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a b s t r a c t 

Many biological fluids display shear-thinning rheology, where the viscosity decreases with an increasing shear 

rate. To better understand how this non-Newtonian rheology affects the motion of biological and artificial micro- 

swimmers, recent efforts have begun to seek answers to fundamental questions about active bodies in shear- 

thinning fluids. Previous analyses based on a squirmer model have revealed non-trivial variations of propulsion 

characteristics in a shear-thinning fluid via the reciprocal theorem. However, the reciprocal theorem approach 

does not provide knowledge about the flow surrounding the squirmer. In this work, we fill in this missing informa- 

tion by calculating the non-Newtonian correction to the flow analytically in the asymptotic limit of small Carreau 

number. In particular, we investigate the local effect due to viscosity reduction and the non-local effect due to 

induced changes in the flow; we then quantify their relative importance to locomotion in a shear-thinning fluid. 

Our results demonstrate cases where the non-local effect can be more significant than the local effect. These 

findings suggest that caution should be exercised when developing physical intuition from the local viscosity 

distribution alone around a swimmer in a shear-thinning fluid. 
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. Introduction 

Locomotion of microorganisms is subject to often unintuitive con-

traints imposed by physics at the scales of the microscopic world [1] .

nertial effects, which govern macroscopic locomotion, become sub-

ominant to viscous forces at small scales. Reynolds numbers, which

haracterize the inertial to viscous force, typically range between 10 −6 
or flagellated bacteria to 10 −2 for spermatozoa [2] . Microorganisms
ave evolved strategies to move through fluids for diverse biological

rocesses such as reproduction and foraging [3] . Extensive theoretical

nd experimental studies have sought to elucidate physical principles

hat underlie cell motility [4–6] . This has improved our general under-

tanding of low-Reynolds-number locomotion, which in recent years has

ed to the development of a variety of synthetic micro-propellers. While

ome micro-propellers are bio-mimetic or bio-inspired, others exploit

hysical and physico-chemical mechanisms to achieve micro-propulsion

7–12] . Considerable progress over the last several decades has illu-

inated low-Reynolds-number locomotion in Newtonian fluids [5,13] .

owever, biological fluids often display complex (non-Newtonian) rhe-

logical properties that include viscoelasticity and shear-thinning vis-

osity [14–16] . A fundamental understanding of how non-Newtonian

uid rheology affects propulsion is imperative to both deciphering the
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oles of mechanical forces in cell motility and designing synthetic micro-

wimmers for realistic biological media [17,18] . 

Over the past decade, studies on locomotion in complex fluids have

argely focused on the effect of viscoelastic stresses [19–27] . Much less

s known about locomotion in shear-thinning fluids [18] . Many biolog-

cal fluids, including blood and mucus, are shear thinning: the fluid be-

omes less viscous with applied strain rates due to changes in the fluid

icrostructure [28] . Previous theoretical and experimental studies on

ndulatory swimmers (e.g. sheets [29–33] , filaments [34] , and nema-

odes [35–37] ), helical propellers [38] , squirmers [31,39–41] , single-

inged swimmers [42] , and a variety of two-dimensional swimmers

30,31] have revealed that shear-thinning rheology can enhance or hin-

er locomotion depending on the class of swimmer and its swimming

ait. More recently, Montenegro-Johnson [43] emphasized that general-

zing insights gained from two-dimensional modeling in shear-thinning

uids to the three-dimensional case should be handled with care, be-

ause the flow derivatives in these two cases can be drastically differ-

nt. Numerical studies have also begun to address locomotion in shear-

hinning fluids in the presence of a confining boundary [44] and inertial

ffects [45] . 

In our previous studies [39,41] , we considered the locomotion of

 spherical body propelling itself with surface distortions (known as a
l 2019 
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quirmer) in a shear-thinning fluid via the reciprocal theorem [46–49] .

espite the success of the reciprocal theorem approach in revealing

on-trivial variations of propulsion characteristics in a shear-thinning

uid, this approach does not yield information about the flow around

he squirmer. This prevents subsequent analyses on the effects of flow

dvection on nutrient uptake by microorganisms or phoretic motion of

ctive particles in a shear-thinning fluid. In this paper, we fill in this

issing information by deriving a closed-form, analytical solution to

he flow around a squirmer in a shear-thinning fluid in a weakly non-

ewtonian regime. The knowledge of the surrounding flow allows more

etailed analyses of the physical changes when the fluid becomes shear-

hinning. The shear-thinning effect can manifest through two types of

hysical changes: the first change is the local effect of stress modulation

ue to viscosity differences, and the second change is the non-local ef-

ect resulting from overall changes to the fluid flow [34,38] . A recent

mpirical resistive-force theory for slender filaments in shear-thinning

uids has focused on the first of these two effects and obtained qualita-

ive agreements with experimental results [34] . The asymptotic analysis

ere allows us to decouple the local and non-local effects, in the weakly

on-Newtonian limit, and hence quantify their relative importance to lo-

omotion in a shear-thinning fluid via a squirmer model. The changes in

he flow fields are also likely to impact hydrodynamic interactions with

earby swimmers but we leave it to future work to examine rheological

ffects on collective locomotion. 

The paper is organized as follows. In Section 2 , we formulate the

roblem by introducing the squirmer model ( Section 2.1 ), the rheo-

ogical constitutive model ( Section 2.2 ), and the asymptotic analysis

 Section 2.3 ) considered in this work. In Section 3 , we present results on

he flow around a two-mode squirmer in a shear-thinning fluid. Next,

e discuss in Section 4 how shear-thinning rheology can enable other

quirming modes to contribute to propulsion, followed by a detailed

nalysis of the flow around a squirmer. Concluding remarks are pre-

ented in Section 5 . 

. Formulation 

.1. Squirmer model 

Lighthill [50] and Blake [51] first modeled ciliary propulsion by the

otion of a squirming sphere, which is arguably the simplest possible

hree-dimensional swimmer of finite size. The motion of beating cilia is

epresented as a distribution of velocities on the squirmer surface. For a

teady spherical squirmer of radius a , the tangential, time-independent

urface velocity distribution is decomposed into a series of the form

52] 

 𝜃( 𝑟 = 𝑎, 𝜃) = 

∞∑
𝑘 =1 

− 

2 
𝑘 ( 𝑘 + 1) 

𝐵 𝑘 𝑃 
1 
𝑘 
( cos 𝜃) , (1)

here 𝑃 1 
𝑘 
represents the associated Legendre function of the first kind, 𝜃

s the polar angle measured from the axis of symmetry, and the squirm-

ng modes B k are related to singularity solutions in Stokes flows. In a

ewtonian fluid, only the B 1 mode (a source dipole) contributes to the

ropulsion speed 𝑈 𝑁 = 2 𝐵 1 ∕3 , and the B 2 mode (a force dipole) is the
lowest decaying spatial mode that dominates the far-field velocity gen-

rated by a squirmer. Therefore, many studies considered model swim-

ers represented by only the first two modes of the expansion [52] . 

Although the squirmer model was developed originally for swim-

ing ciliates (such as Volvox [53] ), it has also gained popularity as a gen-

ral model for active particles [54–60] . The parameters in the squirm-

ng modes can be adjusted to represent different types of swimmers,

roadly categorized as pushers ( 𝛼 = 𝐵 2 ∕ 𝐵 1 < 0 ), pullers ( 𝛼 > 0), and neu-
ral squirmers ( 𝛼 = 0 ). A pusher, such as the bacterium Escherichia coli ,

btains its thrust from the rear part of the body. A puller, such as the

lga Chlamydomonas , obtains its thrust from the front part. A neutral

quirmer generates a surrounding flow corresponding to a source dipole.

hile we prescribe the surface velocity of the swimmer here, the gait of
102 
 real microorganism is likely to be modified by changes in stresses due

o shear thinning. 

.2. Governing equations 

The incompressible flow around a squirmer in a shear-thinning fluid

t low Reynolds numbers is governed by the continuity equation and

auchy’s equation of motion 

 ⋅ 𝒖 = 0 , (2) 

 ⋅ 𝝈 = 𝟎 , (3) 

here the stress tensor, 𝝈 = − 𝑝 𝑰 + 𝝉. Rheological data of some biolog-

cal fluids has been shown to be consistent with the Carreau model

28,32,61] : 

= 𝜂0 ̇𝜸 − ( 𝜂0 − 𝜂∞) 
[ 
1 − 

(
1 + 𝜆2 

𝑡 
|𝜸̇|2 ) 𝑛 −1 2 

] 
𝜸̇. (4) 

ere, 𝜂0 and 𝜂∞ represent the zero and infinite-shear rate viscosities,

espectively, and 𝜸̇ denotes the strain rate tensor. The magnitude of the

train rate tensor is given by |𝜸̇| = ( ̇𝛾𝑖𝑗 ̇𝛾𝑖𝑗 ∕2) 1∕2 . The power law index

 < 1 characterizes the degree of shear-thinning, and the time constant

t sets the crossover strain rate at which the non-Newtonian behavior

ecomes significant. For example, (shear-) rheological measurements of

uman cervical mucus can be fit to the Carreau model with values 𝜂0 =
45 . 7 Pa s , 𝜂∞ = 0 Pa s , 𝜆𝑡 = 631 . 04 s and 𝑛 = 0 . 27 [32,61] . 
For a prescribed velocity distribution on the squirmer surface ( 𝑟 =

 ) given by Eq. (1) , the squirmer propels with an unknown velocity

 = 𝑈 𝒆 𝑧 along its axis of symmetry. In a reference frame moving with

he squirmer (i.e., the co-moving frame), the far-field condition is given

y the unknown propulsion velocity 𝒖 ( 𝑟 → ∞) = − 𝑼 . The mathematical

ormulation is completed by enforcing the force-free 

∫𝑆 𝝈 ⋅ 𝒏 d 𝑆 = 𝟎 , (5) 

nd torque-free conditions for self-propulsion at low Reynolds numbers,

here n represents the unit normal vector on the squirmer surface S .

he torque-free condition is satisfied automatically as a result of the

xisymmetry in this problem. 

In general, the motion of a force-free, axisymmetric swimmer in a

on-Newtonian fluid with a constitutive equation of the form 𝝉 = 𝜂0 ̇𝜸 +
NN , where 𝝉NN denotes the additional non-Newtonian stress (e.g., Eq.

4) ), satisfies 

 = 𝑹 
−1 ⋅

[
𝑭 T + 𝑭 NN 

]
. (6) 

ere 𝑹 =6 𝜋𝜂0 𝑎 𝑰 is the translational resistance of a sphere in a Newtonian
uid with viscosity 𝜂0 ; 𝑭 

T represents the propulsive thrust the swimmer

ould generate in a Newtonian fluid (with viscosity 𝜂0 ); 𝑭 
NN is the non-

ewtonian force that results from changes in viscosity from 𝜂0 (due to
NN , the second term on the right-hand side of Eq. (4) ). As discussed in

ection 1 , the non-Newtonian force may be split into local and non-local

ontributions 𝑭 NN = 𝑭 L + 𝑭 NL . The first weakly non-linear correction

o the Newtonian swimming speed can be determined readily without

olving the complex fluid flow by the reciprocal theorem [39,62] , but

n what follows we solve for corrections to the flow field itself, due to

mall changes in viscosity from 𝜂0 , in order to develop better physical

ntuition on the nature of the local and non-local non-Newtonian forces.

.3. Asymptotic analysis 

We non-dimensionalize lengths by the squirmer radius a , velocities

y the first mode of actuation B 1 except when the surface actuation does

ot contain a B 1 mode (e.g., in Section 4 , where only the third mode of

ctuation, B 3 , is considered), strain rates by 𝜔 = 𝐵 1 ∕ 𝑎 and stresses by
0 𝜔 . The dimensionless constitutive equation then takes the form 

∗ = 𝜸̇∗ − (1 − 𝛽) 
[ 
1 − 

(
1 + 𝐶𝑢 2 |𝜸̇∗ |2 ) 𝑛 −1 2 

] 
𝜸̇∗ , (7) 
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here the viscosity ratio 𝛽 = 𝜂∞∕ 𝜂0 . The Carreau number, 𝐶𝑢 = 𝜆𝑡 𝜔,

ompares the characteristic strain rate 𝜔 to the crossover strain rate

/ 𝜆t . Hereafter, we drop the stars for simplicity and refer to only di-

ensionless variables unless otherwise stated. 

To make analytical progress, we conduct an asymptotic analysis for

mall Carreau numbers ( Cu 2 ≪ 1) and expand the swimming speed and

ll fields in regular perturbation series in powers of Cu 2 : 

 𝒖 , 𝑝, 𝜸̇, 𝝉 , 𝝈, 𝑼 } = { 𝒖 0 , 𝑝 0 , 𝜸̇0 , 𝝉0 , 𝝈0 , 𝑼 0 } 

+ 𝐶𝑢 2 { 𝒖 1 , 𝑝 1 , 𝜸̇1 , 𝝉1 , 𝝈1 , 𝑼 1 } + 𝑂 

(
𝐶𝑢 4 

)
. (8) 

y substituting these expansions into the governing equations and

oundary conditions, we solve the non-Newtonian problem perturba-

ively to obtain the detailed flow surrounding the squirmer order by

rder. 

. Flow around a two-mode squirmer at small Cu 

In this section, we consider the squirming motion of a two-mode

quirmer ( 𝛼 = 𝐵 2 ∕ 𝐵 1 ) in a shear-thinning fluid in the small Cu limit. 

.1. Zeroth-order solution 

The O ( Cu 0 ) solution is governed by the Stokes equations 

 ⋅ 𝒖 0 = 0 , (9) 

 ⋅ 𝝈0 = 𝟎 , (10) 

here 𝝈0 = − 𝑝 0 𝑰 + 𝜸̇0 , with the far-field and boundary conditions on the

quirmer given by 

 0 ( 𝑟 = 1) = 𝑢 𝜃𝒆 𝜃 , 𝒖 0 ( 𝑟 → ∞) = − 𝑼 0 . (11)

ere we consider the first two modes ( B 1 and B 2 ) of the surface velocity

 𝜃 in Eq. (1) . The dimensionless surface velocity (scaled by B 1 ) of a

wo-mode squirmer is given by 𝑢 𝜃( 𝑟 = 1) = sin 𝜃 + 𝛼( sin 2 𝜃)∕2 . 
The solution to this problem, 𝒖 0 = 𝑢 0 𝒆 𝑟 + 𝑣 0 𝒆 𝜃 , was obtained by

ighthill [50] and Blake [51] as 

 0 = 𝑈 0 

( 1 
𝑟 3 

− 1 
)
cos 𝜃 + 

𝛼

2 

( 1 
𝑟 4 

− 

1 
𝑟 2 

)(
3 cos 2 𝜃 − 1 

)
, (12) 

 0 = 𝑈 0 

(
1 + 

1 
2 𝑟 3 

)
sin 𝜃 + 

𝛼

𝑟 4 
cos 𝜃 sin 𝜃, (13) 

ith the pressure field given by 

 0 = − 

𝛼[ 1 + 3 cos 2 𝜃] 
2 𝑟 3 

⋅ (14) 

y enforcing the force-free condition ∫
𝑆 
𝝈0 ⋅ 𝒏 d 𝑆 = 𝟎 , the unknown

wimming speed (scaled by B 1 ) is given by 𝑈 0 = 2∕3 . We highlight again
hat, among all squirming modes, only the B 1 mode contributes to self-

ropulsion in Stokes flow. 

.2. First-order solution 

The O ( Cu 2 ) solution is governed by the equations 

 ⋅ 𝒖 1 = 0 , (15) 

 ⋅ 𝝈1 = 𝟎 , (16) 

here 𝝈1 = − 𝑝 1 𝑰 + 𝜸̇1 + 𝑨 and 

 = 

(1 − 𝛽)( 𝑛 − 1) 
2 

|𝜸̇0 |2 𝜸̇0 . (17)

he solution is subject to the far-field and boundary conditions 

 1 ( 𝑟 = 1) = 𝟎 , 𝒖 1 ( 𝑟 → ∞) = − 𝑼 1 . (18) 

ere, we note that the surface velocity distribution has been already

ccounted for in the O ( Cu 0 ) calculations, leaving no-slip and no-

enetration boundary conditions on the squirmer surface at this order.
103 
e note that, under this asymptotic expansion, the changes in the flow

elds are linear in the parameters n and 𝛽 at first order. 

We take the curl of (16) to eliminate pressure and obtain the equation

 ×
(
∇ ⋅ 𝜸̇1 

)
= − 

( 1 − 𝛽) ( 𝑛 − 1) 
2 

{
∇ ×

[
∇ ⋅

(|𝜸̇0 |2 𝜸̇0 )]}. (19)

ue to the axisymmetry of the problem, we can express the velocity field

 = 𝑢 1 𝒆 𝑟 + 𝑣 1 𝒆 𝜃 in terms of Stokes streamfunction 

 1 = 

1 
𝑟 2 sin 𝜃

𝜕𝜓 1 
𝜕𝜃

, 𝑣 1 = − 

1 
𝑟 sin 𝜃

𝜕𝜓 1 
𝜕𝑟 
, (20) 

o satisfy the continuity equation, Eq. (15) . The momentum equation in

erms of Stokes streamfunction therefore becomes 

 
2 (𝐸 

2 𝜓 1 
)
= 

( 1 − 𝛽) ( 𝑛 − 1 ) 
2 

𝑟 sin 𝜃
{
∇ ×

[
∇ ⋅

(|𝜸̇0 |2 𝜸̇0 )]}, (21)

here the operator 

 
2 ≡ 𝜕 2 

𝜕𝑟 2 
+ 

sin 𝜃
𝑟 2 

𝜕 

𝜕𝜃

( 1 
sin 𝜃

𝜕 

𝜕𝜃

)
⋅ (22) 

e assume a solution of the form 

 1 = ( 1 − 𝛽) ( 𝑛 − 1 ) sin 2 𝜃
∞∑
𝑖 =0 
𝑓 𝑖 ( 𝑟 ) 𝑇 𝑖 ( cos 𝜃) , (23) 

here f i ( r ) are unknown functions of r and T i (cos 𝜃) are Chebyshev poly-

omials. By substituting this assumed solution into Eq. (21) we obtain a

ystem of ordinary differential equations for f i ( r ). We solve this system

f equations and determine the unknown coefficients by the far-field

nd boundary conditions, Eq. (18) (see Appendix A for details). 

The streamfunction for the flow around a squirmer with just the B 1 
ode ( 𝛼 = 0 ) is given by 

 1 = −(1 − 𝛽)( 𝑛 − 1) sin 2 𝜃
⎡ ⎢ ⎢ ⎣ 
𝑐 
𝐵 1 
1 
𝑟 9 

+ 

𝑐 
𝐵 1 
2 
𝑟 3 

+ 

𝑐 
𝐵 1 
3 
𝑟 

+ 𝑐 
𝐵 1 
4 𝑟 

+ cos 2 𝜃
⎛ ⎜ ⎜ ⎝ 
𝑐 
𝐵 1 
5 

𝑟 9 
+ 

𝑐 
𝐵 1 
6 

𝑟 3 
+ 

𝑐 
𝐵 1 
7 
𝑟 

⎞ ⎟ ⎟ ⎠ 
⎤ ⎥ ⎥ ⎦ 

− 

sin 2 𝜃
4 

(1 
𝑟 
− 3 𝑟 + 2 𝑟 2 

)
𝑈 1 , (24) 

hile the pressure field is given by 

 1 = 

(1 − 𝛽)( 𝑛 − 1) 
2 

⎡ ⎢ ⎢ ⎣ 
𝑒 
𝐵 1 
1 
𝑟 12 

+ 

𝑒 
𝐵 1 
2 
𝑟 4 

+ 

𝑒 
𝐵 1 
3 

𝑟 2 
+ cos 2 𝜃

⎛ ⎜ ⎜ ⎝ 
𝑒 
𝐵 1 
4 
𝑟 12 

+ 

𝑒 
𝐵 1 
5 

𝑟 4 

⎞ ⎟ ⎟ ⎠ 
⎤ ⎥ ⎥ ⎦ cos 𝜃

+ 

3 
2 𝑟 2 

𝑈 1 cos 𝜃. (25) 

he coefficients 𝑐 
𝐵 1 
𝑖 
and 𝑒 

𝐵 1 
𝑖 
are tabulated in Table C.1 . The expressions

or the streamfunction and the pressure of the flow around a squirmer

ith both B 1 and B 2 modes are far lengthier and therefore are given in

ppendix B . 

By applying the force-free condition ∫
𝑆 
𝝈1 ⋅ 𝒏 d 𝑆 = 𝟎 , we determine

he first non-Newtonian correction to the propulsion speed of a two-

ode squirmer as 

 1 = (1 − 𝛽)( 𝑛 − 1) 4(616 + 1383 𝛼2 ) 
15015 

, (26)

hich agrees with the result in [39] using the reciprocal theorem

hereby providing a consistency check on the flow field calculations.

ig. 1 displays the zeroth-order flow field (Newtonian) and its first non-

ewtonian correction around a neutral squirmer (a & b) and a two-mode

quirmer (c & d). 

. Flow around a third-mode squirmer at small Cu 

In this section, we consider surface velocity distributions other than

he first two modes. In Stokes flow, only the B mode leads to net motion
1 
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Fig. 1. Streamlines and local speed of the flow around a neutral squirmer (a & b) and a pusher (c & d) in the co-moving frame. For the neutral squirmer ( 𝛼 = 𝐵 2 ∕ 𝐵 1 = 0 ): 
(a) zeroth-order velocity field (Stokes flow), and (b) first-order velocity field. For the pusher ( 𝛼 = −5 ): (c) zeroth-order velocity field (Stokes flow), and (d) first-order 
velocity field. Both squirmers propel with positive zeroth-order velocities ( U 0 > 0, upward) in (a) and (c) and negative first-order corrections ( U 1 < 0) in (b) and (d). 

Here 𝑛 = 0 . 25 , 𝛽 = 0 . 5 . Note that the first-order fields exclude the Cu 2 prefactor. 
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f a squirmer while the first even mode, B 2 , is often retained to repre-

ent the far-field contribution. Higher squirming modes are not typically

onsidered when analyzing squirming swimmers in Newtonian fluids.

e note that any even squirming mode alone does not contribute to

elf-propulsion in Newtonian or shear-thinning fluids due to the symme-

ry of the surface velocity distribution. The B 3 mode, hence, is the first

quirming mode that could lead to self-propulsion in a shear-thinning

uid but not in a Newtonian fluid; in this case, the Newtonian thrust

 
T = 𝟎 , and the motion of the squirmer is due to 𝑭 NN alone, as shown
n Eq. (6) . Here we present a detailed analysis of the propulsion and flow

round a squirmer with only a B 3 mode, calculate 𝑭 
NN , and discuss the

elative contributions of the local and non-local non-Newtonian forces.

e note that velocities in this section are non-dimensionalized by the

hird mode of actuation B 3 . 

.1. Zeroth-order solution 

Using the same set of equations in Stokes flows ( Eqs. (9) and (10) ),

oundary conditions ( Eq. (11) ), and force-free condition ∫
𝑆 
𝝈0 ⋅ 𝒏 d 𝑆 =

 , the O ( Cu 0 ) flow is calculated as [50,51] 

 0 = 

1 
2 

( 1 
𝑟 5 

− 

1 
𝑟 3 

)(
5 cos 3 𝜃 − 3 cos 𝜃

)
, (27)

 0 = 

1 
8 

( 

1 
𝑟 5 

− 

1 
3 𝑟 3 

) (
15 cos 2 𝜃 − 3 

)
sin 𝜃, (28)

ith the pressure field given by 

 0 = − 

1 
4 ( 5 − 25 cos 2 𝜃) cos 𝜃. (29)
8 𝑟 

104 
he force-free condition is satisfied with a zero swimming velocity 𝑈 0 =
 , i.e., a third-mode squirmer does not propel in Stokes flows. Fig. 2 a &

 display the zeroth-order velocity and pressure fields, respectively. 

.2. First-order solution 

We follow the same approach outlined in Section 3.2 to determine

he streamfunction of the flow around a third-mode squirmer at O ( Cu 2 )

o be 

 1 = −(1 − 𝛽)( 𝑛 − 1) sin 2 𝜃
⎡ ⎢ ⎢ ⎣ 
𝑐 
𝐵 3 
1 
𝑟 15 

+ 

𝑐 
𝐵 3 
2 
𝑟 13 

+ 

𝑐 
𝐵 3 
3 

𝑟 11 
+ 

𝑐 
𝐵 3 
4 
𝑟 9 

+ 

𝑐 
𝐵 3 
5 
𝑟 7 

+ 

𝑐 
𝐵 3 
6 

𝑟 5 
+ 

𝑐 
𝐵 3 
7 

𝑟 3 

+ 

𝑐 
𝐵 3 
8 
𝑟 

+ 𝑐 
𝐵 3 
9 𝑟 + 𝑐 

𝐵 3 
10 

log 𝑟 
𝑟 9 

+ cos 2 𝜃
⎛ ⎜ ⎜ ⎝ 
𝑐 
𝐵 3 
11 
𝑟 15 

+ 

𝑐 
𝐵 3 
12 
𝑟 13 

+ 

𝑐 
𝐵 3 
13 

𝑟 11 
+ 

𝑐 
𝐵 3 
14 
𝑟 9 

+ 

𝑐 
𝐵 3 
15 
𝑟 7 

+ 

𝑐 
𝐵 3 
16 

𝑟 5 
+ 

𝑐 
𝐵 3 
17 

𝑟 3 
+ 

𝑐 
𝐵 3 
18 
𝑟 

+ 𝑐 
𝐵 3 
19 

log 𝑟 
𝑟 9 

⎞ ⎟ ⎟ ⎠ 
+ cos 4 𝜃

⎛ ⎜ ⎜ ⎝ 
𝑐 
𝐵 3 
20 

𝑟 15 
+ 

𝑐 
𝐵 3 
21 
𝑟 13 

+ 

𝑐 
𝐵 3 
22 
𝑟 11 

+ 

𝑐 
𝐵 3 
23 

𝑟 9 
+ 

𝑐 
𝐵 3 
24 
𝑟 7 

+ 

𝑐 
𝐵 3 
25 

𝑟 5 
+ 

𝑐 
𝐵 3 
26 

𝑟 3 
+ 𝑐 

𝐵 3 
27 

log 𝑟 
𝑟 9 

⎞ ⎟ ⎟ ⎠ 
+ cos 6 𝜃

⎛ ⎜ ⎜ ⎝ 
𝑐 
𝐵 3 
28 

𝑟 15 
+ 

𝑐 
𝐵 3 
29 

𝑟 13 
+ 

𝑐 
𝐵 3 
30 

𝑟 11 
+ 

𝑐 
𝐵 3 
31 

𝑟 9 
+ 

𝑐 
𝐵 3 
32 
𝑟 7 

+ 

𝑐 
𝐵 3 
33 

𝑟 5 
+ 𝑐 

𝐵 3 
34 

log 𝑟 
𝑟 9 

⎞ ⎟ ⎟ ⎠ 
+ cos 8 𝜃

⎛ ⎜ ⎜ ⎝ 
𝑐 
𝐵 3 
35 

𝑟 15 
+ 

𝑐 
𝐵 3 
36 

𝑟 13 
+ 

𝑐 
𝐵 3 
37 

𝑟 11 
+ 

𝑐 
𝐵 3 
38 

𝑟 9 
+ 

𝑐 
𝐵 3 
39 
𝑟 7 

+ 𝑐 
𝐵 3 
40 

log 𝑟 
𝑟 9 

⎞ ⎟ ⎟ ⎠ 
⎤ ⎥ ⎥ ⎦ 

− 

sin 2 𝜃 (1 − 3 𝑟 + 2 𝑟 2 
)
𝑈 1 . (30) 
4 𝑟 
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Fig. 2. Streamlines and local speed of the flow around a squirmer with a positive B 3 mode in the co-moving frame: (a) zeroth-order velocity field (Stokes flow); 

(b) non-local first-order velocity field; (c) zeroth-order pressure field (Stokes flow); (d) non-local first-order pressure field. Here 𝑛 = 0 . 25 , 𝛽 = 0 . 5 . Shear-thinning 
rheology enables the third-mode squirmer, which does not generate any net motion in Stokes flow ( 𝑈 0 = 0 ), to self-propel with a negative first-order velocity ( U 1 < 0, 
downward) in (b). Note that the first-order fields exclude the Cu 2 prefactor. 
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he pressure field is given by 

 1 = 

(1 − 𝛽)( 𝑛 − 1) 
2 

cos 𝜃
⎡ ⎢ ⎢ ⎣ 
𝑒 
𝐵 3 
1 
𝑟 18 

+ 

𝑒 
𝐵 3 
2 
𝑟 16 

+ 

𝑒 
𝐵 3 
3 

𝑟 14 
+ 

𝑒 
𝐵 3 
4 
𝑟 12 

+ 

𝑒 
𝐵 3 
5 

𝑟 10 
+ 

𝑒 
𝐵 3 
6 

𝑟 8 
+ 

𝑒 
𝐵 3 
7 

𝑟 6 
+ 

𝑒 
𝐵 3 
8 

𝑟 4 

+ 

𝑒 
𝐵 3 
9 

𝑟 2 
+ cos 2 𝜃

⎛ ⎜ ⎜ ⎝ 
𝑒 
𝐵 3 
10 

𝑟 18 
+ 

𝑒 
𝐵 3 
11 
𝑟 16 

+ 

𝑒 
𝐵 3 
12 
𝑟 14 

+ 

𝑒 
𝐵 3 
13 

𝑟 12 
+ 

𝑒 
𝐵 3 
14 
𝑟 10 

+ 

𝑒 
𝐵 3 
15 

𝑟 8 
+ 

𝑒 
𝐵 3 
16 

𝑟 6 
+ 

𝑒 
𝐵 3 
17 

𝑟 4 

⎞ ⎟ ⎟ ⎠ 
+ cos 4 𝜃

⎛ ⎜ ⎜ ⎝ 
𝑒 
𝐵 3 
18 

𝑟 18 
+ 

𝑒 
𝐵 3 
19 

𝑟 16 
+ 

𝑒 
𝐵 3 
20 

𝑟 14 
+ 

𝑒 
𝐵 3 
21 
𝑟 12 

+ 

𝑒 
𝐵 3 
22 
𝑟 10 

+ 

𝑒 
𝐵 3 
23 

𝑟 8 
+ 

𝑒 
𝐵 3 
24 
𝑟 6 

⎞ ⎟ ⎟ ⎠ 
+ cos 6 𝜃

⎛ ⎜ ⎜ ⎝ 
𝑒 
𝐵 3 
25 

𝑟 18 
+ 

𝑒 
𝐵 3 
26 

𝑟 16 
+ 

𝑒 
𝐵 3 
27 

𝑟 14 
+ 

𝑒 
𝐵 3 
28 

𝑟 12 
+ 

𝑒 
𝐵 3 
29 

𝑟 10 
+ 

𝑒 
𝐵 3 
30 

𝑟 8 

⎞ ⎟ ⎟ ⎠ 
+ cos 8 𝜃

⎛ ⎜ ⎜ ⎝ 
𝑒 
𝐵 3 
31 

𝑟 18 
+ 

𝑒 
𝐵 3 
32 

𝑟 16 
+ 

𝑒 
𝐵 3 
33 

𝑟 14 
+ 

𝑒 
𝐵 3 
34 

𝑟 12 
+ 

𝑒 
𝐵 3 
35 

𝑟 10 

⎞ ⎟ ⎟ ⎠ 
⎤ ⎥ ⎥ ⎦ + 

3 
2 𝑟 2 

𝑈 1 cos 𝜃. (31) 

he coefficients 𝑐 
𝐵 3 
𝑖 
and 𝑒 

𝐵 3 
𝑖 
are tabulated in Table C.3 . 

By applying the force-free condition ∫
𝑆 
𝝈1 ⋅ 𝒏 d 𝑆 = 𝟎 , we determine

he swimming speed of a third-mode squirmer at O ( Cu 2 ), 

 1 = (1 − 𝛽)( 𝑛 − 1) 1079072 
53348295 

, (32)

here the speed is made dimensionless by the value of B 3 . For a posi-

ive B 3 mode, a squirmer swims in the negative z -direction in a shear-

hinning fluid ( n < 1). This example demonstrates that shear-thinning

heology can render ineffective swimming gaits in Newtonian fluid (e.g.,

he B 3 mode) useful in a non-Newtonian fluid. Similar calculations can

e performed on other odd squirming modes. 
105 
.3. Flow analysis around a squirmer 

The shear-thinning effect can manifest through two types of physical

hanges when a fluid has shear-thinning viscosities: a local effect due to

iscosity reduction and a non-local effect due to induced changes in the

ow. In this section, we utilize knowledge of the flow around a squirmer

o quantify these effects. 

We expanded the fluid stress 𝝈 = 𝝈0 + 𝐶𝑢 2 𝝈1 + 𝑂( 𝐶𝑢 4 ) in the small
u limit, where the first non-Newtonian correction to stress is given by 

1 = − 𝑝 1 𝑰 + 𝜸̇1 + 𝑨 . (33) 

he contribution by − 𝑝 1 𝑰 + 𝜸̇1 to 𝝈1 in Eq. (33) depends on the solu-

ion { u 1 , p 1 } to Eqs. (15) –(18) . Due to its linearity, we can decompose

his system of equations into two sub-problems to better understand its

olution structure: 

 𝒖 1 , 𝑝 1 } = { 𝒖 D 1 , 𝑝 
D 
1 } + { 𝒖 NL 1 , 𝑝 

NL 
1 } . (34) 

he sub-problem { 𝒖 D 1 , 𝑝 
D 
1 } takes the homogenous part of Eq. (16) (the

tokes equation) with the inhomogeneous boundary condition from

q. (18) 

 ⋅ 𝒖 D 1 = 0 , ∇ 𝑝 D 1 = ∇ 
2 𝒖 D 1 , (35) 

 
D 
1 ( 𝑟 = 1) = 𝟎 , 𝒖 D 1 ( 𝑟 → ∞) = − 𝑼 1 ; (36) 

he other sub-problem { 𝒖 NL 1 , 𝑝 
NL 
1 } takes the inhomogeneous term in

q. (16) with homogenous boundary conditions 

 ⋅ 𝒖 NL 1 = 0 , ∇ 𝑝 NL 1 = ∇ 
2 𝒖 NL 1 + ∇ ⋅𝑨 , (37) 



K. Pietrzyk, H. Nganguia and C. Datt et al. Journal of Non-Newtonian Fluid Mechanics 268 (2019) 101–110 

Fig. 3. (a) Magnitude of the rate-of-strain tensor |𝜸̇0 |2 as a function of 𝜃 on the squirmer surface ( 𝑟 = 1 ) for a third-mode squirmer in Stokes flow. (b) The rz - 
components of the rate-of-strain tensor ( ̇𝛾0 ,𝑟𝑧 ) based on the Stokes flow solution (blue line) and local shear stress reduction ( A rz ) due to shear-thinning viscosity (red 

line) as a function of 𝜃 on the squirmer surface ( 𝑟 = 1 ) with a third mode. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.) 
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NL 
1 ( 𝑟 = 1) = 𝟎 , 𝒖 NL 1 ( 𝑟 → ∞) = 𝟎 . (38)

t can be readily recognized that the solution { 𝒖 D 1 , 𝑝 
D 
1 } to the sub-problem

overned by Eqs. (35) –(36) represents the classical solution of a Stokes

ow past a sphere. Under the decomposition in Eq. (34) , we rewrite the

on-Newtonian correction to stress around a squirmer 𝝈1 in Eq. (33) as 

1 = − 𝑝 D 1 𝑰 + 𝜸̇D 1 
⏟⏞⏞⏞⏟⏞⏞⏞⏟
Stokes drag 

− 𝑝 NL 1 𝑰 + 𝜸̇NL 1 
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
Non-local effect 

+ 𝑨 

⏟⏟⏟
Local effect 

, (39)

hich represent three different physical effects. The solutions { 𝒖 D 1 , 𝑝 
D 
1 }

o Eqs. (35) and { 𝒖 NL 1 , 𝑝 
NL 
1 } to Eqs. (37) and (38) , respectively, contribute

he terms − 𝑝 D 1 𝑰 + 𝜸̇D 1 (referred to as “Stokes drag ”) and − 𝑝 NL 1 𝑰 + 𝜸̇NL 1 (re-

erred to as “non-local effect ”) in Eq. (39) . The last term A in the equa-

ion (referred to as “local effect ”) is given by Eq. (17) , which depends

nly on the zeroth order flow (i.e., Stokes flow). 

We first focus on the local effect represented by the tensor 𝑨 =
1 − 𝛽)( 𝑛 − 1) |𝜸̇0 |2 𝜸̇0 ∕2 in Eq. (39) , which has a structure of a viscosity
orrection [ (1 − 𝛽)( 𝑛 − 1) |𝜸̇0 |2 ∕2 ] multiplied by the rate-of-strain tensor
̇ 0 . This can be interpreted physically as a local correction to the shear

tress due to viscosity reduction. Under this perturbative framework,

oth the viscosity reduction and the rate-of-strain tensor in A are calcu-

ated based on the zeroth-order order flow (i.e., Stokes flow). That is, to

eading order, this local effect accounts for viscosity reduction assuming

hat the flow field remains the same as the Newtonian case. 

In this perturbative framework, the (non-local) effect of the flow

nduced by spatial variations of the viscosity throughout the fluid are

ccounted for by the second term on the right-hand side in Eq. (39) .

he decomposition in Eq. (34) isolates the non-local effect of induced

hanges in the flow, which are described by { 𝒖 NL 1 , 𝑝 
NL 
1 } in the sub-

roblem governed by Eqs. (37) and (38) . The shear-thinning effect mani-

ests as a source of extra stress, ∇ ·A , driving a fluid flow 𝒖 NL 1 and its asso-

iated pressure field 𝑝 NL 1 , as shown in Fig. 2 b & d respectively. We remark

hat, while the local effect represented by A in Eq. (39) accounts for

iscosity reduction but not flow changes, here the non-local effect rep-

esented by − 𝑝 NL 1 𝑰 + 𝜸̇NL 1 , complementarily, accounts for flow changes

hile assuming uniform fluid viscosity (note that Eq. (37) has the form

f an inhomogeneous or “forced ” Stokes equation with Newtonian rhe-

logy). Taken together, this weakly non-linear analysis decouples the

wo types of physical changes when the fluid becomes shear-thinning,

amely viscosity reduction and flow changes, into two separate prob-

ems and addresses these effects individually in each problem. 

Finally, the remaining term, − 𝑝 D 1 𝑰 + 𝜸̇D 1 , in Eq. (39) corresponds to

he Stokes flow past a sphere due to a uniform flow − 𝑼 in the far
1 

106 
eld. This uniform flow emerges, passively, as a result of the local effect

hrough A and the non-local effect through − 𝑝 NL 1 𝑰 + 𝜸̇NL 1 to satisfy the

verall force-free condition, ∫
𝑆 
𝝈1 ⋅ 𝒏 d 𝑆 = 𝟎 . We integrate Eq. (39) over

he squirmer surface to obtain the net force acting on the squirmer at

his order 

𝑆 

𝝈1 ⋅ 𝒏 d 𝑆 = ∫𝑆 (− 𝑝 D 1 𝑰 + 𝜸̇D 1 ) ⋅ 𝒏 d 𝑆 
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑭 D 1 

+ ∫𝑆 (− 𝑝 NL 1 𝑰 + 𝜸̇NL 1 ) ⋅ 𝒏 d 𝑆 
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑭 NL 1 

+ ∫𝑆 𝑨 ⋅ 𝒏 d 𝑆 
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝑭 L 1 

. (40) 

he net force above contains a local contribution due to the effect of

ocal viscosity reduction ( 𝑭 L 1 ) and a non-local contribution due to the in-

uced flow ( 𝑭 NL 1 ). These two forces compete and give rise to the motion

f the squirmer U 1 and hence the Stokes drag 𝑭 
D 
1 = − 𝑹 ⋅ 𝑼 1 = −6 𝜋𝑼 1 .

e reiterate that the Stokes drag emerges passively to counter balance

he difference between the two driving forces 𝑭 L 1 and 𝑭 
NL 
1 so that the

verall force-free condition is satisfied 𝑭 D 1 + 𝑭 NL 1 + 𝑭 L 1 = 𝟎 . Inverting the
esistance we then obtain the velocity 

 1 = 

1 
6 𝜋
[
𝑭 NL 1 + 𝑭 L 1 

]
(41) 

s dictated by Eq. (6) . In other words, the relative magnitudes and di-

ections of 𝑭 L 1 and 𝑭 
NL 
1 dictate the dynamics of a squirmer in a shear-

hinning fluid. 

In the next sections, we illustrate the above decomposition and quan-

ify the two driving forces using a specific example of a third-mode

quirmer, which clearly elucidates how local and non-local effects gener-

te self-propulsion otherwise absent in a Newtonian fluid; similar anal-

ses can be applied to other squirmers as well. 

.3.1. Effect of local viscosity reduction 

The analysis of the effect of local viscosity reduction follows the

ame spirit of previous studies that looked into the viscosity distribu-

ion around a swimmer [30,31,33] . In this perturbative framework, to

eading order, one assumes the flow field does not change and uses

he Stokes flow around a squirmer ( Eqs. (27) and (28) ; Fig. 2 a) to

educe the contribution from local viscosity reduction. Based on the

tokes solution given in Eqs. (27) and (28) , we quantify how much

hearing is around the squirmer by calculating the magnitude of the

ate-of-strain tensor on the squirmer surface ( Fig. 3 a). For a third-mode
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Table 1 

The decomposition of the first-order force acting on a squirmer into different components. All forces are along 

the z -direction due to axisymmetry; the numerical values below are the z -component of the corresponding force 

components. All values are multiplied by 𝜋( 1 − 𝛽) ( 1 − 𝑛 ) . 

Mode 𝑭 D 1 𝑭 NL 1 , ̇𝜸 𝑭 NL 1 ,𝑝 1 
𝑭 NL 1 = 𝑭 1 , ̇𝜸1 NL + 𝑭 

NL 
1 ,𝑝 1 

𝑭 L 1 

B 1 0 .985 6 .564 − 16 .082 − 9 .518 8 .533 

B 1 & B 2 0 .985 + 2.211 𝛼2 6 .564 + 21.603 𝛼2 − 16 .082 − 24.164 𝛼2 − 9 .518 − 13.639 𝛼2 8 .533 + 11.429 𝛼2 

B 3 0 .121 1 .850 − 3 .855 − 2 .005 1 .884 

B 5 0 .020 0 .478 − 1 .623 − 1 .144 1 .124 
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quirmer, fluid shearing is most substantial in regions near the poles

 𝜃 = 0 , 𝜋) compared with the equator ( 𝜃 = 𝜋∕2 ). Shear-thinning rheol-
gy, thus, will cause the most significant reduction in viscosity, and

ence shear stress, near the poles. In Fig. 3 b, we compare the viscous

raction along the propulsion direction ( z ) in Stokes flow, 𝜸̇0 ,𝑟𝑧 (blue

ine), with the modification due to the local shear-thinning effect along

he same direction, A rz (red line). In Stokes flow, we observe that the

iscous tractions at the poles act to push the squirmer in the negative

 -direction (downward). Since the shear-thinning effect is most sub-

tantial around the poles, the tractions acting downward (negative z -

irection) in these regions are reduced by the shear-thinning effect more

ignificantly than other regions on the squirmer surface, as shown by

he variation of A rz in Fig. 3 b. We note that A rz has its sign oppo-

ite to 𝜸̇0 ,𝑟𝑧 while its magnitude is modulated by variations of |𝜸̇0 ,𝑟𝑧 |2 ,
 manifestation of the shear-thinning effect. In Stokes flows, the viscous

raction around a third-mode squirmer integrates to zero ( ∫
𝑆 
𝜸̇0 ⋅ 𝒏 d 𝑆 =

𝑆 
𝛾̇0 ,𝑟𝑧 d 𝑆 𝒆 𝑧 = 𝟎 ). In contrast, locally varying magnitudes of shear-

hinning perturbs this zero balance; relatively more significant reduc-

ions in the downward forces at the poles result in a net upward force

 𝑭 L 1 = ∫
𝑆 
𝑨 ⋅ 𝒏 d 𝑆 = ∫

𝑆 
𝐴 𝑟𝑧 d 𝑆 𝒆 𝑧 ) on the squirmer. Hence, if one only

ocuses on the local effect of viscosity changes, assuming the flow field

oes not change, one may argue that the squirmer with a positive third

ode will propel upward, in contradistinction to the result obtained in

q. (32) . 

.3.2. Effect of induced changes in the flow 

To capture the second physical change due to shear-thinning, namely

he change in the flow field, one considers the complementary problem

 Eqs. (37) and (38) ) where the fluid is assumed to have uniform viscosity

ut with ∇ ·A entering the Stokes equation as a source of extra stress.

he structure of this extra term ∇ ⋅𝑨 = ∇ ⋅ [(1 − 𝛽)( 𝑛 − 1) |𝜸̇0 |2 𝜸̇0 ∕2] re-
embles the viscous shear stress in Stokes flows 𝜸̇0 , but with an opposite

ign and magnitude magnified unevenly depending on the local shear

ate (through the pre-factor (1 − 𝛽)( 𝑛 − 1) |𝜸̇0 |2 ∕2 ). In Fig. 2 , we contrast
elocity and pressure fields in Stokes flow with those induced by this

xtra stress to highlight several features of the induced changes in the

ow. 

First, due to the opposite sign of this extra stress, the induced ve-

ocity field 𝒖 NL 1 has a reversed direction ( Fig. 2 b) compared with the

tokes flow ( Fig. 2 a). Second, since there are larger shear rates at the

oles, larger extra stresses, and hence stronger flows, are induced at

hese locations. We note that the integral of viscous traction vanishes

or a third-mode squirmer in a Stokes flow. In contrast, the non-local

ow exerts a net upward force (in the positive z -direction) on the

quirmer surface via viscous traction, 𝑭 NL 1 , ̇𝜸1 
= ∫

𝑆 
𝜸̇NL 1 ⋅ 𝒏 d 𝑆, where 𝜸̇NL 1 is

he rate-of-strain tensor calculated using the velocity field 𝒖 NL 1 obtained

rom Eqs. (37) and (38) . Table 1 details the numerical values of the

orce. 

In addition to viscous traction, the pressure field associated with

he non-local flow also exerts a net force on the squirmer, 𝑭 NL 1 ,𝑝 1 
=

𝑆 
− 𝑝 NL 1 𝒏 d 𝑆. Similar to the velocity field, the non-local pressure field

lso has a reversed sign and magnified strength at the poles ( Fig. 2 d)

ompared with the pressure field in the Stokes flow ( Fig. 2 c). We note
107 
hat the pressure around the squirmer integrates to zero in Stokes flow.

n contrast, the pressure becomes dominant around the poles due to the

hear-thinning effect, which gives rise to a net downward force (in the

egative z -direction) on the squirmer. 

Table 1 shows that the non-local force contribution of the pressure

as a magnitude greater than that of the viscous traction, |𝑭 NL 1 ,𝑝 1 
| >

𝑭 NL 1 , ̇𝜸1 
|. Combining these two forces due to the non-local flow, 𝑭 NL 1 =

 
NL 
1 , ̇𝜸1 

+ 𝑭 NL 1 ,𝑝 1 
, results in a net downward force on the squirmer. Fur-

hermore, because the force due to the non-local effect is stronger than

hat due to the local effect, |𝑭 NL 1 | > |𝑭 L 1 |, the third-mode squirmer goes
ownward as shown by Eq. (32) . The dominance of the non-local effect

ver the local effect is also observed for squirmers with other modes of

urface velocity (see Table 1 ). 

This detailed example illustrates the importance of the non-local

hear-thinning effect due to induced changes in the flow. If one focuses

nly on the stress reduction due to local viscosity changes without con-

idering changes to the flow field, a qualitatively incorrect conclusion

bout the propulsion direction may result. 

. Conclusion 

Results in this work complement our previous study of a squirmer

n a shear-thinning fluid via the reciprocal theorem [39] by examining

he surrounding flow. We derived, for small Cu , an asymptotic, analyti-

al solution describing the velocity and pressure fields around squirmers

ith different modes of surface velocity. There are two types of physical

hanges that impact locomotion when the fluid shear thins [34,38] : the

rst change (local) is the reduction in shear stress due to local viscosity

eduction, and the second change (non-local) is the stress induced by

 modification of the overall fluid flow. Our asymptotic analysis exam-

nes these two effects individually via the decomposition in Eq. (39) .

his enabled a more systematic understanding of individual effects and

 quantitative comparison of their relative contributions to locomotion

n a shear-thinning fluid. A recent empirical model, focusing on only the

ocal viscosity reduction effect, was shown to qualitatively capture the

ain physical features of swimming in a shear-thinning fluid for slen-

er bodies [34] . Here, via a spherical squirmer model, we reveal cases

here the local effect due to viscosity reduction is subdominant to the

on-local effect due to induced changes in the flow. These results sug-

est that the relative magnitudes of the local and non-local effects may

epend significantly on the details of the geometry and gait of the swim-

er. One should thus exercise caution when predicting dynamics from

he local viscosity distribution around a swimmer in a shear-thinning

uid. 
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ppendix A. Detailed solution procedures for determining the 

ow around a squirmer 

In this appendix, we illustrate the solution process for a neutral

quirmer ( 𝛼 = 0 ); the same procedures apply to other squirming modes
s well. Using the zeroth-order velocity field in Eqs. (12) and (13) for a

eutral squirmer, Eq. (21) becomes 

 
2 (𝐸 

2 𝜓 
)
= − 

8 sin 2 𝜃
𝑟 13 

( 53 + 15 cos 2 𝜃) ( 1 − 𝛽) ( 𝑛 − 1 ) . (A.1)

e substitute the assumed form of solution given by Eq. (23) into

q. (A.1) to obtain a system of ordinary differential equations by or-

hogonality 

 

′′′′
0 − 

4 
𝑟 2 
𝑓 

′′
0 + 

8 
𝑟 3 
𝑓 

′
0 − 

8 
𝑟 4 
𝑓 0 − 

12 
𝑟 2 
𝑓 

′′
2 + 

24 
𝑟 3 
𝑓 

′
2 + 

48 
𝑟 4 
𝑓 2 = − 

424 
𝑟 13 

, (A.2) 

 

′′′′
1 − 

12 
𝑟 2 
𝑓 

′′
1 + 

24 
𝑟 3 
𝑓 

′
1 = 0 , (A.3) 

 

′′′′
2 − 

24 
𝑟 2 
𝑓 

′′
2 + 

48 
𝑟 3 
𝑓 

′
2 + 

72 
𝑟 4 
𝑓 2 = − 

120 
𝑟 13 

⋅ (A.4) 

e note that the above equations are Cauchy–Euler equations, which

e can solve to obtain 

 0 = 

𝐴 0 
𝑟 

+ 𝐵 0 𝑟 + 𝐶 0 𝑟 
2 + 𝐷 0 𝑟 

4 + 𝐸 0 𝑟 
6 + 

𝐹 0 

𝑟 3 
+ 

𝐺 0 

𝑟 9 
, (A.5) 

 1 = 

𝐴 1 
𝑟 2 

+ 𝐵 1 𝑟 
3 + 𝐶 1 𝑟 

5 + 𝐷 1 , (A.6) 

 2 = 

𝐴 2 
𝑟 3 

+ 

𝐵 2 
𝑟 

+ 𝐶 2 𝑟 
4 + 𝐷 2 𝑟 

6 + 

𝐸 2 
𝑟 9 
, (A.7) 

here the coefficients are determined by applying the boundary condi-

ions in Eq. (18) . 

The far field boundary condition 𝒖 ( 𝑟 → ∞) = − 𝑼 1 dictates that 

 1 = 𝐶 1 = 𝐶 2 = 𝐷 0 = 𝐷 2 = 𝐸 0 = 0 , (A.8) 

 0 = − 

𝑈 1 
2 ( 1 − 𝛽) ( 𝑛 − 1 ) 

, 𝐸 2 = − 

1 
78 
, 𝐺 0 = − 

1 
26 
, 𝐹 0 = 

3 
5 
𝐴 2 . (A.9) 

he remaining coefficients are determined by the boundary condition

 1 ( 𝑟 = 1) = 𝟎 on the squirmer surface to be 

 1 = 𝐷 1 = 0 , 𝐴 2 = − 

2 
39 
, 𝐵 2 = − 

1 
26 
, 𝐹 0 = − 

2 
65 
, (A.10)

 0 = − 

𝑈 1 
4(1 − 𝛽)( 𝑛 − 1) 

+ 

17 
130 

, 𝐵 0 = 

3 𝑈 1 
4(1 − 𝛽)( 𝑛 − 1) 

− 

8 
65 

⋅ (A.11)

hese coefficients are expressed in terms of the first order swimming

peed, U 1 , which is determined by enforcing the force-free condition

 ∫
𝑆 
𝝈1 ⋅ 𝐧 𝑑𝑆 = 𝟎 ) as 

 1 = ( 1 − 𝛽) ( 𝑛 − 1 ) 32 
195 

(A.12)

or a neutral squirmer. The same procedures apply when considering

quirmers with other modes of actuation. 

ppendix B. Streamfunction and pressure field around a 

wo-mode squirmer 

The streamfunction for the flow around a squirmer with the B 1 and

 modes ( 𝛼 = 𝐵 ∕ 𝐵 ) is given by 
2 2 1 

108 
 1 = (1 − 𝛽)( 𝑛 − 1) sin 2 𝜃

{ 

− 

⎛ ⎜ ⎜ ⎝ 
𝑐 
𝐵 1 
1 
𝑟 9 

+ 

𝑐 
𝐵 1 
2 
𝑟 3 

+ 

𝑐 
𝐵 1 
3 
𝑟 

+ 𝑐 
𝐵 1 
4 𝑟 

⎞ ⎟ ⎟ ⎠ 
− cos 2 𝜃

⎛ ⎜ ⎜ ⎝ 
𝑐 
𝐵 1 
5 

𝑟 9 
+ 

𝑐 
𝐵 1 
6 

𝑟 3 
+ 

𝑐 
𝐵 1 
7 
𝑟 

⎞ ⎟ ⎟ ⎠ 
+ 

( 

𝑐 𝛼1 
𝑟 11 

+ 

𝑐 𝛼2 
𝑟 9 

+ 

𝑐 𝛼3 
𝑟 7 

+ 

𝑐 𝛼4 
𝑟 5 

+ 

𝑐 𝛼5 

𝑟 3 
+ 

𝑐 𝛼6 
𝑟 

+ 𝑐 𝛼7 𝑟 

) 

𝛼2 

+ cos 𝜃

[ ( 

𝑐 𝛼8 + 

𝑐 𝛼9 

𝑟 10 
+ 

𝑐 𝛼10 

𝑟 8 
+ 

𝑐 𝛼11 
𝑟 4 

+ 

𝑐 𝛼12 
𝑟 2 

) 

𝛼 + 

( 

𝑐 𝛼13 + 

𝑐 𝛼14 
𝑟 12 

+ 

𝑐 𝛼15 

𝑟 10 
+ 

𝑐 𝛼16 

𝑟 8 

+ 

𝑐 𝛼17 

𝑟 6 
+ 

𝑐 𝛼18 

𝑟 4 
+ 

𝑐 𝛼19 

𝑟 2 
+ 

𝑐 𝛼20 log 𝑟 

𝑟 6 

) 

𝛼3 

] 

+ cos 2 𝜃
( 

𝑐 𝛼21 
𝑟 11 

+ 

𝑐 𝛼22 
𝑟 9 

+ 

𝑐 𝛼23 
𝑟 7 

+ 

𝑐 𝛼24 
𝑟 5 

+ 

𝑐 𝛼25 

𝑟 3 
+ 

𝑐 𝛼26 
𝑟 

) 

𝛼2 

+ cos 3 𝜃

[ ( 

𝑐 𝛼27 

𝑟 10 
+ 

𝑐 𝛼28 

𝑟 4 
+ 

𝑐 𝛼29 

𝑟 2 

) 

𝛼 + 

( 

𝑐 𝛼30 

𝑟 12 
+ 

𝑐 𝛼31 

𝑟 10 
+ 

𝑐 𝛼32 

𝑟 8 
+ 

𝑐 𝛼33 

𝑟 6 
+ 

𝑐 𝛼34 

𝑟 4 

+ 

𝑐 𝛼35 

𝑟 2 
+ 

𝑐 𝛼36 log ( 𝑟 ) 

𝑟 6 

) 

𝛼3 
] 

+ cos 4 𝜃

( 

𝑐 𝛼37 

𝑟 11 
+ 

𝑐 𝛼38 
𝑟 7 

+ 

𝑐 𝛼39 

𝑟 5 
+ 

𝑐 𝛼40 

𝑟 3 

) 

𝛼2 

+ cos 5 𝜃
( 

𝑐 𝛼41 
𝑟 12 

+ 

𝑐 𝛼42 
𝑟 10 

+ 

𝑐 𝛼43 

𝑟 8 
+ 

𝑐 𝛼44 
𝑟 6 

+ 

𝑐 𝛼45 

𝑟 4 
+ 

𝑐 𝛼46 log ( 𝑟 ) 

𝑟 6 

) 

𝛼3 

} 

− 

sin 2 𝜃
4 

(1 
𝑟 
− 3 𝑟 + 2 𝑟 2 

)
𝑈 1 . (B.1) 

he corresponding pressure field is given by 

 1 = 

(1 − 𝛽)( 𝑛 − 1) 
2 

{ ⎡ ⎢ ⎢ ⎣ 
𝑒 
𝐵 1 
1 
𝑟 12 

+ 

𝑒 
𝐵 1 
2 
𝑟 4 

+ 

𝑒 
𝐵 1 
3 

𝑟 2 
+ cos 2 𝜃

⎛ ⎜ ⎜ ⎝ 
𝑒 
𝐵 1 
4 
𝑟 12 

+ 

𝑒 
𝐵 1 
5 

𝑟 4 

⎞ ⎟ ⎟ ⎠ 
⎤ ⎥ ⎥ ⎦ cos 𝜃

+ 

( 

𝑒 𝛼1 
𝑟 13 

+ 

𝑒 𝛼2 
𝑟 11 

+ 

𝑒 𝛼3 

𝑟 5 
+ 

𝑒 𝛼4 
𝑟 3 

) 

𝛼 + 

( 

𝑒 𝛼5 

𝑟 15 
+ 

𝑒 𝛼6 

𝑟 13 
+ 

𝑒 𝛼7 

𝑟 11 
+ 

𝑒 𝛼8 

𝑟 9 
+ 

𝑒 𝛼9 
𝑟 7 

+ 

𝑒 𝛼10 

𝑟 5 
+ 

𝑒 𝛼11 
𝑟 3 

) 

𝛼3 

+ cos 𝜃
( 

𝑒 𝛼12 
𝑟 14 

+ 

𝑒 𝛼13 

𝑟 12 
+ 

𝑒 𝛼14 
𝑟 10 

+ 

𝑒 𝛼15 

𝑟 6 
+ 

𝑒 𝛼16 

𝑟 4 
+ 

𝑒 𝛼17 

𝑟 2 

) 

𝛼2 

+ cos 2 𝜃

[ ( 

𝑒 𝛼18 

𝑟 13 
+ 

𝑒 𝛼19 

𝑟 11 
+ 

𝑒 𝛼20 

𝑟 5 
+ 

𝑒 𝛼21 
𝑟 3 

) 

𝛼 + 

( 

𝑒 𝛼22 
𝑟 15 

+ 

𝑒 𝛼23 

𝑟 13 
+ 

𝑒 𝛼24 
𝑟 11 

+ 

𝑒 𝛼25 

𝑟 9 

+ 

𝑒 𝛼26 
𝑟 7 

+ 

𝑒 𝛼27 

𝑟 5 
+ 

𝑒 𝛼28 

𝑟 3 

) 

𝛼3 
] 
+ cos 3 𝜃

( 

𝑒 𝛼29 

𝑟 14 
+ 

𝑒 𝛼30 

𝑟 12 
+ 

𝑒 𝛼31 

𝑟 10 
+ 

𝑒 𝛼32 

𝑟 6 
+ 

𝑒 𝛼33 

𝑟 4 

) 

𝛼2 

+ cos 4 𝜃

[ ( 

𝑒 𝛼34 

𝑟 13 
+ 

𝑒 𝛼35 

𝑟 11 
+ 

𝑒 𝛼36 

𝑟 5 

) 

𝛼 + 

( 

𝑒 𝛼37 

𝑟 15 
+ 

𝑒 𝛼38 

𝑟 13 
+ 

𝑒 𝛼39 

𝑟 11 
+ 

𝑒 𝛼40 

𝑟 9 

+ 

𝑒 𝛼41 
𝑟 7 

+ 

𝑒 𝛼42 
𝑟 5 

) 

𝛼3 
] 

+ cos 5 𝜃
( 

𝑒 𝛼43 

𝑟 14 
+ 

𝑒 𝛼44 
𝑟 12 

+ 

𝑒 𝛼45 

𝑟 10 
+ 

𝑒 𝛼46 

𝑟 6 

) 

𝛼2 + cos 6 𝜃

( 

𝑒 𝛼47 

𝑟 15 
+ 

𝑒 𝛼48 

𝑟 13 
+ 

𝑒 𝛼49 

𝑟 11 

+ 

𝑒 𝛼50 

𝑟 9 
+ 

𝑒 𝛼51 
𝑟 7 

) 

𝛼3 

} 

+ 

3 
2 𝑟 2 

𝑈 1 cos 𝜃. (B.2) 

he coefficients 𝑐 𝛼 and 𝑒 𝛼 are given in Tables C.1 and C.2 . 

𝑖 𝑖 
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Table C.3 

Coefficients associated with the streamfunction and pressure field 

around a squirmer with a B 3 mode. 

i 𝑐 
𝐵 3 
𝑖 

𝑒 
𝐵 3 
𝑖 

i 𝑐 
𝐵 3 
𝑖 

𝑒 
𝐵 3 
𝑖 

1 3922425 
14319616 

− 227754473 
3579904 

21 − 370605 
1789952 

12420825 
661504 

2 − 111082089 
243433472 

3438978135 
30429184 

22 − 265545 
5292032 

− 45405 
94208 

3 42001851 
275185664 

− 352609945 
5292032 

23 217862315 
1551888384 

102707919 
258648064 

4 2566907559103 
42312754085888 

1373496101 
103194624 

24 − 1092141855 
26899398656 

− 21350955 
12361856 

5 − 2628194625 
107597594624 

− 241963245 
1023852544 

25 − 483342523 
13449699328 

− 16429 
512 

6 − 29550956425 
1035626848256 

604835523 
2845128704 

26 7116985 
148342272 

5508825 
94208 

7 − 17975181871 
247484357120 

− 206392565 
259598976 

27 − 39375 
330752 

− 73125 
2048 

8 2353040961 
29590520960 

3360863 
5240352 

28 17577 
376832 

286875 
38912 

9 269768 
17782765 

− 1079072 
17782765 

29 − 20955 
376832 

227025 
894976 

10 − 12403125 
189190144 

− 3105401 
11776 

30 − 5775 
77824 

− 445067649 
517296128 

11 3193605 
7159808 

806206965 
1789952 

31 48721965 
517296128 

− 74375 
8192 

12 − 89849055 
121716736 

− 168637785 
661504 

32 − 2479545 
89964544 

75075 
4096 

13 292515 
1323008 

94512191 
1984512 

33 34235973 
2069184512 

− 212625 
16384 

14 32584874177 
262269136896 

3223755 
11634688 

34 − 16875 
165376 

31875 
8192 

15 − 13881408975 
295893385216 

− 4416440517 
5690257408 

35 315 
32768 

− 3859425 
7159808 

16 − 46539750865 
887680155648 

7116985 
9271392 

36 − 6405 
753664 

17 − 302811661 
2651618112 

− 16804315 
5240352 

37 − 2625 
65536 

18 3360863 
20961408 

− 4166659 
47104 

38 222045 
7159808 

19 − 275625 
2149888 

7336695 
47104 

39 227025 
28639232 

20 6849 
47104 

− 7144765 
77824 

40 − 5625 
77824 
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ppendix C. Coefficients in the streamfunctions and pressure 

elds 

Table C.1 

Coefficients associated with the streamfunc- 

tion and pressure field around a squirmer 

with a B 1 mode. 

i 𝑐 
𝐵 1 
𝑖 

𝑒 
𝐵 1 
𝑖 

1 1 
26 

− 854 
39 

2 − 2 
65 

2 
13 

3 − 17 
130 

− 32 
65 

4 8 
65 

− 26 
3 

5 1 
78 

− 10 
13 

6 − 2 
39 

7 1 
26 

able C.2 

oefficients associated with the streamfunction and pressure field around a

quirmer with B 1 and B 2 modes. 

i 𝑐 𝛼
𝑖 

𝑒 𝛼
𝑖 

i 𝑐 𝛼
𝑖 

𝑒 𝛼
𝑖 

i 𝑐 𝛼
𝑖 

𝑒 𝛼
𝑖 

1 − 40583 
134368 

− 3751 
52 

21 − 713 
2584 

− 3858 
1001 

41 − 45 
2432 

− 1359 
7904 

2 24 
143 

431 
13 

22 1 
13 

− 2631645 
20672 

42 15 
2432 

− 7790587 
8129264 

3 161 
1716 

− 9 
20 

23 21 
104 

235493 
1292 

43 3 
32 

− 5865 
304 

4 3755 
235144 

− 1286 
1001 

24 751 
25194 

− 18093 
208 

44 − 2121 
31616 

45 
2 

5 90109 
361760 

− 2148967 
31008 

25 10243 
25194 

2016 
143 

45 − 453 
31616 

− 27 
4 

6 52729 
1021020 

3323573 
33592 

26 − 1165 
2652 

− 2265 
15808 

46 27 
208 

− 72603 
67184 

7 − 1383 
5005 

− 6687 
143 

27 − 1 
24 

− 1112941 
2032316 

47 − 465 
64 

8 − 643 
1001 

16967 
2288 

28 1 
6 

− 32667 
17017 

48 1005 
76 

9 − 25 
104 

− 3775 
55328 

29 − 1 
8 

− 539765 
5168 

49 − 135 
16 

10 5 
143 

− 10016469 
40646320 

30 − 3865 
41344 

213 
2 

50 9 
4 

11 3 
14 

− 10889 
17017 

31 2683 
41344 

− 1413 
52 

51 − 4983 
15808 

12 5073 
8008 

− 617929 
2584 

32 3 
16 

− 40335 
67184 

13 − 10889 
34034 

2915 
13 

33 − 672129 
3825536 

− 5825 
1326 

14 − 7605 
20672 

− 7497 
143 

34 5543347 
65034112 

− 65 
4 

15 103239 
268736 

− 121005 
235144 

35 − 1112941 
16258528 

9 

16 681 
4576 

− 1165 
442 

36 405 
2288 

− 7 
4 

17 − 457423 
1912768 

− 5532 
5005 

37 − 505 
10336 

− 20795 
608 

18 1978583 
17509184 

−95 38 9 
104 

138675 
2584 

19 2459935 
8754592 

604 
13 

39 751 
33592 

− 57 
2 

20 225 
1144 

−1 40 − 8067 
134368 

1143 
208 
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