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Abstract

This article applies machine learning (ML) to develop a choice model on three choice alternatives related to autonomous
vehicles (AV): regular vehicle (REG), private AV (PAV), and shared AV (SAV). The learned model is used to examine users’
preferences and behaviors on AV uptake by car commuters. Specifically, this study applies gradient boosting machine (GBM)
to stated preference (SP) survey data (i.e., panel data). GBM notably possesses more interpretable features than other ML
methods as well as high predictive performance for panel data. The prediction performance of GBM is evaluated by conduct-
ing a 5-fold cross-validation and shows around 80% accuracy. To interpret users’ behaviors, variable importance (VI) and par-
tial dependence (PD) were measured. The results of VI indicate that trip cost, purchase cost, and subscription cost are the
most influential variables in selecting an alternative. Moreover, the attitudinal variables Pro-AV Sentiment and Environmental
Concern are also shown to be significant. The article also examines the sensitivity of choice by using the PD of the log-odds
on selected important factors. The results inform both the modeling of transportation technology uptake and the configura-

tion and interpretation of GBM that can be applied for policy analysis.

The effort to make cities smarter, more sustainable, and
more resilient has been accompanied by a wave of
advances in artificial intelligence (Al) (/, 2). One of the
most disruptive Al technologies in transportation will be
autonomous vehicles (AVs) that can drive themselves
with less to no human intervention. The impacts of AVs
are hard to estimate as they have the potential to drama-
tically change both lifestyles and urban systems (/-3).
More precisely, AVs will fundamentally influence many
aspects of transportation systems, including user beha-
viors, infrastructure (e.g., roads, traffic signals), safety,
mobility (e.g., vehicle miles traveled), and environmental
impacts. AVs notably allow drivers to replace driving
time with more desirable activities such as reading, work-
ing, and sleeping (/, 4). AVs will tend to improve mobi-
lity for children, the elderly, and individuals with
disabilities. Moreover, some argue that AVs may reduce
household vehicle ownership in the future since they can
be more easily shared throughout a given day among
users (3, 4). AV system design also implies that urban
areas may not require as many parking facilities in the
near future. In addition, AVs’ trained driving algorithms
are arguably going to outperform humans in driving
ability and frequency of errors. Thus, some argue that

they will be able to reduce congestion and vehicle acci-
dents while improving fuel efficiency (4, 5). Despite these
immediate benefits, others argue that these behavioral
changes and technological benefits may, in the long run,
increase vehicle miles traveled (VMT) and even exacer-
bate overall congestion on the roadways, resulting in
negative environmental impacts (4, 6).

When considering the propagation of AVs, two major
platforms (i.e., markets) dominate: privately owned
autonomous vehicles (PAVs) and shared autonomous
vehicles (SAVs). SAVs receive particular attention
because they will likely provide cost structures that facili-
tate the initial growth of use and exposure to AVs.
Nonetheless, there remains a host of questions about the
utility and effects of widespread AV use. In this context,
it is essential to understand the behavioral motivations
and individual attitudes regarding AVs. This improved
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understanding will also inform policy interventions and
urban infrastructure investment decisions. To demystify
the impacts of these disruptive future changes, research-
ers have recently faced a technical dilemma when model-
ing discrete choice behaviors: which modeling approach
is appropriate? In this context, this article aims to provide
useful insights into modeling discrete choice behaviors,
especially for measuring individuals’ AV preferences,
while adopting a reliable and interpretable predictive
modeling method.

In general, there is trade-off between modeling perfor-
mance (e.g., prediction accuracy) and interpretability
when selecting a modeling approach. Some models, such
as parametric models, are often considered more easily
interpretable than nonparametric models that use com-
plex (a.k.a., black-box) algorithms. In predicting and
modeling discrete choice problems, parametric
approaches (e.g., the family of logit models) have been
predominantly used since they are intuitive and easy to
interpret based on strong theoretical backgrounds (ran-
dom utility theory). Specifically, these approaches yield
parameters that may be used to evaluate the impact of
policies, economic changes, and technological adapta-
tion. Recently, algorithm-based nonparametric statistical
learning with machines [a.k.a., machine learning (ML)]
techniques show relatively high performance to analyze a
wide variety of modeling tasks compared with para-
metric approaches (7—10). In part, it is because of the
fact that ML models possess fewer predetermined
assumptions than the parametric models while adopting
complex algorithms and myriads of sub-models (e.g.,
local nonparametric estimators) thanks to significant
advancement in computational ability. Despite a high
degree of predictive power, the general criticism about
many ML techniques is their lack of interpretability
because of their reliance on machine-based repetitive
computation. Future models should try to possess the
advantages of both modeling approaches—that is, ML
and parametric approaches.

In addition, discrete choice models that estimate
future behavioral changes are generally learned from
stated preference (SP) and revealed preference (RP) sur-
vey data. Accordingly, this article also uses SP survey
information that is collected from a total of 721 individu-
als and includes 4260 usable observations. This type of
data is considered as panel data because the respondents’
choices cannot be treated as independent of each other.
To deal with such multi-level data, models incorporating
random effects (i.e., mixed logit) have been used in many
studies. These models capture unobserved heterogeneity
across individuals and can account for sequentially cor-
related choices by single individuals. Although such hier-
archical parametric modeling can control detrimental
effects (e.g., fixed, random, autocorrelation), domain

knowledge is still required to adjust the configuration of
a model and take into account the underlying relation-
ships between variables. As an alternative, advanced ML
algorithms can be applied to address similar issues of
error and correlation among observations.

This main goal of this article is to fill the knowledge
gaps in modeling discrete choice behavior on AVs by
applying a ML modeling method that is capable of pro-
viding reliable and interpretable information from multi-
level data. Thus, the estimated (learned) model must be
usable and adaptable by researchers in the future. In this
context, this study makes use of a boosting method that
is built on a rule-based, additive, and hierarchical learn-
ing algorithm (e.g., decision tree). Boosting methods have
shown significantly high performance in predictive learn-
ing and benefit from a greater degree of interpretability
than other machine learning approaches (//—-13). In par-
ticular, boosting methods have an inherent ability to han-
dle mixed-type data sets (//, 13). They are designed to
control both bias and variance. Furthermore, the learned
model and interpretive statistics give useful insights for
AV planning, policy making, and data collection efforts.
Thus, this study contributes to the progress of machine
learning in transportation engineering applications and
to the body of literature aiming to characterize the future
of AV technology adoption. Consequently, the specific
objectives of this article are to answer the following
research questions:

e How does machine-based predictive learning (i.e.,
ML models) perform in predicting discrete choice
activities?

e How can ML models be interpreted to explain
users’ behaviors regarding AVs?

e How do individual and system-level characteristics
influence SPs of future AV adoption?

e Which attributes of mode choice decisions are
most sensitive?

After the introduction, existing studies about the
adoption of AVs are reviewed and about predictive
modeling methods that can be applied to discrete choice
data. In the methodology section, the algorithmic prop-
erties of gradient boosting machine (GBM) and its inter-
pretable measures are covered. Data descriptions and
latent variables on attitudinal variables are then briefly
explained in the third section. Finally, model results,
interpretation, and conclusions are covered in the final
sections.

Literature Review

Data science methods are increasingly being applied to
problems of urban infrastructure analysis and design (7,
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9, 14-19). In particular, a wide variety of statistical learn-
ing approaches have been applied to predictive learning
tasks within the realm of urban research (7, 20). Each
method tends to be tailored to specific problems and
situations (//, 12). In particular, ML and data mining
techniques have been applied to travel survey data to
model and predict many aspects of transportation (21).
For instance, using data with known features, ML algo-
rithms are trained to recognize patterns that correlate
well with a target classification or attribute value (8, 22).
This recognition capability can then be applied to new
data, yielding classifications or predictions. Thus, these
techniques are especially well suited to examining the
revealed mode choice preferences of individuals and soci-
eties (7). As Lu and Kawamura note, data science meth-
ods “view the travel mode choice as a pattern recognition
problem whereby the travel choices can be identified by a
combination of explanatory variables” (23). Lee et al.
compared the multinomial logit (MNL) model with four
types of artificial neural networks in predicting mode
choice and showed that neural networks can outperform
MNL in predictive power (9). In studies that compare
machine learning algorithms, MNL is typically included
as a baseline predictor, with mixed results. There is no
clear answer to which algorithm type outperforms others,
and the outcome is often dependent on how input vari-
ables are structured (24, 25). Predicting transportation
mode choice using decision tree classification (the
method used in this study) has been studied, notably
using Random Forest (i.e., tree-based ensemble learning
methods) (26, 27).

Gradient boosting of decision trees has become com-
mon in ML but it has not been widely applied to trans-
portation modeling problems to date. It is, however
gaining increasing attention. Semanjski and Gautama
explored gradient boosting as a method for predicting
mode choice from crowdsourced travel behavior data
(28). They suggested that gradient boosting could
become an essential predicting method in smart trans-
portation. Wang and Ross found that a GBM had
higher mode choice prediction accuracy than an MNL
model when applied to household travel survey data
(10). The utility of using gradient boosting for traffic
flow and mode choice prediction has been similarly
demonstrated by Zhang et al. and Lee and Min (29, 30).

The study of AV adoption potential has also
increased, anticipating the deployment of AVs for house-
hold transportation in coming years (3/). Attempts to
model the adoption of AVs based on passenger charac-
teristics such as current driving habits, economic factors,
and behavioral data have been conducted but not using

decision tree-based methods such as gradient boosting
(6, 32-34).

Methodology

This article applies a nonparametric model with
machine-based repetitive and complex algorithms (also
previously called ML models) to investigate users’ beha-
viors on the adoption of AVs. Specifically, this ML
model must be reliable and interpretable, while effec-
tively controlling wunobserved detrimental effects.
Towards this goal, gradient boosting machine (GBM) is
used.

Rule-based modeling is a nonparametric statistical
model that can be applied to both regression and classifi-
cation (i.e., discrete choice) problems. In particular, a
decision tree used for classification is analogous to a dis-
crete choice model (5, 6). This nonparametric model is
estimated by fitting models locally and then aggregating
them together (i.e., additive learning). Specifically, the
decision tree algorithm partitions the entire data space
(i.e., a set of independent variables) into regions having
the most homogeneous responses (i.e., dependent vari-
ables) to predictors (i.e., independent variables) yielding
a hierarchical “tree” structure (6, 7). Because of its non-
parametric and rule-based properties, these have been
widely used in choice prediction problems with multi-
level data as is the case here (11, 12, 35-37). Nevertheless,
single-tree models tend to have high prediction error and
the results have lower prediction accuracy when the num-
ber of variables is increased. Specifically, single-tree mod-
els tend to have high variance and result in increasing the
overall mean squared error (MSE) because of the addi-
tive learning process (11, 38, 39). Ensemble methods,
such as boosting, are therefore preferred to enhance mod-
eling performance.

Nonetheless, similar to other ML models, the inner
processes of predictions of boosting machine can be diffi-
cult to understand—that is, the relationships between
predictors and responses. There are two possible
approaches to address this interpretability issue: (1)
model-specific and (2) model-agnostic. The formal
approaches are limited to a specific model. For example,
the parameters in Random Utility Models (RUMs) are
model-specific measures, which mostly require model-
specific predetermined assumptions. However, this
approach is not a feasible in ML since ML models are
not tied to specific assumptions. Therefore, model-
agnostic approaches are widely used to interpret ML
models as an alternative (40—42). Specifically, these
approaches can be applied to any ML model since the
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goal of learning a model is to minimize errors, including
biases and variances. In the next section, the algorithmic
characteristics and model-agnostic features of GBM are
discussed.

Gradient Boosting Machine (GBM)

As a generalized rule-based approach, boosting offers
robust and high predictive power by simultaneously con-
trolling bias and variance. In addition, it is algorithmi-
cally well-suited to handle mixed-type data that often
show mixed-effects (e.g., heterogeneity across individu-
als) since it learns patterns in the data based on a hierar-
chy (i.e., top-down approach). For instance, GBM can
handle panel data by regarding predefined sub-group
identifiers (i.e., respondents) as considering one of the
criteria in constructing hierarchical structures (71, 12).
Thus, it can alleviate omitted bias issues. Moreover, in
contrast to other rule-based methods, boosting algo-
rithms sequentially forgive poorly learned samples in a
single-tree structure by using multiple estimators.

As rule-based hierarchical learning, GBM also parti-
tions the entire data space (i.e., all variables) into disjoint
sub-regions that become siblings of parent nodes (also
called terminal nodes). The fundamental learning process
of GBM is to reconstruct the function dependence
between x and y, while minimizing the following loss
function to estimate ( f(x), estimator) (43):

F) = argminL(s.f (x)) = argmin £,[, Ly (5)] ¥

(1)

In general, the target variable ( y) shows different dis-
tributions (e.g., binomial, multinomial); it is therefore
required to be defined beforehand. Moreover, additional
parameters are needed to estimate f(x). The equation
can be expressed as follows:

f(x) =1 (x.0) (2)
6(x) = arg moin EL[E,L[y.f(x,0)]]x] (3)

Equation 3 is typically non-tractable to estimate para-
meters; thus, the following iterative (i.e., incremental)
optimization process is applied:

(1) Initially, set the average of a dependent variable,
7 (x) = 0, and assume residual ( ;) and dependent
variable ( y;) are same for all i in the data.

(2) For every sub-region (tree), repeat following
steps:

e Compute the residual (negative gradient, r) for
each observation

e Fitting /? to the data (x,r); b indicates a
single tree

e Update new dependent values / by adding in a
shrunken version of the new tree,

fx) = F) + A0 (x)
e Update the residuals,

Vi < rj —)\j}b(x,-)

(3) Finally, the general boosting process is the sum of
sequential trees ( B), which predicts y given x,

f0) =30 M)

GBM also possesses some limitations, especially with
respect to overfitting. This can be exacerbated when the
number of boosting iterations and the depth of the tree
are large. When this happens, the model accuracy may
be artificially inflated. One possible way to solve this
problem of overfitting is to impose regularization (e.g.,
constraints on boosting iterations, tree depth, and other
hyperparameters). In this study, the optimal model speci-
fication is estimated that minimizes MSE. This estima-
tion process (i.e., tuning process) is conducted by testing
a wide range of regularization terms and the optimal
hyperparameters are chosen by using a 5-fold cross-
validation technique (9-11).

Interpretation of GBM

As mentioned above, the modeling performance (i.e.,
prediction accuracy) of GBM tends to be high thanks to
machine-based repetitive algorithms. Nonetheless, a sin-
gle measurement such as prediction accuracy offers an
incomplete description to address discrete choice prob-
lems (44). In particular, it is imperative to know the inner
processes of a model to explain users’ attitudes and beha-
viors. In this case, predictive modeling also requires an
understanding of why a user makes a certain decision
and how this decision is sensitive to the changes in deter-
minant factors.

Variable Importance (VI) for Gradient Boosting Algorithm. In
predictive modeling, the influence of predictor variables
(i.e., independent variables) are different from one
another. In general, a few variables have substantial
impacts on the response. To gain useful information
about the relative importance of each predictors, the
reduction in error is measured. This is usually referred to
as the “variable importance” (VI) (a.k.a., feature impor-
tance) (/1, 13). This metric serves to enhance the inter-
pretability of ML. VI indicates which variables are the
most significant in the decision tree’s predictive hierarchy
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of decision rules. Specifically, it compares all predictors
in the data and ranks the variables that contribute to the
reduction in overall variances [or sum of squared errors
(SSE)] (5, 12). As the MSE criteria are applied to gener-
ate the tree, the reduction in the SSE is aggregated for
each independent variable during the estimation process
(7). The sum of squared residuals (SSR), which is the
numerator of a weighted SSE in statistics, is defined as:

= 2
SSR = Zceleaves(T) ZiEc i —me) 4)

The change of SSR between the variables indicates the
V1x; at a certain node and it can be measured as follows:

VI (x;) = Ay = SSR, — Zi SSRY (5)

where d represents a node, i is the child of node d, SSR,
is a terminal node of node d (leaf node), and SSR?’ is an
internal node (i.e., the split). For the entire tree, the VI
score for each variable is calculated as the mean impor-
tance over all nodes in a tree (12, 13). It can be expressed
as follows where D is the total number of nodes:

25: 1 Vi (xj)

Vi (x_,- ) - n_nodes

(6)
In general, the VI scores are applied with the standar-
dized metric values (ranging from 0 to 1) (/2). For
instance, if a variable has no “contribution,” the VI score
becomes zero (i.e., VI (x;) = 0).

VI in this article is used to detect the variables that
are most influential in causing an individual’s final vehi-
cle type choice. This interpretation is straightforward
and gives useful insights into policy, planning, business,
and regulatory factors that may have the most interplay
with developing AV markets and infrastructure. GBM
has rule-based and additive modeling features allowing
for robust estimation of determinant factors affecting
choice behaviors. Accordingly, it implies that variables
with higher VI scores play significant roles in making a
decision among alternatives.

Partial Dependence (PD). In addition to VI, the marginal
effects of predictors (e.g., sensitivity) are further inter-
preted. These explain the relationships between the pre-
dictors and the response. Specifically, partial dependence
(PD) provides the marginal effect of selective features on
the predicted response of a learned model (/7). Thus, PD
plots are computed to provide a causal interpretation by
measuring the marginal average response in relation to
different values of the predictor, which can be valuable
interpretation in analyzing future scenarios.

The way to measure the PD of a predictor is as
follows:

Fue) = B, [ (xo0)| (7
where x; is the chosen predictor, x. is its complete set con-
taining the other predictors, and both x; and x. are used
to learn the model (i.e., GBM), /. The PD of x; on y can
be calculated by marginalizing the predicted values over
the other predictors:

) f
Sfr(xg) = J (x5, x.)dP(x,) (8)

For different numbers of cross-validation datasets (see
details in the section for model specification), the PD is
simulated for a given number of observations (a.k.a.,
instances) using a traditional Monte Carlo method.

When it comes to a choice modeling, PD shows the
probability of a certain alternative given different values
for predictors x,. For a K -class choice model, each class
(]) can be related to the following probabilities:

3 toepi(7, () )

where f;(x,) is the logarithm of a monotonically increas-
ing function on its respective probability (/2). Thus, PD
plots of each fi(x;) on a chosen predictor can indicate
how the class depends on the factors (i.e., realization of
log-odds).

f( 5) = 10gpk< )

Data

The data used for this study was collected via online sur-
vey from September to November 2014. The survey was
given only to individuals who currently drive a car for
their daily commute to work or school, and was distribu-
ted in Israel and North America.

The survey was designed to investigate individuals’
likelihood of choosing their future vehicle. After remov-
ing some individuals with missing values, 721 individuals
completed the survey, giving a total of 4260 observations.
Respondents were asked a variety of questions about
their socioeconomic status, family structure (e.g., number
of children), car ownership level, and their current travel
habits as well as SP questions. In particular, the survey
also included a series of 30 attitudinal statements to
which respondents indicated their level of agreement on a
5-point Likert scale. These statements were used to assign
a latent variable score to individuals under the categories
Technology Interest, Public Transit Attitude, Pro-AV
Sentiments, and Environmental Concern (described in
Table 1).

In relation to SP questions, survey respondents were
asked to state their vehicle choice between private REG,
PAYV, and SAYV in a series of six SP scenarios of various
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Table 1. Attitudinal Variables

Variable Variable name

General description of high-scoring individual

Pro-AV sentiments ATT_AUTONOMOUS

Environmental concern ENVIRO
Technology interest TECH
Public transit attitude PT

Responded positively to normative statements about the importance
and utility of AVs.

Indicated a concern about global warming, desire to adopt
environmentally friendly behaviors, or both.

Indicated an interest in and excitement about new technologies and
products.

Reported frequent usage of public transportation and relative comfort
choosing public transit over private vehicle transportation.

Note: AV = autonomous vehicle.

REG =PAV mSAV

E
é S = & =
3 n R
) ® ® S R 3
< ¥ IS ® ) < <
ALttt : i
B

30%

% of Observations, by Vehicle Choice

Total

Cost Scenario

Figure |. The percentage of observations yielding REG, PAV or
SAV vehicle choices, for each cost scenario.

cost structures. Each scenario presented three cost
factors—capital cost (i.e., purchase and membership
cost), traveling cost, and parking cost—for each of the
three vehicle types. For example, REG in a certain sce-
nario is hypothesized by following the combination:
30,000 dollars for purchasing cost, 1.50 dollars per trip
for traveling cost, and 4 dollars for parking cost.
Therefore, the respondents would make different choices,
when faced with the presented cost structures. To control
the variation in cost scenarios provided to the respon-
dents, a partial orthogonal balanced design was applied,
and this resulted in 19 combinations of cost scenarios
(see Figure 1) (6). Based on this finding, 6 scenarios out
of 19 combinations were randomly assigned to each
respondent. Thus, respondents were provided with one
choice for each scenario, resulting in up to six observa-
tions per individual respondent. The target variable in
each observation is simply the respondents’ final choice
of vehicle type: Current REG, PAV, or SAV. Overall,
44%, of observations are classified as REG, 32% as PAV,
and 24% as SAYV, indicating that there is an acceptable

stratification of target variable results (see Figure 1).
Table 2 shows the descriptive statistics of each variable
used in this study consisting of continuous and categori-
cal variables.

Model Specification
Normalization

The SP survey information contains various types of
variables that vary in scale and range. Most nonpara-
metric approaches are sensitive to the scale of variables,
and different scales and ranges may result in biased esti-
mation. Therefore, all independent variables used in
GBMs are standardized, except for the person and ques-
tion identifiers. The min-max normalization method is
applied:

X; —min x
X (7
max x — min x
where x! presents the scaled value of sample i, and max x
and min x indicate the maximum and minimum value of
vector x.

Model Evaluation and Validation

This article aims to gain insights into users’ attitudes and
motivations for choosing AVs and to develop a general-
ized model that can be used for long-term planning and
policy. Specifically, it is necessary to check and validate
how well the learned model explains the data and pre-
dicts unseen instances, which is required to get reliable
interpretation and minimize future risks in application.
In general, machine-based learning approaches gener-
ate a model that is discovered or constructed from the
given data itself. The learned model is then used to pre-
dict a response on unseen data (i.e., test data), which
evaluates the capability of the model to explain the
unseen instances from the learned structure (also called
generalization). To parsimoniously evaluate the model,
this study uses both the hold-out method and the 5-fold
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Table 2. Description of Statistics
Variables Description Mean SD Min. Max.
Dependent choice alternatives
CHOICE I: REG 2: PAV 3: SAV
Independent variable (continuous)
DPP_REG Purchasing cost for REG (thousand dollars) 47.39 37.98 5.00 195.00
DPP_PAV Purchasing cost for PAV (thousand dollars) 50.31 41.76 400 254.00
DPP_SAV Membership cost for SAV (thousand dollars) 1.74 2.54 000 75
DTC_REG Trip cost for REG (in dollars) 13.13 14.08 0.30  50.00
DTC_PAV Trip cost for PAV (in dollars) 11.75 13.38 0.17  60.00
DTC_SAV Trip cost for SAV (in dollars) 24.53 34.19 0.00 166.67
DPARK_REG Parking cost for REG (in dollars) 1.85 5.70 0.00  90.00
DPARK_PAV Parking cost for PAV (in dollars) 0.76 3.23 0.00  90.00
DISTANCE Commuting distance (in kilometers) 20.11 15.31 1.00  50.00
TIME Commuting time (in minutes) 29.27 18.47 2.00 75.00
Independent variable (dummy and categorical)
FT Full-time job is I, otherwise is 0 0 |
PT Part-time job is |, otherwise is 0 0 |
STUDENT Student is |, otherwise is 0 0 |
CARSHARING User of car sharing is | otherwise is 0 0 |
TIME_OF_DEP Time of departure I 7
(e.g., |: before 6:00a.m., 7: it varies from day to day)
FREQ_OF_ERRANDS Frequency of errand or stops on the way to work or during the day (Answers ranging I 4
from daily to less than once a week)
ITEMS_LARGE Frequency of leaving large items in the parked cars I 5
(Answers ranging from daily to never)
REGION I: U.S,, 2: Canada, 3: Israel, 4: Europe, 5: other I 5
AGE Age of respondent I 4
GENDER Gender of respondent I 2
INCOME Income of respondent I 5
EDUCATION Education level of respondent I 5
ADULTS_HHSIZE Number of adults in household | 5
KIDS_HHSIZE Number of children in household | 7
DRIVERS_HH Number of drivers in household | 4
CARS_HH Number of vehicles in household | 5
TECH® Attitude on new technologies 0 17
ENVIRO? Attitude on environment 0 12
ATT_AUTONOMOUS*  Attitude on AVs 0 13

Note: Total number of observations = 4299. REG = regular vehicle; PAV = private autonomous vehicle; SAV = shared autonomous vehicle; AV =
autonomous vehicle; SD = standard deviation; min. = minimum; max. = maximum.

?Latent attitudinal variables (see details in Table I).

cross-validation (CV) method that are known to be sta-
tistically robust. The hold-out method separates the orig-
inal data set into a training (70%) and a test (30%) data
set. In the CV method, the training data set is also spilt
into 5 partitions, and one left-out fold is used as a test
data to evaluate the model that is learned from 4 out of
5 partitions. This evaluation process provides 5 trained
models and their performance (i.e., mean absolute
errors), from which the average and standard deviations
are measured.

The modeling parameters for GBM are optimized
from the CV process. The model accuracy (i.e., the num-
ber of times the correct class was predicted) and VI are
also mainly estimated from the CV results. The test set is
then used to identify the associations and relations

between user preferences and important variables
(e.g., PD).

Results

Model Accuracy

The prediction (i.e., choice) results of the GBM using
5-fold cross-validation are presented in Figure 2. As men-
tioned above, hyperparameters (e.g., depth of trees, num-
ber of boosting iterations) are also cross-validated to find
the optimal parameters while minimizing the errors (i.e.,
maximizing the likelihood). The results show that the
overall prediction accuracy of GBM is around 80% for
the given choice alternatives: REG, PAV, or SAV. Based
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Figure 3. VI choosing three alternatives (REG, PAVs, SAVs).

on the learned and validated configurations, the follow-
ing analysis focuses on interpreting users’ attitudinal pre-
ferences for choosing AVs.

Interpretation of Important Variables

Figures 3 and 4 present the top 24 most important vari-
ables from a GBM trained on the survey data.
Specifically, Figure 3 presents the base choice among
REG, PAV, and SAV, and it is observed that
DTC_PAV, DPP_PAV, DTC SAYV (AVs operating and
purchasing cost in dollar value, see details in Table 2) are
almost twice as important as the next important set of

features. Latent attitudinal variables are prominent
in the next set of important features, specifically the
Pro-AV Sentiments, Environmental Concern, and
Technology Interest features. Table 1 explains these
latent variables further.

It is important to note that VI does not indicate the
direction of correlation between variables. Rather, it is a
measure of the magnitude of the reduction of variance in
vehicle choice by partitioning on the given variable.
Thus, for example, it is shown that the trip and purchase
prices of a personal AV are more influential in driving
individuals toward their final vehicle choice than any of
their other attributes. The VI may also be interpreted as
the variable’s predictive power. For example, it is
observed that the individual’s Pro-AV attitude score is
more than twice as likely to predict the individual’s final
vehicle choice, as compared with their education level.
See the Interpretation of GBM section for further detail
on interpreting VI.

Figure 4, charts ¢ and b present feature importance
rankings on two different choice groupings. In Figure 4,
chart a, the algorithm was trained to predict whether the
individual would choose their REG or AVs of either type
(private or shared). This configuration provides insight
into features that are most important to this binary
choice level. In Figure 4, chart b, the data is subset to
only those binary cases that yielded either PAV or SAV
as the final vehicle choice. On this data, a GBM was
trained to predict the decision of private or shared AV.
The results indicate that AV purchase and trip cost
expenses (for either PAV or SAV) are still the most
important features. These binary tests show some marked
differences from the three-variable predictor VI. For
example, Pro-AV Sentiment, Commute Time, and
Environmental Concern grow significantly in their influ-
ence over AV or non-AV decisions. And Commute Time
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Figure 4. (a) VI on choice between REG and AVs and (b) VI on choice between PAY and SAV.

is the leading non-cost variable in determining private or
shared AV choices.

Interpret Sensitivity of Vehicle-Specific Variables

The VI results suggest that important factors are more
likely to affect choice behaviors than others.
Specifically, the important factors include the purchas-
ing and operating costs of vehicles and the latent attitu-
dinal variables (Table 1). Based on this information, it
is possible to further focus on interpreting users’ choice
behaviors on vehicle choices. Figure 5 shows the PD of
the log-odds on the selected important factors in keep-
ing one’s current vehicle rather than transitioning to an
AV. Specifically, the y-axis in Figure 5 indicates the
log-odds of a current vehicle choice over AVs, and the
x-axis correspond to the normalized value of impor-
tance factors. Markedly, the costs of AVs are positively
associated with the choice of current vehicle, and a
higher cost of current vehicle ownership has a negative
impact on keeping choosing to keep one’s current car.
Moreover, qualitative latent variables such as
Environmental Concern and Pro-AV Sentiments are
negatively associated with keeping a current vehicle.

In addition, Figure 6 compares the PD of selected
variables in determining PAV and SAV. Expectedly,
someone with a positive attitude towards AVs
(ATT_AUTONOMOUS) is more likely to prefer PAV
to SAV. Moreover, a person with a higher level of envi-
ronmental concern (ENVIRO) is also more likely to
choose SAV rather than PAV. Moreover, there is also a

marked abrupt decrease in the likelihood of choosing
REG over AV options when the commute time (TIME)
reaches a certain threshold.

Interpret Sensitivity of Household Attributes

We also interpret the sensitivity of the combination of
two household attributes on future vehicle choice beha-
viors by using three-dimensional partial dependence
(3D-PD) plots (Figure 7). Specifically, 3D-PD plots pro-
vide interrelated impacts of variables on the given choice
scenarios. The top panel (Figure 7a¢) comparing REG
and AV shows that respondents are likely to keep their
regular vehicles when they are older and less educated.
Moreover, a household with more vehicles has a ten-
dency to choose AVs, and this tendency is more distin-
guishable in age groups such that elder people prefer to
keep their current vehicle even if they have higher vehicle
ownership. In addition, respondents in Israel (region =
0.5, see details in Table 2) show a greater preference for
AVs than other regions.

Figure 7, section b, focuses on the choice between
PAYV and SAV. The results show that respondents who
are older prefer PAV to SAV. Moreover, people prefer
PAV when the frequency of trips is higher and when
they are older. When it comes to identifying the effect
of age and region, elders living in the U.S. are likely to
prefer PAV to SAV. In addition, respondents have a
tendency to choose PAV when the frequency of trips is
higher and the departure time of work is earlier than
others.
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Figure 5. Partial dependencies of log-odds (positive or negative association between X and Y) in choosing current REG over PAV or SAV.

Conclusion

This article investigated AV adoption choice behaviors
based on two main variables affecting users’ behaviors:
individual characteristics and system characteristics
related to AVs. Specifically, ML techniques (i.e., GBM)
were applied to investigate discrete choice behaviors,
which have traditionally been considered as less “inter-
pretable” than parametric approaches but which can
achieve higher prediction performances. In particular,
model-agnostic methods were used to interpret the

estimated model using GBM, which can be applied to
any ML algorithms. Through its findings, this article can
fill the knowledge gaps in trade-off between prediction
accuracy and interpretability when selecting a modeling
approach for discrete choice problems.

The prediction performance of GBM is evaluated by
conducting 5-fold cross-validation method and presented
with a confusion matrix. The result of cross-validation
showed that the overall prediction accuracy of GBM was
acceptable (around 80%) to assess the impact of the
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Figure 6. Partial dependencies of log-odds in choosing PAV over SAV.

variables on AVs. To interpret users’ behaviors, VI and
PD were measured. VI was used to identify the magni-
tude of variables (i.e., the reduction of variance) that
have greater impacts on vehicle choice. The results of VI
showed that the costs of vehicles, latent attitudinal fac-
tors, and time play significant roles in choosing a vehicle.
Furthermore, the sensitivity of choice was also examined
by using the PD of the log-odds on the selected impor-
tant factors. The results from PD provided the expected
positive or negative associations between the likelihood
of alternative and the important variables.

While the most important property of statistical learn-
ing is to produce accurate predictions, the second most
important may be how is it possible to further use the
results. In other words, how interpretable a model is.
When models adopt a more complex structure, their

structures become less interpretable. This is particularly
relevant to ML models that often face this issue because
of their complex and unknown structures, although ML
has particularly powerful prediction power and ability to
capture complex patterns in data with its relatively easy
applicability. In this context, this article aims to suggests
the interpretability of ML that is often assimilated to a
“black box.” Thus, interpretable ML models have the
potential to be promising statistical learning methods in
addressing transportation behaviors.

For future works, the SP survey data used in this
study was originally applied to mixed logit model in (6).
This successfully identified the users’ preferences on
AVs. Thus, if this study compares the results and find-
ings from GBM and the those of mixed logit model, it is
possible to further validate the model. In addition, every
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model inherently includes uncertainty and it can cause
biased estimation and misinterpretation of results when
applying this model to the other instances. To increase
the usability and generality of this model for future appli-
cations, it is important to measure the uncertainty of the
prediction.
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