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Abstract
Discrete choice modeling is a fundamental part of travel demand forecasting. To date, this field has been dominated by para-
metric approaches (e.g., logit models), but non-parametric approaches such as artificial neural networks (ANNs) possess
much potential since choice problems can be assimilated to pattern recognition problems. In particular, ANN models are eas-
ily applicable with their higher capability to identify nonlinear relationships between inputs and designated outputs to predict
choice behaviors. This article investigates the capability of four types of ANN model and compares their prediction perfor-
mance with a conventional multinomial logit model (MNL) for mode choice problems. The four ANNs are: backpropagation
neural networks (BPNNs), radial basis function networks (RBFNs), probabilistic neural networks (PNNs), and clustered
probabilistic neural networks (CPNNs). To compare the modeling techniques, we present the algorithmic differences of each
ANN technique, and we assess their prediction accuracy with a 10-fold cross-validation method. Furthermore, we assess the
contribution of explanatory variables by conducting sensitivity analyses on significant variables. The results show that ANN
models outperform MNL, with prediction accuracies around 80% compared with 70% for MNL. Moreover, PNN performs
best out of all ANNs, especially to predict underrepresented modes.

In travel mode choice modeling, and based on a set of
given attributes, the objective is to model the choice pro-
cesses and behaviors of travelers faced with several travel
mode alternatives. Being able to model mode choice and
predict future trends is critical to transportation planners
and policy makers. Travel behaviors are typically exam-
ined by using statistical survey techniques such as reveal
preference (RP) and stated preference (SP), in which
respondents are asked to present their choices and pre-
ferable scenarios, respectively (1). The surveys yield dis-
crete choice data that can then be used to calibrate travel
mode choice models that are fundamental components
of disaggregate travel demand modeling approaches, for
example, activity-based modeling (ABM).

As the main parametric modeling approach, random
utility modeling has been the dominant technique used in
the literature since the 1980s to investigate parametric
relationships between mode choice and its possible deter-
minants. In particular, logit models—one of the random
utility models—gained popularity in the travel mode
choice realm because they are based on simple mathe-
matical formulations while accounting for unobserved
variables (i.e., stochasticity). Logit models (e.g., multino-
mial logit [MNL]), however, assume that each choice is

independent and identically distributed (IID), which can
lead to biased estimations and misleading predictions.
Moreover, interactions between the explanatory vari-
ables (e.g., the nonlinearity of attributes) are often
neglected since it is difficult to represent them in the util-
ity function (e.g., conditional and threshold effects). One
way to take this issue into account in the linear utility
function is by introducing additional variables (e.g.,
polynomial and interaction terms) either through consid-
ering all possible combinations of explanatory variables
or by measuring empirical relationships (2). Nonetheless,
it is practically impossible to identify all the interactions
between all the variables as well as to identify the neces-
sary variables. MNL tries to overcome this issue by using
domain knowledge as much as possible. Although the
flexible random utility model (RUM) methods such as
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mixed logit (3–5) can have better modeling performance
than MNL by relaxing IID assumptions, predetermined
structures and linear characteristics of underlying func-
tions still make it difficult to capture or infer high degrees
of nonlinearity in a dataset (3, 6, 7).

In contrast, algorithmic non-parametric approaches
have proven to be incredibly powerful to study urban
systems (8–15). Specifically, artificial neural networks
(ANNs) present higher adaptability in identifying non-
linear interactions (16, 17). Contrary to the logit model
that deals with the nonlinearity issue by reducing the
‘‘complexity’’ of the dataset, ANNs can capture non-
linear properties more easily through additional units
(e.g., hidden layers) without assuming predetermined
functional forms (1, 18–20). Nonetheless, a commonly
acknowledged disadvantage of ANNs is their lack of
interpretability, and they are often associated with black
boxes. Another disadvantage is their relative inability to
use previously acquired knowledge (i.e., domain knowl-
edge). Despite these challenges, ANNs tend to outper-
form logit models (from the multinomial to nested logit
models [20–22]). Among different types of ANN models,
several studies have used backpropagation neural net-
works (BPNNs) to model mode choice (19, 21, 23).
BPNNs tend to achieve high prediction accuracy and are
easy to apply. Nonetheless, many different types of
ANN models exist, often superior to BPNNs, combining
both a strong statistical background with machine learn-
ing features. Probabilistic neural networks (PNNs), for
example, are derived by incorporating statistical features
(e.g., Bayesian decision rule and kernel density estima-
tion [KDE]) into the structure of the neural network. In
addition, additional treatments on the dataset or net-
work structure are applied to obtain more efficient and
reliable models.

In this article, we investigate the feasibility and capa-
bility of four ANNs to model discrete mode choice beha-
viors and compare their prediction performance with a
MNL. Specifically, there have been a limited number of
articles that conduct comprehensive analyses of different
types of ANN algorithms to model discrete choice in the
field of transportation. In this study, we focus on four
types of ANNs: BPNNs, radial basis function networks
(RBFN), PNNs, and clustered probabilistic neural net-
works (CPNNs). As a typical travel survey, the Chicago
Metropolitan Area for Planning (CMAP) Travel Tracker
Survey dataset collected from 2007 to 2008 is used. This
study consists of six sections. After this introduction, we
present the five methods for discrete choice modeling.
We then explain how the data were prepared. Thereafter
we provide the model specifications for MNL and ANN
models and follow this with the results and a discussion,
before the conclusion.

Methods for Discrete Choice Modeling

Random Utility Model: Logit Models

The logit model is the most popular type of random util-
ity model derived from consumer economics theory, and
it was initially developed by McFadden (3, 24). In utility
maximization behavior, an individual i makes a decision
to select one choice among discrete alternatives, by eval-
uating their associated attributes X. The individual i

chooses the alternative m that provides the largest utility:

Uim.Uik 8m 6¼ k ð1Þ

In reality, researchers do not observe the complete
utility of the individual. Thus, the utility can be classified
into two parts: an observed utility Vim and an unobserved
utility eim: The observed utility generally contains two
sets of attributes: 1) covariates associated with both the
individual and the alternative Xim; and 2) decision-maker
characteristics, Si (3). The observed (stated) utility (V ) is
a value determined from a linear combination of the
attributes used, which captures the attractiveness of an
alternative bounded to the given model specification as
follows:

Vim =V Xim, Sið Þ ð2Þ

In contrast, the unobserved utility eim cannot be
observed by researchers. This unobserved part mainly
results from the specification of the observed utility Vim.
In practice, it is impossible for statistical approaches to
include all possible attributes. Therefore, researchers
treat the unobserved terms as a stochastic element.
Specifically, the logit model is derived by assuming that
each unobserved term, elm, is IID extreme values, i.e.,
Gumbel and type 1 extreme values. By combining two
utilities, we can get the probability of individual i choos-
ing alternative j by solving the mathematical
formulation:

Pij =
eb

0XimPM
k= 1 e

b0Xik

ð3Þ

where Xik is the vector of observed explanatory variables
to choose a given alternative, and b0 is parameters for the
observed utility. For more technical details about logit
models, see (3).

ANNs

ANNs essentially emulate decision-making processes
occurring in the brain. As opposed to logit models that
assume linearity in estimation, ANNs can algorithmi-
cally construct models that are based on nonlinear rela-
tionships between determinants. Figure 1b shows a
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multi-layer perceptron MLP that has been widely
adapted in most neural network models.

In Figure 1a, the process of predicting output using a
single neuron (i.e., a basis function) is similar to the logit
model, since it is based on a linear function. ANNs, how-
ever, are constructed by combining multiple neurons to
identify nonlinear relationships between a choice and its
associated explanatory variables.

Several types of neural networks exist, and the differ-
ences between them mainly come from the nature of the
basis function for each model. In the following subsec-
tions, we detail four different types of neural networks
and their structural and mathematical differences.
Table 1 contains the main characteristics, advantages,
and disadvantages of the four ANN models.

BPNN. BPNN is the most popular and simplest algo-
rithm of MLP. The backpropagation process usually
minimizes the error function (Equation 4) of the MLP
by changing the value of the weights using a gradient
descent method (GDM):

E=
XN
i= 1

y0i � yi
�� ��2 ð4Þ

where E is the error, i is the number of training samples,
y’ is the predicted values through the training, and y is
the actual values from the training dataset. Each neuron
follows the same activation process as shown for a single
neuron. Typical activation functions include the step, sig-
moid, tanh, rectified linear unit (ReLU), and the identity
functions (25).

The hidden neurons are ‘‘activated’’ by receiving the
sum products of input vectors x and their associated
weights w. The output layer also obtains information
from the hidden layer in the same manner. The final out-
put, y0 is:

y0 x,wð Þ=s(
X3
j= 1

w
2ð Þ
j � h(

X3
i= 1

xiw
1ð Þ
i +w

1ð Þ
0 )+w

2ð Þ
0 ) ð5Þ

where x is input vector, w is the vector of associated
weights, w 1ð Þ are the weights between the input layer and
the hidden layer, w 2ð Þ is the weights between the hidden

Figure 1. Structure of an ANN: (a) single neuron; (b) MLP with backpropagation; (c) RBFNN; (d) PNN.
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layer and the output layer, and the hðÞ and sðÞ functions
are the activation functions (see Figure 1b).

The drawbacks of the backpropagation process nota-
bly come from the GDM that does not guarantee a glo-
bal minimum is reached when local minima exist. Thus,
the results usually vary each time the BPNN is trained.
Second, no ‘‘optimal’’ rule exists to set the structural
parameters of the BPNN such as the number of hidden
layers and their associated number of neurons; although
it is generally believed that a larger number of neurons
per hidden layer increases the accuracy of the model esti-
mation up to a point (25). Nonetheless, in general, one
or a few hidden layers are sufficient. Despite these limita-
tions, it is worth mentioning that the BPNN is still the
most dominant type of ANN used because it is simple to
apply and it ensures relatively high accuracy.

RBFNs. A RBFN is also a feedforward network with
three layers: an input, a radial basis function (RBF) hid-
den, and an output layer (see Figure 1c). In contrast to
the BPNN, the RBFN is formulated by a linear combi-
nation of Gaussian basis functions g xð Þ as the outputs of
the hidden layer:

Output Score=
X

wh(g xð Þ) ð6Þ

where hðÞ is an activation function, w is a weight between
a hidden neuron and an output neuron, and Output score

is an output for each given class. The basis function g xð Þ
is conceptually obtained by calculating the distance
between two vectors based on the Gaussian function
whose outputs are inversely proportional to the distance
from the mean:

g xð Þ= 1

s 2pð Þ
1
2

exp � x� cik k2

2s2

 !
=exp �b x� cik k2

� �
ð7Þ

where x is an input vector with n variables (vector to be
classified) and c is a ‘‘prototype’’ vector. To be specific,
this equation represents the function of the Euclidean dis-
tance between the new input vector and the prototype
vector. Essentially, the term b determines the width of
the Gaussian curve, which controls the decision bound-
aries. The prototype vector, ci, is pre-stored in each hid-
den neuron, and it is a preselected data point from the
training set, whether randomly or not (discussed later).

Table 1. Comparison of Four Types of Neural Networks

BPNN RBFN PNN CPNN

Application
scope

Classification/regression Classification/ regression Classification Classification

Classification
process

Minimize sum squared
errors by updating
weights

RBF and BPNN process Parzen PDF classifier
(KDE and Bayesian
decision rule)

Use clustering methods
and PNN process

Advantages � Simple application to
predict the patterns

� Does not require any
statistical features in
the learning process

� Easy to identify the
magnitude of
attributes based on
weights (relative
importance)

� A variety of
applications are
available

� Simpler format of
Gaussian function
enables faster learning
process than other
Gaussian models

� Radial basis function
nodes can be
substituted with
different functional
forms

� Performs relatively
well in both smaller
and larger dataset

� Simple architecture
(no backpropagation)

� More ways to manage
the algorithm by
determining the shape
of bell curve,
specifically width (s)

� (more specific than
RBFN)

� Relatively good
accuracy in
classification problems

� Insensitive to the
noise points

� Smaller network size
than ordinary PNN

� Can avoid saturation
of Parzen window
that leads to
misclassification

� May be more
applicable because it
provides knowledge
of relative importance
between explanatory
variables

� Faster training time

Disadvantages � Easily get stuck in
local minima, resulting
in suboptimal solution

� Like a black box (not
sure how to estimate
the model)

� Need sufficient
observations

� Prone to overfitting

� Difficult to determine
the s values

� Constructing
networks architecture
is complicated.

� Long training time

� More computationally
expensive than BPNN
(pre-stored pattern
neurons)

� Saturated Gaussian
function can lead
some misclassification

� May not provide
higher prediction
accuracy than PNN
for discrete choice
data

� Varied by number of
clusters determined in
K-means clustering
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Each hidden neuron compares the input vector to its pro-
totype vector to measure how ‘‘similar’’ they are.

The neurons in the output layer are the sum (linear
combination) of the weighted hidden layer neurons (i.e.,
output score), and the final output, y0 is determined by
activation functions such as sigmoid function:

y0 = f (
XN
i= 1

wi � exp(� b x� cik k2)) ð8Þ

To calibrate the weights, the GDM is also used. By
using the outputs (i.e., activations) from each RBF hid-
den neuron as inputs, the gradient descent process is sep-
arately conducted for each output class. Although it
tends to be superior to the BPNN network structure,
similar to the BPNN, there is no guarantee that a global
minimum in found when optimizing the weights in a
RBFN.

The performance of an RBFN depends on the number
of neurons in the RBFN hidden layer and their prototype
vectors. The simplest way to determine the k prototypes
is to select them randomly. While it can improve the
accuracy of the model, using more prototypes increases
the computational costs of the algorithm, and it may gen-
erate overfitting issues as well. Another approach to
select the prototypes is first to use a clustering algorithm
(discussed later).

PNNs. PNNs add a Bayesian decision rule into the
framework of RBFNs (see Figure 1d). Technically, a
PNN is derived from Bayes–Parzen classifiers (26), which
include Bayesian classification and classical estimators
for probabilistic density function (PDF) (27, 28).
Essentially, Parzen’s method (29) is first used to estimate
the PDF of each class (i.e., travel modes) from the pro-
vided training samples based on a certain type of kernel.
These estimated PDF can then go through a Bayesian
decision rule to find a final decision.

For any classification problem, a sample vector x is
taken from a collection of samples belonging to several
classes. If we assume that the prior probability that a
sample belongs to class i is hi, the loss associated with
misclassifying that sample is ci, and the PDF for each of
the populations fk xð Þ is known. The Bayesian decision
rule for classifying an unknown sample into the ith class
can be applied as:

hici fi xð Þ.hjcj fj xð Þ 8j 6¼ i ð9Þ

The PDF for class i, fi xð Þ, represents the concentration
of class i samples around the unknown sample. That is,
the Bayesian decision rule favors a class that has high
density adjacent to the unknown sample, or if the cost of
misclassification or prior probability is high. However, in

the Bayesian decision, the PDF for each class is usually
known. Therefore, the Parzen’s method (29) is usually
used to estimate the PDF. The univariate KDE was
developed by Parzen and it was then extended to the mul-
tivariate case by Cacoullos (30). The multivariate KDE
for n random (independent) variables can be defined as:

[i xnð Þ= 1

Nl

XNi

k= 1

W
x� xik

l

� �
ð10Þ

where xn is the vector of independent variables with
nnumbers, and xk is kth training vector choosing class i;
Ni is the total number of observations in the training
dataset for class i; l represents all kernel width for num-
ber of variables (n), l = [s1,s2, � � � ,sn�; s is a smooth-
ing parameter representing kernel width (standard
deviation; s is important to obtain an optimal PNN); W
is the weight function, and the most popular type of
weight function is Gaussian Kernel, which is mainly
derived from the concept of Euclidean distance as:

W x� xik=l
� �

= e
� x� xikk k2=2s2

� �
ð11Þ

By employing a Gaussian weight function, the PDF
for choosing class i in the given multivariate input vector
x can be expressed as follows:

[i 1xð Þ= 1

Ni 2pð Þ
n
2sn

XNi

k= 1

exp � x� xikk k2
.
2s2

� �
ð12Þ

The final classification decision for the input vector x
can be obtained by applying Bayes decision rule as
follows:

C xð Þ= argmax
i=

[i xð Þð Þ ð13Þ

CPNN. An ANN using Gaussian KDE such as the PNN
may encounter issues related to the size of the network.
Specifically, without any pretreatment of the input data-
set, the number of pattern neurons containing the proto-
type vectors is determined either by the number of
training samples or by random selection during the train-
ing. Since each prototype vector plays a role in KDE by
locating the center of the Gaussian distribution for mea-
suring Euclidean distance, the number of pattern neu-
rons can affect the model performance. As the number
of pattern neurons increases, the structure of the PNN
will become more complicated and more computation-
ally expensive. In previous studies, two feasible methods
have been applied to the conventional PNN: 1) K-means
clustering to determine the number of pattern neurons;
and 2) self-adaptive learning for smoothing parameter
(s) (31–33). Here, this study employs the K-means
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clustering method. Although determining s is directly
related to the decision boundaries, this study simply
assigns a certain value according to the knowledge of the
dataset and values selected in other studies.

As an unsupervised learning technique, K-means clus-
tering has been widely used to classify the data set into
the number of clusters (34). Then, the centroid of a clus-
ter (i.e., the mean value of the observations within the
cluster) is defined by minimizing the distance between
the observations belonging to a cluster and the center of
the cluster (for details about K-means, see [34]). The cen-
troids represent the centers of clusters in the Euclidean
space, and they become new prototype vectors to mea-
sure a Euclidean distance in the pattern neurons. The
K-means clustering process is separately applied to each
choice alternatives.

Data

The data used to test the four models comes from the
CMAP Travel Tracker Survey that was collected in 2007
and 2008. The RP survey includes travel diary informa-
tion as well as detailed individual and household socio-
demographic information, for 10,500 households. The
original database consists of four interconnected datasets
containing household, person, place, and vehicle infor-
mation. The first three datasets are consolidated to make
the dataset.

To merge the datasets, the ESRI ArcGIS package is
used to identify interrelated geographical and travel

information such as the location of the origins (O) and
the destinations (D), walk accessibility, and the actual
distance between Os and Ds. Since our focus is on the
comparison of the five models, we only look at home-
based trips. Other trips, such as the access and egress
trips, transfer trips, and other nonhome-based trips are
excluded from the dataset used for this study.

In addition, the alternatives for the home-based trip
are classified into four classes: walk, bike, transit (CTA
bus and train), and auto. The original database contains
only 2–3% of transit observations, which is an issue since
the proportion of transit observations in the training and
testing datasets can be significantly different (e.g., one of
the two could have 0 transit observations). To be able to
fairly compare the model accuracies, we select to instead
use a sub-sample of the original dataset to include more
transit observations. Nonetheless, to assess the perfor-
mance of each model to select poorly represented modes,
we left the bike observations intact, which only account
for about 4% of all observations. In the end, the dataset
used includes 4,764 observations. It includes two sets of
attributes as independent variables: (1) individual/house-
hold socio-demographic attributes; and (2) travel attri-
butes (e.g., travel time, cost, accessibility) (see Table 2).

Model Specification

Normalization

Discrete choice data contain a variety set of variables
with varying scales and ranges. The different numerical

Table 2. Description of Statistics

Variable Description Mean Std

HHSIZ Number of household members 2.80 1.43
HHWK Number of workers in household 1.49 0.92
HHSTU Number of students in household 0.87 1.14
FEMALE 1: if a traveler is female, 0: otherwise 0.52 0.50
EMPLY Employment status for traveler 1.59 1.05
EDUCAa Education level 3.77 1.91
STUDE Student grade 2.64 0.74
HHVEHa Number of vehicles in household 1.66 1.06
BIKESa Number of bikes in household 1.48 1.76
CAPINCOMEa Capita income of household 0.75 0.37
WalkTT Travel time for walk mode (hour) 4.76 3.92
BikeTT Travel time for bike mode (hour) 1.32 1.53
AutoTT Travel time for auto mode (hour) 0.88 0.91
TransitTT Travel time for CTA mode (hour) 0.90 1.30
AUTO_COST Total trip cost for auto (gas, toll, parking / $) 0.90 1.11
Transit_COST Total trip cost for CTA ($) 0.96 1.12
AGEa Traveler’s age 44.02 21.20
ACT_DUR Actual activity duration (hours) 3.48 3.58
WALK_ACC. 1: if the walking accessibility is within 0.30miles, 0: otherwise 0.08 0.28

Note: Std. = Standard deviation.
aEmployed with either the type of dummy or nominal or categorical.
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properties among variables may result in estimation
biases. Specifically, the PDF for the Gaussian kernel-
based ANN (i.e., RBFN and PNN) cannot be estimated
without any pretreatment of the input dataset.
Moreover, it is preferable to normalize the input data
when the sigmoid function is used in BPNN. Therefore,
we normalize all values of attributes in the input dataset
before training (estimating) the neural networks specifi-
cally; the non-normalized data was used for the MNL as
is common in practice. The max-min normalization
allows all attributes to be located ranging from 0– 1:

x0 =
x�minA

maxA�minA
ð14Þ

where x# is the new value of the attribute, x is the origi-
nal value of the attribute; A is the set of all values for a
variable from entire data set (training and testing), and
minA and maxA represent the minimum and maximum
value of a variable respectively.

Cross-Validation

Cross-validation is a technique used to evaluate model
accuracy to prevent overfitting. To evaluate the perfor-
mance, this study used both k-fold cross-validation
method and hold-out method. The hold-out method con-
sists in simply separating the dataset into a training
(60%) and a testing (40%) set. Although the holdout
method has been widely used for evaluating model per-
formance, by its nature, it may lead to overfitting since
only one dataset is used for training. To overcome this
issue, the 10-fold cross-validation is also employed,

which ensures reliable model performance while minimiz-
ing overfitting problems common in machine learning.

The 10-fold cross-validation process functions as fol-
lows. The data set is divided into 10 subsets, and the
ANN is trained 10 times. Each time, one of the 10 sub-
sets is used as the test set, and the 9 other subsets are put
together to form a training set. The average accuracy
across all 10 trials is computed. In this study, the 10-fold
cross-validation is applied to the four ANN, and the
MNL used to measure the overall model accuracy.

Logit Model

The same training dataset was used to calibrate the
MNL, adding two extra dummy variables. The MNL is
calibrated with SPSS and Biogeme (35). The results sug-
gest that household size, age, walk availability, vehicle
fleets, travel time, and travel costs (i.e., gas price and
transit fare) are statistically significant (see Table 3).

ANN Model

The input dataset for the ANN consists of 14 input val-
ues (i.e., explanatory variables) and four target values
(i.e., mode alternatives). The process of data transmis-
sion in the neural networks differs by ANN type. For
the BPNN model, we adopt the sigmoid activation func-
tion. We also use one single hidden layer (using multiple
hidden layers did not improve the model performance).
The number of hidden neurons was determined through
the training process, and we used 21 neurons in the hid-
den layer.

Table 3. Multinomial Logit Model Estimation for Mode Choice

Variable Coefficient t-stat

Alternative specific constant (auto is base)
Walk 2.442 3.48
Bike –2.033 –11.41
Transit –1.097 –3.85

Travel time 3 auto –0.92 –2.06
Travel time 3 transit –1.51 –3.71
Travel time 3 bike –0.05 13.87
Auto operating cost 3 auto –1.25 –12.931
Transit fare 3 transit –2.229 –16.71
Walk accessibility 3 transit –0.755 –8.12
Walk accessibility 3 bike 0.424 2.74
Bikes in HH 3 bike 1.794 13.18
Number of vehicles in HH 3 walk –0.941 –2.08
Number of vehicles in HH 3 transit –1.131 –1.98
Age over 75 3 walk –0.358 –4.91
Age over 75 3 bike –1.224 –11.94
Loglikelihood at constant: 24822.92
Loglikelihood at final convergence: 24121.61
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To run the kernel-based ANNs (i.e., RBFNs and
PNNs), the number of hidden neurons and activation
functions have to be determined. For the RBFN, the hid-
den neurons are activated by the Gaussian function, and
the sigmoid function is applied to the output neurons.
The number of hidden neurons is usually determined
based on the size of data or in a random manner during
the training process. In this study, the number of hidden
neurons is optimally selected by the algorithm. We set
the width of Gaussian function b to 0.2 based on the

knowledge of the data and on previous values selected in
other studies. For the PNN models, most modeling para-
meters are similar to RBFNs, except for the activation
function of the output neurons, which is not required in
PNNs because it is determined by the Bayesian decision
rule. For the CPNN, 10 clusters for each alternative are
partitioned with K-means clustering.

The ANNs are trained using the following four
Python open source packages: Scikit-learn (36) for
BPNN and 10-fold cross-validation, a combination of

Table 4. Confusion Matrix for Model Accuracy

Test dataset (BPNN)

Predicted choice

Walk
(114)

Bike
(44)

Auto
(958)

CTA
(473)

Mode
accuracy Overall accuracy

Observed choice
Walk (187) 68 13 73 33 36.4% 79.4%
Bike (64) 22 17 11 14 26.6%
Auto (824) 7 3 781 33 94.8%
Transit (514) 17 11 93 393 76.5%

Test dataset (RBFN) Predicted choice

Walk
(93)

Bike
(27)

Auto
(859)

CTA
(610)

Mode
accuracy

Overall accuracy

Observed choice
Walk (187) 64 13 67 43 34.2% 78.4%
Bike (64) 2 10 23 29 15.6%
Auto (824) 17 3 719 85 87.3%
Transit (514) 10 1 50 453 88.1%

Test dataset (PNN) Predicted choice

Walk
(115)

Bike
(45)

Auto
(804)

CTA
(625)

Mode
accuracy

Overall accuracy

Observed choice
Walk (187) 94 7 36 50 50.3% 82.9%
Bike (64) 6 27 23 8 42.2%
Auto (824) 2 5 723 94 87.7%
Transit (514) 13 6 22 473 92.0%

Test dataset (CPNN) Predicted choice

Walk
(140)

Bike
(48)

Auto
(819)

CTA
(582)

Mode
accuracy

Overall accuracy

Observed choice
Walk (187) 97 11 45 34 51.9% 83.3%
Bike (64) 9 31 10 14 48.4%
Auto (824) 16 4 733 71 89.0%
Transit (514) 18 2 31 463 90.1%

Test dataset (MNL) Predicted choice

Walk
(108)

Bike
(114)

Auto
(990)

CTA
(377)

Mode
accuracy

Overall accuracy

Observed choice
Walk (187) 55 41 67 24 29.4% 70.5%
Bike (64) 2 21 33 8 32.8%
Auto (824) 28 13 729 54 88.5%
Transit (514) 11 27 160 316 61.5%
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Theano (37) and NeuPy (38) for PNN and RBFN, and a
combination of Scikit-learn (36) and NeuPy (38) for
CPNN. In addition, all ANN models were run on a lap-
top computer with an average hardware specification
(i.e., 6th generation inter processor with 8 GB of RAM).
Specifically, computational runtimes for ANN models
were similar except for PNN that took 15% longer
because of the KDE (specifically for the pattern layer).
However, this extra time can be reduced with better
hardware specification. In addition, it can be cut down
by selecting a limited number of neurons in the pattern
layer.

Results

The results of the 10-fold cross-validation for the ANN
model are presented in Figure 2a. The results indicate
that the CPNN model is relatively less sensible over each
validation iteration than the BPNN and RBFN. This is
because the BPNN and RBFN models are trained with
GDM, which may find slightly different minimum values
during cross-validation. Furthermore, we compare the
average model accuracy between all five models in Figure
2b. The results show that the four ANN models achieve
better prediction accuracies than the MNL model.

Table 4 presents the confusion matrix, in which each
row and each column indicates the observed and pre-
dicted the number of travelers for each mode respec-
tively. The overall model accuracy of the four ANNs is
around 80%, thus higher than the accuracy of the MNL
with 70.5%. While the four ANNs present similar
accuracies, the prediction accuracies of each individual
mode differ by ANN type. The PNN and CPNN notably
show better prediction performance for poorly repre-
sented modes. Specifically, the CPNN has slightly better
matching rates for the walk and bike modes, in part
thanks to the preprocessing with K-means clustering.

In addition to the overall accuracy, this study identi-
fies the sensitivity of mode choice decisions from the two
most important explanatory attributes: transit costs and
auto costs. Unlike traditional regression models, ANN
models cannot estimate the impact of explanatory vari-
ables on an outcome variable. Thus, sensitivity analysis
can be exploited as a sensible option for examining the
impact of explanatory variables. Figure 3, a and b present
the result of sensitivity analysis and compare the results
by the models for two different variables: auto cost and
transit cost. In particular, we can see that BPNN and
MNL models are relatively more sensitive to the varia-
tions in two variables. As expected, transit users are more
likely to change their mode to auto when the price of gas
decreases. In contrast, auto users are relatively insensitive
to increases in auto costs of 15% or lower.

Conclusion

This article has investigated the feasibility, capability,
and performance of four ANN methods in dealing with
travel mode choice modeling. The prediction perfor-
mance of ANN and MNL models has been evaluated by
conducting cross-validation tests with the 10-fold cross-
validation method. In addition, a confusion matrix has
been used to evaluate the matching accuracy between the
models. The cross-validation results revealed that the
four ANNs achieve better prediction accuracies (around
80%) than the MNL (around 70%). In particular, the
CPNN showed the highest performance among the
ANN models in part thanks to the K-means clustering
procedure used. The confusion matrix also showed that
the matching rates for bike and walk modes were rela-
tively poor because they were poorly represented in the
dataset, although the PNN and CPNN performed best.
We suggest that this phenomenon is linked to the fact
that ANNs are better able to identify nonlinear relation-
ships in a multivariate survey dataset. Nonetheless,

Figure 2. (a) Ten-fold cross-validation result for the models; (b) comparison of accuracy between the models.
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Figure 3. The result of sensitivity analysis—comparison between models based on two scenarios: (a) percent changes in auto cost
(b) percent changes in transit cost.
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although the model accuracy of the ANN outperformed
the MNL in mode choice modeling, we must acknowl-
edge that ANNs suffer from a lack of interpretability. As
a partial strategy to tackle this issue, we conducted a sen-
sitivity analysis for two significant attributes (i.e., transit
costs and auto costs) when choosing a mode.

Both the MNL and ANN have advantages and disad-
vantages. As a parametric approach, logit models are
generally used for extracting parameters based on given
behavioral patterns. However, when the behaviors being
modeled are complex, it becomes difficult to design an
accurate logit model. For instance, the MNL is suscepti-
ble to unobserved biases, and it is often impractical for
identifying the relationship and configuration of expla-
natory variables. In contrast, ANNs are able to capture
nonlinearity and biases in the data by using additional
information processing units (e.g., hidden layers).
Although ANN is often assimilated to a ‘‘black box,’’ its
relatively easy applicability and its ability to capture
complex patterns make it particularly powerful and pro-
mising for the future of mode choice modeling.

For future work, novel non-parametric models have
emerged recently (16). For instance, deep learning (DL)
generally requires more complex algorithmic features,
and they are computationally more expensive than
ANNs, but in theory, they should be even better able to
capture complex and nonlinear relationships in a dataset.
Advanced data mining methods such as DL may,
therefore, possess a bright future in mode choice model-
ing in particular, and in travel demand forecasting in
general.
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