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The majority of organisms that inhabit the human body reside in the gut.
Since babies are born with an immature immune system, they depend on a
highly synchronized microbial colonization process to ensure the correct
microbes are present for optimal immune function and development. In a
balanced microbiome, symbiotic and commensal species outcompete patho-
gens for resources. They also provide a protective barrier against chemical
signals and toxic metabolites. In this targeted review we will describe factors
that influence the temporal development of the infant microbiome, including
the mode of delivery and gestational age at birth, maternal and infant
perinatal antibiotic infusions, and feeding method—breastfeeding versus
formula feeding. We will close by discussing wider environmental pressures
and early intimate contact, particularly between mother and child, as they
play a pivotal role in early microbial acquisition and community succession
in the infant.
1. Introduction
The relationship between a human being and their microbiome is a mutualistic
symbiosis wherein the human host provides nutrition and protection for the
microbial community [1]. In turn, the microbial population assists with essential
functions such as aiding in immune system development and providing defence
against enteric infection [2]. Dysbiosis, or microbial imbalance, is linked to a
number of diseases in infants such as asthma, Crohn’s disease, inflammatory
bowel disease (IBD), necrotizing enterocolitis and type 1 diabetes (T1D) [3–7].
While the resident microbes of the host flora are reasonably well characterized,
the mechanisms and timing of inoculation are largely understudied. For the
purposes of this review, we divide the development of the microbiome into
three stages (figure 1).

In utero (or the prenatal stage) is the least understood period of microbial
development [8]. The thought that the womb is sterile and, accordingly, that a
neonate’s microbiome is first seeded at birth is the accepted dogma. However,
studies consistently emerge that suggest microbial communities exist in the
placenta, amniotic fluid and meconium [9]. Accordingly, intrauterine seeding
is an intriguing possibility. For example, it is believed that the placenta harbours
a wide range of microbes, many of which originate in the mouth [10]. Thus,
if children are exposed to a placental flora in utero, one can readily understand
why maternal prenatal oral health is so important.

The next stage of flora development is parturition (or labour and delivery).
Due to pop culture, the most famous part of this process is amniorrhexis (i.e.
rupture of membranes or water breaking). Upon rupture of the amniotic sac,
sterility is lost. As the baby descends through the birth canal, they experience
their first wave of microbial inoculation via the vaginal flora [11]. These
microbes deoxygenate the gut and set the stage for correct growth and develop-
ment. As we characterize below, the mode of delivery drastically affects
microbial colonization. Babies delivered via Caesarean section (CS) experience
altered, less beneficial microbial inoculation [12]. This change in delivery mode
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Figure 1. Stages and associated factors that modulate the microbiome early in life.
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may ultimately explain why CS is associated with a number
of long-term health challenges.

After parturition, the baby’s microbial community experi-
ences rapid changes. During infancy and the postnatal stage,
skin-to-skin contact transfers valuable skin microbes to the
baby [13]. A number of these organisms possess antimicrobial
properties that defend against pathogens. While human skin
is a valuable inoculator of the newborn, the most powerful
and overwhelming source of microbes arrives via breast
milk [14,15]. Due to its health benefits, the American
Academy of Pediatrics and the World Health Organization
(WHO) recommend exclusive breastfeeding through the first
six months of life. In addition to helping a child achieve
optimal growth and development, a primary consequence of
consistent and exclusive breastfeeding is the proliferation
of symbiotic and commensal gut microbes. Complex milk
oligosaccharides, which are unique to primate milk, function
as prebiotics (to provide a selective growth advantage for
symbiotes over pathogens) [16–18], anti-adhesive antimicro-
bial agents (which selectively bind pathogens) [19], and
antimicrobial and antibiofilm compounds (which are
bacteriostatic against select pathogens) [20–25].

As solid foods are introduced into the diet, the micro-
biome begins the process of evolving from a simple
environment that is Bifidobacteria-rich (microbes that metab-
olize human milk oligosaccharides) to a diverse flora rich in
species such as Bacteroides that metabolize the starches pre-
sent in a more complex diet. While the introduction of solid
foods initiates microbial community changes, it is the gradual
termination of breastfeeding that has the most profound
effect. Thus, as weaning is initiated, a toddler’s gut begins a
maturation process leading to a diverse adult flora.

It is clear that stable microbial communities are established
via dynamic changes during infancy. This review aims to
characterize those changes at the molecular and microbial
levels, to provide insight into the early development of the
microbiome.
2. Prenatal development of the infant
microbiome

The process of microbial colonization during early life is
significant, as this time frame is critical to correct immunologi-
cal and physiological development. Given the importance of
commensal and symbiotic microbial communities to their
host’s development, a number of mechanisms have evolved
to facilitate their structured transmission. Microbial inocu-
lation is well established in a number of host–microbial
symbioses, where it ranges from vertical transmission from
the mother to horizontal transmission from all other sources
[26]. In contrast to these well-defined models of symbiosis,
the mechanisms that drive the seeding of the more complex
floras in and on the human body are poorly understood.
Given the importance of the microbiota for proper human
health and development, it is essential that we precisely
characterize the source of microbes, the timing of colonization,
and the endogenous and exogenous factors that govern
these processes.

The current dogma is that the fetus develops in a sterile
environment [9]. According to the sterile womb paradigm,
microbes are acquired both vertically (from the mother) and
horizontally (from the community) during and after birth.
However, the degree of uterine sterility and the possibility of
an in uteromicrobial community is highly contested.According
to the in utero colonization hypothesis, microbial colonization
of the human gut begins before birth. However, there are no
rigorously conducted studies to support this hypothesis and
challenge the sterile womb paradigm. Recent findings that
suggests in utero colonization rely heavily on PCR and next-
generation sequencing [27,28]. While compelling, each of
these techniques lacks the detection limit required to study
bacterial populations present in low quantities. Accordingly,
based on the available data, a human being’s first microbial
inoculation occurs during labour and delivery. Many of these
microbes have been characterized and quantified postpartum,
vide infra. The earliest colonizers are adventitious species from
the vaginal flora that typically gain penetrance to the digestive
system through the baby’s mouth. The nature of the microbes
present is correlated to the health of the mother. Thus, con-
ditions encountered during pregnancy or labour and delivery
will influence the microbes that first colonize a child.

2.1. Maternal or neonatal antibiotic infusions
Over the last century, antibiotics have proven to be highly
successful in treating bacterial infections. However, they are
also well-known contributors to microbiome dysbiosis.
Surprisingly, even though antibiotics are some of the most
commonly prescribed medications to children, there are few
studies detailing their long-term effects on the developing
flora. This is neglectful when one considers that several
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countries, including the United States, mandate that children
receive antibiotic prophylaxis immediately after birth.
Moreover, in Western countries, approximately 50% of
women are exposed to an antibiotic during labour and deliv-
ery. For example, antibiotic use during pregnancy is
standard during CS or assisted vaginal delivery. Before the
procedure, the mother is given an intrapartum antibiotic
prophylaxis (IAP) to help reduce the risk of CS related
infections such as endometritis, urinary tract infections
and surgical site infections [29]. While antibiotics can be
delivered after the umbilical cord is clamped to reduce
transmission to the newborn, the WHO recommends preo-
perative administration to lower the risk of post-CS maternal
infections [30].

Mothers who plan on vaginal delivery do not require
antibiotic administration, with the exception of those who
test positive for group B streptococcus (GBS) [31]. GBS is a
Gram-positive bacterium present in the GI tracts and genital
tracts of 20–30% of pregnant women at the time of delivery
[32]. Fifty per cent of all pregnant women will carry GBS at
some point over the course of their pregnancy. While healthy
pregnant women are typically asymptomatic, GBS infections
in fetuses or infants are detrimental [33]. GBS is associated
with preterm birth and infant mortality, and is a major
cause of sepsis, pneumonia, meningitis and bacteraemia
[33,34]. Additionally, there is a correlation between the time-
line of antibiotic administration prior to vaginal delivery
and the infant’s microbiome make-up, with a decrease in
Bifidobacterium and an increase in Clostridium [35].

The microbiome of CS-delivered infants is consistent
with infants whose mothers were treated with IAP. The over-
all diversity of the neonatal gut is much lower. Typically,
there are decreased levels of Actinobacteria, Bacteroidetes,
Bifidobacterium and Lactobacillus, while there are increased
levels of Proteobacteria, Firmicutes and Enterococcus spp.
[35–37]. IAP administration has been linked to an elevated
risk for the development of a number of diseases and
conditions in the child including asthma, allergies and
obesity. However, these studies are not all conclusive on
whether they can be connected entirely to maternal antibiotic
use [31,35].

While longitudinal studies are not available, what is
known is that intrapartum antibiotic use is associated with
decreased bacterial diversity in the neonate’s first stool and
a presumed lower abundance of lactobacilli and bifidobac-
teria in the gut. Similar associations have been observed
after administration of antibiotics to the neonate directly
after birth. Studies are unavailable that characterize the
effect of prenatal antibiotics on the neonate’s microbiome.
Additionally, more data are needed that examine the
potential effects of perinatal antibiotic use on an infant’s
short- and long-term health.
3. Development of the infant microbiome
during parturition

Caesarean section delivery is a necessary surgical procedure
when natural, vaginal delivery puts either the mother or
baby at risk due to complications during the pregnancy
or labour. TheWHO recommends the rate of CS to be between
10% and 15%; however, the rate of caesarean deliveries is on
the rise, especially in developed countries [38,39]. Despite
the potential risks involved for both mother and child, accord-
ing to the Centers for Disease Control and Prevention (CDC),
32% of all deliveries in the United States are by CS [38,40].
There are several factors involved with making the decision
to perform a CS with additional consideration made for
elective CS. High-risk pregnancy conditions leading to CS
include higher maternal age, obesity, pre-existing conditions
such as diabetes, blood disorders and high blood pressure,
and other factors such as multiple gestation, birth defects or
pre-eclampsia [41,42]. Planned vaginal deliveries can lead to
delivery by CS due to complications that arise during labour,
necessitating emergency CS. The most common reasons for
performing emergency CS are cephalo-pelvic disproportion
(CPD), failed induction, macrosomia and non-reassuring
fetal heart rate (NFHR) [43].

Aside from the numerous complications that can arise
from CS, mode of delivery is one of the foremost contributors
to disruption of the infant’s microbiome; other contributors
are maternal antibiotic use and formula feeding [35]. The
development of the neonate’s microbiota for those babies
born vaginally is quite different from that of those babies
born by CS. The infant is exposed to an expansive number of
bacterial microbes through contact to vaginal, faecal and
skin microbes following delivery (figure 2) [44,45]. Passage
through the birth canal affords the neonate a microbiota
similar to the mother’s vagina, while CS babies’ microbiota
resembles the mother’s skin and environmental microbes
[45]. Broadly speaking, following birth, babies delivered
by CS exhibit a decreased colonization of Bacteroides,
Lactobacillus and Bifidobacterium, with an increased abundance
of Clostridium difficile and common microbes associated
with the skin such as Staphylococcus, Streptococcus and
Propionibacterium [35,45,46]. There is a grey area with the
differences in emergency versus planned CS, signifying that
the onset of labour or membrane rupture can significantly
alter the microbiota [46]. The microbial composition skews
towards that of those delivered vaginally. While there is no
clear answer to how long after birth the mode of delivery
affects the microbiota of the child, the most significant
differences are found up to 1 year after birth [47].

After the first week of life and up to 1 month of age, CS
babies consistently showed significantly lower levels of Bifido-
bacterium and higher levels of Klebsiella, Haemophilus and
Veillonella [48,49]. During the same time period, vaginally
born infants displayed an increased abundance of Bacteroides
[49]. After the first 30 days and up to 90 days after birth,
species diversity between delivery modes is not as signifi-
cant; however, several studies note that these differences
are still detected. Lactobacilli and Bifidobacteria species are
more abundant in vaginally delivered infants [50,51].
Within the Bacteroidetes phylum, the species diversity
between CS and vaginally delivered babies is still present.
CS delivered neonates typically display a lower abundance
of Bacteroides and higher levels of Enterobacteriaceae and
Clostridium [49,52].

By the age of 6 months, the colonization patterns are
almost the same between the two modes of delivery; however,
the Bacteroides and Parabacteroides species continue to be higher
in vaginally delivered infants, while infants delivered by CS
display a higher relative abundance of Clostridium spp.
[31,47]. The variation in Lactobacillus colonization is no
longer associated with delivery mode by the time the baby
reaches 6 months of age [53]. Once the baby reaches a year
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Figure 2. Comparison of bacteria present in the microbiomes of vaginally born and Caesarean-born infants. These ratios show the relative abundances of each
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of age, so many other factors are involved with the develop-
ment of the microbiota of the baby that the differences
are more difficult to attribute to the mode of delivery. The
Bacteroides continued to appear in relatively lower abundances
in CS delivered infants as well as a lower diversity in the
species within the Firmicutes and Proteobacteria phyla [52].

The risks of developing immune-associated and allergic
diseases, as well as hard to treat infections, are much higher
following CS delivery. Conditions connected to delivery by
CS include inflammatory bowel disease, T1D, coeliac disease,
childhood asthma and obesity [54]. While it is clear that
delivery by CS contributes to infant gut dysbiosis, there are
strategies in place to help shape infants’ gut microbiota to a
normal composition and decrease the risk of infection and dis-
ease. In order to counteract the lack of exposure to the maternal
vaginal community, a process termed ‘vaginal seeding’ can be
carried out. About 1 h before the CS surgery, a sterile pad
soaked in saline is inserted in the mother’s vagina, provided
she tests negative for GBS and vaginosis [55,56]. Within
minutes of Caesarean birth, the infant is inoculated with the
mother’s vaginal fluid through a swab of gauze to the mouth,
face and body [56]. Another common strategy to reduce
the risk of immune-related diseases caused by dysbiosis
of the microbiome of CS-delivered babies is to administer
probiotics to high-risk pregnant women [57]. In addition,
infant formula or probiotic drops are often supplemented
with Lactobacillus reuteri to help lessen the effects of infant gut
disorders [57].
4. Influence of feeding on the infant
microbiome during the postnatal period

4.1. Human milk versus infant formula
The numerous benefits that breastfeeding provides both short-
term and long-term for the child are well known. This is why
the WHO recommends exclusively breastfeeding for the first
6 months of life, followed by supplemental breastfeeding up
to 2 years as solid foods are introduced [58]. Breast milk pro-
vides protective measures against the risk of acquiring
infectious diseases and developing atopic disorders through
its immunological components including immunoglobulins,
cytokines, growth factors and microbiologic factors. These
components are especially important for the growth and
development of the young infant’s immune system [59].

The composition of the milk is dynamic, changing
throughout lactation to satisfy the needs of the infant at differ-
ent stages of its development, especially during the first few
weeks (table 1). The colostrum is the first milk produced
after birth. It is a thick, yellow fluid, and while it lacks high
nutritional value, it is rich in immunologic and growth factors
[60]. Colostrum production begins mid-pregnancy and, at
about 5 days postpartum, slowly transitions to traditional
breast milk over a period of 2 weeks. By 4 weeks postpartum,
the milk is considered fully mature with limited changes in
composition throughout the remaining lactation period.

Immunoglobulins (Ig) are important components that
protect the neonatal gut against pathogenic bacteria. The
immunoglobulins found in human milk include IgA,
secretory IgA (SIgA), IgM, secretory IgM (SIgM) and IgG,
with SIgA playing a central role in its defence against infec-
tious disease [59]. While SIgA is present throughout all
periods of breastfeeding, it is found in its highest concen-
trations in the colostrum [61]. SIgA works through binding
to pathogens in the intestinal lumen, preventing their
attachment to epithelial cells and mucosal regions [62,63].

Cytokines are secreted proteins found in human milk that
function in developing the infants immune system through
their anti-inflammatory and immunosuppressive properties
[59,64]. The variety and concentrations of the individual cyto-
kines vary frommother tomother and throughout the lactation
period. However, interleukins-6, 8 and 10 (IL-6, IL-8 and IL-10),
tumour necrosis factors-α and β (TNF-α and TNF-β), and trans-
forming growth factors-α and β (TGF-α and TGF-β) are
commonly found across lactating mothers [59,65]. IL-6 is



Table 1. Summary of significant components found in human milk.

component function

immunoglobulins prevent pathogens from entering into systemic circulation

and binding to epithelial surfaces

cytokines anti-inflammatory and immunosuppressive agents

growth factors modulate metabolic system development (digestive, nervous, etc.)

lipids participate in nervous system and gastrointestinal development

provide protection against enteric infection

proteins nutrition, nutrient absorption, antimicrobial activity, gut and immune system development

human milk oligosaccharides (HMOs) prebiotics, anti-adhesive, antimicrobial and antibiofilm agents

probiotics consistent wave of commensal and symbiotic organisms
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involved with the biosynthesis of IgA cells in the mammary
glands; the highest levels are found in the colostrum [59,64].
Typically, IL-6 is found in higher concentrations in the mothers
who deliver pre-term, indicating IL-6 is necessary to counteract
the developmentally suppressed immune systems common
among preterm babies [59].

The presence of a wide array of growth factors in human
milk is especially important during the first weeks of life.
These factors are responsible for the growth and develop-
ment of a number of systems. The epidermal growth factor
(EGF) is first present in the amniotic fluid and following
birth, found both in the colostrum and mature milk. In the
infant gut, EGFs promote cell proliferation and maturation
of epithelial cells, as well as participate in intestinal mucosa
repair [60,66]. The neuronal growth factors (NGFs) are
involved in growth and development of the nervous system
with a focus on both prenatal and postnatal brain maturation
[60,67]. Erythropoietin (Epo), found in high concentrations in
human milk, is a hormone involved in intestinal develop-
ment and increased production of red blood cells, which in
turn decreases the risk of anaemia [59].

In addition to the bioactive molecules present in human
milk, the largest proportion of solid components includes
the complex proteins, lipids and carbohydrates. The compo-
sition can be dynamic across mothers as the milk matures
from the initial colostrum, but the average milk supply
contains 3–5% fats, 0.8–0.9% proteins and 6.9–7.2% carbo-
hydrates, with an additional 0.2% mineral component [68].
Milk fats make up 40–55% of the total energy in breast
milk, with lactose providing an additional 40% [69,70].
Over 200 different fatty acids have been identified in
human milk, with triglycerides accounting for over 98% of
the fat content [69,71]. Complex lipids play a central role in
brain and gastrointestinal development, as well as protection
against pathogenic bacteria, specifically GBS [71].

With over 400 unique proteins found in human milk, the
most common are casein, α-lactalbumin, lactoferrin, immuno-
globulin IgA, lysozyme and serum albumin [71].Milk proteins
play a role in development of the neonatal gut and immune
system, assist in nutrient absorption, and protect against
pathogens through their antimicrobial activity [67,72]. Lacto-
ferrin is found in high abundance in human milk and is
known for its antibacterial activity against pathogens that
gain virulence through an iron-mediated mechanism [73].
Lactoferrin has the ability to bind to two ferric ions, which is
how it is thought to inhibit bacterial pathogens; however,
lactoferrin has also shown antimicrobial activity against
non-iron requiring viruses and bacterial species [73,74].

While lactose is the most abundant carbohydrate found in
human milk, human milk oligosaccharides (HMOs) are of the
most interest when discussing the infant microbiome. HMOs
are the third largest component in human milk, and, while
infants are unable to digest them, they play an important role
in shaping the microbiota of the developing gut and building
up the young immune system. Over 200 unique HMOs have
been identified, ranging from 3 to 22 sugars per molecule [71].
All HMOs are composed of five glycans: L-fucose, D-glucose,
D-galactose, N-acetylglucosamine and N-acetylneuraminic
acid [71]. Since they are relatively unaffected by digestion,
HMOs are able to pass through the infant’s stomach and
small intestine intact, and they accumulate in the colon [75].
One of the primary functions of HMOs is to act as a prebiotic,
allowing the growth of beneficial Bifidobacterium spp., while
preventing the colonization of harmful pathogens.

In addition to the prebiotic nature of HMOs, breast milk is
known to have probiotic properties that help to shape the
infant gut microbiota. Once considered sterile, breast milk
is actually the source of the 104–106 bacterial cells per day
that the infant consumes, with an average feeding of 800 ml
per day [76]. While the source of the bacteria present in
human milk is not completely clear, it is thought it is a com-
bination of bacteria from the infant’s oral cavity and from the
mother’s nipple and surrounding skin [75,77]. In exclusively
breastfed infants, the most abundant bacterial genera are
Bifidobacterium, Lactobacillus, Staphylococcus and Streptococcus.
Bifidobacterium species dominate 70% of the strains [75,78].
The Bifidobacterium species most frequently detected that
act to establish healthy gut flora are B. breve, B. longum,
B. dentium, B. infantis and B. pseudocatenulatum [79,80].

For the first 6 months of the infant’s life, when breast milk
is typically the sole source of nutrition, the gut bacteria pre-
sent varies significantly depending on the mother. While
the introduction of solid foods does begin to create uniform-
ity across the microbiome, there are still higher abundances of
Bifidobacterium and Lactobacillus species present in breastfed
babies [81]. It is not until breastfeeding ceases that the
child’s microbiome begins to resemble an adult-like state.

There are a number of factors that can lead to the intro-
duction of formula supplementation into a baby’s diet;
however, only a limited number of neonates require formula
for medical reasons. Social concerns and lack of prenatal
breastfeeding education contribute to formula feeding,
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along with insufficient milk production due to limited
mother-to-infant contact, worry over the baby not receiving
enough milk, trouble calming a fussy baby, and a lack of
sleep. In fact, 85% of mothers plan to exclusively breastfeed
for the first 6 months. However, less than 50% breastfeed
exclusively at 3 months and about 25% at 6 months [82,83].
According to the CDC, as of 2015, 17.2% of infants receive
formula supplementation within the first 48 h [83]. During
the first days postpartum, only a limited supply of milk is
produced before the onset of lactogenesis at 2–4 days
[84,85]. This is a critical period in which mother and infant
separation can delay the establishment of breastfeeding or
even hinder the process from starting. And while breast
milk is considered the best nutrition for the baby during
the first 6 months of life, the advancement of the nutritional
contents in formula over the past several decades has made
formula a healthy alternative.

The goal of formula design is to promote growth and
development of the infant through a product that mimics the
nutritional composition of human milk. This is a difficult
task due to the complexity of breast milk and the changes
that occur in the nutritional profile, especially the macronutri-
ents, throughout the course of lactation. While formula
companies do their best, it is not feasible to include some of
the components, such as the bioactive materials found in
human milk, in their formula. Infant formula is government
regulated to ensure the proper composition of proteins, fats,
sugars, vitamins and minerals [70]. Cow’s milk and soy milk
are the two most common bases for infant formula. However,
there are several additional specialized formulae available
on the market to meet the needs of babies with certain sensi-
tivities. Due to the high abundance of fats and proteins in
cow’s milk, it first must be diluted to a similar composition
to human milk [70]. For babies with either colic or milk
allergies, soy-based formulae are a common substitute.

Infant formulae are commonly fortified with prebiotics
and/or probiotics to incorporate some of the beneficial
components found in human milk [16,86]. Prebiotics are
nondigestible oligosaccharides that stimulate the growth of
beneficial bacteria in the digestive system. The most common
oligosaccharides supplemented into formula are short-chain
galacto-OS (GOS), long-chain fructo-OS (FOS) and polydex-
trose [87,88]. These oligosaccharides have been shown to
stimulate the growth of beneficial Bifidobacterium and lower
the abundance of E. coli and Enterococcus [87–89]. Probiotics
are non-pathogenic, live microbial organisms that promote
the growth of beneficial flora such as Bifidobacterium and Lacto-
bacillus spp. [90]. The addition of these probiotics has been
known to reduce the susceptibility of antibiotic-associated
diarrhoea and the symptoms of colic [91,92].

The microbial composition of the infant gut of formula-
fed babies is vastly different from that of breastfed babies.
It has been shown that, even for mixed-fed babies (those
who supplement formula between breast feedings), the gut
microbiota more closely resembles the patterns of exclusively
formula fed babies [82]. The infant microbiome is shifted
towards that of an adult at a quicker rate with higher
overall bacterial diversity [82]. The gut is dominated by
Staphylococcus, Streptococcus, Enterococcus and Clostridium
species, as well as specific species of Bifidobacterium [93,94].
In addition, in exclusively formula-fed babies, a greater preva-
lence of E. coli, C. difficile, B. fragilis and Lactobacilli species has
been observed to colonize the gut [75,95].
4.2. Introduction to solid foods
The process of weaning, when the introduction of solid foods
begins, typically starts at around 4–6 months and continues
until the baby is approximately 2 years old. The WHO rec-
ommends complementary feeding should be gradual, in
which the baby is still feeding off of either infant formula or
breast milk as ‘family foods’ are supplemented into the diet
[96]. Weaning becomes necessary when breast milk or infant
formula no longer provides the necessary nutrients for the
baby. Typically, at around 6 months of age babies begin to
show signs they are ready by losing interest in nursing or
becoming more interested in eating solid foods. According
to the CDC, solid foods should be introduced one at a time
to ensure that none of the common allergies to milk, eggs,
fish, shellfish, tree nuts, peanuts, wheat or soya beans are
present [97].

The weaning process must progress in a timely manner to
ensure that the digestive system matures properly. Pancreatic
function, small intestine absorption and fermentation
capacity are underdeveloped during the early weaning
stages [98]. While there are enzymes present in the saliva
that help break down food, it is not until 6 months of age
that the pancreas secretes enough enzymes including
α-amylase to digest starches and proteins [99]. Until the
pancreas gains full function, there are a vast number of
non-digestible carbohydrates that are absorbed by the colon
and allow the growth of beneficial bacteria that are unable
to proliferate in a breast milk or formula diet [98].

Iron and vitamin D are commonly supplemented into a
weaning infant’s diet to reduce the risk of deficiencies.
Babies are born with a supply of iron from their mothers;
this iron is depleted by approximately 6 months of age
[100]. At this point, babies must consume either an iron-
fortified infant formula or eat a diet of iron-containing
foods. Iron is essential for humans to synthesize haemo-
globin, which is required to transport oxygen from the
lungs to all the other cells in the body. When there is an
iron deficiency, there are significant differences in the
microbial environments of the infant gut. While most bacteria
require iron for survival, growth and proliferation, in iron-
low conditions, there is an increase in Bifidobacterium and
Lactobacillus spp., which have little to no need for iron
[101]. Vitamin D not only is crucial for building strong
bones, but plays a role in the maturation of the gut micro-
biome. Vitamin D is enriched in breast milk and infant
formula; however, during weaning, babies should be
consuming vitamin-D-fortified milk, yogurt and cereals.

While it was previously thought that the introduction of
solid foods alters the gut microbial composition, it is the ces-
sation of breastfeeding that is now attributed to shifting the
microbiota to an adult-like state. In general, the introduction
of solid foods alters the gut microbiota to be dominated by
bacteria within the Bacteroidetes and Firmicutes phyla. At
the genus level, there is an increase in Atopobium, Clostridium,
Akkermansia, Bacteroides, Lachnospiraceae and Ruminococcus
spp.; concurrently there is a decrease in Escherichia and
Staphylococcus spp. [75,102]. During the initial weaning
period, when breastfeeding is still the sole source of nutrition,
Bifidobacterium and Lactobacillus spp. continue to dominate at
consistent amounts [75,103]. Even after several months
of complementary feeding, these infants displayed lower
abundances of Clostridium leptum, Clostridium coccoides and
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Roseburia spp. There is an increase in the abundance of Bifido-
bacterium, Lactobacillus, Collinsella, Megasphaera and Veillonella
compared with those who ceased breastfeeding [75,81].
Formula-fed babies during the same period exhibit higher
abundances of Bacteroides, Clostridium difficile, Clostridium
perfringens and Clostridium coccoides, with overall less
mature microbiota [98].
ing.org/journal/rsob
Open
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5. Environmental exposure
In addition to the obvious determinants of infant microbiome
diversity, including mode of delivery, breastfeeding versus
formula feeding, antibiotic use and introduction of solid
foods, environmental exposures can also play a key role in
the variability of that microbiota. Hospital setting, cohabita-
tion with family members, geographical location, air quality,
pet and animal exposure, and daycare are all included in the
environment factors that contribute to neonatal microbiome
development. A focus on neonatal intensive care unit (NICU)
hospital environment and exposure to pets is examined in
this review since there exists exhaustive research in this area.

One of the earliest routes of microbial transmission is in
the hospital with the majority of births occurring in the set-
ting or quickly being transferred there. Specifically, the
NICU is associated with increased exposure to a diverse
microbial community. While not an exhaustive or conclusive
list, some of the common causes of preterm labour are
maternal ethnicity, body mass index and age, infection or
inflammation, smoking, and stress [104]. Due to the nature
of the preterm birth, infants are often born spontaneously
vaginally or through emergency CS. The mortality and
infection rates of preterm infants are much higher than
their full-term counterparts because their compromised
immune systems make them more prone to NICU-acquired
infections [105]. Even with intensive sanitization and care
to keep the NICU a sterile environment, a plethora of
both pathogenic and commensal bacterial species are found
both on surfaces and elsewhere within the facility. The
most common bacteria that are found to colonize on
neonate-associated surfaces, which includes ventilators,
CPAP machines, stethoscopes, feeding tubes, catheters
and pacifiers, are Streptococcus, Staphylococcus, Neisseria,
Pseudomonas and Enterobacteriaceae species [106,107]. The
most prevalent environmental bacteria found within the
NICU include Geobacillus, Halomonas, Shewanella, Acinetobac-
ter and Gemella species [106,108].

The correlation between the infant gut microbiota and
the bacterial species present in the NICU environment is evi-
dent through stool evaluation. In general, Clostridia species
(specifically C. perfringens, C. butyricum, C. difficile and
C. paraputrificum) are found in high abundances in the infant
microbiota [109–111]. Staphylococcus species are found to be
highly abundant in very-low-birthweight (VLBW) NICU
infants, especially on the skin, but are also present in the gastro-
intestinal tract [110,112]. The stools of the VLBW neonates are
typically colonized by Klebsiella, Enterobacter and Enterococcus
species, while Streptococcus species dominate the saliva
[108,112–114]. This is compared with normal-birthweight,
healthy infants in which Escherichia, Bifidobacterium and
Bacteroides species are found in higher abundances [108,110,112].

Early exposure to pets and other animals has been known to
play a pivotal role in shaping the gut microbiome and is
associated with a higher immunity and lower prevalence of
allergy and asthma development. The microbial composition
of homes with pets is examined through vacuumed house dust
[35]. In general, homes with pets show lower abundances of
Bifidobacteriaceae and higher abundances of Peptostreptococcaceae
[115,116]. When compared with pet-free homes, infants
are more likely to be colonized by Bifidobacterium species
pseudolongum, thermophilum and longum. In one study
B. longum was associated with a protective effect against
bronchitis [35,115,117]. In another study with mice, there was
found to be an increase of Lactobacillus johnsonii, providing a
probiotic type of effect on the gut microbiota [118].
6. The TEDDY study
Gaining insight on the development of the microbiome from
in utero through infancy into childhood is an important tool
in helping us understand what role bacteria plays in human
disease. One study, titled The Environmental Determinants
of Diabetes in the Young (TEDDY), aimed to find a corre-
lation between the early life factors that shape the infant
gut microbiome and the risk of acquiring T1D. Two separate
TEDDY studies have analysed the stools of children from
around 3 months of age to the clinical endpoint (about 46
months of age) [119,120].

The key takeaway from the first study, which sequenced
12 500 stool samples from 903 children, concluded there are
three stages of gut microbiome development: the develop-
mental phase (3–14 months of age), the transitional phase
(15–30 months of age) and the stable phase (31–46 months
of age) [120]. This study was able to track the bacterial
make-up throughout the entire 43-month time frame; attri-
bute changes in the gut flora to either environmental,
maternal or postnatal effects; and analyse whether or not
this information could predict the onset of T1D [120]. Consist-
ently in this study an increased abundance of Bacteroides and
lower abundances of short-chain fatty acid producing bac-
teria were found [120].

The second TEDDY study analysed 10 913 stool samples
from 783 children and followed a similar protocol to the
first study [119]. Data were collected until either islet immu-
nity was reached or the child persisted to test positive for
T1D. The key takeaway from this study was that specific
strains of bacteria may not be the cause of T1D, as was
thought in the first study. In healthy control children,
researchers found that the children’s bodies contained more
genes that are associated with fermentation and the biosyn-
thesis of short-chain fatty acids [119]. This suggests that the
short-chain fatty acids, instead of bacteria, are more vital in
protecting the body against the onset of T1D [119].

While this comprehensive review on the development of
the gut microbiome only focuses on the first year of life, it
is important to recognize that the microbiome continues to
mature after this critical stage. These two TEDDY studies
together, while not conclusive, have laid the foundation
for a necessary understanding of how the make-up of the
microbiome can predict human disease.
7. Conclusion and future outlook
The early microbiome appears to follow a progression from
organisms that facilitate lactate utilization during strict



royalsocietypublishing.org/journal/rsob
O

8
lactation to anaerobic organisms involved in the metabolism
of solid foods containing complex starches, once introduced.
At around 12 months old, the infant microbiome achieves a
more complex structure, and becomes similar to that of
adults by the age of 3 years. In addition to facilitating nutri-
ent usage, the ecological succession of the infant microbiome
educates the immature immune and metabolic systems.
Disruption of what has evolved to be a ‘normal’ assembly
process may have considerable downstream consequences
for the development of autoimmune and metabolic
pathologies.

Going forward, governing the infant microbiome will
almost certainly focus on three areas. First is reducing the
use of Caesarean delivery, as this practice is associated with
alterations to the infant microbiome. The second major
focus will be on decreasing the misuse and overuse of anti-
biotics during the perinatal period—particularly until we
better understand the downstream effects of such treatments
on the mother and child. The third area will probably focus
on an increase in breastfeeding and using the components of
human milk for novel food products and therapeutics [121].
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