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Many biological fluids display shear-thinning rheology, where the viscosity decreases with an increasing shear
rate. To better understand how this non-Newtonian rheology affects the motion of biological and artificial micro-
swimmers, recent efforts have begun to seek answers to fundamental questions about active bodies in shear-
thinning fluids. Previous analyses based on a squirmer model have revealed non-trivial variations of propulsion
characteristics in a shear-thinning fluid via the reciprocal theorem. However, the reciprocal theorem approach
does not provide knowledge about the flow surrounding the squirmer. In this work, we fill in this missing informa-
tion by calculating the non-Newtonian correction to the flow analytically in the asymptotic limit of small Carreau
number. In particular, we investigate the local effect due to viscosity reduction and the non-local effect due to
induced changes in the flow; we then quantify their relative importance to locomotion in a shear-thinning fluid.
Our results demonstrate cases where the non-local effect can be more significant than the local effect. These
findings suggest that caution should be exercised when developing physical intuition from the local viscosity
distribution alone around a swimmer in a shear-thinning fluid.

1. Introduction

Locomotion of microorganisms is subject to often unintuitive con-
straints imposed by physics at the scales of the microscopic world [1].
Inertial effects, which govern macroscopic locomotion, become sub-
dominant to viscous forces at small scales. Reynolds numbers, which
characterize the inertial to viscous force, typically range between 10~°
for flagellated bacteria to 102 for spermatozoa [2]. Microorganisms
have evolved strategies to move through fluids for diverse biological
processes such as reproduction and foraging [3]. Extensive theoretical
and experimental studies have sought to elucidate physical principles
that underlie cell motility [4-6]. This has improved our general under-
standing of low-Reynolds-number locomotion, which in recent years has
led to the development of a variety of synthetic micro-propellers. While
some micro-propellers are bio-mimetic or bio-inspired, others exploit
physical and physico-chemical mechanisms to achieve micro-propulsion
[7-12]. Considerable progress over the last several decades has illu-
minated low-Reynolds-number locomotion in Newtonian fluids [5,13].
However, biological fluids often display complex (non-Newtonian) rhe-
ological properties that include viscoelasticity and shear-thinning vis-
cosity [14-16]. A fundamental understanding of how non-Newtonian
fluid rheology affects propulsion is imperative to both deciphering the
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roles of mechanical forces in cell motility and designing synthetic micro-
swimmers for realistic biological media [17,18].

Over the past decade, studies on locomotion in complex fluids have
largely focused on the effect of viscoelastic stresses [19-27]. Much less
is known about locomotion in shear-thinning fluids [18]. Many biolog-
ical fluids, including blood and mucus, are shear thinning: the fluid be-
comes less viscous with applied strain rates due to changes in the fluid
microstructure [28]. Previous theoretical and experimental studies on
undulatory swimmers (e.g. sheets [29-33], filaments [34], and nema-
todes [35-37]), helical propellers [38], squirmers [31,39-41], single-
hinged swimmers [42], and a variety of two-dimensional swimmers
[30,31] have revealed that shear-thinning rheology can enhance or hin-
der locomotion depending on the class of swimmer and its swimming
gait. More recently, Montenegro-Johnson [43] emphasized that general-
izing insights gained from two-dimensional modeling in shear-thinning
fluids to the three-dimensional case should be handled with care, be-
cause the flow derivatives in these two cases can be drastically differ-
ent. Numerical studies have also begun to address locomotion in shear-
thinning fluids in the presence of a confining boundary [44] and inertial
effects [45].

In our previous studies [39,41], we considered the locomotion of
a spherical body propelling itself with surface distortions (known as a
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squirmer) in a shear-thinning fluid via the reciprocal theorem [46-49].
Despite the success of the reciprocal theorem approach in revealing
non-trivial variations of propulsion characteristics in a shear-thinning
fluid, this approach does not yield information about the flow around
the squirmer. This prevents subsequent analyses on the effects of flow
advection on nutrient uptake by microorganisms or phoretic motion of
active particles in a shear-thinning fluid. In this paper, we fill in this
missing information by deriving a closed-form, analytical solution to
the flow around a squirmer in a shear-thinning fluid in a weakly non-
Newtonian regime. The knowledge of the surrounding flow allows more
detailed analyses of the physical changes when the fluid becomes shear-
thinning. The shear-thinning effect can manifest through two types of
physical changes: the first change is the local effect of stress modulation
due to viscosity differences, and the second change is the non-local ef-
fect resulting from overall changes to the fluid flow [34,38]. A recent
empirical resistive-force theory for slender filaments in shear-thinning
fluids has focused on the first of these two effects and obtained qualita-
tive agreements with experimental results [34]. The asymptotic analysis
here allows us to decouple the local and non-local effects, in the weakly
non-Newtonian limit, and hence quantify their relative importance to lo-
comotion in a shear-thinning fluid via a squirmer model. The changes in
the flow fields are also likely to impact hydrodynamic interactions with
nearby swimmers but we leave it to future work to examine rheological
effects on collective locomotion.

The paper is organized as follows. In Section 2, we formulate the
problem by introducing the squirmer model (Section 2.1), the rheo-
logical constitutive model (Section 2.2), and the asymptotic analysis
(Section 2.3) considered in this work. In Section 3, we present results on
the flow around a two-mode squirmer in a shear-thinning fluid. Next,
we discuss in Section 4 how shear-thinning rheology can enable other
squirming modes to contribute to propulsion, followed by a detailed
analysis of the flow around a squirmer. Concluding remarks are pre-
sented in Section 5.

2. Formulation
2.1. Squirmer model

Lighthill [50] and Blake [51] first modeled ciliary propulsion by the
motion of a squirming sphere, which is arguably the simplest possible
three-dimensional swimmer of finite size. The motion of beating cilia is
represented as a distribution of velocities on the squirmer surface. For a
steady spherical squirmer of radius qa, the tangential, time-independent
surface velocity distribution is decomposed into a series of the form
[52]

0

ug(r=a,0) = 2

k=1

2

—_ 2 B,Pl(cosO),
Kk + 1) DB (cos o)

1
where Pk1 represents the associated Legendre function of the first kind, 6
is the polar angle measured from the axis of symmetry, and the squirm-
ing modes By are related to singularity solutions in Stokes flows. In a
Newtonian fluid, only the B; mode (a source dipole) contributes to the
propulsion speed Uy = 2B, /3, and the B, mode (a force dipole) is the
slowest decaying spatial mode that dominates the far-field velocity gen-
erated by a squirmer. Therefore, many studies considered model swim-
mers represented by only the first two modes of the expansion [52].
Although the squirmer model was developed originally for swim-
ming ciliates (such as Volvox [53]), it has also gained popularity as a gen-
eral model for active particles [54-60]. The parameters in the squirm-
ing modes can be adjusted to represent different types of swimmers,
broadly categorized as pushers (« = B, /B, < 0), pullers (a > 0), and neu-
tral squirmers (a = 0). A pusher, such as the bacterium Escherichia coli,
obtains its thrust from the rear part of the body. A puller, such as the
alga Chlamydomonas, obtains its thrust from the front part. A neutral
squirmer generates a surrounding flow corresponding to a source dipole.
While we prescribe the surface velocity of the swimmer here, the gait of
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a real microorganism is likely to be modified by changes in stresses due
to shear thinning.

2.2. Governing equations

The incompressible flow around a squirmer in a shear-thinning fluid
at low Reynolds numbers is governed by the continuity equation and
Cauchy’s equation of motion

V.u=0, )

V.o=0, 3)

where the stress tensor, ¢ = —pI + 7. Rheological data of some biolog-
ical fluids has been shown to be consistent with the Carreau model
[28,32,61]:
n=1

T =g = (1 — 1) [ = (1+ A1717) 2 |7 @)
Here, 7 and 7, represent the zero and infinite-shear rate viscosities,
respectively, and y denotes the strain rate tensor. The magnitude of the
strain rate tensor is given by |y| = (7;;7;; /2)1/2. The power law index
n<1 characterizes the degree of shear-thinning, and the time constant
A sets the crossover strain rate at which the non-Newtonian behavior
becomes significant. For example, (shear-) rheological measurements of
human cervical mucus can be fit to the Carreau model with values 5, =
145.7 Pas, 5, =0Pas, 4, =631.04 sand n = 0.27 [32,61].

For a prescribed velocity distribution on the squirmer surface (r =
a) given by Eq. (1), the squirmer propels with an unknown velocity
U = Ue, along its axis of symmetry. In a reference frame moving with
the squirmer (i.e., the co-moving frame), the far-field condition is given
by the unknown propulsion velocity u(r - o) = —U. The mathematical
formulation is completed by enforcing the force-free

/o--ndS:O,
K

and torque-free conditions for self-propulsion at low Reynolds numbers,
where n represents the unit normal vector on the squirmer surface S.
The torque-free condition is satisfied automatically as a result of the
axisymmetry in this problem.

In general, the motion of a force-free, axisymmetric swimmer in a
non-Newtonian fluid with a constitutive equation of the form = = 7 +
N where N denotes the additional non-Newtonian stress (e.g., Eq.
(4)), satisfies

U=R"'[FT+FW].

®

6

Here R =67nyal is the translational resistance of a sphere in a Newtonian
fluid with viscosity 55; FT represents the propulsive thrust the swimmer
would generate in a Newtonian fluid (with viscosity #); F™N is the non-
Newtonian force that results from changes in viscosity from 5, (due to
7NN the second term on the right-hand side of Eq. (4)). As discussed in
Section 1, the non-Newtonian force may be split into local and non-local
contributions FNN = FL 4+ FNL. The first weakly non-linear correction
to the Newtonian swimming speed can be determined readily without
solving the complex fluid flow by the reciprocal theorem [39,62], but
in what follows we solve for corrections to the flow field itself, due to
small changes in viscosity from 7, in order to develop better physical
intuition on the nature of the local and non-local non-Newtonian forces.

2.3. Asymptotic analysis

We non-dimensionalize lengths by the squirmer radius a, velocities
by the first mode of actuation B; except when the surface actuation does
not contain a B; mode (e.g., in Section 4, where only the third mode of
actuation, Bg, is considered), strain rates by w = B;/a and stresses by
now. The dimensionless constitutive equation then takes the form

n—

n=l
=y - =-p1- (1+Cl 7)) 7 |7, @
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where the viscosity ratio f =, /n,. The Carreau number, Cu = },w,
compares the characteristic strain rate o to the crossover strain rate
1/4;. Hereafter, we drop the stars for simplicity and refer to only di-
mensionless variables unless otherwise stated.

To make analytical progress, we conduct an asymptotic analysis for
small Carreau numbers (Cu? < 1) and expand the swimming speed and
all fields in regular perturbation series in powers of Cu?:
{u,p,y.7,0,U} ={u0»Po, Y0, To> 00> Uo}

+Cu*{uy, p,71.7,0,, U} +0(Cut). ®)

By substituting these expansions into the governing equations and
boundary conditions, we solve the non-Newtonian problem perturba-
tively to obtain the detailed flow surrounding the squirmer order by
order.

3. Flow around a two-mode squirmer at small Cu

In this section, we consider the squirming motion of a two-mode
squirmer (¢ = B,/B)) in a shear-thinning fluid in the small Cu limit.

3.1. Zeroth-order solution

The O(Cu®) solution is governed by the Stokes equations

V.uy=0, ©)

V.0,=0, (10)

where o) = —pyI + 7, with the far-field and boundary conditions on the
squirmer given by

an

Here we consider the first two modes (B; and B,) of the surface velocity
u, in Eq. (1). The dimensionless surface velocity (scaled by B;) of a
two-mode squirmer is given by u,y(r = 1) = sin 0 + a(sin 260)/2.

The solution to this problem, u, = uye, + vyey, was obtained by
Lighthill [50] and Blake [51] as

uy(r=1) =ugey, uy(r - c0)=-U,.

B 1 af1 1 )
uO—UO(r—3—1)c0s9+ E(r—4—r—2)(3cos 0-1), (12)
UO=U0(1+217>sin9+%cosesin6, (13)
with the pressure field given by

all +3cos20
POZ_Q' (14)

2r3

By enforcing the force-free condition [ 6, -n dS =0, the unknown
swimming speed (scaled by B;) is given by U,, = 2/3. We highlight again
that, among all squirming modes, only the B; mode contributes to self-
propulsion in Stokes flow.

3.2. First-order solution

The O(Cu?) solution is governed by the equations

Vou =0, (15)
V.6, =0, (16)
where 6y = —p;I +7; + A and

A-pHn-1) = .
A= ———Inl’fo an
The solution is subject to the far-field and boundary conditions
u(r=1=0, u@r->o0)=-U,. (18)

Here, we note that the surface velocity distribution has been already
accounted for in the O(Cu) calculations, leaving no-slip and no-
penetration boundary conditions on the squirmer surface at this order.

103

Journal of Non-Newtonian Fluid Mechanics 268 (2019) 101-110

We note that, under this asymptotic expansion, the changes in the flow
fields are linear in the parameters n and § at first order.
We take the curl of (16) to eliminate pressure and obtain the equation
. d=-pr-1 o2,
VX(Veir) = =—=——{Vx[V- (Ihl10)] }- (19)
Due to the axisymmetry of the problem, we can express the velocity field
u=ue, + v e, in terms of Stokes streamfunction

y— %1 9w
L™ y2sing 06 ° rsinf or’

to satisfy the continuity equation, Eq. (15). The momentum equation in

terms of Stokes streamfunction therefore becomes

(20)

B (£2) = SO Drsino{V x [V - (I5ofvo) ] @1
where the operator
9 sin@o/ 1 0
FP=—+">2=(—=) 22
m TR 69(sin900) 22)
We assume a solution of the form
v == p)n—1)sin 0 Y f,()T;(cos 0), 23)

i=0
where f;(r) are unknown functions of r and T;(cos 6) are Chebyshev poly-
nomials. By substituting this assumed solution into Eq. (21) we obtain a
system of ordinary differential equations for f;(r). We solve this system
of equations and determine the unknown coefficients by the far-field
and boundary conditions, Eq. (18) (see Appendix A for details).

The streamfunction for the flow around a squirmer with just the B;
mode (a = 0) is given by

By B, B,
-2, 6 2 € B
vy == =pmn—-1sin" 0| — + —+ —+c,'r
9 3 4
B B B
+cos20] > + 5 4
9 3 r

-2
—M(l—awzﬂ)m, 4)
4 r
while the pressure field is given by
A-pu-plea & e Qe
_ - n— 1 2 3 4 5
= > ey r—4+r—2+c0520 r1—2+7 cos 6
+ 3 U, cos@ 25)
22! '
The coefficients c,.B' and eiB‘ are tabulated in Table C.1. The expressions

for the streamfunction and the pressure of the flow around a squirmer
with both B; and B, modes are far lengthier and therefore are given in
Appendix B.

By applying the force-free condition /[ 6, - n dS = 0, we determine
the first non-Newtonian correction to the propulsion speed of a two-
mode squirmer as

4(616 + 1383a?)

15015 ’
which agrees with the result in [39] using the reciprocal theorem
thereby providing a consistency check on the flow field calculations.
Fig. 1 displays the zeroth-order flow field (Newtonian) and its first non-
Newtonian correction around a neutral squirmer (a & b) and a two-mode
squirmer (¢ & d).

U=0-pHn-1) (26)

4. Flow around a third-mode squirmer at small Cu

In this section, we consider surface velocity distributions other than
the first two modes. In Stokes flow, only the B; mode leads to net motion
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Fig. 1. Streamlines and local speed of the flow around a neutral squirmer (a & b) and a pusher (c & d) in the co-moving frame. For the neutral squirmer (« = B,/B; = 0):
(a) zeroth-order velocity field (Stokes flow), and (b) first-order velocity field. For the pusher (a = —5): (c) zeroth-order velocity field (Stokes flow), and (d) first-order
velocity field. Both squirmers propel with positive zeroth-order velocities (U, > 0, upward) in (a) and (c) and negative first-order corrections (U; <0) in (b) and (d).

Here n = 0.25, § = 0.5. Note that the first-order fields exclude the Cu® prefactor.

of a squirmer while the first even mode, B, is often retained to repre-
sent the far-field contribution. Higher squirming modes are not typically
considered when analyzing squirming swimmers in Newtonian fluids.
We note that any even squirming mode alone does not contribute to
self-propulsion in Newtonian or shear-thinning fluids due to the symme-
try of the surface velocity distribution. The B; mode, hence, is the first
squirming mode that could lead to self-propulsion in a shear-thinning
fluid but not in a Newtonian fluid; in this case, the Newtonian thrust
FT =0, and the motion of the squirmer is due to F™N alone, as shown
in Eq. (6). Here we present a detailed analysis of the propulsion and flow
around a squirmer with only a B; mode, calculate FNN, and discuss the
relative contributions of the local and non-local non-Newtonian forces.
We note that velocities in this section are non-dimensionalized by the
third mode of actuation Bs.

4.1. Zeroth-order solution

Using the same set of equations in Stokes flows (Egs. (9) and (10)),
boundary conditions (Eq. (11)), and force-free condition f oo ndS =
0, the O(Cu®) flow is calculated as [50,51]

U =%(rl5—rl3>(500530—3cos€), 27
vy =2(L_L (15cos” 9 — 3) sin@ (28)
078\ s 33 ’
with the pressure field given by
Py =— L(5 —25co0s26)cosb. 29)
8r4
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The force-free condition is satisfied with a zero swimming velocity U, =
0, i.e., a third-mode squirmer does not propel in Stokes flows. Fig. 2a &
c display the zeroth-order velocity and pressure fields, respectively.

4.2. First-order solution
We follow the same approach outlined in Section 3.2 to determine

the streamfunction of the flow around a third-mode squirmer at O(Cu?)
to be

B B B B B B B
= C[B C23 C33 C43 c53 c63 c73
v =—(-pn—Dsin®0| - 4 2 4 34 2 45 6 LT
1 [ T RS TR ) 7 5 3
B 1
B B, logr
2 +cg3r+c103i
r r
By By By By By B; B3 By
1, % % %4 G5 [ Ce S Cis | Bylogr
teos20| =+ttt 5ttt —teg—
TR T IR - P 3 9
B By B; B3 By B3 B3
S0 [ 1 [ 2 [ %3 | “u %5 | %6 , Bylogr
+cosdl| —+ —+ —+ — 4+ — + — + — € —5
PSR 9 7 5 3 9
BB By By By By .
B, logr
+cos60] 28 29 730, 31 2 33 6343 g
A5 T 3 9 7 /5 9
B3 CB3 B; B; By 1
B, logr
+cos 80| 22 4 36 i+ﬁ+3—79+c403i
P15 s 9 ” 9
.2
sin“ 6 /1
— (-—3r+2r2)U1, (30)
;
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jur™|
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Fig. 2. Streamlines and local speed of the flow around a squirmer with a positive B; mode in the co-moving frame: (a) zeroth-order velocity field (Stokes flow);
(b) non-local first-order velocity field; (c) zeroth-order pressure field (Stokes flow); (d) non-local first-order pressure field. Here n = 0.25, # = 0.5. Shear-thinning
rheology enables the third-mode squirmer, which does not generate any net motion in Stokes flow (U, = 0), to self-propel with a negative first-order velocity (U; <0,

downward) in (b). Note that the first-order fields exclude the Cu? prefactor.

The pressure field is given by

By By B3 By B3 B3 B3 B3
_(1=-pn-1) cos 8 | + & 4% 4 % % T, ‘s
= P 18 7 L6 A4 12 7 L0 T8 6 4
B3 By B3 B3 By B; By By B3
+9 4cosog| 0 LT 1 13 T 15 16 17
2 18 16 pl4 7 2 7 10 8 6 4
B3 By B B By B3 By
€3 19, %0 | © 2, %3 | %u
+cosdl| — + — + — + — + =+ — + —
P8 16 T a2 0 8 6
By By B By By By
[ ; Joed e [
2 24 2 2, 2
+cos6p| = 4 26 4 27 4 8, B 0
A8 T 16 T a2 L0 8
By By By B By
e e e e, e,
3 3
+cosBO| 2L 4 22 4 By 34 S, —U, cosf. @31
[T T VT BT 2,2

The coefficients ciB3 and ef3 are tabulated in Table C.3.

By applying the force-free condition [ 6, - n dS = 0, we determine
the swimming speed of a third-mode squirmer at O(Cu?),

1079072

Ur=0=P0 =1 33is305°
where the speed is made dimensionless by the value of Bs. For a posi-
tive By mode, a squirmer swims in the negative z-direction in a shear-
thinning fluid (n<1). This example demonstrates that shear-thinning
rheology can render ineffective swimming gaits in Newtonian fluid (e.g.,
the B3 mode) useful in a non-Newtonian fluid. Similar calculations can
be performed on other odd squirming modes.

(32)
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4.3. Flow analysis around a squirmer

The shear-thinning effect can manifest through two types of physical
changes when a fluid has shear-thinning viscosities: a local effect due to
viscosity reduction and a non-local effect due to induced changes in the
flow. In this section, we utilize knowledge of the flow around a squirmer
to quantify these effects.

We expanded the fluid stress ¢ = 6, + Cu’c; + O(Cu*) in the small
Cu limit, where the first non-Newtonian correction to stress is given by

o, =—-pl+y +A. (33)

The contribution by —p, I + 7, to ¢; in Eq. (33) depends on the solu-
tion {uy, p;} to Egs. (15)-(18). Due to its linearity, we can decompose
this system of equations into two sub-problems to better understand its
solution structure:

{uy,p} = (), PP} + (", PN} (34

The sub-problem {u]l), pllj} takes the homogenous part of Eq. (16) (the
Stokes equation) with the inhomogeneous boundary condition from
Eq. (18)

0, vpP=vZb, (35)

Wr=1=0, vP¢->o0)=-U; (36)

the other sub-problem {ull‘"“, pll\”“} takes the inhomogeneous term in
Eq. (16) with homogenous boundary conditions

Voult =0, Vo=Vt 4 v. 4, 37
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Fig. 3. (a) Magnitude of the rate-of-strain tensor |;"0|2 as a function of # on the squirmer surface (r = 1) for a third-mode squirmer in Stokes flow. (b) The rz-
components of the rate-of-strain tensor (f,,.) based on the Stokes flow solution (blue line) and local shear stress reduction (A,,) due to shear-thinning viscosity (red
line) as a function of § on the squirmer surface (» = 1) with a third mode. (For interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)

Ner=1=0, "¢ - c0)=0. (38)

It can be readily recognized that the solution {u]l), p]l)} to the sub-problem
governed by Egs. (35)—(36) represents the classical solution of a Stokes
flow past a sphere. Under the decomposition in Eq. (34), we rewrite the
non-Newtonian correction to stress around a squirmer o, in Eq. (33) as

o= —p?[+}"]]) —pll\ILI+)'/II\IL +
e — N —

Stokes drag  Non-local effect

A
——

Local effect

(39)

which represent three different physical effects. The solutions {u?, p]l)}
to Egs. (35) and {u’l‘”“, pll\”“} to Egs. (37) and (38), respectively, contribute
the terms —p]])I + 7]13 (referred to as “Stokes drag”) and —pII‘ILI + }"I]“L (re-
ferred to as “non-local effect”) in Eq. (39). The last term A in the equa-
tion (referred to as “local effect”) is given by Eq. (17), which depends
only on the zeroth order flow (i.e., Stokes flow).

We first focus on the local effect represented by the tensor A =
(1= )(n — D)|yo|*¥0/2 in Eq. (39), which has a structure of a viscosity
correction [(1 — f)(n — 1)|7,|?>/2]1 multiplied by the rate-of-strain tensor
7o- This can be interpreted physically as a local correction to the shear
stress due to viscosity reduction. Under this perturbative framework,
both the viscosity reduction and the rate-of-strain tensor in A are calcu-
lated based on the zeroth-order order flow (i.e., Stokes flow). That is, to
leading order, this local effect accounts for viscosity reduction assuming
that the flow field remains the same as the Newtonian case.

In this perturbative framework, the (non-local) effect of the flow
induced by spatial variations of the viscosity throughout the fluid are
accounted for by the second term on the right-hand side in Eq. (39).
The decomposition in Eq. (34) isolates the non-local effect of induced
changes in the flow, which are described by {u)", p\'} in the sub-
problem governed by Egs. (37) and (38). The shear-thinning effect mani-
fests as a source of extra stress, V- A, driving a fluid flow uI]“L and its asso-
ciated pressure field le\IL, as shown in Fig. 2b & d respectively. We remark
that, while the local effect represented by A in Eq. (39) accounts for
viscosity reduction but not flow changes, here the non-local effect rep-
resented by —p)I + 7\, complementarily, accounts for flow changes
while assuming uniform fluid viscosity (note that Eq. (37) has the form
of an inhomogeneous or “forced” Stokes equation with Newtonian rhe-
ology). Taken together, this weakly non-linear analysis decouples the
two types of physical changes when the fluid becomes shear-thinning,
namely viscosity reduction and flow changes, into two separate prob-
lems and addresses these effects individually in each problem.

Finally, the remaining term, —p?I + 72, in Eq. (39) corresponds to
the Stokes flow past a sphere due to a uniform flow —U, in the far
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field. This uniform flow emerges, passively, as a result of the local effect
through A and the non-local effect through —pN:T + 7Nt to satisfy the
overall force-free condition, / 01 -ndS = 0. We integrate Eq. (39) over
the squirmer surface to obtain the net force acting on the squirmer at
this order

/o-l~ndS = /(—p?1+7]]3)~ndS+/(—pII\ILI+}"Il\IL)~ndS
S S S

v

FNL
1

(40)

The net force above contains a local contribution due to the effect of
local viscosity reduction (FIL) and a non-local contribution due to the in-
duced flow (F II‘IL). These two forces compete and give rise to the motion
of the squirmer U; and hence the Stokes drag Fll) =—-R-U,=-6zU,.
We reiterate that the Stokes drag emerges passively to counter balance
the difference between the two driving forces F and F)" so that the
overall force-free condition is satisfied F '1) +F II\IL +F IL = 0. Inverting the
resistance we then obtain the velocity

1

Ui (3

[FI*+ Fi )
as dictated by Eq. (6). In other words, the relative magnitudes and di-
rections of F% and F II\IL dictate the dynamics of a squirmer in a shear-
thinning fluid.

In the next sections, we illustrate the above decomposition and quan-
tify the two driving forces using a specific example of a third-mode
squirmer, which clearly elucidates how local and non-local effects gener-
ate self-propulsion otherwise absent in a Newtonian fluid; similar anal-
yses can be applied to other squirmers as well.

4.3.1. Effect of local viscosity reduction

The analysis of the effect of local viscosity reduction follows the
same spirit of previous studies that looked into the viscosity distribu-
tion around a swimmer [30,31,33]. In this perturbative framework, to
leading order, one assumes the flow field does not change and uses
the Stokes flow around a squirmer (Egs. (27) and (28); Fig. 2a) to
deduce the contribution from local viscosity reduction. Based on the
Stokes solution given in Egs. (27) and (28), we quantify how much
shearing is around the squirmer by calculating the magnitude of the
rate-of-strain tensor on the squirmer surface (Fig. 3a). For a third-mode
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Table 1
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The decomposition of the first-order force acting on a squirmer into different components. All forces are along
the z-direction due to axisymmetry; the numerical values below are the z-component of the corresponding force
components. All values are multiplied by z(1 — g)(1 — n).

Mode F? F‘l“; ‘]“; FY"=F, ,n + F‘ﬁ';] F:

B, 0.985 6.564 -16.082 -9.518 8.533

B, &B,  0.985+2.211a>  6.564 +21.603 a>  —16.082 —24.164 «>  —9.518 —13.639 a? 8.533 + 11.429 o2
B, 0.121 1.850 -3.855 -2.005 1.884

B 0.020 0.478 -1.623 -1.144 1.124

squirmer, fluid shearing is most substantial in regions near the poles
(6 =0, ) compared with the equator (6 = z/2). Shear-thinning rheol-
ogy, thus, will cause the most significant reduction in viscosity, and
hence shear stress, near the poles. In Fig. 3b, we compare the viscous
traction along the propulsion direction (z) in Stokes flow, y,,, (blue
line), with the modification due to the local shear-thinning effect along
the same direction, A,, (red line). In Stokes flow, we observe that the
viscous tractions at the poles act to push the squirmer in the negative
z-direction (downward). Since the shear-thinning effect is most sub-
stantial around the poles, the tractions acting downward (negative z-
direction) in these regions are reduced by the shear-thinning effect more
significantly than other regions on the squirmer surface, as shown by
the variation of A,, in Fig. 3b. We note that A,, has its sign oppo-
site to j,.. while its magnitude is modulated by variations of |y,,.[%,
a manifestation of the shear-thinning effect. In Stokes flows, the viscous
traction around a third-mode squirmer integrates to zero (/g j, - n dS =
Js 70,2 dS e, =0). In contrast, locally varying magnitudes of shear-
thinning perturbs this zero balance; relatively more significant reduc-
tions in the downward forces at the poles result in a net upward force
(Fi=[¢A-ndS=[A, dS e,) on the squirmer. Hence, if one only
focuses on the local effect of viscosity changes, assuming the flow field
does not change, one may argue that the squirmer with a positive third
mode will propel upward, in contradistinction to the result obtained in
Eq. (32).

4.3.2. Effect of induced changes in the flow

To capture the second physical change due to shear-thinning, namely
the change in the flow field, one considers the complementary problem
(Egs. (37) and (38)) where the fluid is assumed to have uniform viscosity
but with V-A entering the Stokes equation as a source of extra stress.
The structure of this extra term V- A =V - [(1 — g)(n — D|y,|>70/2] re-
sembles the viscous shear stress in Stokes flows y, but with an opposite
sign and magnitude magnified unevenly depending on the local shear
rate (through the pre-factor (1 — )(n — 1)|,|?/2). In Fig. 2, we contrast
velocity and pressure fields in Stokes flow with those induced by this
extra stress to highlight several features of the induced changes in the
flow.

First, due to the opposite sign of this extra stress, the induced ve-
locity field u\™ has a reversed direction (Fig. 2b) compared with the
Stokes flow (Fig. 2a). Second, since there are larger shear rates at the
poles, larger extra stresses, and hence stronger flows, are induced at
these locations. We note that the integral of viscous traction vanishes
for a third-mode squirmer in a Stokes flow. In contrast, the non-local
flow exerts a net upward force (in the positive z-direction) on the
squirmer surface via viscous traction, F%I = [¢\" - ndS, where )T is
the rate-of-strain tensor calculated using the velocity field u’l‘IL obtained
from Egs. (37) and (38). Table 1 details the numerical values of the
force.

In addition to viscous traction, the pressure field associated with
the non-local flow also exerts a net force on the squirmer, Fll\gjl =
fs —p’l‘ILn dS. Similar to the velocity field, the non-local pressure field
also has a reversed sign and magnified strength at the poles (Fig. 2d)
compared with the pressure field in the Stokes flow (Fig. 2c). We note
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that the pressure around the squirmer integrates to zero in Stokes flow.
In contrast, the pressure becomes dominant around the poles due to the
shear-thinning effect, which gives rise to a net downward force (in the
negative z-direction) on the squirmer.

Table 1 shows that the non-local force contribution of the pressure
has a magnitude greater than that of the viscous traction, |F11\{];1 | >

|F11\{];. |. Combining these two forces due to the non-local flow, F\" =
FL

Ly
thermore, because the force due to the non-local effect is stronger than
that due to the local effect, |FII\IL| > |F%|, the third-mode squirmer goes
downward as shown by Eq. (32). The dominance of the non-local effect
over the local effect is also observed for squirmers with other modes of
surface velocity (see Table 1).

This detailed example illustrates the importance of the non-local
shear-thinning effect due to induced changes in the flow. If one focuses
only on the stress reduction due to local viscosity changes without con-
sidering changes to the flow field, a qualitatively incorrect conclusion
about the propulsion direction may result.

+F Il‘";l, results in a net downward force on the squirmer. Fur-

5. Conclusion

Results in this work complement our previous study of a squirmer
in a shear-thinning fluid via the reciprocal theorem [39] by examining
the surrounding flow. We derived, for small Cu, an asymptotic, analyti-
cal solution describing the velocity and pressure fields around squirmers
with different modes of surface velocity. There are two types of physical
changes that impact locomotion when the fluid shear thins [34,38]: the
first change (local) is the reduction in shear stress due to local viscosity
reduction, and the second change (non-local) is the stress induced by
a modification of the overall fluid flow. Our asymptotic analysis exam-
ines these two effects individually via the decomposition in Eq. (39).
This enabled a more systematic understanding of individual effects and
a quantitative comparison of their relative contributions to locomotion
in a shear-thinning fluid. A recent empirical model, focusing on only the
local viscosity reduction effect, was shown to qualitatively capture the
main physical features of swimming in a shear-thinning fluid for slen-
der bodies [34]. Here, via a spherical squirmer model, we reveal cases
where the local effect due to viscosity reduction is subdominant to the
non-local effect due to induced changes in the flow. These results sug-
gest that the relative magnitudes of the local and non-local effects may
depend significantly on the details of the geometry and gait of the swim-
mer. One should thus exercise caution when predicting dynamics from
the local viscosity distribution around a swimmer in a shear-thinning
fluid.
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Appendix A. Detailed solution procedures for determining the
flow around a squirmer

In this appendix, we illustrate the solution process for a neutral
squirmer (a = 0); the same procedures apply to other squirming modes
as well. Using the zeroth-order velocity field in Egs. (12) and (13) for a
neutral squirmer, Eq. (21) becomes

SSm (4

E*(E’y) = (53 + 15cos 26)(1 — f)(n — 1). (A1)
We substitute the assumed form of solution given by Eq. (23) into
Eq. (A.1) to obtain a system of ordinary differential equations by or-

thogonality

1 ’ 8 12 48 424

fo — fo rzf —;fo—r—zf —f2 _4f2:_,.T’ (A2)
m

BB By, (A3)
" 24 48 1 72 120

f2 r2f2 +r_3f2+r_4f2=_rT' (A4)

We note that the above equations are Cauchy-Euler equations, which
we can solve to obtain

A 5 4 6 F() GO

fo=—+Byr+ Cor? + Dyr* + Egr® + = + =, (A5)
r [
A 3 5

f1= — + B +Cr + Dy, (A.6)
I
A B E

fr=2 4 2 4Gt + D0+ 22, (A7)
r3 r r

where the coefficients are determined by applying the boundary condi-
tions in Eq. (18).

The far field boundary condition u(r - o) = —U, dictates that

B =C =C,=Dy=D,=E,=0, (A8)

__u -l g-_L1L p_3
20-Pimn—-1" 2" 78 07 26> 07 5

Co=- = (a9)

The remaining coefficients are determined by the boundary condition
u,(r = 1) = 0 on the squirmer surface to be

2 1 2
Al :Dl :0, AzI—E, BZZ_%’ FOI—E, (AlO)
U 3U,
/P A RS A U A (A1)
41-pHm-1 " 130 W1-pn-1) 65

These coefficients are expressed in terms of the first order swimming
speed, U;, which is determined by enforcing the force-free condition
([g0,-ndS =0)as

32

= ==
Ur=( 195

- Pn—-1) (A.12)
for a neutral squirmer. The same procedures apply when considering

squirmers with other modes of actuation.

Appendix B. Streamfunction and pressure field around a
two-mode squirmer

The streamfunction for the flow around a squirmer with the B; and
B, modes (« = B,/By) is given by
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a o a a a
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+33 36
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4 r
The corresponding pressure field is given by
a-pu-nfla o e o e
1=T rT+r—4+r—+00529—+7 cos

etl ea ell etl ell ell e‘l ea ea
+<—1+—2+—3+—4>a+<—5+—6+—7+—8+ 2
F

3T T s s TR R TR
e(l
1 11
D+ o
5 3
e(l a a a a
2 %3 % %5 %6 G170
+C050(r14+ ntmoteta ™ 2)0‘

a a
€4 C) 3
Ay By
s
(l ell a e(l a ell e((
+ cos 50 44 45+ a® +cos6| L 8, B
14 20 T e ISR
e? e? 3
S04 SU)e3 b+ LU cos 6. (B2)
ro r? 2r2

The coefficients ¢ and e are given in Tables C.1 and C.2.
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Appendix C. Coefficients in the streamfunctions and pressure
fields

Table C.1

Coefficients associated with the streamfunc-
tion and pressure field around a squirmer
with a B; mode.

i ciB’ e‘B'
1 % -5
2 % 5
3 % -5
4 « -3
5 0 -5
6 -5

7 %

Table C.2
Coefficients associated with the
squirmer with B; and B, modes.

streamfunction and pressure field around a

@ @

-

< el i cf el i cf ef
3
24 1 1 2631645 is 7790587
2 43 B 2 5 ~ 20672 2 T 8129264
161 9 21 235493 3 5865
5 e ~% 2w o 8oy T
5 12! 751 1 2121 4
B T e Tt
3
soome moos omn w4 s
52729 3323573 1165 2265 7 72603
6 1021020 33592 26 T 15808 46 o T o7184
1383 6687 1 1112941 465
7 5005 T 27 -y e Y T
643 16967 1 32667 1005
8~ am 28 5 “ion 48 3
25 3775 1 539765 135
E w2 7§ e M T
5 10016469 3865 213 9
10 5 “domem 0 Tinu 2 50 3
3 10889 2683 1413 4983
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5073 617929 3 40335
12 S -G 2 g ~ s
10889 2915 672129 5825
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7605 7497 5543347 65
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Table C.3
Coefficients associated with the streamfunction and pressure field
around a squirmer with a B; mode.

. B B . B B.
i ¢’ e’ i o e’
1 3922425 _ 207754473 o1 370605 12420825
14319616 3579904 1789952 661504
2 111082089 3438978135 99 _ 26555 45405
243433472 30429184 5202032 94208
3 42001851 352600045 23 217862315 102707919
275185664 5292032 1551888384 258648064
4 2566907559103 1373496101 04 _ loooidisss 21350955
1312754085888 103194624 26899398656 12361856
5 2628194625 241963245 o5 _ 483342523 _ 16429
107597594624 1023852544 13449699328 512
6 29550956425 604835523 2% 7116985 5508825
1035626848256 2845128704 148342272 94208
7 17975181871 206392565 o7 _ 3o _ 125
247484357120 259598976 330752 2048
8 2353040961 3360863 08 17577 286875
29590520960 5240352 376832 38912
9 269768 1079072 09 20955 227025
17782765 17782765 376832 894976
10 s _ 3105401 30 378 445067649
189190144 11776 77824 517206128
1 3193605 806206965 31 48721965 _ 74375
7159808 1789952 517296128 8192
19 _ sosv0ss 168637785 g9 _ 2479505 75075
121716736 661504 89964544 4096
13 292515 94512191 33 34235973 _ 212625
1323008 1984512 2069184512 16384
14 32584874177 3223755 34 _lesrs 31875
262269136396 11634688 165376 8192
15 _ l3ssidos075 4416440517 35 315 3850425
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302811661 16804315 2625
17 = sz T 5240352 37 e
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