce constraints between representa-
tions by exploiting the fact that, for temporally correlated
datapoints, the associated low-dimensional representations
should be similar. Another example arises when a subset of the
representations are known a-priori, e.g., when a small part of
the training data has been annotated. The obtained information
can then be translated into representation constraints, which
leads to semi-supervised training of AEs.

Representation constraints are important for positioning
users in wireless systems using channel charting (CC) [9], [10].
CC measures high-dimensional channel-state information (CSI)
of user equipments (UEs) transmitting data to an access point
or cell tower. By collecting CSI at multiple spatial locations
over time, one can train an AE for which the low-dimensional
representations reflect relative UE positions. While the original
CC method [9] enables relative localization without access
to global navigation satellite systems (GNSS) and without
dedicated measurement campaigns [15], [16], valuable side
information should not be ignored when available. As UEs
move with finite velocity, one could consider this information
when training an AE to ensure that temporally correlated
datapoints are nearby in the representation space. One could
also imagine that certain points in space with known location
(e.g., a coffee shop) can be associated with measured CSI;
this helps to pin down a subset of spatial locations in the
representation space, which enables absolute positioning. Put
simply, enforcing constraints between representations may
improve the efficacy of AE-based CC.

B. Contributions

This paper investigates representation constraints for AEs
and provides a framework for including these during training.
We propose constraints on pairs of representations in which
either the absolute or relative distance among (a subset of)



representations is enforced. We formulate these constraints
as nonconvex regularizers, which can easily be included into
well-established deep-learning frameworks. We highlight the
efficacy of representation constraints for the application of
CC-based positioning in wireless systems: in particular, we
demonstrate that by combining partially-annotated locations
with temporal UE constraints, the positioning performance of
CC [9] can be improved significantly.

C. Relevant Prior Art

Autoencoders provide excellent dimensionality-reduction
performance with real-world datasets [2]. Despite their success,
AEs do not aim at preserving geometric properties on the
representations (such as distances between points); this is in
stark contrast to, e.g., Sammon’s mapping [17] or multidimen-
sional scaling [18]. Furthermore, AEs commonly ignore side
information that stems from the application at hand. We will
extend AEs with pairwise representation constraints that can
improve performance of dimensionality reduction tasks.

The efficacy of deep learning has been explored recently
for wireless positioning [19]-[21]. The methods in these
papers rely on extensive measurement campaigns and require
CSI measurements annotated with exact position information.
To avoid the drawback of such supervised methods, CC, as
put forward in [9], uses dimensionality reduction to extract
relative position information of users without the necessity
of costly measurement campaigns. CC exploits the fact that
CSI is high-dimensional, but strongly depends on UE position,
which is low-dimensional. Dimensionality reduction applied
to CSI measurements learns a channel chart, in which nearby
points represent nearby locations in true space—exact position
information is not available. However, CC naturally provides
representation constraints originating from the acquisition
process, which have been ignored in prior work. We will
include such constraints into AEs to significantly improve CC.

II. REPRESENTATION-CONSTRAINED AUTOENCODERS

We briefly summarize the basics of AEs and then introduce
the concept of pairwise representation constraints.

A. Autoencoders in a Nutshell

AEs take a high-dimensional dataset consisting of N
datapoints (vectors) x,, € RP, n= 1,..., N, of dimension D,
and learn two functions: the encoder f¢: RP — RP " and the
decoder f: RP" — RP. The encoder maps datapoints onto
low-dimensional representations y,, € R n = 1,...,N,
where D’ < D is the dimension of the representation, and
the decoder maps representations back to datapoints:

Yn = fe(xn) and Xn = fd(yn)7

The encoder and decoder functions of AEs are implemented
as multilayer (shallow or deep) feed-forward neural networks
that are trained to minimize the mean-square error (MSE)
between the input and the output of the network, specifically:

n=1,...,N.

LW, W) = ZHxn N

The parameters to be learned from {x,, }_, are the weights
and bias terms contained in the sets W¢ and W*, which define
the encoder and decoder neural networks, respectively.

The D’-dimensional output of the encoder [ is typically of
lower dimension than the intrinsic dimension of the manifold
embedding the inputs x; in D dimensions. Hence, we have
that x,, ~ f4(f(x,)), » = 1,..., N, unless the dataset
{x,}N_, was D’-dimensional and we were able to learn
the underlying structure. Nevertheless, AEs often find low-
dimensional representations {y,}_, with small loss that
capture the intrinsic dimensionality of the input datapoints.

B. Pairwise Representation Constraints

In Table I, we propose four distinct pairwise representation
constraints, where the underlined quantities represent constant
scalars or vectors that are known a-priori and used during AE
training; non-underlined quantities are optimization variables.

1) Fixed Distance Constraints: The fixed absolute distance
(FAD) and fixed relative distance (FRD) constraints enforce a
known distance d; ; on a pair of representations according to
llyi—y;ll = d; ;- The difference between FAD and FRD is that,
for FAD, one of the two representations, e.g., y _, is a constant
known prior to AE learning; for FRD, both representations Vi
and y; are optimization variables. To facilitate the inclusion of
these constraints in deep learning frameworks, we propose to
use regularizers (see Table I) for which generalized gradients
exist. Concretely, the generalized gradient of the FAD and
FRD constraints with respect to the representation y; is

Yi—Y;
VYi( .
i—Yill

(Hyz y] H 72,]) ||y
where the representation Xj is known. If di’ ;= 0, then the
FRD regularizer promotes equality among y; and y;, whereas
the FAD regularizer will learn a representation y; that is close
to the constant vector Xj' Intuitively, the FAD constraint for
d; ; = 0 acts as a semi-supervised extension in which a subset
of representations are known a-priori.

2) Maximum Distance Constraints: The maximum absolute
distance (MAD) and maximum relative distance (MRD)
constraints enforce a maximum a-priori known distance d, ;
between a pair of representations according to [|y; —y; || < d; ;.
For MAD, one of the two vectors in the constraint, e.g., Xj’
is known a-priori; for MRD, both representations are learned.
We include these constraints as regularizers (see Table I) with
the generalized gradient

lyi—yill—di;)* = )

Vy-; max{”yl y]” —’L]’O}2
Yi—Yj
= 2max{|ly; -yl —d; ;,0}=——=",  (3)
lyi —y;ll’
where y . is known for MAD. Note, when dvh = 0 the FAD,

MAD, FRD, and MRD are all equivalent.

3) Practical Considerations: We implemented a stochastic
optimizer to minimize the sum of the AE fidelity term (1)
and the regularized constraint penalties using the Keras and
TensorFlow frameworks [22], [23]. Because penalty terms may
represent pairwise constraints that involve two data points, the



TABLE I
SUMMARY OF PROPOSED REPRESENTATION CONSTRAINTS FOR AES (KNOWN QUANTITIES ARE UNDERLINED).

Name Constraint Regularizer

Fixed absolute distance (FAD) llyi — Xj” =d,; (lyi— Xj” - Qi,j)2

Fixed relative distance (FRD) lyi —yill=d;; (lyi—v;ll— di,j)Q
Maximum absolute distance (MAD)  |ly; — Xj” <d;; max{|ly; - Y, | —d; ; 0}2
Maximum relative distance (MRD) ly: —yill <d;; max{lly; —y;ll —d, ;,0}?

stochastic approximation of the regularizers was formed by
randomly sampling constraints rather than datapoints.

C. Performance Metrics

In order to measure the performance of dimensional-
ity reduction, we use two standard metrics for the local
neighborhood-preserving performance: trustworthiness (TW)
and continuity (CT). TW measures whether mapping high-
dimensional datapoints to the representation space introduces
new (false) neighbors. TW is defined as

N .o
TW(EK) =1~ yrorar— ict 2jeux (r(i,4) — K),

where r(i,j) represents the rank of the representation y;
among the pairwise distances between the other representations.
The set UX contains the points that are among the K
nearest neighbors in representation space, but not in the
high-dimensional space. CT measures if similar datapoints in
original space remain similar in the representation space, and
is defined as

N N
CT(K) =1~ yrongr— izt Ljevx (F(i,5) — K),

where 7 (4, j) represents the rank of the datapoint x; among the
pairwise distances between the other datapoints. The set VX
contains the points that are among the K nearest neighbors
in the high-dimensional space, but not in the representation
space. Both TW and CT have values in the range [0, 1] and
large values indicate that neighborhoods are better preserved.
Besides measuring the local-neighborhood-preservation
properties via TW and CT, we also consider Kruskal’s stress
(KS) [24], [25], which measures how well the global structure
in the high-dimensional dataset {x, })_, is mapped to the
low-dimensional embedding {y.,, }_,. KS is defined as

5nm_ Snm2
ks = | DO = Boom)?

Zn,m 6721,771

where 0,.m = ||Xn — Xm||s Snym = |lyn — Yml, and 8 =
> nm 6n,m5n7m/zn’m 6%, is the optimal distance scaling
factor. KS is in the range [0, 1] and smaller values indicate
that global geometrical structure is preserved better. If KS = 0,
then the geometry is perfectly preserved.

III. CHANNEL CHARTING WITH
REPRESENTATION-CONSTRAINED AUTOENCODERS

We now augment the original CC framework [9] with repre-
sentation constraints that naturally arise from the application.
We start by outlining the concept of CC and then explain how

representation constraints are included. We then demonstrate
the efficacy in comparison to the original CC framework.

A. Channel Charting in a Nutshell

CC measures CSI from users at different spatial locations
and learns a low-dimensional channel chart that preserves
locally the original spatial geometry. Put simply, users that are
physically nearby will be placed nearby in the channel chart
and vice versa—global geometry is typically not preserved. In
this framework, high-dimensional features are extracted from
CSI, then processed with dimensionality-reduction methods to
obtain the low-dimensional channel chart. CC operates in an
unsupervised manner, i.e., learning is only based on CSI that
is passively collected at an infrastructure base-station (BS),
but from multiple user locations in the service area over time.
CC opens up many location-based applications as it provides
BS providers with relative user location information without
access to GNSS or fingerprinting methods [15].

The technical concepts behind channel charting are as
follows. Suppose that we have N single-antenna users located
in real space with coordinates z, € R3. If the nth user
at location z, is transmitting data to a BS, then the BS
first extracts high-dimensional CSI in the form of a high-
dimensional vector h,, € CP, which represents multi-path
scattering and path loss of the wireless channel. From the CSI
vector h,,, one can extract features x,, € R that represent
large-scale fading properties of the wireless channel. The
main assumption of CC is that large-scale fading properties
are mostly static and are strongly tied to user location.
Specifically, due to the underlying physics of electromagnetic
wave propagation, each CSI feature is a (noisy) function
of the user position, a function that represents the effect
of the (unknown) physical environment on the transmitted
signal. One can then learn the channel chart from the set
of channel features {x,})_, in an unsupervised manner by
means of dimensionality-reduction methods. If AEs are used
in this procedure, the encoder f€ corresponds to the forward
charting function that maps CSI features x,, to relative position
information y,, in the representation space.

Reference [9] proposed the use of Sammon’s mapping (SM)
and AEs to learn the channel charts. While SM exhibited
good performance, AEs scale well to large problem sizes
and provide a parametric mapping that enables one to map
new, unseen CSI features to a relative location. Despite the
advantages of AEs, valuable side information that arises from
the application itself has been ignored. First, in contrast to
SM, conventional AEs do not enforce any geometric structure
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Fig. 1. Channel charting scenario as in [9]. A 32-antenna BS located at
the origin extracts 2048 CSI vectors from several UEs in space. Each point
represents a UE position; the points on the “vip” curve model a user that
moves in time. The color gradients and “vip” curve enable an easy visual
comparison with the learned channel charts shown in Figure 2.

on their representations. Second, by tracking a user’s CSI over
time, the corresponding low-dimensional representations that
reflect their position should be similar as velocity is finite.

B. Channel Charting with Representation Constraints

We propose the inclusion of representation constraints to
overcome the limitations of the original CC framework. We
impose MRD constraints on pairs of representations from a
user over time, to ensure nearby representations for nearby
spatial locations. We can estimate an upper limit on the
maximum distance in the representation space based on the
measurement CSI acquisition rate. Note that this information
comes directly from the CSI measurement process and the
fact that we know how data was collected.

Furthermore, to enable CC with true positioning capabilities,
we unwrap the channel chart using anchor vectors, i.e., points
in space for which we know both their CSI as well as their
true location. One can imagine measuring CSI at a small set
of locations when setting up a new BS (e.g., by knowing the
precise location of a fixed access point). With this information,
we impose FAD representation constraints on the AE with
d; ; = 0 to enforce the exact anchor positions. The inclusion
of such constraints leads to a semi-supervised version of CC
(and AEs in general). In contrast to conventional fingerprinting
methods that are fully supervised and require training at
wavelength resolution in space, we only require a small number
of anchor vectors and use the rest of the (unlabeled) data to
improve the localization accuracy of the channel chart.

C. Numerical Results

1) Scenario: Figure 1 depicts the scenario. We measure
the CSI of N = 2048 randomly placed user locations (except
for the positions on the “vip” curve) within a rectangular
area of 1000 m x 500 m. We model the acquisition of CSI
at 0dB SNR. At spatial location (z,y, z) = (0,0, 10) meters,
we consider a uniform linear BS antenna array with half-
wavelength spacing and 32 antennas. We model narrowband
data transmission at 2 GHz and consider two channel models:
(1) Quadriga LoS (Q-LoS; a realistic model for LoS channels
that includes scatterers and path loss); and (ii) Quadriga non-
LoS (Q-NLoS; a realistic model for channels where there is
no direct path between users and the BS antenna array). For
both models, we used the “Berlin UMa” scenario, which has

coordinate 1:[y]
coordinate 1:[y]

3 1 o 1
coordinate 2:[x]

(a) Q-LoS; plain

&0 w00

w00

20

coordinate 1:[y]
coordinate 1:[y]

100 @ 700 - o

%o w0
coordinate 2:[x]

(d) Q-NLoS; FAD

%0 4o
coordinate 2:(x]

(c) Q-LoS; FAD

coordinate 1:{y]
coordinate 1:[y]

100

coordinate 2:{x] coordinate 2:[x]

(e) Q-LoS; FAD&MRD (f) Q-NLoS; FAD&MRD

Fig. 2. Channel charts learned from the scenario in Figure 1. The channel
charts of plain AEs represent well the local neighborhood structure, but do not
capture the global geometric properties. Imposing FAD and MRD constraints
recovers the fine aspects of the geometry, enabling approximate positioning.

been calibrated with real-world measurements [26]. At the BS
side, we extract the same features proposed in [9], i.e., we
apply feature scaling, convert them to the angular domain, and
take the entry-wise absolute value. The input has D = 32 real
dimensions; the representation dimension is D’ = 2. We use
a similar structure of the AE in [9], namely 9 hidden dense
layers: 4 dense layers for the encoder and another 4 dense
layers for the decoder (the layers consist of 500, 100, 50 and
20 neurons), and an intermediate layer where we extract the
channel chart with 2 neurons and linear activation functions.

2) Results: Figure 2 shows the channel charts. The top
row (Figures 2(a)—(b)) shows the results of a “plain” AE, i.e.,
without any representation constraints; these results reproduce
those in [9]. The middle row (Figures 2(c)—(d)) shows channel
charts from AEs that include FAD constraints, where we
randomly selected 10% of the users to be anchor vectors.
Clearly, these FAD constraints unwrap the channel chart and
lead to a representation with a distance scale comparable to
the original scenario in Figure 1. While the global structure
is approximately preserved, the points on the “vip” curve are
not represented accurately. The bottom row (Figures 2(e)—(f))
shows the combination of FAD and MRD constraints in AEs.
Concretely, we also enforce the fact that points on the “vip”
curve model a user’s motion and we can impose maximum



TABLE II
TW, CT, AND KS RESULTS FOR CHANNEL CHARTING WITH AND WITHOUT
REPRESENTATION CONSTRAINTS.

Q-LoS Q-NLoS
| Plain  FAD  FAD&MRD | Plain ~ FAD  FAD&MRD
K=1 0.8468  0.8516 0.8576 0.8480  0.8492 0.8597
W K =51 | 08597 08570 0.8651 0.8502  0.8560 0.8665
K =102 | 0.8609 0.8642 0.8736 0.8546  0.8626 0.8739
K=1 0.9700  0.9195 0.9321 0.9281  0.8924 0.9110
CT K =51 | 09440 0.9067 09215 0.9168  0.8928 0.9128
K =102 | 09358 0.9081 0.9216 0.9155  0.8964 0.9151
KS | 0.3548 02652 02598 | 04096  0.2749 0.2693

absolute distance constraints among pairs of representations
pertaining to this curve. FAD and MRD combined are able to
reproduce the original scenario: It is evident that points in the
channel chart approximately represent the true locations. We
also observe that the propagation conditions of the wireless
channel do not substantially affect the performance.

Table II lists the TW, CT, and KS results for the channel
charts shown in Figure 2. We see that including representation
constraints improves TW while slightly lowering the CT; note
that TW and CT are evaluated for K =1, K = 51 (2.5% of
the dataset), and K = 102 (5% of the dataset). Hence, we
observe a tradeoff with respect to neighborhood-preserving
properties. More concretely, an increase in TW means that we
are introducing fewer “fake” near neighbors; a reduction in
CT means that neighborhoods in the original space are not as
well preserved in the channel chart as before. With respect to
the global geometric structure, we see that KS significantly
improves for all representation-constrained AEs; this implies
that the inclusion of constraints enables us to recover global
geometry. We note this is also visible in Figure 2, especially
in the AE results that include both FAD constraints (anchor
vectors) and MRD constraints (to enforce continuity of a user’s
motion). Once again, we see that the propagation conditions
do not substantially affect the performance.

IV. CONCLUSIONS

We have shown how to incorporate pairwise representation
constraints into autoencoders (AEs). To demonstrate effec-
tiveness of representation-constrained AEs, we have shown
an improvement to the channel charting (CC) framework
in [9], where we use side information on user motion and
anchor vectors to improve the positioning performance of CC.
Numerical results for this application have shown that the
use of representation constraints that are readily available
in wireless positioning scenarios yield (often significant)
improvements in recovered global geometry.

There are many opportunities for future work. While our
methods enable approximate positioning, AEs with represen-
tation constraints are still not sufficient to enable GNSS-grade
accuracy. Promising research directions towards this goal
are the development of improved CSI features as well as
the inclusion of additional geometric constraints, e.g., when
acquiring CSI from multiple cell-towers or access points.
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