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We present quantitative predictions for quantum simulator experiments on Ising models
from trapped ions to Rydberg chains and show how the thermalization, and thus decoherence
times, can be controlled by considering common, independent, and end-cap couplings to the
bath. We find (i) independent baths enable more rapid thermalization in comparison to a
common one; (ii) the thermalization timescale depends strongly on the position in the Ising
phase diagram; (iii) for a common bath larger system sizes show a significant slow down in
the thermalization process; and (iv) finite-size scaling indicates a subradiance effect slowing
thermalization rates toward the infinite spin chain limit. We find it is necessary to treat the
full multi-channel Lindblad master equation rather than the commonly used single-channel
local Lindblad approximation to make accurate predictions on a classical computer. This
method reduces the number of qubits one can practically classical simulate by at least a
factor of 4, in turn showing a quantum advantage for such thermalization problems at a
factor of 4 smaller qubit number for open quantum systems as opposed to closed ones.
Thus, our results encourage open quantum system exploration in noisy intermediate-scale
quantum technologies.

I. INTRODUCTION

In statistical mechanics, it is assumed that a many-body quantum system coupled to a thermal
bath will thermalize independently of the initial state. Nevertheless, the conditions for thermaliza-
tion are subtle and need to be questioned for each specific setting [1, 2]. For example, the presence
of gaps in the density of states of the bath [3], the existence of symmetries [4], or the emergence
of dynamical phase transitions in the thermodynamic limit may affect the thermalization process.
Understanding dissipation and thermalization is crucial for quantum technologies, and includes
aspects such as the engineering of steady state preparation or the control of quantum decoherence.

The simplest approach to describe the evolution of a quantum system coupled to a thermal
bath is the Lindblad master equation [5—9], which preserves mathematical properties of the open
system density matrix such as positivity and norm. With this framework, the description of a
single-body open system is straightforward, but many-body systems impose challenges that push
numerical methods to their performance limit. Indeed, to correctly describe thermalization, the
master equation requires an exact diagonalization of the system, such that all transitions between
its eigenstates are considered. Hence, the Lindblad equation contains as many terms (or decaying
channels) as transitions between the system energy levels. A further simplification is to consider
single-channel Lindblad equations, which depend on Lindblad operators that act locally or quasi-
locally on each qudit forming the open system. This approach is accurate for situations to describe
steady states or when the bath produces a single relevant transition, for instance in weakly inter-
acting qubits. It has been used to analyze transport in spin problems, where a one-dimensional
many-body open system couples to baths via both the first and last site [10-13] or to study de-
coherence in strongly correlated systems [14—17]. However, as shown in [18-21] for single open
qubits or qudits, the single-channel approach may not be sufficiently accurate to describe thermal-
ization or even quantum transport [22]. A qualitative reason is that to describe the relaxation of
a many-body, or even a multi-level, open system to its thermal state requires the bath redistribute
the occupation probabilities of all its energy levels according to a Gibbs distribution. Naturally,
this process can only be accounted for correctly when the Lindblad equation produces transitions
among all energy levels of the system.

In this work, we consider a harmonic bath weakly coupled to our system. To justify our use
of the Lindblad equation, a Born-Markov approximation is considered, in which we take the re-
laxation timescale of the bath to be very short in comparison to the relaxation timescale of the
system. This approximation implies that the bath state only suffers small fluctuations around its
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FIG. 1. Quantum Ising chain coupled to three different baths: common, independent, and end-cap. The
thermalization of the quantum Ising model when coupled to a thermal bath raises many intriguing questions:
Will the system thermalize? If so, at what rate? Are there any suitable approximations to model the process
in the many-body limit? The system Hamiltonian consists of an external field in the z-direction indicated
by the big blue arrow trying to align the spin 1/2 particles (blue spheres with arrow) in the x-direction to
reach the ground state. The nearest-neighbor interaction in the z-direction, highlighted only for the first two
sites in (a) competes with the external field in the ground state trying to align neighboring spins. The baths
correspond to a three-dimensional electromagnetic field represented by grey ovals with a dense and wide
mode spectrum. The grey arrows indicate the interaction with each of the system spins. We consider: (a) a
common bath coupled to all sites, (b) independent baths for each site, and (¢) an end-cap scenario in which
only the first site is coupled to the bath. Multi-channel Lindblad operators can simulate all three scenarios;
neighborhood single-channel Lindblad operators are enabled for scenarios (b) and (c).

thermal initial state, such that only short-time system-bath correlations are considered. A further
step to derive the Lindblad equation is to consider the secular approximation, which neglects pro-
cesses involving large differences between two energy transitions, and which is based on a similar
argument as used for the rotating wave approximation.

We further consider that our open system is described by the well-known quantum Ising
model [23, 24]. Its equilibrium and dynamical properties have been widely analyzed, including
generalizations such as long-range interactions [25-28]. The open quantum system dynamics of
1D spin chains have been studied in an end-cap scenario with the idea of a wire attached to either
end, or else a subsystem of a much larger 1D spin chain. This approach amounts to independent
baths coupled to both ends of the chain with Lindblad operators constructed in terms of Hermitian
Majorana operators [10], or defined in terms of the first two and last two spins as in [11], a proposal
recently extended in [13]. The basic aim of these proposals is to drive the system to its thermal
state, by imposing a local version of the detailed balance condition. Alternatively, [29] analyzes
the same configuration by constructing the Lindblad operators in terms of the system eigenstates,
which are computed by assuming periodic boundary conditions. However, a general description
of not only the steady state but also the relaxation process of an Ising chain coupled to a thermal
bath in different configurations and without periodic conditions has not been done up to now to
our knowledge. Such analysis is particularly timely in quantum simulation experiments where,
among other spin systems, e.g., the XY Z model [30, 31], as well as Bose- and Fermi-Hubbard
models, the Ising model is one of the main models of choice [32]. Trapped ions and Rydberg
chains either in optical lattice or optical tweezer arrays can produce Ising chains [33, 34], and
generalized Ising models with different couplings such as the chimera map in D-Wave form the
basis of practical quantum machines. Thus, understanding the thermalization and decoherence
properties of the minimal 1D nearest-neighbor Ising chain is an essential first step. We build this
description and extend previous studies in two ways.

First, we analyze three experimentally feasible, distinct scenarios of coupling a bath to an Ising
chain as presented in Fig. 1: These are (a) a common bath coupled to all sites, thus producing atom-
atom interactions, (b) independent baths coupled to each site, and (¢) a single end-cap bath coupled
only to the first site in the Ising chain. We determine the resulting timescale for thermalization and
discuss how crucial it is to consider the effects of the Z, symmetry of the quantum Ising model.
For our choice of the interaction Hamiltonian, we find that the Lindblad description preserves
the symmetry sectors and, thus, the system thermalizes in each symmetry sector, but not across
sectors. This statement excludes results from Secs. [V C2 and IV E.



Second, we compare a multi-channel Lindblad equation to single-channel Lindblad approaches.
The multi-channel case makes no further approximations to the microscopically derived Lindblad
equation and, therefore, it correctly describes the system thermalization within such a framework.
However, tensor network methods such as matrix product density operators (MPDO) cannot be
applied. The multi-channel approach reduces by at least a factor of four the number of qubits that
can be treated with respect to the closed quantum system case. Indeed, while exact diagonaliza-
tion of the Hamiltonian of closed systems is limited to 14 qubits on typical personal computers
or laptops, the time evolution of an initial state can be extended to larger systems. Without us-
ing parallelization, Krylov and Trotter methods allow for the evolution of at least 24-25 qubits,
while parallelization techniques allow one to treat closed systems as quantum circuits of 45 to
64 qubits [35-37]. Hence, the single-channel local approach is commonly used for many-body
calculations, since it allows one to employ the same techniques as for the closed system case when
evolving a density matrix instead of a pure state. Moreover, MPDO is a highly efficient method
to reach much larger systems. To be able to describe thermalization while at the same time keep-
ing the Lindblad equation as local as possible, we propose quasi-local or three-site neighborhood
Lindblad operators, where two adjacent spins control the flip of the central one. This operation
is known from closed systems as quantum gates, in our case a three qubit extension of the stan-
dard CNQOT (controlled-not) gate, where an operation on one qubit is based on the state of another
qubit. However, we will show that the neighborhood approach only produces accurate results in
the extreme paramagnetic or ferromagnetic limits. For the Ising chain anywhere in the proximity
of the quantum phase transition, the vital factor of four overhead required for the multi-channel
calculation is necessary. In other words, we show that a quantum advantage occurs for at least a
factor of four less qubits for open quantum systems as compared to closed ones. For instance, if
we supposed quantum advantage for 50 qubits in a closed system, for an open quantum system
we only require around 13 qubits. Our results put the emphasis on open quantum system quantum
simulators for the nearest term noisy intermediate-scale quantum (NISQ) technology.

The outline of our work is as follows. We introduce the closed and open quantum systems
in Sec. II. We continue in Sec. III with a detailed look at our evolution equations. This section
includes multi-channel and single-channel Lindblad equations and their properties, such as the
eigenvalue decomposition and symmetries. Then, we evaluate the thermalization timescales for
different scenarios in Sec. I'V. Finally, we discuss possible experimental realizations in Sec. [V F
and conclude our results in Sec. V. Some topics we have included as appendices for the interested
reader who wishes to consider in detail additional aspects supporting the main study: the odd sym-
metry sector in App. A; details on the coupling strengths in the multi-channel Lindblad equation
as well as in the derivation of the single-channel operators in App. B; and the choice of a different
operator in the interaction Hamiltonian in App. D.

II. ISING SPIN CHAINS AND THEIR BATH COUPLINGS
In this section, we remind the reader of the system Hamiltonian, namely the transverse quantum
Ising model. We then introduce the different system-bath configurations as well as the models of

Lindblad master equation that we will consider. We discuss the common, independent, and end-
cap bath scenarios (a), (b), and (¢) from Fig. 1.

A. Transverse quantum Ising model

We focus on the transverse quantum Ising model in one dimension with a Hamiltonian given as

N-1 N
Hoi=— Y cos(¢)ojor, — Y _sin(¢)of , (1)
k=1 k=1

where the formulation of the coupling in terms of sine and cosine simplifies addressing the fer-
romagnetic (¢ = 0) and paramagnetic (¢ = 7/2) limit. The system size or the number of
qubits in the quantum Ising chain is N. The Pauli spin operators o and o}, are acting on site



k, cos(¢) = J/+/J? + g% > 0 is the unitless interaction energy, and sin(¢) = g/+/J? + ¢? is the
unitless coupling to the external field. The critical point of the quantum Ising model is at ¢. = 7 /4

for the thermodynamic limit N — oo, i.e., sin(¢.) = cos(¢.) = 1/v/2. We treat systems below
ten qubits and the position of the minimum of the gap ¢, i.e., an indicator of the quantum crit-
ical points, shifts to values ¢. < 7/4 due to finite-size effects. Note that in this formulation the

Hamiltonian H; is expressed in terms of the \/J2 + ¢2, and all quantities are therefore unitless.

The quantum Ising model has a Z, symmetry. This symmetry is very useful when treating the
closed quantum system, since it leads to a block-diagonal structure of the Ising Hamiltonian in
two blocks representing respectively the even and odd sectors. Furthermore, most of our results
are based on choosing an interaction operator S, = o that preserves the symmetry, and thus
can treat the Lindblad master equation in a particular symmetry sector. In contrast, the choices
Sp = o} + of discussed in Sec. IVE and S;, = o}, discussed in App. D do not conserve the
symmetry. Reference [38] presents a more detailed discussion of symmetries in the Lindblad
master equation.

In the following, we explore the quantum Ising system coupled to a dissipative bath for the
common, independent, and end-cap configurations.

B. Coupling to the electromagnetic field in three different configurations

First, we consider the case in which all spins are coupled to a common bath of harmonic oscil-
lators, as described in Fig. 1(a), such that the total Hamiltonian of the system (S) and the bath (R)
can be written as

N
Héc_lgR = HQI + Z Z Sk(gkqbq + gqug) + Z WeNgq , (2)
q

k=1 q

where bf.l (bq) 1s the creation (annihilation) operator of the bath with a frequency w,, and momen-

tum q. Also, nq = b],bq is the number operator.

As a second configuration, we consider that each spin is coupled to its independent bath, as
described in Fig. 1(b). The total Hamiltonian is

N N
Hé[-?R = Hgq1 + Z Z gquk(bkq + bliq) + Z qunkzq )
k=1 q

k=1 q

3)
where now there is a set of harmonic oscillators bL , corresponding to the bath attached to each spin

k.
Finally, the configuration in Fig. 1(c) corresponds to the case described in Eq. (2) with gzq = 0
for every k # 1. The interaction Hamiltonian is then reduced to

Hé:)-R = HQI + Z gqul(blq + bJ{q) + Z WyNiq - “4)
q q

In all three configurations, the interaction between the system and the bath is modulated by the
coupling strength gq4. For the three-dimensional electromagnetic field considered here, such cou-
pling strengths correspond to a dipolar coupling [39],

Gra ~ \) hwe/(V€o) (T - daip) /Tk exp(—irk - q) (5)

where v is the quantization volume. We consider the Planck constant / and the electric permittivity
€o as unit constants. Furthermore, the coupling g,.4 contains the scalar product between the position



of each spin r;, and the dipole vector dgip, and a different phase factor exp(—iryq) for each position
and each momentum. Here, we assume that all spins have equal dipole moments and that these are
orthogonal to the atomic positions. Atoms are regularly arranged in a chain along the x axis, such
that rj, = (k — 1)aj.4X, with a),; the between adjacent spins in the chain. We note that the same
physics described with Eq. (3) can be obtained with the Hamiltonian in Eq. (2), i.e., with a single
bath, under particular conditions. This situation is achieved under the condition ¢ a},; < 1,
where g™ is the resonant wave vector of the field with smallest modulus. Resonant wave vectors
correspond to bath modes that interact resonantly with the system frequencies w, such that wy, =
w. This condition ensures the absence of bath-mediated dipole-dipole interactions between the
spins, which therefore evolve as through each of them was coupled to their independent bath.
The interaction Hamiltonian also depends on the system coupling operators S;, which in most
of our examples we choose as S, = of. We point out that the paramagnetic limit ¢ = 7/2
corresponds to a non-interacting model, a case that has been extensibly discussed in [40].

III. DIFFERENT MODELS OF LINDBLAD EQUATIONS

Let us briefly point out in this section the difference between the global multi-channel approach
and neighborhood single-channel approach. We use the same Lindblad master equation for both
approaches, which we define as

i ! 0
p=—3Hpl+ > Cabea <Laprld -5 {leLaw}) = g leh=Llp), ©)

2
abed

where the formulation with the density matrix p (left hand side) or with the super-ket |p)) in
the Liouville space (right hand side) are equivalent. Equation (6) evolves the density matrix p
of a shape D x D, where D is the dimension of the Hilbert space of the quantum Ising chain.
In contrast, the vector representation |p)) of the density matrix has D? entries while the matrix
L acting on |p)) from the left-hand side is of dimension D? x D? due to the outer product or
Kronecker product, e.g., H @ I and [ is an identity matrix of size D x D. The Liouville operator
is defined as

L= (Hel-10H) + 3 (200 Ly~ L la o1~ 10 ILL,) )
abed

In the Lindblad equation, the Hamiltonian H corresponds to the Hamiltonian of the system and
possible corrections from the system-bath interaction. L, are the Lindblad operators encoding the
dissipative part of the dynamics via a transition from state |b) to |a) with a coupling C,p.q- Thus, the
sum over a, b, ¢, and d iterates over a set of states. The superscripts 7" and * are the transpose and
complex conjugate of an operator, respectively. Throughout the work, we choose our units such
that dg;, = 1, the lattice spacing aj,, = 1 between sites, the speed of light ¢ = 1, the Boltzmann

constant kg = 1, and i = 1. Thus, the temperature 7 is implicitly in units of [J?+ ¢?]*/2 and times

are given implicitly in units of [J? 4 ¢?]~/2. The choice of the Lindblad operators and decay rates
depends on the particular case considered. We shall consider two different cases, a multi-channel
Lindblad equation as derived from Markov and secular approximations [9], and a single-channel
equation with neighborhood single-channel Lindblad operators. These options are detailed in the
following.

A. Multi-channel Lindblad equation

In this first approach, we consider the master equation obtained from first principles according
to the standard derivation, see [8, 9, 41] for details. This path considers the well-known Born-
Markov and secular approximations. A crucial point of this derivation is to diagonalize the system



Hamiltonian, such that
Hs =Y E,la)(al . (®)

The sum over a contains dj'. eigenstates without Z; symmetry, and di'. ' eigenstates within a

symmetry sector; dy. is the local dimension. This definition allows one to re-express the system
coupling operators \S) in terms of such eigenstates,

Sk =Y _(al Sk[b) Las- ©)

ab

In this representation, the resulting master equation is written in terms of Lindblad operators that
represent transitions between different eigenstates, |b) to |a),

Loy = a) (b] , (10)
and therefore, the number of Lindblad operators is dlzojz where dy,. = 2 in our case !. Notably, the
energy eigenstates can be entangled in the computational basis, i.e., the Fock basis corresponding
to the qubits; thus, the state of any spin k&’ can have different values in the eigenstates |a) and |b)
and change during the action of L,;, although the operator in the interaction Hamiltonian acts on
site k via S, k # K’. This property contributes to their being named global Lindblad operators.

The decay rates JF ;.4 in Eq. (6) can be written as

N N
Cabed = Z Z Cc[fblz]d , Cc[fblz]d = 05,, 12,7 (Epa, Bae). (11)

j=1 k=1

where Iy, = E, — F, and E,;. = E; — E, correspond to the two system transitions that are
present in each term of the equation. However, the secular approximation considered forces such
transitions to correspond to the same frequency, as enforced by the Kronecker delta in Eq. (11).

Moreover, the term V¥ ( E,,, E,;.) depends on the matrix elements of the system coupling operator
in the two system transitions,

P (Ba, Bac) = {al S 16} (d] Sk |e) ¥ (o, T1) - (12)

where r;;, represents the distance between the two spins 7 and j. This dependency describes the fact
that the bath dissipation connects different spins with each others, which gives rise to collective or
cooperative effects in the relaxation process. Furthermore, we note that the function v(Ej,, rji)
is specific to each type of bath and carries the dependency of the temperature. Here, the bath is
a three dimensional electromagnetic field, to which the Ising spins are coupled via the standard
dipolar interaction as described by the Hamiltonians (2), (3), and (4) in the three configurations
discussed, with the couplings strengths defined in Eq. (5). Because the bath is in the thermal
equilibrium, the decay rates fulfill the detailed balance condition, and therefore the steady state of
the equation is the thermal state.
Further details of this discussion can be found in App. B.

B. Single-channel Lindblad equation

We propose single-channel Lindblad operators that allow us to express the action of the bath in
terms of a number of decaying channels that scales linearly with the number of qubits only. This
advantage, together with the fact that they act only either on a qubit or its neighborhood, make

2N
loc

! This upper bound could, in theory, be reduced to d2¥ — 1, but is not of interest for numerical implementation.



them computationally more feasible. Hence, single-channel Lindblad operators are very useful
to describe dissipation in many-body systems without considering the complete energy spectrum,
while still transitioning between energy eigenstates in the corresponding limits.

Our design of these operators is inspired by the spectral decomposition described in the previ-
ous section. However, the idea is to concentrate on the action of the operator Sy in |a) (a| S |b) (0]
on a single site k. To this aim, we use the Schmidt decomposition [42] and rewrite the eigenstates
|a) and |b) in terms of a bipartition between the site & and all others sites k, i.e., all &’ with &’ # E,

a) = Z)\ika |a2> ‘a%> , Z)‘J’Cb > |b (13)

The Schmidt decomposition characterizes the entanglement between two subsystems of a pure
quantum state and generates two orthonormal sets of basis states, {|aj,) at)} for each
bipartition. The number of components in the Schmidt decomposition depends on the system size
and amount of entanglement the state and is therefore not specified. The weight of each basis state
within the decomposition is set via the singular values \;x,, which are larger than or equal to zero
by definition. With such a decomposition, we can write

a) (al S 18} bl = > 7 Fi) i) (o | @ o) (b1

ij!

Y

b;}) (14)

The coefficient ¥’ F C[JZ] depends on the eigenstates a and b of the system Hamiltonian Hq;. Further-
more, the orthonormal basis states of the Schmidt decomposition are denoted by superscripts 75’
in front of the symbol.

Building the Lindblad local operators is particularly feasible in the ferromagnetic and paramag-
netic limits, since in these limits the eigenstates are not entangled and the Schmidt decomposition
contains a single term. In the paramagnetic limit, to observe thermalization we have to choose a
coupling operator that is not diagonal to the paramagnetic Hamiltonian, for instance, S, = o;. The
corresponding Lindblad operator corresponds to a local spin flip which changes by a quanta the
energy of the system. A complete numerical analysis of the dynamics for such a case is presented
in App. D. In the ferromagnetic limit, the Lindblad operators have to act on three qubits in order
to describe a transition that produces an energy change; we are using the symmetry-broken eigen-
states to avoid entanglement in the ferromagnetic limit and, thus, do not use the Z, symmetry.
More details on the structure and nature of single-channel Lindblad operators is given in App. C.

/
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C. Eigenstate decomposition of the Lindblad equation

It can be analytically shown that a steady state or fixed point of the multi-channel Lindblad
equation is the thermal state [9]

exp (—(Hy)
A

with 5 = 1/(kpT) and the partition function Z = Tr [exp (— S Hg)|, and Hg is the Ising model in
our case. However, even with a multi-channel Lindblad equation, the system may not relax to such
a thermal state. To analyze this thermalization as well as the decay rates of the system, we take
the Lindblad equation in its vector form Eq. (6), and diagonalize the Liouville operator. Since it is
not Hermitian, its diagonalization gives rise to left and right eigenvectors. The right eigenvectors,
denoted as |v;)), fulfil the condition £ |v;)) = A, |v;)), where A; are the corresponding eigenvalues
of the Liouville operator £. Thus, the eigenvectors |v;)) form a complete basis and we can express

Pth = : (15)



any initial density matrix as a linear combination of the basis vectors with some complex weight
cj. ie., [p(0))) = > ¢j|v;)). The time-evolved state can then be written as [43, 44]

p()) = Z cje Jug) (16)

where ¢; = ((v;|p(0))). On the one hand, the terms corresponding to eigenvalues A, with zero
real part do not decay over time and therefore correspond to steady states. Moreover, if there is
a single eigenstate with zero real part eigenvalue, this corresponds to the thermal state. On the
other hand, the contribution of eigenvectors with a negative real part will vanish within a timescale
given by |R(A;)|, where R refers to the real part.

If we sort the eigenvalues as |[R(A;)| < |R(A,+1)|, and find only the first one (Ag) has a zero
real part, the second one |R(A;)| will define a gap that describes the slowest decay timescale of
the system. Further details of the Liouville spectrum have been discussed in literature [38, 43—46].

D. Effects of symmetries

As mentioned before, the Ising model has a Z, symmetry that is preserved by the dissipation
and divides the Hilbert space into even and odd symmetry sectors. We choose our interaction
operator accordingly to ensure the conservation of the symmetry. For simplicity we will perform
our analysis within the even sector, which means that instead of analyzing thermalization to a state
Eq. (15), we analyze thermalization to

_BHE
g = SR (a7

with H§ the Ising Hamiltonian in the even sector. We briefly discuss the dynamics within the odd
symmetry section in App. D. The use of the symmetry has two advantages.

Firstly, if we do not use the symmetry, we have at minimum two steady states, i.e., one for
each symmetry sector. This would give rise to a degeneracy in the steady state eigenstates of the
Liouville operator, and therefore to a more complex analysis of the properties of the steady state.
Secondly, the symmetry improves the computational scaling. For our spin system, the size of the

Liouville operator decreases from 22V x 22V to 22(N=1) x 22(N=1) which simplifies computational
operations such as the eigenvalue decomposition. Therefore, we also have only two sets of 22(V—1)
eigenvalues and eigenstates instead of 22V,

IV. THERMALIZATION TIMESCALES

In the following, we analyze the time evolution of the system and the spectrum of the Liou-
ville operators L. We execute this analysis for the different scenarios of a system-bath coupling
sketched in Fig. 1 and represented by the Hamiltonians in Egs. (2) to (4). We find the timescale
for the thermalization of the system for the multi-channel Lindblad operators.

A. Numerical Methods

Our results are based on the exact diagonalization obtained by using the OSMPS package
[47, 48]. Without considering symmetries, the number of transitions and decay channels in the
Lindblad equation, as well as the dimension of the density matrix, grows in the number of spins as
2. Besides considering the time evolution, we analyze the spectrum of the Liouville propagator
and study steady states and timescales characterized by the gap in the Liouville propagator. Such
an analysis requires diagonalizing a square matrix of dimension 2%V, which is even more limiting.
Hence, calculations beyond seven qubits are infeasible without parallelization, and each additional



qubit in the open systems increases the computational resources used by a factor of 64 due to the
cubically scaling eigenvalue decomposition. As discussed in the previous section, this scaling is
partially improved by the fact that we will be working in the even sector of the 7, symmetry.

For a small system of two spins, we analyze the decay by fitting the average of the magnetiza-

tion, 7 = & "V (o¥) to a double exponential
% = Ay exp(Mt) + Ay exp(Aat) (18)

that captures the main decaying timescales. For larger systems the number of timescales involved
in the evolution grows exponentially with the number of spins and their contribution will depend
on the initial state, which complicates the design of the correct fitting function. Therefore, an
alternative is to define the thermalization time as the minimal convergence time to the thermal
value of a reference observable,

Tin = mfin (Jo*(t) — o5, <1071, (19)

or to the thermal state

Tinp = mtin (D(p(t), py) < 107), (20)

where D(p, p') = 1||p — p'|| is the trace distance, p, is defined in Eq. (17), and the corresponding
expectation value of the average magnetization is oj;,. We point out that even in the two-qubit
case in Fig. 2, the double-exponential fit cannot resolve the two timescales over the full range of
¢ failing for small ¢. Choosing a relatively tight threshold of 1071° ensures capturing the longest
timescales while being definitely above the machine precision of 1074,

The above thermalization timescales can be related to the real part of the eigenvalues of the
Liouville operator. In detail, we can fit the evolution of the trace distance to an exponential

D(p(Tinp), pii) = D((p(0), pi) exp(—ATinp), (21)

which determines the decaying rate as A ~ |R(A,)|. As we will show, the value of j of the
eigenvalue will depend on the initial state, which will determine which timescale dominates the
decay. In other words, the decay of different initial states will be governed by different eigenstates.

B. Two-site systems

We first consider the case of N = 2 and examine the multi-channel Lindblad equation to
analyze the common bath (a) with a coupling operator S, = o”.

Figure 2 shows an analysis of the thermalization time as defined by the convergence of the
average mangetization, and starting from a random pure initial state. Figure 2(a) shows that the
thermalization time in Eq. (19) increases when approaching to the paramagnetic phase. Since
the average magnetization is only evolved up to 7 = 10, we find a lack of convergence for ¢ >
0.9 x /2 as shown by the region in white color. The thermalization time Ty, defined in Eq. (20)
yields a different result, as it corresponds to a stricter criterion for thermalization. The maximal
difference between the two definitions for all data points with a thermalization time smaller than
7 is 3.75. While the magnetization, e.g., 5° in the x-direction from Eq. (19), is more useful with
regards to experiments, we will use the trace distance D for further calculations. Figure 2(b)
displays the evolution of the x-magnetization at a temperature 7" = (.11 over time, showing how
the relaxation slows down when approaching the paramagnetic limit.

Figure 3 displays the analysis of the eigenstates of the Liouville operator for the same case. In-
deed, all decay rates consistently vanish toward the paramagnetic limit. For our coupling operator
o”, this behavior corresponds to a pure dephasing case where the system does not thermalize. As
a consequence, the gaps between all eigenstates in the Liouville operator close toward such a limit
and the eigenstates reach full degeneracy.
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FIG. 3. Spectrum of the Liouville operator for the global multi-channel Lindblad operators with a common
bath. The spectrum of the Liouville operator for N = 2, which defines the thermalization timescale.

We now analyze the Liouville spectrum corresponding to the multi-channel Lindblad equation.
The curves in Fig. 3 show that there is a single eigenvalue Ay with a real part that vanishes across
the whole parameter space. This property means that within our symmetry sector there is a single
steady state for the evolution. Furthermore, the figure displays all other decay rates, which corre-
spond to the eigenvalues A;, 7 > 0. We observe that the rates all decay toward the paramagnetic
limit, where a full degeneracy is obtained. Indeed, this limit corresponds to pure dephasing where
the system does not thermalize. To analyze the dependency of the decay with the initial states, we
first consider a random initial state |¢)z). The empty circles show the rates \; » that result from the
fitting Eq. (18) to the evolution of the average magnetization. The filled circles show the timescale
extracted from the trace distance according to Eq. (21) and considering the same random initial
state |1g), while the filled squares shows the same for an initial ground state |1y). Notably, the
decay of the random initial state is governed by A, while the decay of the ground state does not
depend on the slower timescale and is governed by As.
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C. Beyond two-site systems

We now turn to a more complete analysis that goes beyond the two-site system and consider
system sizes up to seven sites in the even symmetry sector. While still considering a coupling
operator o, we investigate how the system size affects the thermalization timescale. We investi-
gate how the coupling scheme affects the thermalization. We question the accuracy of considering
neighborhood single-channels Lindblad operators. In this analysis, we first consider the multi-
channel approach, and then the single-channel approach.

1. Thermalization for multi-channel Lindblad operators

Figure 4(a) shows the smallest values |R(A;)|, excluding the steady state, in the spectrum of
the Liouville operator £ of the common bath for N € {2,3,4,5,6,7}. We observe that the gap
of the Liouville operator decreases for increasing system size, leading to slower thermalization
timescales for larger system sizes. Interestingly, we have observed that this trend also occurs
when considering other decay rates different than the ones given later in the appendix by Eq. (B2),
although we do not present these details here for brevity. As will be further discussed in Sec. IV D,
this observation suggests the presence of subradiance in the emission.

Figure 4(b) shows the thermalization times for different system-bath coupling schemes with
N =4and T = 0.51. The thermalization timescales grow for common, independent, and end-cap
scenarios as one gets closer to the paramagnetic limit, where the thermalization time approaches
infinity. Toward the ferromagnetic limit the thermalization grows more rapid. Moreover, the
independent and end-cap scenarios (b) and (¢) thermalize faster than with a single common bath
(a). Such a common bath introduces spin-spin interactions mediated by the field which in our case
slows down the thermalization process, and as we will see, even more as the number of spins in
the spin chain grows. Also, we find that the decay of spins initially in the ground state is faster
than for an initial random state. However, these differences are more relevant for spins coupled to
independent baths than coupled to a common bath. In addition, when the end-cap configuration
(¢) is initially in the ground state its decay time is exactly the same as the slowest decay of (b).

Figures 4(c) and (d), corresponding to the common and the independent baths, respectively,
show that the qualitative behavior of the slowest thermalization rate R{A;} with ¢ is the same
for all temperatures 7'. In both cases, we observe a faster thermalization toward the ferromagnetic
limit, but the common bath case shows additionally the presence of a second gap minimum around
¢ = 0.3 x 7/2 for high temperatures starting around 7" > 0.51.

The observed features can be experimentally exploited in two possible directions. On the one
hand, a common bath and an initial random state will slow down dissipation and decoherence
processes when they are not desired, like in certain quantum information schemes. On the other
hand, independent baths and initial ground states can be used in situations where a thermal state
should be reached as fast as possible. However, we note that the dependence of the thermalization
time on the initial state could be different for low temperatures, since the ground state is much
closer to the thermal state than an excited one. We dedicate Sec. IV D to a finite-size scaling
where we estimate the timescale beyond seven qubits.

2. Thermalization for single-channel Lindblad operators

To analyze the feasibility of using neighborhood single-channels to simulate thermalization,
we focus on the independent bath configuration (b) and N = 4. We do not use the Z, symmetry

for these calculations. ) o ) _ _
In Fig. 5(a), we consider the ferromagnetic single-channel Lindblad operators derived in

App. C2 to evolve a random initial state until a time 7 = 10 and plot its trace distance to the
thermal state. We set the minimal trace distance to 10~ for a meaningful coloring away from the
ferromagnetic limit ¢ = 0. As expected, the simple single-channel approach makes the system
converge to the thermal state in the ferromagnetic limit, and it does so down to a trace distance of
10714, We observe that we reach relatively small trace distances to the thermal state of 10~2 for
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FIG. 4. Thermalization rates for different systems with multi-channel Lindblad operators. (a) Decay rates
for (a) for N = 2to N = 7 spins. Solid curves represent the smaller rate #{ A } obtained from the Liouville
spectrum. Circles (squares) represent the decay rate extracted from the trace distance to the thermal state
starting from a random state (the ground state) in a time evolution. For numerical constraints, data for
N = T does not include time evolutions. (b) The rates for different system-bath coupling schemes (a), (b),
and (c) for N = 4 spins. Solid curves, circles, and squares as in (a). (c) Smaller rate R*{A;} for N = 4
across different temperatures 7" and values for ¢ for the common bath (a). (d) Smaller rate R{A;} for
N = 4 across different temperatures 1" and values for ¢ for independent baths (b).

small perturbations of ¢ < 0.032 x 7/2 around the ferromagnetic limit. However, the neighbor-
hood single-channel approach is not valid away from the limiting case. Moreover, we observe that
for temperatures 7' < 0.8, the system does not thermalize even in the ferromagnetic limit. The

reason for this observation is the trace distance has been calculated at a time 7 = 10 in which the
system might not have thermalized yet, predicting very long thermalization times indeed.

Figure 5(b) shows that the gap of the single-channel Liouville operator f8(A;) decreases for
smaller temperatures, which confirms that a time 7 = 10 is not sufficent to reach the thermal state
in (a) for low temperatures. However, we should stress that the same argument does imply that,
away from the small region around ¢ = 0, the system would thermalize when considering longer
times. Indeed, the rate }8(A;) indicates a fast convergence to a steady state, but nevertheless this
state does not correspond to the thermal one, which marks the failure of the neighborhood single-
channel Lindblad operators beyond the extreme ferromagnetic limit.

Appendix D shows numerical results for neighborhood single-channel Lindblad operators in
the paramagnetic limit and we obtain similar results. In conclusion, the approximation is not very
useful for solving thermalization problems.
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FIG. 5. Neighborhood single-channel Lindblad operators. Three-site Lindblad operators designed for the
ferromagnetic limit thermalize in scenario (b) only in a very small region around the ferromagnetic limit,
and the multi-channel Lindblad operators are the only way to thermalize the system in the complete range
of the phase diagram. (a) The trace distance between the time-evolved quantum state and the thermal state
at the end of the time evolution with 7 = 10 shows thermalization around the limit ¢ = 0. (b) The rate given
by the eigenvalues of the Liouville operator answers the question as to whether the time-evolved state in
(a) approaches the thermal state at 7 = 10 due to long timescales or due to the failure of the neighborhood
single-channel approach.

D. The thermodyanmic limit via finite-size scaling and subradiance

Finally, we approach larger systems with N > 7 via finite size-scaling for the data points shown
in the previous analysis. We observe that the results for the timescale extracted from the Liouville
operator £ converge for the system sizes of five to seven qubits, i.e., the difference is hardly visible
in the plots. We use a power-law fitting function of form

Cl

%(ALN) — %(Al,N:oo) - W )

(22)

where ¢’ and ¢” are positive parameters in the fit that depend on the parameter ¢ within the phase
diagram. This approach is established for the analysis of quantum critical phenomena in finite-
size systems [24, 49]; the standard deviation obtained from the fit is a good indicator of whether
the procedure works for the problem given here. The extrapolation for the thermodynamic limit
in Fig. 6(a) suggests a non-zero value for the rate for N — oo. In addition, it can be seen that
within the standard deviation, the features present in the rate for seven qubits are also present in
our finite-size scaling result. Thus, our method is promising to analyze the system dynamics for
large open systems beyond the limit of exact diagonalization.

We have previously seen in Fig. 4(b) that the decay rate for N = 4 is smaller for a system
coupled to a common bath than for a system coupled to independent baths. Now, we observe in
Fig. 6(a) that for a common bath the decay rate decreases with N. Both features suggest the pres-
ence of subradiance, a cooperative phenomenon that leads /N spins or atoms to decay much slower
than a single atom [50]. Classically the subradiance is described as a result of radiation trapping,
i.e., continuous emission and reabsorption by the atomic sample that leads to a slowing down of
the irreversible energy loss. In the quantum picture, it is furthermore explained by destructive
interference [51].

The phenomenon of subradiance was originally described in quantum optics for independent,
i.e., non-correlated atoms; the decay rate of N atoms coupled to independent baths is the same
one as for a single atom, ['y = I'y, while for atoms coupled to a common bath it can either be
enhanced (superradiance) or diminished (subradiance) by a factor dependent on N. In the case of
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subradiance, the decay time of /N atoms 7, has been related to the single atom decay rate 7,; by
the relation 7y /71 = 1 + aby, where a is a constant and by is the atomic optical depth [51].

In our case, the presence of correlations in the system presents two differences with respect to
the standard picture. First, even for independent baths the decay rate may depend on N, which we
do not investigate here. Second, the dependency of the rate on /N may be related to the point of
the phase diagram of the open system. Indeed, we can rewrite Eq. (22) as

Fl=1+i<i—1>, (23)

where '] = ', + . This equation yields a relationship between decay times, 7, /7y since Ty =
1/T y. Through the dependency with ¢’ and ¢, we find the equation that relates the decay time for
N spins to that of a single one depends on the value of ¢, and therefore the amount of correlations
within the spins. While few works describe collective effects for atoms that are coupled through a
hopping term [52—54], even fewer studies describe the effect of atom correlations, like for instance
in the context of one-dimensional waveguides [55] or considering just two atoms [56]. Therefore,
the interplay between strong correlations and collective effects in the dynamics of many body
systems is still a largely unexplored domain.

E. Two coupling operators in the interaction Hamiltonian

We have seen in the previous sections that the relaxation dynamics is highly sensitive to the pa-
rameters and structure of both system and interaction Hamiltonians. To illustrate this observation
further, we end our analysis by extending beyond our previous common bath scenario. We take
the interaction Hamiltonian to include not just one but two coupling operators, namely o}, and o7,
such that we have a final scenario referred as (0),

Héi)R = H,sir + Hysir = Z Z Z 0% (Grqbq + gqug) . (24)

N
k=1 q a€e{zx,z}

Figure 6(b) contains the first two eigenvalues of the Liouvillian for two to five qubits. Since the
Z5 symmetry is broken by the operator o} in the interaction Hamiltonian, thermalization occurs
in the whole Hilbert space for every parameter regime. An exception is the ferromagnetic limit
(¢ = 0), where the gap for the first eigenvalue closes. In the ferromagnetic limit, the o} part in
the interaction Hamiltonian is responsible for breaking the symmetry; this part commutes with the
system Hamiltonian. It follows that the terms does not produce any transition between eigenstates
with different energies, using moreover the properties of the Pauli matrices. It contributes in the
Lindblad equation with a term proportional to (£, = 0, r;;). However, as discussed in App. B,
7(0,r;,) = 0 in our case. Thus in this limit, the term H,g,r does not contribute at all to the
dynamics. In other words, the system evolution is determined only by /1, g r, which preserves
the symmetry. This reasoning explains the double degeneracy of the ground states of the Liouville
operator (with two eigenvalues f8{Aq} = R{A;} = 0), while the finite non-zero value of R{A-}
leads to the conclusion that each symmetry sector thermalizes.

F. Experimental realizations

Quantum simulator platforms realizing the quantum Ising model include ultracold atoms and
molecules [30, 57], trapped ions [33], and Rydberg systems [34]. Modelling the bath coupled to
these architectures or even understanding the accuracy of the Lindblad description are difficult
problems on their own. Here we have considered for simplicity a bath consisting of a three-
dimensional electromagnetic field present in AMO-based (atomic, molecular, and optical) quan-
tum simulator platforms, which couples to the spins of our system via dipole interactions. The
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FIG. 6. Subradiance and generalized coupling. (a) Finite-size scaling extrapolates the gap of the Liouville
operator for system sizes N — oo. This approach predicts an open gap of the Liouville operator £ toward
the thermodynamic limit (including taking the variance of the fit into consideration). For comparison, we
show the result for N = 7. We hypothesize a subradiance effect. (b) Treating a final bath case (), we find
for multiple system-bath coupling operators 0% + o in the interaction Hamiltonian the system thermalizes
across the complete phase diagram except in the limit ¢ = 0. Thermalization times are deduced from the
eigenvalues (A1) and R(Az) of L. System sizes are color coded. First (i = 1, dot-dashed) and second
(¢ = 2, dotted) non-zero eigenvalues are indicated by line style. Curves may overlap.

black-body radiation of the surrounding experiment can serve as motivation to choose such a field.
In addition, trapped ions [58], Rydberg atoms [59] and ultracold atoms [60] can be confined in an
optical cavity considered in the bad cavity limit, where the electromagnetic field has a broad-band
density of states and therefore produces the desired Markovian interaction [61].

Although we use the electromagnetic field as a basis throughout the paper, a set of interacting
spins coupled to a continuous bosonic bath can be implemented with other models. One possi-
bility is to consider ultracold atoms coupled to the bosonic field formed by the excitations of a
Bose-FEinstein condensate (BEC) as proposed in [62] and extended in [63] for the Ising model.
A close alternative is to consider atoms with two internal levels. The first level is trapped by an
optical lattice and implements the open system dynamics. The second level is untrapped and plays
the role of a bath [64, 65]. Similarly, recent progress has enabled the coupling of qubits to acous-
tic phonons in superconducting qubits [66], although the long coherence times between qubit and
phonon modes cannot be accurately described with our approach based on the Born-Markov ap-
proximations. However, both BEC excitations at low momenta [67] and acoustic phonons have
a linear dispersion, analogous to photons in the electromagnetic field. This analogy draws the
similarity to the model here studied and further emphasizes the experimental applicability of our
work.

V. CONCLUSIONS

We have analyzed the dynamics of a quantum Ising model coupled to a thermal field in the
Markov limit by considering a multi-channel Lindblad equation, in particular thermalization and
decoherence times. Correct calculation of decoherence times is vital to accuracy and verifiability
of any quantum simulator, including the many experimental examples treating the quantum Ising
model. Such a multi-channel Lindblad equation satisfies the Born-Markov and secular approx-
imations well known to Lindblad approaches and makes no further approximation. In contrast,
we have found that the commonly used single-channel or local approximation produces no ther-
malization in the simulations for the quantum Ising model; thermalization timescales cannot be
predicted with this approach.

We explored coupling with the bath in three different experimental scenarios, i.e., common,
independent, and end-cap baths. We also explored how thermalization times depend on both the
phase diagram and the number of spins in our system. We showed how the bath, system size, and
region in the phase diagram can work together to speed up or slow down thermalization, which can
be used to protect many-body states from decoherence. For instance, one could quench the system
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into a system-bath-phase region protected from decoherence and reverse the quench to regain the
state when needed. The errors introduced due to non-adiabatic quenches might be less critical than
the errors from decoherence while storing the state for a long time. We emphasize that very little
is known about control of many-body decoherence, with most decoherence times given in terms
of one or a few qubits subject to gate operations in a “digital” quantum computer, and scaling to
larger systems assumed, a well-known problem in trapped ions, for example. In contrast, our study
applies directly to calculations on “analog” quantum computers, i.e., quantum simulators, as well
as to adiabatic quantum machines like D-Wave. Our study can also shed light on the coherence
times of large many-body states in digital quantum computers between gate operations.

In detail, we found the following.

a) The thermalization depends on the phase of the Ising model and on whether the Z, symmetry
is preserved. For a system coupling operator o”, the symmetry is preserved and thermal-
ization is produced in each symmetry sector, except in the paramagnetic limit where the
interaction produces pure dephasing. Moreover, thermalization times are found to increase
when approaching this limit for any configuration and spin number. For a system coupling
operator 0* + o~ (or simply 0?) the symmetry is broken and the system thermalizes in the
full Hilbert space. In the ferromagnetic limit, the symmetry-breaking component of the cou-
pling, 07, has virtually no effect and the system thermalizes in each sector due to the action
of o*.

b) Spins coupled to a common bath thermalize slower than spins coupled to independent baths,
and the thermalization time increases with the number of spins and also depends on the
system phase. This result suggest an interplay between collective effects leading in this case
to subradiance and system correlations. Independent baths thermalize faster if all sites are
coupled to a bath instead of only one site, but in both cases the thermalization time is highly
dependent on the initial state. These results are supported by data from the spectrum of the
Liouville operator and the time evolution of the Lindblad equation. Thus, we suggest the
independent bath scenario to enhance thermalization or a common bath to suppress it and
extend coherence times.

¢) The thermalization time of atoms is structured in ¢. For instance, for atoms coupled to a
common reservoir the timescale shows a relative maximum around 0.3 x 7/2 at 7' = 0.51.
The presence of such maxima can be used as sweet spots to preserve coherence in the system
away from the values of ¢ close to the ferromagnetic case.

d) The proposed neighborhood single-channel Lindblad operators designed for the ferromag-
netic and paramagnetic limits gives rise to a thermal steady state only in a very narrow
region around the extreme limits. However, even in these cases, it does not reproduce the
correct decay rate given by the multi-channel Lindblad equation. Thus, the computationally
intensive multi-channel Lindblad approach appears to be necessary to estimate many-body
thermalization and decoherence times.

Our approach provides a clear path forward toward addressing pressing open problems suitable
for near-term research projects, both within the present classical computational limits of 6-7 qubits
imposed by the necessary multi-channel Lindblad approach, as well as the much larger system size
that can be treated in experimental quantum simulator architectures. For instance, one may explore
thermalization and decoherence control by varying the angle between the dipoles in the bath and
the spins in the system in a common vs. independent reservoir scenario. In the latter, one could
treat varying the dipole direction across the independent baths. The distance between the spins
could also be changed to a non-equidistant spacing to reproduces what happens, for example, in
one-dimensional ion traps. There are other questions which can be addressed within this frame-
work, such as coupling to baths at different temperatures and the resulting equilibrium temperature
and possible temperature gradients. Another extension to this research is to include long-range in-
teractions in the system Hamiltonian. These long-range interactions present a correction to local
tight-binding models such as the transverse quantum Ising model, occur in a number of experi-
mental platforms, and can have significant effects on the statics and dynamics of a closed system
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[28]. Could long-range effects in an open quantum system be used to control thermalization and
dec(;)h?erence times, and how would such control interact with different bath scenarios as in this
study?

The validity of the secular approximation in many-body systems should also be revisited; the
large number of possible transitions will increase the possibility of smaller differences between
two transition frequencies for an increasing number of spins. Moreover, it remains an open ques-
tion if the conclusions are altered when going beyond the Markov and weak coupling approxima-
tions. This question relates to whether thermalization is present in non-Markovian open quantum
systems [68-70].

Relaxing these approximations can open the way to consider further experimental setups which
are not covered by the approximations of the Lindblad equation. An example is a sympathetic
cooling in ultracold atomic and molecular experiments [71, 72]. Ultracold molecules have been
considered in the context of collisions leading to decoherence of the system [73, 74], which can
be described with the Lindblad master equation. However, considering the bath as a quantum gas
may allow one to explore Fermi vs. Bose statistics, by selecting the corresponding isotopes, or
choosing a coupling which ranges from weakly to strongly interacting. Furthermore, some open
systems cannot be described with a Markov approximation such as ladder-type structures where
the system is of the same size as the bath [75], i.e., one rail representing the system, and the other
the bath. Another example is that of a few nuclear spins of 3C atoms surrounding a color center
[76]. Future research may focus on local or neighborhood single-channel operators leading to the
thermalization of the system, for and beyond the quantum Ising model. Such a step would help to
move beyond seven spins and understand further the thermodynamic limit.
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Appendix A: Thermalization for odd symmetry sector and S;, = o}
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FIG. 7. Summary for the odd symmetry sector. (a) Thermalization timescale for the odd symmetry sector
via the trace distance. We observe the same trend as in the even sector, i.e., the timescale becomes longer
toward the paramagnetic limit. Time evolution for 7 = 10; white regions do not meet criterion within this
time. (b) Rate and timescales for different system sizes for the global multi-channel approach and initial
states. The curves represent the closing rate toward the paramagnetic limit and for growing system size. A
random initial state (circles) matches this rate of the Liouville operator £; the ground state (squares) as the
initial state thermalizes faster.

So far, we have considered the analysis of the system in the even symmetry sector of the Z»
symmetry. We summarize the odd sector in this brief appendix. We expect similar behavior.
The thermalization time 7i,p slows down toward the paramagnetic limit, see Fig. 7(a) for multi-
channel Lindblad operators in scenario (a). If we consider increasing system size N within the
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same setup, we note that the gap is closing for an increasing number of spins. The initial state
has an equal effect on the timescale as in the even sector: the ground state (squares) has a shorter
thermalization time than the random initial state (circles); the latter match the gap (A1) in the
spectrum of the Liouville operator £. We conclude from these two examples that the features
presented in our work are not unique to the choice of the symmetry sector.

Appendix B: Multi-channel Lindblad equation

In this appendix, we present a more detailed description of the multi-channel approach. We
will specify the component v(Ej,, rj;) present in the decay rates of the Lindblad equation, see
Eq. (12). Using standard notation, we denote the transition frequency w = Fj,. As discussed in
[39], for the light-matter interaction the function y(Ey,, 1)) takes the form

AP — 7 (w)Ty, (B1)

for the case 7 = k, where c is the speed of light. For non-zero spatial distance, it is found that

Y(w, k) = 2(w)ToR (x(w, Tjk)), (B2)
where
. B e _ieiwrjk B ) eiUJTjk ieiwrjk
x(w,rm—((l &)=+ 35)((wrjk)2+(wjk)g)>- B3)

Here we assume for simplicity that the spin dipoles in the bath are aligned orthogonally to the
Ising chain, which leads to £ = (daip - Tjk)/(daiprjx) = 0, with 7;; = |r;;|. We note that different
choices of dipole orientation lead to different spatial decays for spin-spin correlations within the
dissipation process. For instance, if the dipoles and spin locations are parallel, we find £ = 1, and
therefore the first term in Eq. (B2) cancels while the second and third order term in 1/r;;, survive.
This would lead to spin-spin correlations that decay faster with their distance than in cases where
the first slower decaying term is present. In contrast, for £ = 1/ /3, the second and third order
terms in 1 /7, is set to zero, while the slower decaying term remains with a pre-factor of 2/3. This
case is apart from the pre-factors such as Iy, as in the case of spins coupled to a BEC, and shows
the versatility with which this system can be tuned. We ran simulations similar to Fig. 4(a) for
selected values of £ and observed the same behavior, i.e., the thermalization timescale slows down
for more spins. Furthermore, we have defined n(w) as

= (I 50 o

where n(w) = 1/(e’~! — 1), and 3 = 1/kgT, with kg the Boltzmann constant. Finally, we
neglect for simplicity the Lamb shift-like terms that come from the imaginary part of x(w, r;i),
since these terms will not contribute to the dissipative timescales and the thermalization process
we aim to analyze here.

Appendix C: Deriving the neighborhood single-channel Lindblad operators

We introduce the neighborhood single-channel Lindblad operators in this section.
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1. Neighborhood single-channel operators in the paramagnetic limit

To derive the simpler Lindblad operators that in the paramagnetic limit give rise to thermaliza-
tion, we consider solely for this subsection S, = o;. For the paramagnetic limit the eigenstates
are product states of local eigenstates of the Pauli matrices, i.e., product states of spins aligned and
anti-aligned with the external field. The Schmidt decomposition of a product state has exactly one
non-zero singular value, e.g., A1, = 1, and therefore Eq. (14) reduces drastically such that

9 = <a};:1‘ Se|or") <ag:1‘b£=1> A=A =1, €h
0 (1)

with all other Schmidt values being zero. In order to contribute, both terms (/) and (/) should
be non-zero. Moreover, since we use an orthogonal set of basis vectors for £ and k each of the
terms is either O or 1. The term (/) marked in Eq. (C1) is equal to one if <a}::1| and |b}i:1> are
anti-aligned as Sy, flips the spin. The term (/1) from Eq. (C1) is equal to one if the sites ¥’ # k do

not change their state. Thus, we obtain that the Lindblad operator for each site, producing cooling
of the system is

L[k] = |Tr>k <~L7’|k ) (C2)

while (L)t produces heating, respectively. The state on site k aligned with the external field in
the z-direction is |1,),, while the state anti-aligned is ||),. Therefore, the Lindblad operator in
Eq. (C2) aligns the spin k£ with the external field and brings this spin to the ground state of the
paramagnetic limit. A numerical implementation of this case is discussed in App. D.

2. Neighborhood single-channel operators in the ferromagnetic limit

To develop the single-channel operators for the ferromagnetic limit, we return to the coupling
Sr = of. On the one hand, we know that the eigenstates are not entangled, i.e., A; = 0 for
j # 1 but degenerate. For instance, the ground state subspace contains two degenerate, symmetry-
broken eigenstates, | T --- 1) and | | --- |). Thus, we do not use the Z, symmetry for this setup.
We neglect for simplicity the edges of the chain. The first excited subspace corresponds to a set
of 2(N — 2) degenerate states with an energy 4 with respect to the ground state. These are the
excited states which can be reached after an action of a single Lindblad operator from one of the
ground states. The states contain two domain walls which separate a phase of spins 1 (or |) from a
background phase of spins oriented in the opposite direction. In a similar way, the second excited
subspace will be composed of states with four domain walls, and an energy 8 with respect to the
ground state. In general, the different energy subspaces will correspond to eigenstates having an
increasing number of magnetic domains.

On the other hand, from the spectral decomposition of the coupling operator in Eq. (14) and
the multi-channel Lindblad equation, we know that (i) o7 only connects eigenstates separated
by a single spin flip, and (ii) in the Lindblad equation only transitions with y(w # 0,r;;) will
contribute, since v(0,r;;) = 0. In other words, Lindblad operators that do not change the energy
will not be taken into account. Hence, both conditions imply that Lindblad operators should
connect eigenstates that differ in a single spin flip and contain a different number of magnetic
domains, i.e., correspond to a different energy.

With this prescription, the simplest choice are Lindblad operators defined on a neighborhood
of up to three sites. Depending on whether they increase or decrease the number of magnetic
domains, they will be associated with heating or cooling. In detail, we define the states |m) E =

e 100 = 14800 [0 = 14, and [£),, = [LLL),, on the three neighboring sites k — 1, k. k+
1. We can now define a generic Lindblad operator ng] = |a),. (b|, acting on the bulk of the system
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on a three-site neighborhood. In detail, the heating Lindblad operators have the form
k
Ly = [y (tly + LY = lo) (m, . (C3)

for k =2,..., N — 1, and give rise to an increase in energy. Each of these Lindblad operators can
be interpreted as a spin flip with one or two control-spins. Furthermore, for the boundary sites, we
define two-site states |u), = |[11),, [v), = I )4 [w), = [T4),. and |x) = |]]), for the sites k and

k + 1. The corresponding Lindblad operators are LBL, LLlll, LL];[_”, and LY, Y for the boundary
sites. The cooling operators then correspond to their Hermitian conjugates, i.e.,

Lgi] = [ty (rli ng]o = |m)y, (ol ; (C4)

fork =2,...,N — 1, and Lgclq]ﬂ, ng]) LL;]X_”, and LL]X,_” for the boundary sites. As mentioned
above, each operation in the bulk of the system introduces an energy difference of 4-4, while at the
boundaries the energy change will only be +2.

3. Neighborhood single-channel operators in between the limits

We explored as well the possibility of using the neighborhood single-channel Lindblad opera-
tors from both limits to capture the region between the limits with 0 < ¢ < /2. An optimization
over the ratio of the two coupling strengths, i.e., the coupling strength for the neighborhood single-
channel Lindblad operators from the ferromagnetic limit and the local single-channel Lindblad
operators for the paramagnetic limit, did not lead to trace distances close to the steady state. For
example, the trace distances for values of ¢ = 7/4 do not drop below 0.1. This result indicates
that the multi-channel approach is required to determine thermalization in interacting many-body
systems unless non-trivial approximations yet to be discovered can simplify dynamics to neigh-
borhood single-channel Lindblad operators.

Appendix D: Thermalization for S = o7

Up to now, all the numerical calculations in the paper have considered the system coupling
operator as S, = of. However, in this appendix, we analyze the case S, = o7. We have some
obvious changes associated with this choice. (i) The paramagnetic limit can now thermalize as the
eigenstates of the paramagnetic limit do not correspond to the eigenstates of Sj. In contrast, ther-
malization in the ferromagnetic limit suffers from the same effect as before in which the Lindblad
operators induce dephasing, but no transitions. (ii) The Z, symmetry is broken by the Lindblad
operator, and there is no distinction between the odd and the even sector for the choice of S, = o7.

We present in Fig. 8 the data corresponding to our main scenario (a) and consider the multi-
channel Lindblad operators. Figure 8(a) shows the thermalization timescale 7i,p for the multi-
channel approach, as defined in Eq. (20). We observe the opposite behavior from before, as ex-
pected: the ferromagnetic limit now has a slow timescale indicated by the white regions where the
criterion is not met within 7 = 10. We study the gap as a function of the system size in Fig. 8(b),
where the gap of the Liouville operator decreases for larger system sizes comparing N = 2, 3 and
4. Thus, analogous to Figure 4(a), we find that the thermalization timescale also slows down for
larger systems in this case.

We now consider the single channel Lindblad operators derived in Sec. C for the paramagnetic
limit, which are given by Eq. (C2) for cooling the system, while its Hermitian conjugate heats it.
To rephrase the operators in terms of the transition between states according to Eq. (6), we would

define the states |y) = |1), and |z) = |]), and the corresponding Lindblad operators Lgi] and L[ZIZ]

The corresponding energy difference used to calculate the rates is A = £2g. These Lindblad op-
erators correspond to spin raising and lowering operators in the x-direction, and therefore they are
similar to the single-channel approaches usually considered in the literature [14—17]. Figure 8(c)
shows that indeed the chosen single-channel operators thermalize the system in the paramagnetic
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FIG. 8. Summary for operator Sy, = o7, in the interaction Hamiltonian. (a) The thermalization time Ty,p
determined via the trace distance exhibits longer timescales toward the ferromagnetic limit. White areas
indicate thermalization times beyond 7 = 10. (b) The rate of the Liouville operator for the multi-channel
approach with a common bath with growing system size. The rate decreases toward the ferromagnetic
limit and decreases for increasing system sizes. (c) We choose the neighborhood single-channel Lindblad
operators designed for the paramagnetic limit on a system of L. = 4. We observe that the system only
thermalizes in the limit ¢ = 7/2 and these operators cannot be used apart from ¢ = 7/2. Here, we
consider the final state of the time evolution with 7 = 10 starting from a random initial state. The rate has
non-zero values around ¢ ~ 7/2 and does not prevent thermalization.

limit. The distance to the thermal state in the limit ¢ = 7/2 is below 10~'2, but we set the minimal
trace distance artificially to 10~2 for better visualization of the gradient around the limit.



