

1 **TEADs, Yap, Taz, Vgll4s Transcription Factors Control the Establishment of Left-Right**

2 **Asymmetry in Zebrafish**

3

4 **Jonathan Fillatre¹, Jean-Daniel Fauny^{2,3}, Jasmine Alexandra Fels¹, Cheng Li⁴, Mary Goll⁴,**

5 **Christine Thisse^{1,2} and Bernard Thisse^{1,2,5}**

6

7 ¹ Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA

8 ² Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de

9 Strasbourg, 1 rue Laurent Fries, 67400 Illkirch-Graffenstaden, France

10 ³ Institute de Biologie Moléculaire et Cellulaire, 15 Rue René Descartes, 67000 Strasbourg,

11 France

12 ⁴ Department of Genetics, University of Georgia, 120 W Green St, Athens, GA 30602, USA

13 ⁵ Corresponding author: Bernard Thisse. Department of Cell Biology, School of Medicine,

14 University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22903, USA. Phone: (+1)

15 434 243 6613 Email: bernardthisse@virginia.edu

16

17

18

19 **Abstract**

20 In many vertebrates, establishment of Left-Right (LR) asymmetry results from the activity of a
21 ciliated organ functioning as the LR Organizer (LRO). While regulation of the formation of this
22 structure by major signaling pathways has been described, the transcriptional control of LRO
23 formation is poorly understood. Using the zebrafish model, we show that the transcription
24 factors and cofactors mediating or regulating the transcriptional outcome of the Hippo signaling
25 pathway play a pivotal role in controlling the expression of genes essential to the formation of
26 the LRO including ligands and receptors of signaling pathways involved in this process and
27 most genes required for motile ciliogenesis. Moreover, the transcription cofactor, Vgll4l
28 regulates epigenetic programming in LRO progenitors by controlling the expression of writers
29 and readers of DNA methylation marks. Altogether, our study uncovers a novel and essential
30 role for the transcriptional effectors and regulators of the Hippo pathway in establishing LR
31 asymmetry.

32

33 **Introduction**

34 Formation of organs during embryonic development requires a progressive restriction of
35 lineage potential. This process, controlled by major signaling pathways, is achieved through
36 changes in chromatin and in transcription factor (TF) networks: genes associated with
37 pluripotency are progressively silenced by DNA methylation, histone modifications and
38 chromatin compaction while key TFs selectively activate the expression of tissue specific genes
39 (Boland, Nazor, & Loring, 2014; Reik, 2007). Therefore, knowing how the activity of TFs and
40 epigenetic modification of the chromatin control organogenesis *in vivo* is essential to our
41 understanding of both normal development and diseases. As a model system for
42 organogenesis, we use the formation of the Kupffer's vesicle (KV), the first organ formed in the
43 zebrafish embryo and that functions as the Left-Right Organizer (LRO). The KV is the fish
44 homolog of the ventral node of the mouse, the *Xenopus* gastrocoel roof plate and the

45 notochordal plate in rabbit. This organ is composed of ~50 monociliated cells organized as a
46 hollow sphere with motile cilia facing its lumen. Rotation of these cilia generates a transient
47 counterclockwise fluid flow that directs asymmetric activation of a conserved Nodal signaling
48 pathway that guides asymmetric morphogenesis of developing organs (Dasgupta & Amack,
49 2016). This vesicle derives from a small population of ~20 precursor cells called the dorsal
50 forerunner cells (DFCs), which are specified at the dorsal margin of the embryo at the onset of
51 gastrulation in response to Nodal signaling (Essner, Amack, Nyholm, Harris, & Yost, 2005;
52 Oteiza, Koppen, Concha, & Heisenberg, 2008). During gastrulation, DFCs arrange into a cluster
53 that undergoes progressive compaction, followed by a mesenchymal to epithelial transition and
54 organization of a single rosette. Following rosette formation, the center of this rosette opens to
55 progressively give rise to the lumen of the differentiated KV. Finally, ciliogenesis takes place
56 during the last phases of differentiation of DFCs into the KV. Altogether, the epithelial
57 organization of KV progenitors associated with both luminogenesis and ciliogenesis leads to the
58 formation of a functional LRO (Matsui & Bessho, 2012b).

59 The regulation of the organogenesis of the LRO, from the specification of its progenitors
60 to a fully functional KV, is well described and involves the activity of Nodal, FGF, non canonical
61 Wnt, Notch and Hedgehog signaling pathways (Matsui & Bessho, 2012a). Conversely, a very
62 limited number of TFs expressed in DFCs has been implicated in this process. Six genes have
63 been identified so far, two Sox TFs: Sox32 and Sox17; two T-box TFs: Tbxta (also known as
64 *notail*) and Tbx16 (also known as *spadetail*) and two TFs required for ciliogenesis: Foxj1a and
65 Rfx2 (Aamar & Dawid, 2010a; Amack & Yost, 2004; Bisgrove, Makova, Yost, & Brueckner,
66 2012b; Kikuchi et al., 2001; Yu, Ng, Habacher, & Roy, 2008a). It is highly unlikely that these six
67 TFs are the only transcriptional regulators of the developmental program leading to the
68 formation of the LRO. Indeed, in this study, we identified six additional transcription factors
69 (TFs) and/or cofactors (TcoFs) crucial for the formation and function of the KV. Strikingly,
70 although the Hippo signaling pathway was previously identified as a major regulator of tissue

71 growth and organ size (Johnson & Halder, 2014; Zhao, Tumaneng, & Guan, 2011), we
72 discovered that the DNA binding TFs (Tead1a and Tead3a), the TcoFs mediators of the Hippo
73 signaling pathway (Yap and Taz) as well as the TcoFs Vgll4b and Vgll4l (two factors
74 homologous to the mammalian Vgll4 that negatively regulates the activity of Yap and Taz) are
75 upstream regulators of the formation and function of the LRO. These TFs and TcoFs
76 (collectively named Hippo TFs/TcoFs thereafter in the text) control the function of signaling
77 pathways involved in this process as well as the expression of genes essential to the formation
78 and function of a ciliated epithelium with motile cilia. Finally, we identified that Vgll4l controls the
79 expression in LRO progenitors of epigenetic factors, writers (the *de novo* DNA
80 methyltransferases) and readers (Methyl-CpG binding domain proteins) of DNA methylation
81 marks that we found essential for DFCs proliferation and survival as well as for the formation of
82 motile cilia.

83

84 **Results**

85 **Hippo TFs/TcoFs are required for the establishment of LR asymmetry**

86 To identify novel factors involved in the transcriptional regulation of the formation of the
87 LRO we screened the zebrafish gene expression patterns database (zfin.org) for TFs or TcoFs
88 specifically expressed in the KV and/or in its progenitors. By this approach, we identified Vgll4l,
89 a TcoF member of the Vestigial like 4 family, which is strongly expressed at gastrula stage in
90 LRO progenitors (**Figure 1A**).

91 Vestigial like family members are TcoFs known to function mainly through the interaction
92 with TEA domain DNA-binding family of transcription factors (TEAD) (Deng & Fang, 2018).
93 TEADs are the DNA binding TFs to which the TcoFs that mediate the transcriptional outcome of
94 the Hippo signaling pathway, Yap and Taz (also known as Wwtr1), bind to, to activate
95 expression of their target genes. Interestingly, in various human cancer cell lines, Vgll4 was

96 shown to negatively regulate the transcriptional outcome of Hippo signaling by competing with
97 Yap and Taz for TEADs, therefore inhibiting their function (Zhang et al., 2014).

98 In addition to Yap and Taz, the zebrafish genome codes for three members of the Vgll4
99 family (Vgll4a, Vgll4b, Vgll4l) and four TEADs (Tead1a, Tead1b, Tead3a, Tead3b). However,
100 only Vgll4l, Vgll4b, Yap, Taz, Tead1a and Tead3a are expressed in KV and/or KV progenitors
101 (**Figure 1A, Figure 1-figure supplement 1**). To investigate the function of these TFs and
102 TcoFs in the formation of the LRO we performed general and/or DFC specific (Amack and Yost,
103 2000) knockdown experiments using translation interfering and/or splice interfering morpholinos
104 (MOs) and analyzed the effect of these loss of functions on the establishment of the LR
105 asymmetry of the embryo. Looking at the direction of the heart jog at one day of development
106 (**Figure 1B**) and at the expression of *lefty1* in dorsal diencephalon (C. Thisse & Thisse, 1999) at
107 20 hours post fertilization (**Figure 1-figure Supplement 2**) we found that loss of function of
108 each of these TFs or TcoFs strongly disrupts embryo laterality. Specificity of knockdown
109 phenotypes was demonstrated by their reproducibility using different non overlapping MOs and
110 in rescue experiments through injection of *in vitro* synthesized, MOs insensitive, mRNAs (Figure
111 1B). The implication of Yap in embryo laterality was further confirmed (**Figure 1B**) by incubating
112 embryos in 2.5 μ M of Verteporfin, a drug inducing YAP sequestration in the cytoplasm and
113 promoting its degradation in the proteasome (C. Wang et al., 2016).

114 To validate our observations obtained with MO knockdowns or drug treatment, we
115 generated CRISPR-Cas9 mutants for *vgl4l*, *vgl4b*, *yap* and *taz*. For each gene, we identified
116 insertions/deletions (INDELs) leading to a premature stop resulting in truncated proteins lacking
117 essential functional domains (**Figure 1C**). For *tead3a*, a mutant lacking an essential splice site
118 leading to a premature end of translation was obtained from the Zebrafish Mutation Project
119 (ZMP) (Kettleborough et al., 2013). Whereas individual homozygous mutants embryos for
120 TEAD3a, Yap, Taz, Vgll4b and Vgll4l display normal morphology at late developmental stages

121 (Figure 1-figure supplement 3), analysis of their laterality fully confirmed the LR asymmetry
122 defects observed in knockdown experiments (Figure 1D, Figure1-figure supplement 3).

123 In the mouse embryo, partial redundancy of Yap and Taz has been proposed to explain the
124 weak phenotype observed in Taz mutants (Miesfeld et al., 2015; Sun et al., 2017). In fish,
125 whereas we observe mild laterality defects in *taz* morphants and mutants, these defects are
126 much more severe in double Yap/Taz MO knockdowns (Figure 1B). In addition, lack of one
127 copy of *yap* strongly increases the laterality defects observed in homozygous *taz* mutants (from
128 20% embryos with no heart jog or a right heart jog in single *taz* mutants to 55% for embryos
129 homozygous for *taz* and heterozygous for *yap* - Figure 1D).

130 Altogether, the analysis of loss of function of Hippo TFs/TcoFs using a variety of approaches
131 allowed us to uncover a novel and essential role for Hippo TFs/TcoFs in establishing LR
132 asymmetry.

133

134 Hippo TFs/TcoFs are required for the formation of the LRO

135 We then investigated whether the laterality phenotypes observed for the loss of function of
136 these TFs/TcoFs resulted from defects in the formation and/or function of the LRO. Because
137 Yap and Taz are partially redundant, we analyzed their function conjointly, using double
138 Yap/Taz loss of function. First, using *in situ* hybridization for *sox17*, an early DFC marker, we
139 found that DFC clusters are present at early gastrula stage for every Hippo TF/TcoF
140 mutant/morphant tested (not shown), strongly supporting that these factors are not required for
141 the specification of LRO progenitors. Conversely, lack of their activity has a dramatic effect on
142 the formation of the KV (Figure 2A-D, Figure 2-figure supplement 1) with a strong decrease
143 of its size (Figure 2E). In contrast, gain of Yap function through injection of its *in vitro*
144 synthesized mRNA in a DFC specific manner (Esguerra et al., 2007; Matsui et al., 2011) results
145 in an increase of the KV size associated with an increase in the number of KV cells (Figure 2-
146 figure supplement 2).

147 During gastrulation, in wild-type embryos, DFCs proliferate, their number increasing from
148 ~20 at the onset of gastrulation to ~50 in the differentiated KV. While the initial number of DFCs
149 at early gastrula (60% epiboly) in embryos lacking Hippo TFs/TcoFs function is similar to
150 control, we found a significant reduction in the DFC number at the end of gastrulation for each
151 loss of function analyzed (**Figure 2F**). We then investigated whether the decrease in DFC
152 number resulted from defects in cell proliferation and/or in cell survival. Measurement of the
153 mitotic index at late gastrula stage revealed a moderate effect in Vgll4l, Yap/Taz and Tead1a
154 knockdowns, while the mitotic index of the DFCs was not significantly affected in Vgll4b and
155 TEAD3a (**Figure 2G**). We also observed that cell survival, analyzed by measuring the apoptotic
156 index of DFCs at 80% epiboly, was affected in Hippo TF/TcoF loss-of-function embryos (**Figure**
157 **2H**).

158 Finally, because motile cilia are essential to the function of the LRO, we looked for their
159 presence and measured their length in embryos lacking activity of any of Hippo TF/TcoF. In all
160 cases, we found a significant shortening of cilia (**Figure 3**) supporting that Hippo TFs/TcoFs are
161 required for motile ciliogenesis.

162 There are contradictory reports on the role of Hippo signaling on ciliogenesis. In one
163 study, Yap was described not to be involved in that process (Kim, Kim, Lee, Kim, & Lim, 2014),
164 whereas another study linked Yap to the formation of non-motile cilia during zebrafish kidney
165 development (He et al., 2015). Our observations support the latter conclusion, implicating Yap in
166 ciliogenesis and demonstrating that the canonical Hippo pathway is required for proper
167 organization of motile cilia.

168

169 **The TcoFs Yap/Taz and Vgll4l control the transcriptome of LRO progenitors**

170 Because Vgll4l and Yap/Taz are TcoFs, they are expected to function by regulating gene
171 expression. In a first experiment, we examined the consequences of their loss of function by MO
172 knockdown on the expression of the 78 DFC specific genes we previously identified in high

173 throughput *in situ* hybridization screens (ZFIN.org, gene expression section). Expression of 30%
174 of tested candidates (24/78) was either strongly decreased or completely absent in Vgll4l
175 depleted DFCs (**Figure 4**).

176 Remarkably, 1/3 (8/24) of these genes are known to be required for the formation of the KV.
177 They are involved in cilium assembly (*cdc14aa*, *daw1*, *dnaaf4*, *ttc25*), KV lumen expansion (*cftr*,
178 *cldn5a*), proton transport (*atp6ap1b*) that has been shown to mediate DFC proliferation (Gokey,
179 Dasgupta, & Amack, 2015a), DNA methylation (*dnmt3bb.1*) or belong to the Nodal signaling
180 pathway (*ndr1*). Similarly, we found that DFCs depleted for Yap/Taz display a clear decrease in
181 expression for *cdc14aa*, *tnfrsf21*, *dnaaf4*, *cftr* or *ndr1* (not shown). Therefore, in addition to their
182 known function in regulating cell proliferation and survival, Vgll4l and Yap/Taz regulate, directly
183 or indirectly, the expression of genes that are essential for a variety of processes involved in the
184 formation and function of the KV.

185 We investigated the tissue specificity of Vgll4l and Yap activity by performing DFC specific
186 MO knockdowns for a subset of these 24 probes (**Figure 4-figure supplement 1**). In all cases
187 we observed a strong decrease of the expression of these genes in the progenitors of the LRO.
188 This shows that the regulation of the expression of DFC specific genes by Yap and Vgll4l we
189 observed is not a secondary consequence of a global loss of function affecting the whole
190 embryo from the beginning of development but results from the activity of these TcoFs in the
191 DFCs.

192 We extended this study by establishing the transcriptome of LRO progenitors at late
193 gastrula stage in Vgll4l or in Yap/Taz morphant embryos from the line *Tg(sox17:GFP)*^{S870}
194 (Sakaguchi, Kikuchi, Kuroiwa, Takeda, & Stainier, 2006), which fluorescently labels DFCs. For
195 each condition (control, Vgll4l or Yap/Taz loss of function), four DFC clusters were isolated and
196 their RNA sequenced. Principal Component Analysis (PCA) was performed on transcriptome
197 data of the four replicates for each condition (**Figure 5A**) and reveals that experimental
198 replicates were highly reproducible and strongly clustered. Each experimental condition

199 segregated in distinct groups pointing out that DFCs of control embryos and of embryos lacking
200 Vgll4l or Yap/Taz have clearly distinct transcriptomes.

201 We found 9,215 differentially expressed genes (DEGs: genes with normalized counts ≥ 1 ;
202 $|\log_2\text{FoldChange}| \geq 1$; Benjamini-Hochberg - False Discovery Rate - adjusted P-value < 0.05) in
203 DFCs of embryos depleted in Vgll4l and 7,925 DEGs in DFCs of embryos lacking both Yap and
204 Taz activities (**Supplementary File 1**). As a quality control of RNA sequencing, we confirmed
205 that the expression of all the 24 genes found strongly decreased in Vgll4l loss of function in our
206 *in situ* hybridization analysis (**Figure 4**) was also significantly downregulated in the
207 transcriptome of Vgll4l depleted DFCs (**Figure 4-figure supplement 2**)

208 Analysis of the overlapping sets of DEGs for Vgll4l and Yap/Taz loss of function (6423
209 genes - **Figure 5B**) revealed that 84% (5394/6423) of them are regulated similarly in DFCs
210 (either downregulated or upregulated) by Vgll4l and by Yap/Taz while only 16% (1029/6423) are
211 regulated in opposing ways (upregulated in loss of function of Vgll4l while downregulated in
212 Yap/Taz or vice-versa). This is a surprising observation as Vgll4 in other model systems is
213 thought to act antagonistically to Yap/Taz by competition for the binding to TEADs (Johnson and
214 Halder, 2014). Because the DEGs identified in the transcriptome analysis include both direct
215 and indirect target genes, we examined the effect of Vgll4l and of Yap/Taz loss of function on
216 the expression of zebrafish homologues of direct target genes of Yap in mammals. We found
217 318 homologues for 380 Yap direct target genes described in mammals (Lin et al., 2015; Y.
218 Wang et al., 2018; Zanconato et al., 2015) present within the zebrafish genome (GRCz10).
219 Amongst them 143 were DEGs for both Vgll4l and Yap/Taz. Analysis of the transcriptome data
220 revealed (**Supplement file 2**) that 82.5% of these genes (118/143) are regulated similarly by
221 Vgll4l and Yap/Taz (61 downregulated and 57 upregulated in morphant DFCs) while only 17.5%
222 (25/143) are regulated in opposite ways. It is very likely that most of the genes that are direct
223 targets of Yap in mammals will also be direct targets of Yap in zebrafish. Therefore, the similar

224 regulation of these genes by Vgll4l and by Yap/Taz is a strong evidence against a role of Vgll4l
225 as a Yap antagonist during formation of the LRO in zebrafish.

226 To identify the biological function of DEGs for Vgll4l and Yap/Taz, we determined the
227 functional categories of each gene by querying the Gene Ontology (GO) database (Ashburner
228 et al., 2000; The Gene Ontology, 2017). Functional grouping of the GO terms based on GO
229 hierarchy revealed that amongst the most prominent groups are those associated with the
230 formation and function of the LRO: determination of LR symmetry, cilium movement, cilium
231 organization and epithelium development (**Figure 5C**). In addition, mitotic cell cycle process
232 was a GO term found for Yap/Taz while Vgll4l was associated with the GO term covalent
233 chromatin modification, uncovering a role for this TcoF in the regulation of the expression of
234 epigenetic factors.

235 Amongst the 166 genes whose loss of function has been described resulting into phenotypic
236 defects in DFCs or in KV (zfin.org, phenotype section), we found 134 genes expressed in DFCs
237 at late gastrula stage. Remarkably, 62% (83/134) and 50% (67/134) of these genes are
238 respectively downregulated in loss of function of Vgll4l and Yap/Taz (**Figure 5D**,
239 **Supplementary File 3**). This includes 75% (46/61) of genes involved in motile ciliogenesis and
240 associated with defects of the KV function for Vgll4l depleted DFCs and 52% (32/61) for
241 Yap/Taz loss of function (**Supplementary File 4**). Phenotypic analysis already revealed that
242 these TcoFs are essential to proper formation of KV motile cilia (**Figure 3**). Altogether, our
243 transcriptome analysis further reinforced the conclusion that these factors play a major role in
244 the regulation of motile ciliogenesis during the formation of the LRO.

245
246 **Yap/Taz and Vgll4l regulate the activity of signaling pathways involved in LRO formation**
247 The molecular and cellular processes leading to the formation of a functional LRO are known to
248 be regulated by major signaling pathways including Nodal, FGF, non canonical Wnt and Notch
249 (reviewed in (Matsui & Bessho, 2012b)). We investigated the impact of Vgll4l and Yap/Taz on

250 the expression of essential components (ligands, receptors, signal transductors, regulators) of
251 these different pathways in DFCs at late gastrula stage. We found a strong downregulation of
252 *nodal related 1 (ndr1)* expression in both Vgll4l (**Figure 4C, 6A**) and Yap/Taz (**Figure 6A**) loss
253 of function. In Vgll4l, this loss of Ndr1 transcripts is associated with a strong decrease of the
254 expression of *smad2a*, a R-Smad known to transduce Nodal signaling and with a strong
255 upregulation of the expression of two Nodal feedback antagonists, *lefty1 (lft1)* and *lefty2 (lft2)*
256 (Agathon, Thisse, & Thisse, 2001). Both the decrease in Smad2a transcripts and the
257 upregulation of Lft1 and Lft2 expression may disrupt the Nodal positive autoregulatory loop that
258 is essential for the maintenance of *ndr1* transcription. In Yap/Taz loss of function, the strong
259 decrease in *ndr1* expression is associated with a decrease in Smad3a transcripts, another R-
260 Smad transducing Nodal signaling, but we did not observe an upregulation of Lft1 or Lft2
261 expression (**Figure 6A**).

262 In addition to Nodal, the non-canonical Wnt, the FGF and the Notch pathways are also
263 affected. We observed a strong downregulation of expression of ligand (Wnt11) and receptors
264 (Fzd8a, Fzd10 for Vgll4l, Fzd10 for Yap/Taz) of the non-canonical Wnt pathway (**Figure 6B**).
265 Expression of ligands (Fgf8a and Fgf1a for Vgll4l; Fgf1a for Yap/Taz) of the FGF signaling
266 pathway is downregulated in both Vgll4l and Yap/Taz loss-of-function conditions and the
267 amount of transcripts of the Fgf receptor, Fgfr1a, and of the positive Fgf feedback regulator,
268 Cnpyp1, is strongly decreased in DFCs lacking Vgll4l (**Figure 6C**). As well the expression of
269 ligands (Dla, Jag2b) and receptors (Notch1a, Notch1b and Notch3) of the Notch signaling
270 pathway (**Figure 6D**) is downregulated in DFCs lacking either Vgll4l or Yap/Taz. Altogether,
271 these observations provide evidence that Vgll4l and Yap/Taz are essential upstream regulators
272 of the major signaling pathways controlling the formation of the LRO.

273

274

275

276 **Yap/Taz and Vgll4l control expression of TFs known to be required for LRO formation**

277 The precise temporal order by which TFs selectively activate gene expression during
278 development is critical to ensure proper lineage commitment, cell fate determination, and
279 ultimately organogenesis. So far, only a small number of TFs has been shown to be necessary
280 for the formation of the LRO, either for the specification of its progenitors [Dharma (Fekany et
281 al., 1999), Sox32 (Essner et al., 2005), Sox17 (Aamar & Dawid, 2010b)] or for the formation and
282 function of the KV [FoxJ1a (Yu, Ng, Habacher, & Roy, 2008b), Tbx16 (Amack, Wang, & Yost,
283 2007), Tbx1a (Amack et al., 2007) and Rfx2 (Bisgrove, Makova, Yost, & Brueckner, 2012a)]. We
284 investigated the impact of loss of function of Vgll4l or Yap/Taz on the expression in LRO
285 progenitors of these TFs. Because *dharma* is not expressed in DFCs at gastrula stage it is
286 therefore not regulated in these cells by Vgll4l or Yap/Taz. However, transcripts of *sox32*,
287 *sox17*, *tbx1a*, *tbx16*, *foxj1a* and *rfx2* are expressed in DFCs during gastrulation and we found
288 they are all significantly downregulated in Vgll4l and Yap/Taz loss of function (**Figure 7**). These
289 observations strongly support that Vgll4l and Yap/Taz act upstream of the TFs known to be
290 essential to the formation of the LRO and are involved in the regulation of their expression.

291

292 **Vgll4l regulates expression of writers and readers of DNA methylation marks in LRO**
293 **progenitors.**

294 Lineage commitment, cell fate determination and ultimately organogenesis are also
295 regulated by epigenetic mechanisms. Transcriptome analysis revealed that depletion of Vgll4l
296 affects expression of genes involved in covalent chromatin modification (**Figures 5C, 8**).
297 Indeed, in DFCs, Vgll4l loss of function leads to a strong downregulation of the expression of
298 genes coding for writers of the DNA methylation marks: the *de novo* DNA methyltransferases
299 Dnmt3ba, Dnmt3bb.1, Dnmt3bb.2 (**Figures 4Q-R, 8**) and the maintenance DNA
300 methyltransferase Dnmt1 (**Figure 8**). In addition we found that Vgll4l also regulates the
301 expression of the readers of DNA methylation marks, the Methyl-CpG-Binding Domain proteins:

302 Mbd1b, Mbd2, Mbd3a (**Figure 8**), Mbd3b (**Figures 4S, 8**) (note that while in mammals the
303 methyl binding domain of MBD3 harbors critical mutations - K30H and Y34F - preventing it to
304 bind to methylated DNA (Saito & Ishikawa, 2002), the methyl binding domain of Mbd3 in lower
305 vertebrates retains the K30 and Y34 amino acids and binds to methylated DNA (Bogdanovic &
306 Veenstra, 2011) and Mbd6 (**Figure 8**). The other Dnmnts and Mbds encoded by the zebrafish
307 genome are either not expressed or expressed at low level in DFCs at late gastrula stage
308 (**Supplementary File 1**).

309 We investigated the possible role of these writers and readers of DNA methylation marks
310 in the establishment of LR asymmetry by examining cardiac jogging defects in loss-of-function
311 conditions (**Figure 9A**). Depletion of the *de novo* DNA methyltransferase, Dnmt3bb.1 has been
312 previously shown to affect the establishment of the LR asymmetry (L. Wang et al., 2017). We
313 confirmed this observation with a TALEN induced mutant that affects only the catalytic site of
314 Dnmt3bb.1. Similarly, we found that loss of function of other *de novo* Dnmnts expressed in DFCs
315 (Dnmt3bb.2 and Dnmt3ba) or depletion of the readers of the DNA methylation marks, Mbd3a
316 and Mbd3b also affect the establishment of the LR asymmetry (**Figure 9A**).

317 Phenotypic analyses of KV formation in embryos depleted for one *de novo* Dnmt
318 (Dnmt3bb.1) or for one Methyl-CpG-Binding Domain protein (Mbd3b) reveals striking similarities
319 with Vgll4l loss-of-function phenotype: reduction of KV size (**Figure 9B**), decreased number of
320 DFCs at late gastrulation (**Figure 9C**) associated with a moderate decrease of DFC mitotic
321 index (**Figure 9D**), an increased apoptotic index (**Figure 9E**) as well as a significant reduction in
322 length of KV motile cilia (**Figure 9F**).

323 These observations strongly support that defects in KV organogenesis observed in Vgll4l
324 loss of function may result, at least in part, from the decreased expression of Dnmt3bs and
325 Mbd3s in DFCs. In strong agreement with this hypothesis, we found that laterality defects of
326 Vgll4l loss of function can be partially rescued by gain of function of Dnmt3bb.1 (**Figure 9G**).

327 Because *Vgll4l* is necessary for *Dnmt3bs* expression we predict that its loss of function
328 should impact DNA methylation of KV progenitors. To test this hypothesis we quantified DNA
329 methylation in DFCs through an antibody-based detection of global nuclear DNA methylation
330 using an anti 5-methylcytosine antibody (Beaujean, Salvaing, Hadi, & Pennings, 2018). We
331 found a significant decrease in DNA methylation of DFC nuclei in both *Vgll4l* morphants and in
332 homozygous *vgl4l* mutants (**Figure 10**). This shows that *Vgll4l* regulates epigenetic
333 programming in LRO progenitors by controlling in the DFCs the expression of epigenetic
334 modifying enzymes.

335

336

337 **Discussion**

338 Formation of organs during embryonic development requires both epigenetic modification
339 that restricts lineage potential and the activation of tissue specific genes during the process of
340 cell differentiation. Using the formation of the first functional organ of the zebrafish, the KV, as a
341 model system we addressed the question of the transcriptional regulation of organ formation.
342 Because this transient organ acting as the LRO in fish is very simple and is functional in just a
343 few hours and from a well characterized population of progenitors, this model is particularly
344 suitable to characterize how TFs and epigenetic modification controls the differentiation of a
345 ciliated epithelium during organogenesis. Since its description by Kupffer in 1867 (Warga &
346 Kane, 2018) the KV has been studied in much details at the cellular and molecular levels.
347 Genetic screens have identified 166 genes to be required for its formation and/or function
348 (zfin.org, phenotypes, Kupffer's vesicle). Surprisingly only 6 TFs: *Rfx2*, *Foxj1a*, *Sox17*, *Sox32*,
349 *Tbx1a*, *Tbx16* have been reported to be necessary to the formation and function of the LRO. In
350 the current study we identified six additional TFs and TcoFs required for this process. Our
351 functional analyzes (morpholino knockdowns, drug treatment and Crispr-Cas9 mutants) reveal
352 that the TcoFs known to mediate the transcriptional outcome of the Hippo signaling pathway

353 (Yap and Taz), the DNA binding transcription factors they associate to (Tead1a and Tead3a) as
354 well as Vgll4b and Vgll4l, two homologs of the mammalian Vgll4 that has been shown to
355 negatively regulate Yap and Taz transcriptional activity, act as upstream regulators controlling
356 the formation of the LRO of the zebrafish embryo. Each of these 6 genes is therefore essential
357 for the establishment of the LR asymmetry of the embryo. Hippo TFs/TcoFs are not involved in
358 the specification of LRO progenitors but are crucial for the regulation of their number at the end
359 of gastrulation. However, while there is an effect on proliferation and viability of DFCs, most of
360 the KV progenitors survived past gastrulation. The impact of Yap/Taz, Vgll4s and TEADs on the
361 formation of the KV is not restricted to the final number of cells available for the formation of the
362 vesicle but they also control the formation of the epithelium of the KV as well as cilia
363 organization and motility.

364 Based on previous studies, mainly performed in pathological conditions, Vgll4 family
365 members have been proposed to compete with Yap/Taz for TEADs, therefore inhibiting Yap/Taz
366 function (Jiao et al., 2014; Zhang et al., 2014). However, during the process of differentiation of
367 LRO progenitors, we found that Vgll4b and Vgll4l act similarly to Yap and Taz, regulating the
368 number of DFCs and controlling motile ciliogenesis. This strongly suggests that Vgll4s do not
369 act as antagonists of Yap/Taz activity during formation of the LRO but that they rather function
370 in the same or in parallel pathways.

371 Investigation of the impact of loss of function for Yap/Taz and for Vgll4l on the
372 transcriptional network of the precursors of the LRO (both using a candidate gene approach and
373 transcriptome analyzes) reveals that these transcription cofactors control expression of a large
374 fraction (50% and 62% respectively) of the genes previously shown to be necessary for the
375 formation and/or function of the LRO. This includes most of the genes required in the LRO for
376 motile ciliogenesis (75% of them for Vgll4l, 52% for Yap/Taz). To the best of our knowledge, our
377 study describes the first transcriptional networks during the formation of a ciliated epithelium.
378 We also found that Hippo TFs/TcoFs regulate essential factors of major signaling pathways that

379 have been shown to regulate KV precursor cell behaviors (clustering, collective migration,
380 rosette formation, luminogenesis) during gastrulation and early somitogenesis until the
381 formation of the fully functional LRO [reviewed in (Matsui & Bessho, 2012b)] .

382 Amongst the genes whose expression requires Yap/Taz and Vgll4l activities are
383 essential factors (ligands, receptors, positive or negative regulators) of the major signaling
384 pathways (Nodal, FGF, non-canonical Wnt and Notch/Delta) known to be critical to the
385 formation of the LRO. This observation therefore places Yap/Taz and Vgll4l upstream of these
386 signaling pathways and strongly supports that these TcoFs are master regulators of the
387 formation and function of the LRO.

388 The activity of the Nodal signaling pathway has been shown to be modulated through
389 DNA methylation of the regulatory sequences of the Nodal antagonist Lefty (Dai et al., 2016) (L.
390 Wang et al., 2017). In WT embryos, *lefty* genes are not expressed in the precursors of the LRO.
391 However, our transcriptome analysis revealed expression of *lft1* and *lft2* in DFCs of Vgll4l
392 morphant embryos associated with a strong reduction of *ndr1* expression (**Figure 6**). In these
393 Vgll4l depleted embryos, we also found strong downregulation of genes coding for the “*de novo*”
394 DNA methyltransferases that establish the initial DNA methylation pattern (**Figure 8**).
395 Expression of Nodal is also strongly downregulated in embryos devoid of Yap/Taz activity.
396 However, expression of *lft1* and *lft2* is not observed in the DFCs of Yap/Taz morphant embryos
397 and genes coding for Dnmts were not downregulated in Yap/Taz loss of function. These
398 observations show (1) that *ndr1* expression and activity are controlled in the DFCs by Vgll4l and
399 Yap/Taz and (2) strongly suggest that distinct mechanisms are used by Vgll4l and Yap/Taz to
400 regulate Nodal signaling in the DFCs, with Vgll4l repressing *lft1* and *lft2* expression likely
401 through a positive control of the expression of *de novo* DNA methyltransferases in the
402 progenitors of the LRO. The effect of Vgll4l loss of function on DNA methylation of DFC nuclei
403 strongly support this interpretation.

404 The role of DNA methylation in chromatin modifications associated with cell
405 differentiation has been extensively analyzed. However, the upstream regulation of this process
406 is far less understood. Our study reveals that one transcription cofactor, Vgll4l, is required in the
407 progenitors of the LRO for the expression of epigenetic factors, writers (the *de novo* DNA
408 methyltransferase 3) and readers (Methyl-CpG binding domain proteins) of DNA methylation
409 marks. This identifies another level of regulation of epigenesis during embryonic development
410 through the tissue specific control of the expression of major epigenetic actors. The
411 demonstration that Vgll4l regulates epigenetics in a temporal and spatial manner by affecting
412 the expression of some of its major actors opens a new field of exploration for the
413 understanding of the regulation of gene expression during cell differentiation.

414

415 **Material and Methods**

416

417 **Zebrafish line and husbandry**

418 Zebrafish lines used in this study are the *AB/Tü* wild-type line, *Tg(sox17:GFP)^{S870}* (Chung &
419 Stainier, 2008) and *Tg(dusp6:GFP)^{pt19}* (G. Wang et al., 2011). *vgl4l^{va1}* (an allele carrying a
420 deletion of 7 nucleotides in the second exon resulting in a frame shift after amino-acid 36),
421 *vgl4b^{va2}* (an allele carrying an INDEL - $\Delta 4,+6$ - resulting in a frame shift after amino-acid 109),
422 *yap1^{va3}* (an allele of yap carrying a deletion of 8 nucleotides resulting in a frame shift after
423 amino-acid 124), *wwtr1^{va4}* (an allele of taz carrying a deletion of 4 nucleotides resulting in a
424 frame shift after amino-acid 85), *dnmt3bb.1^{mk24}* (an allele carrying a deletion of 6 nucleotides
425 removing Ser 612 and Pro 613, two amino-acids of the catalytic site), *dnmt3bb.2^{mk23}* (an allele
426 carrying an InDel - $\Delta 5+13$ – resulting in a frame shift after amino-acid 1237 and that lack the
427 catalytic site) and *dnmt3bamk26* (an allele carrying a 12 nucleotides deletion in the catalytic

428 domain). Position and sequence of the different mutations are presented in **Supplementary**
429 **files 6-9.**

430 This study was carried out in strict accordance with the recommendations in the Guide for
431 the Care and Use of Laboratory Animals and all steps were taken to minimize animal
432 discomfort. The University of Virginia Institutional Animal Care and Use Committee approved all
433 protocols.

434

435 **In situ hybridization**

436 *In situ* hybridization on whole-mount embryos have been performed as described in (B.
437 Thisse & Thisse, 2014; C. Thisse & Thisse, 2008). Conditions for the synthesis of antisense
438 RNA probes for the following cDNA clones : *abcc6a* (Li et al., 2010) ; *atp6ap1b* (MGC:103523) ;
439 *cdc14aa* (MGC:63654) ; *cldn5a* (MGC:85723) ; *daw1* (IMAGE:6904039) ; *dhrs13a.1* (cb464) ;
440 *dnaaf4* (MGC:77853) ; *dnmt3bb.1* (cb633) ; *mbd3a* (IMAGE:7139207), *mbd3b* (cb99) ; *nme5*
441 (MGC:92812) ; *quo* (cb9) ; *rasgef1ba* (MGC:66487) ; *rassf7b* (cb262) ; *si:ch73-364h19* (cb911) ;
442 *slc35d1a* (IMAGE:7156746) ; *sox17* (MGC:91776) ; *syp12b* (IMAGE:7136581) ; *tead1a*
443 (MGC:63696) ; *tead3a* (CB882) ; *tekt1* (MGC :101797) ; *ttc25* (MGC:56362) ; *vgll4l* (cb747) and
444 *yap1* (cb194) are available at zfin.org in the gene expression section.

445 The cDNAs of *ndr1* (Agathon, Thisse, & Thisse, 2003) and *dand5* were inserted in the pBS-
446 IISK+ vector, the cDNA of *cftr* (MGC:198381) was inserted in the pCR-XL-TOPO reverse vector
447 as well as of *vgll4b* and *wwtr1* (*taz*) that were inserted in pCR2.1 TOPO vectors, PCR amplified
448 using M13 forward and reverse primers and their antisense RNA synthesized using the T7 RNA
449 polymerase. cDNA for dnmt3bb.2 inserted in pCR2.1 TOPO vector was PCR amplified using
450 M13 forward and 5'- GGATCCATTAAACCCTCACTAAAGGGAAGACAGGAAACAGCTATGACC-
451 3' primers and its RNA synthesized using the T3 RNA polymerase. cDNAs for *cfap45* (MGC:
452 158569), *tnfrsf21* (IMAGE:2602431) inserted in pME18S-FL3 vector were PCR amplified using
453 5'-TGTACGGAAGTGTTACTTCTGCTC-3' and

454 5'-GGATCCATTAACCCTCACTAAAGGGAAGGCCGCGACCTGCAGCTC-3' primers and the
455 antisense RNAs synthesized using the T3 RNA polymerase.

456 Representative images were acquired using a coolsnap camera on a Leica macroscope.

457

458 **Morpholino knockdowns:**

459 Morpholinos (Gene Tools) were resuspended in sterile water as a 4 mM stock solution and
460 diluted in 0.2% Phenol Red and 0.1M KCl before use to the appropriate concentration. Embryos
461 were dechorionated at the one-cell stage using Pronase E and injected with 1nl of morpholino
462 solution, using an Eppendorf 5426 microinjector.

463 For knockdowns in the whole embryo, morpholino solutions were injected in the yolk in a
464 position close to the blastomeres at the 1- to 4-cell stages. For DFC specific knockdown,
465 injections were performed in the yolk close to the blastomeres at the 256- to 1K-cell stage as
466 described in (G. Wang, Yost, & Amack, 2013a). In all experiments control embryos were
467 injected with 8ng of standard MO.

468

MO name	Sequence	References	Amounts injected for knockdown	Amounts injected for DFC targeted knockdown
VgII4I MO1	TGTAGTGGAAATTAGTGACCGCCAT	This study	8ng	
VgII4I MOsp	TTGGGCTGTCCTGTAAAAAGATGAG	This study	6ng	
VgII4b MO1	ACAGGTCCATTTGGTAAAAAGCAT	(Melvin, Feng, Hernandez-Lagunas, Artinger, & Williams, 2013)	4ng	8ng
VgII4b MO2	AATCGCAGAAAGAGCAGCTCTCTT	This study	4ng	
Yap MO1	CTCTTCTTCTATCCAACAGAAACC	(Hu et al., 2013; Jiang et al., 2009)	6ng	
Yap MOsp	AGCAACATTAACAACACTCACTTAGG	(Skouloudaki et al., 2009)	4ng	
Taz MO1	CTGGAGAGGATTACCGCTCATGGTC	(Hong et al., 2005)		8ng
Taz MOsp1	TGTATGTGTTTCACACTCACCCAGG	This study	6ng	
Taz MOsp2	ATGTGACTGCACAACAAACACAGAA	This study	6ng	

Tead1a MO1	CATGGCAATGGATGTGATCTCAGAG	This study	8ng	
Tead1a MO2	TGAGCCTGGAGAACTCAAGGCACAC	This study	8ng	
Tead3a MO1	CGTCCATTCCGGTTTGTCCATCCC	This study		2ng
Tead3a MOsp1	CAGCTTCTGTTACTCACCATACAT	This study	8ng	
Tead3a MOsp2	GGGTCTGAAATACTCACTCCTGAGA	This study	8ng	
Dnmt3bb.1 MO1	TTATTTCTCCTCCTCATCCTGTC	(Huang et al., 2013; Shimoda, Yamakoshi, Miyake, & Takeda, 2005)	8ng	8ng
Dnmt3bb.1 MOsp	CTCTCATCTGAAAGAATAGCAGAGT	(Gore et al., 2016)	6ng	6ng
Dnmt3bb.2 MO1	CTCCGATCTTACATCTGCCACCAT	(Huang et al., 2013; Shimoda et al., 2005)	6ng	6ng
Dnmt3bb.2 MOsp	GCACCTGAAAAAGTGTAAACACCAT	This study	6ng	6ng
Mbd3a MO	CCACCTTTCCCTCCATGATTTC	(Huang et al., 2013)	8ng	4ng
Mbd3b MO	TCGTTTTCTCCATCTCGCATTCTC	This study	8ng	4ng
Standard control MO	CCTCTTACCTCAGTTACAATTATA	Gene tools	8ng	8ng

469

470 **Table 1: Name, sequence and amount of MO used in knockdown and in DFC targeted
471 knockdown.**

472

473 **Antisense oligonucleotides (ASO) knockdowns**

474 Two non overlapping 2' O-Methyl RNA antisense oligonucleotides targeting the 5' end of
475 *VgII4I* coding sequence were synthesized by Integrated DNA Technologies.
476 *VgII4I* 2'OMe ASO-1: mG*mU*mG*mG*mA*A*A*T*T*A*G*T*G*A*C*mC*mG*mC*mA
477 *VgII4I* 2'OMe ASO-2 : mC*mU*mG*mC*mU*C*A*T*C*C*T*G*G*T*T*mA*mU*mG*mU*mA
478 mA,mU,mC,mG: 2'O-Methyl(2'OMe)-modified RNA nucleotides; * phosphorothioate bond. ASO-
479 1 and ASO-2 are respectively complementary to nucleotides 2-22 and 23-43 of the *vgII4I* open
480 reading frame.

481 Knockdowns were performed as described in (Pauli, Montague, Lennox, Behlke, & Schier,
482 2015) by injection of 75 ng of each ASO into WT embryos at the 1- to 2-cell stage.

483

484

485 **Sense RNA synthesis and injection**

486 PCR amplified fragments containing the complete open reading frame of Vgll4l, Vgll4b, Yap,
487 Taz or Dnmt3bb.1 were cloned into the pCS2+ vector. For mRNA synthesis, constructs were
488 linearized with NotI and transcribed using SP6 RNA polymerase using the mMESSAGE
489 mMACHINE kit (Ambion). *In vitro* synthesized sense RNAs were injected either alone or in
490 combination with MOs in rescue experiments. DFCs specific gain of function have been
491 performed by injecting 0.4 µg of *in vitro* synthesized mRNA in the yolk of embryos at the 256-
492 512-cell stages as described in (Esguerra et al., 2007; Matsui et al., 2011).

493

494 **Crispr/Cas9 mutagenesis**

495 Target sequences for CRISPR/Cas9 were identified using the optimized CRISPR Design –
496 MIT (<http://crispr.mit.edu/>). Complementary primers for the target sites were annealed and
497 ligated into BSA1-cleaved pDR274 plasmid (Hwang et al., 2013)(plasmid # 42250 from Keith
498 Joung, obtained from Addgene). Plasmids for sgRNAs were linearized using Dra1 enzyme and
499 sgRNAs synthesized with the Maxiscript-T7 kit from Ambion. As described in (Burger et al.,
500 2016) RNP complexes were formed by incubating 900 ng/µl of Cas9 protein (New England
501 Biolabs) with 150 ng/µl of sgRNA in 300 mM KCl for 5 min at 37°C. The complexes were then
502 injected into 1-cell stage embryos. Adult F0 fish were outcrossed to WT fish. Then, genomic
503 DNA was extracted from fin clips of adult F1 individuals (Meeker, Hutchinson, Ho, & Trede,
504 2007). Targeted region was amplified by PCR and analyzed for INDELs using an heteroduplex
505 mobility assay (Ota et al., 2013). Sequence of oligonucleotides used is provided in

506 **Supplementary File 4.** Position and sequence of mutants is provided in **Supplementary Files**

507 **6 - 9.**

508

509

510

511 **TALEN mutagenesis**

512 TALEN sequences for mutagenesis of Dnmt3bb.1, Dnmt3bb.2 and Dnmt3ba were selected
513 using Targeter 2.0 software (Doyle et al., 2012). TAL repeat assembly was achieved using the
514 Golden Gate assembly method, and assembled repeats were integrated into the GoldyTALEN
515 scaffold (Bedell et al., 2012; Cermak et al., 2011). Assembled vectors served as templates for
516 *in vitro* mRNA transcription using the T3 mMessage mMachine kit (Ambion) according to
517 manufacturer's instructions. 50-100 pg mRNA was injected into wild-type embryos at the one-
518 cell stage. Position and sequences of mutants is provided in **Supplementary Files 8 and 9**.

519

520 **Immunohistochemistry and imaging**

521 Embryos were fixed overnight at 4°C in 4% paraformaldehyde then washed 3 times for 20
522 min in a PBS medium containing 1% Triton X100 (PBS-1%Triton) for 20 min. Embryos were
523 incubated for 1hr in the blocking buffer (PBS-1%Triton, sheep serum 10%) then overnight at
524 4°C in a medium containing the primary antibody: anti-Acetylated Tubulin (Sigma-Aldrich
525 T7451), anti Phospho Histone H3 (Ser10) (Cell Signaling, 9701) or anti Cleaved Caspase 3
526 (Asp175) (Cell Signaling, 9661) used at 1:400 dilution, anti Sox17 (Novus, NBP2-24568), anti
527 Yap (Cell Signaling, 4912) used at 1:200 dilution and anti 5-methyl-cytosine (abcam, ab10805)
528 used at 1:10,000 dilution in the blocking buffer. Embryos were then washed 3 x 20 min with
529 PBS-1%Triton and incubated 2 hrs at room temperature in a medium containing the secondary
530 antibody: a goat anti-rabbit Alexa Fluor 488 (Thermofisher, A11008) or a goat anti-mouse Alexa
531 Fluor 546 (Thermofisher, A11030) used at a 1:800 dilution in the blocking buffer, and 2%
532 Hoechst 33342 (Sigma-Aldrich) to label the nuclei. After 3 final washes of 20 min in PBS-
533 1%Triton, embryos were mounted in 2% low melting agarose. Representative images were
534 acquired using a Leica TCS LSI confocal microscope. Images were analyzed using Image J
535 software.

536

537 **Quantitative Analysis of Kupffer's vesicle size, cilia length and number of DFCs**

538 KV size, cilia length and DFCs were quantified as described in (Gokey et al., 2015a; Gokey,
539 Ji, Tay, Litts, & Amack, 2016). Embryos were observed in brightfield using a Leica microscope
540 and the area of the KV lumen was measured using the ImageJ software (NIH). For cilia,
541 embryos immunostained with acetylated-tubulin antibodies were imaged using a Leica TCS LSI
542 confocal microscope and the length of cilia was measured using ImageJ software. The number
543 of DFCs was determined using the *Tg(sox17:GFP)^{S870}* by manually counting the number of
544 Hoechst 33342 labeled nuclei of GFP+ DFCs in a Z-series of images collected using a Leica
545 TCS LSI confocal microscope.

546 For statistical analyses, P values were calculated with Graphpad prism 8 software using two-
547 tailed unpaired t-test. All raw data are available in **Source data 1**.

548

549 **Pharmacological treatments**

550 Verteporfin treatment: a 2 mg/ml stock solution of Verteporfin (SML0534, Sigma) was
551 prepared in dimethylsulfoxide (DMSO). Embryos were incubated from the 1-cell stage to 24 hpf
552 with verteporfin diluted in 0.3 x Danieau buffer at a final concentration of 2.5 μ M.

553

554 **RNA extraction, cDNA library preparation and RNA-Seq**

555 DFCs were dissected out in DMEM/F-12 medium (Gibco Dulbecco's Modified Eagle
556 Medium: Nutrient Mixture F-12) from embryos of the *Tg(sox17:GFP)* line at the 90% epiboly
557 stage injected at the 1-cell stage with 8ng of standard MO (Control), 4ng of Vgll4I MOsp or
558 together with 4 ng of Yap MO1 and 4 ng of Taz MOsp1. Individual samples were transferred in a
559 0.5 ml Eppendorf tube with 2 μ l of DMEM/F12. Total RNA was extracted and purified
560 using SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing from Clontech. Purified RNA
561 samples were then reverse transcribed into cDNA and amplified. Libraries were constructed
562 using a NEB DNA Ultra library construction kit (New England Biolabs), with standard TruSeq-

563 type adapters. Libraries size and concentration were assessed using an Agilent 2100
564 Bioanalyzer. Libraries were multiplexed and 50bp single-end were sequenced (Beijing
565 Genomics Institute) on illumina Hiseq 2000 sequencer generating a minimum of 20 million reads
566 per sample. Genome-wide transcriptome were produced from quadruplicate biological
567 replicates.

568

569 **Bioinformatics**

570 Bioinformatic analysis was performed by UVA bioinformatics core facility. Sequences
571 alignment was done using STAR. Reads were mapped to GRCz10 Ensembl genes using the
572 featureCounts software. DESeq2 Bioconductor package was used to normalize count data,
573 estimate dispersion, and fit a negative binomial model for each gene. The Benjamini-Hochberg
574 False Discovery Rate procedure was used to re-estimate the adjusted p-values for Ensembl
575 gene IDs mapping to known genes. GO-term analysis was done in cytoscape 3.2.2 using the
576 cluego plugin (Bindea et al., 2009). Heatmap was generated using heatmap.2 plugin in R.

577

578 **Acknowledgments**

579 We thank H.J. Yost for the *Tg(sox17-GFP)*^{S870} and J. D. Amack for the *Tg(dusp6:GFP)*^{pt19} lines,
580 S.D. Turner and A.T. Nguyen for advices.

581

582 **References**

583 Aamar, E., & Dawid, I. B. (2010a). Sox17 and chordin are required for formation of Kupffer's
584 vesicle and left-right asymmetry determination in zebrafish. *Developmental dynamics : an*
585 *official publication of the American Association of Anatomists*, 239(11), 2980-2988.
586 doi:10.1002/dvdy.22431

587 Aamar, E., & Dawid, I. B. (2010b). Sox17 and chordin are required for formation of Kupffer's
588 vesicle and left-right asymmetry determination in zebrafish. *Dev Dyn*, 239(11), 2980-2988.
589 doi:10.1002/dvdy.22431

590 Agathon, A., Thisse, B., & Thisse, C. (2001). Morpholino knock-down of antivin1 and antivin2
591 upregulates nodal signaling. *Genesis*, 30(3), 178-182.

592 Agathon, A., Thisse, C., & Thisse, B. (2003). The molecular nature of the zebrafish tail
593 organizer. *Nature*, 424(6947), 448-452. doi:10.1038/nature01822

594 Amack, J. D., Wang, X., & Yost, H. J. (2007). Two T-box genes play independent and
595 cooperative roles to regulate morphogenesis of ciliated Kupffer's vesicle in zebrafish. *Dev Biol*,
596 310(2), 196-210. doi:10.1016/j.ydbio.2007.05.039

597 Amack, J. D., & Yost, H. J. (2004). The T box transcription factor no tail in ciliated cells
598 controls zebrafish left-right asymmetry. *Current biology : CB*, 14(8), 685-690.
599 doi:10.1016/j.cub.2004.04.002

600 Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P.,
601 Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, L., Kasarskis,
602 A., Lewis, S., Matese, J. C., Richardson, J. E., Ringwald, M., Rubin, G. M., & Sherlock, G.
603 (2000). Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. *Nat Genet*, 25(1), 25-29. doi:10.1038/75556

604 Beaujean, N., Salvaing, J., Hadi, N. A. A., & Pennings, S. (2018). Antibody-Based Detection of
605 Global Nuclear DNA Methylation in Cells, Tissue Sections, and Mammalian Embryos. *Methods Mol Biol*, 1708, 59-80. doi:10.1007/978-1-4939-7481-8_4

606 Bedell, V. M., Wang, Y., Campbell, J. M., Poschusta, T. L., Starker, C. G., Krug, R. G., 2nd, Tan,
607 W., Penheiter, S. G., Ma, A. C., Leung, A. Y., Fahrenkrug, S. C., Carlson, D. F., Voytas, D. F.,
608 Clark, K. J., Essner, J. J., & Ekker, S. C. (2012). In vivo genome editing using a high-efficiency
609 TALEN system. *Nature*, 491(7422), 114-118. doi:10.1038/nature11537

610 Bindea, G., Mlecnik, B., Hackl, H., Charoentong, P., Tosolini, M., Kirilovsky, A., Fridman, W.
611 H., Pages, F., Trajanoski, Z., & Galon, J. (2009). ClueGO: a Cytoscape plug-in to decipher
612 functionally grouped gene ontology and pathway annotation networks. *Bioinformatics*, 25(8),
613 1091-1093. doi:10.1093/bioinformatics/btp101

614 Bisgrove, B. W., Makova, S., Yost, H. J., & Brueckner, M. (2012a). RFX2 is essential in the
615 ciliated organ of asymmetry and an RFX2 transgene identifies a population of ciliated cells
616 sufficient for fluid flow. *Dev Biol*, 363(1), 166-178. doi:10.1016/j.ydbio.2011.12.030

617 Bisgrove, B. W., Makova, S., Yost, H. J., & Brueckner, M. (2012b). RFX2 is essential in the
618 ciliated organ of asymmetry and an RFX2 transgene identifies a population of ciliated cells
619 sufficient for fluid flow. *Developmental biology*, 363(1), 166-178.
620 doi:10.1016/j.ydbio.2011.12.030

621 Bogdanovic, O., & Veenstra, G. J. (2011). Affinity-based enrichment strategies to assay methyl-
622 CpG binding activity and DNA methylation in early Xenopus embryos. *BMC Res Notes*, 4, 300.
623 doi:10.1186/1756-0500-4-300

624 Boland, M. J., Nazor, K. L., & Loring, J. F. (2014). Epigenetic regulation of pluripotency and
625 differentiation. *Circulation research*, 115(2), 311-324. doi:10.1161/CIRCRESAHA.115.301517

628 Burger, A., Lindsay, H., Felker, A., Hess, C., Anders, C., Chiavacci, E., Zaugg, J., Weber, L. M.,
629 Catena, R., Jinek, M., Robinson, M. D., & Mosimann, C. (2016). Maximizing mutagenesis with
630 solubilized CRISPR-Cas9 ribonucleoprotein complexes. *Development*, 143(11), 2025-2037.
631 doi:10.1242/dev.134809

632 Cermak, T., Doyle, E. L., Christian, M., Wang, L., Zhang, Y., Schmidt, C., Baller, J. A., Somia,
633 N. V., Bogdanove, A. J., & Voytas, D. F. (2011). Efficient design and assembly of custom
634 TALEN and other TAL effector-based constructs for DNA targeting. *Nucleic Acids Res*, 39(12),
635 e82. doi:10.1093/nar/gkr218

636 Chedin, F. (2011). The DNMT3 family of mammalian de novo DNA methyltransferases. *Prog
637 Mol Biol Transl Sci*, 101, 255-285. doi:10.1016/B978-0-12-387685-0.00007-X

638 Chung, W. S., & Stainier, D. Y. (2008). Intra-endodermal interactions are required for pancreatic
639 beta cell induction. *Dev Cell*, 14(4), 582-593. doi:10.1016/j.devcel.2008.02.012

640 Clement, A., Solnica-Krezel, L., & Gould, K. L. (2011). The Cdc14B phosphatase contributes to
641 ciliogenesis in zebrafish. *Development*, 138(2), 291-302. doi:10.1242/dev.055038

642 Dai, H. Q., Wang, B. A., Yang, L., Chen, J. J., Zhu, G. C., Sun, M. L., Ge, H., Wang, R.,
643 Chapman, D. L., Tang, F., Sun, X., & Xu, G. L. (2016). TET-mediated DNA demethylation
644 controls gastrulation by regulating Lefty-Nodal signalling. *Nature*, 538(7626), 528-532.
645 doi:10.1038/nature20095

646 Dasgupta, A., & Amack, J. D. (2016). Cilia in vertebrate left-right patterning. *Philos Trans R Soc
647 Lond B Biol Sci*, 371(1710). doi:10.1098/rstb.2015.0410

648 Deng, X., & Fang, L. (2018). VGLL4 is a transcriptional cofactor acting as a novel tumor
649 suppressor via interacting with TEADs. *Am J Cancer Res*, 8(6), 932-943.

650 Doyle, E. L., Booher, N. J., Standage, D. S., Voytas, D. F., Brendel, V. P., Vandyk, J. K., &
651 Bogdanove, A. J. (2012). TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL
652 effector design and target prediction. *Nucleic Acids Res*, 40(Web Server issue), W117-122.
653 doi:10.1093/nar/gks608

654 Esguerra, C. V., Nelles, L., Vermeire, L., Ibrahim, A., Crawford, A. D., Derua, R., Janssens, E.,
655 Waelkens, E., Carmeliet, P., Collen, D., & Huylebroeck, D. (2007). Ttrap is an essential
656 modulator of Smad3-dependent Nodal signaling during zebrafish gastrulation and left-right axis
657 determination. *Development*, 134(24), 4381-4393. doi:10.1242/dev.000026

658 Essner, J. J., Amack, J. D., Nyholm, M. K., Harris, E. B., & Yost, H. J. (2005). Kupffer's vesicle
659 is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of
660 the brain, heart and gut. *Development*, 132(6), 1247-1260. doi:10.1242/dev.01663

661 Fekany, K., Yamanaka, Y., Leung, T., Sirotkin, H. I., Topczewski, J., Gates, M. A., Hibi, M.,
662 Renucci, A., Stemple, D., Radbill, A., Schier, A. F., Driever, W., Hirano, T., Talbot, W. S., &
663 Solnica-Krezel, L. (1999). The zebrafish bozozok locus encodes Dharma, a homeodomain
664 protein essential for induction of gastrula organizer and dorsoanterior embryonic structures.
665 *Development*, 126(7), 1427-1438.

666 Gao, C., Wang, G., Amack, J. D., & Mitchell, D. R. (2010). Oda16/Wdr69 is essential for
667 axonemal dynein assembly and ciliary motility during zebrafish embryogenesis. *Developmental
668 dynamics : an official publication of the American Association of Anatomists*, 239(8), 2190-
669 2197. doi:10.1002/dvdy.22355

670 Gokey, J. J., Dasgupta, A., & Amack, J. D. (2015a). The V-ATPase accessory protein Atp6ap1b
671 mediates dorsal forerunner cell proliferation and left-right asymmetry in zebrafish. *Dev Biol*,
672 407(1), 115-130. doi:10.1016/j.ydbio.2015.08.002

673 Gokey, J. J., Dasgupta, A., & Amack, J. D. (2015b). The V-ATPase accessory protein Atp6ap1b
674 mediates dorsal forerunner cell proliferation and left-right asymmetry in zebrafish.
675 *Developmental biology*, 407(1), 115-130. doi:10.1016/j.ydbio.2015.08.002

676 Gokey, J. J., Ji, Y., Tay, H. G., Litts, B., & Amack, J. D. (2016). Kupffer's vesicle size threshold
677 for robust left-right patterning of the zebrafish embryo. *Dev Dyn*, 245(1), 22-33.
678 doi:10.1002/dvdy.24355

679 Gore, A. V., Athans, B., Iben, J. R., Johnson, K., Russanova, V., Castranova, D., Pham, V. N.,
680 Butler, M. G., Williams-Simons, L., Nichols, J. T., Bresciani, E., Feldman, B., Kimmel, C. B.,
681 Liu, P. P., & Weinstein, B. M. (2016). Epigenetic regulation of hematopoiesis by DNA
682 methylation. *eLife*, 5, e11813. doi:10.7554/eLife.11813

683 He, L., Xu, W., Jing, Y., Wu, M., Song, S., Cao, Y., & Mei, C. (2015). Yes-associated protein
684 (Yap) is necessary for ciliogenesis and morphogenesis during pronephros development in
685 zebrafish (*Danio Rerio*). *Int J Biol Sci*, 11(8), 935-947. doi:10.7150/ijbs.11346

686 Hong, J. H., Hwang, E. S., McManus, M. T., Amsterdam, A., Tian, Y., Kalmukova, R., Mueller,
687 E., Benjamin, T., Spiegelman, B. M., Sharp, P. A., Hopkins, N., & Yaffe, M. B. (2005). TAZ, a
688 transcriptional modulator of mesenchymal stem cell differentiation. *Science*, 309(5737), 1074-
689 1078. doi:10.1126/science.1110955

690 Hu, J., Sun, S., Jiang, Q., Sun, S., Wang, W., Gui, Y., & Song, H. (2013). Yes-associated protein
691 (yap) is required for early embryonic development in zebrafish (*danio rerio*). *Int J Biol Sci*, 9(3),
692 267-278. doi:10.7150/ijbs.4887

693 Huang, H. T., Kathrein, K. L., Barton, A., Gitlin, Z., Huang, Y. H., Ward, T. P., Hofmann, O.,
694 Dibiase, A., Song, A., Tyekucheva, S., Hide, W., Zhou, Y., & Zon, L. I. (2013). A network of
695 epigenetic regulators guides developmental haematopoiesis in vivo. *Nat Cell Biol*, 15(12), 1516-
696 1525. doi:10.1038/ncb2870

697 Hwang, W. Y., Fu, Y., Reyon, D., Maeder, M. L., Tsai, S. Q., Sander, J. D., Peterson, R. T., Yeh,
698 J. R., & Joung, J. K. (2013). Efficient genome editing in zebrafish using a CRISPR-Cas system.
699 *Nat Biotechnol*, 31(3), 227-229. doi:10.1038/nbt.2501

700 Jiang, Q., Liu, D., Gong, Y., Wang, Y., Sun, S., Gui, Y., & Song, H. (2009). yap is required for
701 the development of brain, eyes, and neural crest in zebrafish. *Biochem Biophys Res Commun*,
702 384(1), 114-119. doi:10.1016/j.bbrc.2009.04.070

703 Jiao, S., Wang, H., Shi, Z., Dong, A., Zhang, W., Song, X., He, F., Wang, Y., Zhang, Z., Wang,
704 W., Wang, X., Guo, T., Li, P., Zhao, Y., Ji, H., Zhang, L., & Zhou, Z. (2014). A peptide
705 mimicking VGLL4 function acts as a YAP antagonist therapy against gastric cancer. *Cancer
706 Cell*, 25(2), 166-180. doi:10.1016/j.ccr.2014.01.010

707 Johnson, R., & Halder, G. (2014). The two faces of Hippo: targeting the Hippo pathway for
708 regenerative medicine and cancer treatment. *Nature reviews. Drug discovery*, 13(1), 63-79.
709 doi:10.1038/nrd4161

710 Kettleborough, R. N., Busch-Nentwich, E. M., Harvey, S. A., Dooley, C. M., de Bruijn, E., van
711 Eeden, F., Sealy, I., White, R. J., Herd, C., Nijman, I. J., Fenyes, F., Mehroke, S., Scahill, C.,
712 Gibbons, R., Wali, N., Carruthers, S., Hall, A., Yen, J., Cuppen, E., & Stemple, D. L. (2013). A
713 systematic genome-wide analysis of zebrafish protein-coding gene function. *Nature*, 496(7446),
714 494-497. doi:10.1038/nature11992

715 Kikuchi, Y., Agathon, A., Alexander, J., Thisse, C., Waldron, S., Yelon, D., Thisse, B., &
716 Stainier, D. Y. (2001). casanova encodes a novel Sox-related protein necessary and sufficient for
717 early endoderm formation in zebrafish. *Genes & development*, 15(12), 1493-1505.
718 doi:10.1101/gad.892301

719 Kim, M., Kim, M., Lee, M. S., Kim, C. H., & Lim, D. S. (2014). The MST1/2-SAV1 complex of
720 the Hippo pathway promotes ciliogenesis. *Nat Commun*, 5, 5370. doi:10.1038/ncomms6370

721 Li, Q., Sadowski, S., Frank, M., Chai, C., Varadi, A., Ho, S. Y., Lou, H., Dean, M., Thisse, C.,
722 Thisse, B., & Uitto, J. (2010). The abcc6a gene expression is required for normal zebrafish
723 development. *J Invest Dermatol*, 130(11), 2561-2568. doi:10.1038/jid.2010.174

724 Lin, Z., Zhou, P., von Gise, A., Gu, F., Ma, Q., Chen, J., Guo, H., van Gorp, P. R., Wang, D. Z.,
725 & Pu, W. T. (2015). Pi3kcb links Hippo-YAP and PI3K-AKT signaling pathways to promote
726 cardiomyocyte proliferation and survival. *Circ Res*, 116(1), 35-45.
727 doi:10.1161/CIRCRESAHA.115.304457

728 Matsui, T., & Bessho, Y. (2012a). Left-right asymmetry in zebrafish. *Cellular and molecular life*
729 *sciences : CMLS*, 69(18), 3069-3077. doi:10.1007/s00018-012-0985-6

730 Matsui, T., & Bessho, Y. (2012b). Left-right asymmetry in zebrafish. *Cell Mol Life Sci*, 69(18),
731 3069-3077. doi:10.1007/s00018-012-0985-6

732 Matsui, T., Thitamadee, S., Murata, T., Kakinuma, H., Nabetani, T., Hirabayashi, Y., Hirate, Y.,
733 Okamoto, H., & Bessho, Y. (2011). Canopy1, a positive feedback regulator of FGF signaling,
734 controls progenitor cell clustering during Kupffer's vesicle organogenesis. *Proc Natl Acad Sci U*
735 *SA*, 108(24), 9881-9886. doi:10.1073/pnas.1017248108

736 Meeker, N. D., Hutchinson, S. A., Ho, L., & Trede, N. S. (2007). Method for isolation of PCR-
737 ready genomic DNA from zebrafish tissues. *Biotechniques*, 43(5), 610, 612, 614.
738 doi:10.2144/000112619

739 Melvin, V. S., Feng, W., Hernandez-Lagunas, L., Artinger, K. B., & Williams, T. (2013). A
740 morpholino-based screen to identify novel genes involved in craniofacial morphogenesis. *Dev*
741 *Dyn*, 242(7), 817-831. doi:10.1002/dvdy.23969

742 Miesfeld, J. B., Gestri, G., Clark, B. S., Flinn, M. A., Poole, R. J., Bader, J. R., Besharse, J. C.,
743 Wilson, S. W., & Link, B. A. (2015). Yap and Taz regulate retinal pigment epithelial cell fate.
744 *Development*, 142(17), 3021-3032. doi:10.1242/dev.119008

745 Mohan, K. N., & Chaillet, J. R. (2013). Cell and molecular biology of DNA methyltransferase 1.
746 *Int Rev Cell Mol Biol*, 306, 1-42. doi:10.1016/B978-0-12-407694-5.00001-8

747 Navis, A., Marjoram, L., & Bagnat, M. (2013). Cftr controls lumen expansion and function of
748 Kupffer's vesicle in zebrafish. *Development*, 140(8), 1703-1712. doi:10.1242/dev.091819

749 Ota, S., Hisano, Y., Muraki, M., Hoshijima, K., Dahlem, T. J., Grunwald, D. J., Okada, Y., &
750 Kawahara, A. (2013). Efficient identification of TALEN-mediated genome modifications using
751 heteroduplex mobility assays. *Genes Cells*, 18(6), 450-458. doi:10.1111/gtc.12050

752 Oteiza, P., Koppen, M., Concha, M. L., & Heisenberg, C. P. (2008). Origin and shaping of the
753 laterality organ in zebrafish. *Development*, 135(16), 2807-2813. doi:10.1242/dev.022228

754 Pauli, A., Montague, T. G., Lennox, K. A., Behlke, M. A., & Schier, A. F. (2015). Antisense
755 Oligonucleotide-Mediated Transcript Knockdown in Zebrafish. *PLoS One*, 10(10), e0139504.
756 doi:10.1371/journal.pone.0139504

757 Reik, W. (2007). Stability and flexibility of epigenetic gene regulation in mammalian
758 development. *Nature*, 447(7143), 425-432. doi:10.1038/nature05918

759 Saito, M., & Ishikawa, F. (2002). The mCpG-binding domain of human MBD3 does not bind to
760 mCpG but interacts with NuRD/Mi2 components HDAC1 and MTA2. *J Biol Chem*, 277(38),
761 35434-35439. doi:10.1074/jbc.M203455200

762 Sakaguchi, T., Kikuchi, Y., Kuroiwa, A., Takeda, H., & Stainier, D. Y. (2006). The yolk
763 syncytial layer regulates myocardial migration by influencing extracellular matrix assembly in
764 zebrafish. *Development*, 133(20), 4063-4072. doi:10.1242/dev.02581

765 Shimoda, N., Yamakoshi, K., Miyake, A., & Takeda, H. (2005). Identification of a gene required
766 for de novo DNA methylation of the zebrafish no tail gene. *Dev Dyn*, 233(4), 1509-1516.
767 doi:10.1002/dvdy.20455

768 Skouloudaki, K., Puetz, M., Simons, M., Courbard, J. R., Boehlke, C., Hartleben, B., Engel, C.,
769 Moeller, M. J., Englert, C., Bollig, F., Schafer, T., Ramachandran, H., Mlodzik, M., Huber, T.
770 B., Kuehn, E. W., Kim, E., Kramer-Zucker, A., & Walz, G. (2009). Scribble participates in
771 Hippo signaling and is required for normal zebrafish pronephros development. *Proc Natl Acad
772 Sci U S A*, 106(21), 8579-8584. doi:10.1073/pnas.0811691106

773 Sun, C., De Mello, V., Mohamed, A., Ortuste Quiroga, H. P., Garcia-Munoz, A., Al Bloshi, A.,
774 Tremblay, A. M., von Kriegsheim, A., Collie-Duguid, E., Vargesson, N., Matallanas, D.,
775 Wackerhage, H., & Zammit, P. S. (2017). Common and Distinctive Functions of the Hippo
776 Effectors Taz and Yap in Skeletal Muscle Stem Cell Function. *Stem Cells*, 35(8), 1958-1972.
777 doi:10.1002/stem.2652

778 Tarkar, A., Loges, N. T., Slagle, C. E., Francis, R., Dougherty, G. W., Tamayo, J. V., Shook, B.,
779 Cantino, M., Schwartz, D., Jahnke, C., Olbrich, H., Werner, C., Raidt, J., Pennekamp, P.,
780 Abouhamed, M., Hjeij, R., Kohler, G., Griesse, M., Li, Y., Lemke, K., Klena, N., Liu, X.,
781 Gabriel, G., Tobita, K., Jaspers, M., Morgan, L. C., Shapiro, A. J., Letteboer, S. J., Mans, D. A.,
782 Carson, J. L., Leigh, M. W., Wolf, W. E., Chen, S., Lucas, J. S., Onoufriadiis, A., Plagnol, V.,
783 Schmidts, M., Boldt, K., Roepman, R., Zariwala, M. A., Lo, C. W., Mitchison, H. M., Knowles,
784 M. R., Burdine, R. D., Loturco, J. J., & Omran, H. (2013). DYX1C1 is required for axonemal
785 dynein assembly and ciliary motility. *Nature genetics*, 45(9), 995-1003. doi:10.1038/ng.2707

786 The Gene Ontology, C. (2017). Expansion of the Gene Ontology knowledgebase and resources.
787 *Nucleic Acids Res*, 45(D1), D331-D338. doi:10.1093/nar/gkw1108

788 Thisse, B., & Thisse, C. (2014). In situ hybridization on whole-mount zebrafish embryos and
789 young larvae. *Methods Mol Biol*, 1211, 53-67. doi:10.1007/978-1-4939-1459-3_5

790 Thisse, C., & Thisse, B. (1999). Antivin, a novel and divergent member of the TGFbeta
791 superfamily, negatively regulates mesoderm induction. *Development*, 126(2), 229-240.

792 Thisse, C., & Thisse, B. (2008). High-resolution in situ hybridization to whole-mount zebrafish
793 embryos. *Nat Protoc*, 3(1), 59-69. doi:10.1038/nprot.2007.514

794 Wang, C., Zhu, X., Feng, W., Yu, Y., Jeong, K., Guo, W., Lu, Y., & Mills, G. B. (2016).
795 Verteporfin inhibits YAP function through up-regulating 14-3-3sigma sequestering YAP in the
796 cytoplasm. *Am J Cancer Res*, 6(1), 27-37.

797 Wang, G., Cadwallader, A. B., Jang, D. S., Tsang, M., Yost, H. J., & Amack, J. D. (2011). The
798 Rho kinase Rock2b establishes anteroposterior asymmetry of the ciliated Kupffer's vesicle in
799 zebrafish. *Development*, 138(1), 45-54. doi:10.1242/dev.052985

800 Wang, G., Yost, H. J., & Amack, J. D. (2013a). Analysis of gene function and visualization of
801 cilia-generated fluid flow in Kupffer's vesicle. *J Vis Exp*(73). doi:10.3791/50038

802 Wang, G., Yost, H. J., & Amack, J. D. (2013b). Analysis of gene function and visualization of
803 cilia-generated fluid flow in Kupffer's vesicle. *Journal of visualized experiments : JoVE*(73).
804 doi:10.3791/50038

805 Wang, L., Liu, Z., Lin, H., Ma, D., Tao, Q., & Liu, F. (2017). Epigenetic regulation of left-right
806 asymmetry by DNA methylation. *EMBO J*, 36(20), 2987-2997. doi:10.15252/embj.201796580

807 Wang, Y., Xu, X., Maglic, D., Dill, M. T., Mojumdar, K., Ng, P. K., Jeong, K. J., Tsang, Y. H.,
808 Moreno, D., Bhavana, V. H., Peng, X., Ge, Z., Chen, H., Li, J., Chen, Z., Zhang, H., Han, L., Du,
809 D., Creighton, C. J., Mills, G. B., Cancer Genome Atlas Research, N., Camargo, F., & Liang, H.

810 (2018). Comprehensive Molecular Characterization of the Hippo Signaling Pathway in Cancer.
811 *Cell Rep*, 25(5), 1304-1317 e1305. doi:10.1016/j.celrep.2018.10.001

812 Warga, R. M., & Kane, D. A. (2018). Wilson cell origin for kupffer's vesicle in the zebrafish.
813 *Dev Dyn*, 247(9), 1057-1069. doi:10.1002/dvdy.24657

814 Xu, Y., Cao, J., Huang, S., Feng, D., Zhang, W., Zhu, X., & Yan, X. (2015). Characterization of
815 tetratricopeptide repeat-containing proteins critical for cilia formation and function. *PLoS One*,
816 10(4), e0124378. doi:10.1371/journal.pone.0124378

817 Yu, X., Ng, C. P., Habacher, H., & Roy, S. (2008a). Foxj1 transcription factors are master
818 regulators of the motile ciliogenic program. *Nature genetics*, 40(12), 1445-1453.
819 doi:10.1038/ng.263

820 Yu, X., Ng, C. P., Habacher, H., & Roy, S. (2008b). Foxj1 transcription factors are master
821 regulators of the motile ciliogenic program. *Nat Genet*, 40(12), 1445-1453. doi:10.1038/ng.263

822 Zanconato, F., Forcato, M., Battilana, G., Azzolin, L., Quaranta, E., Bodega, B., Rosato, A.,
823 Bicciato, S., Cordenonsi, M., & Piccolo, S. (2015). Genome-wide association between
824 YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth. *Nat Cell Biol*, 17(9), 1218-
825 1227. doi:10.1038/ncb3216

826 Zhang, W., Gao, Y., Li, P., Shi, Z., Guo, T., Li, F., Han, X., Feng, Y., Zheng, C., Wang, Z., Li,
827 F., Chen, H., Zhou, Z., Zhang, L., & Ji, H. (2014). VGLL4 functions as a new tumor suppressor
828 in lung cancer by negatively regulating the YAP-TEAD transcriptional complex. *Cell Res*, 24(3),
829 331-343. doi:10.1038/cr.2014.10

830 Zhao, B., Tumaneng, K., & Guan, K. L. (2011). The Hippo pathway in organ size control, tissue
831 regeneration and stem cell self-renewal. *Nature cell biology*, 13(8), 877-883.
832 doi:10.1038/ncb2303

Figures Legend

833 **Figure 1: Hippo TFs/TcoFs are essential for establishing the left-right asymmetry. (A)**
834 Whole-mount *in situ* hybridization for *vgl4l*, *yap*, *taz*, *vgl4b* and *tead3a* at gastrula and at the 6-
835 somite stage. *Vgl4l* is expressed in DFCs at 60% (dorsal view), 80% (lateral view) and 90%
836 epiboly (vegetal pole view) but is not expressed in the KV at the 6-somite stage (vegetal pole
837 view). *Yap* and *Taz* are shown at 80% epiboly and at the 6-somite stage in vegetal pole view,
838 *Vgl4b* at gastrula stage and *Tead3a* at the 6-somite stage in vegetal pole views. *Tead1a* that is
839 constitutively expressed is not presented. White arrowheads point to DFCs, blue arrowheads
840 point to the KV. (B) Cardiac jogging analyzed at 25 hours post fertilization (hpf). Graphs indicate
841 the percentage of embryos with normal Left jog (L jog - yellow), Right jog (R jog – dark blue) or
842 no jog (light blue), visualized by *in situ* hybridization (top, h: heart) with a *myosin light chain 7*
843 (*myl7*) probed at 25 hpf in: wild-type (WT) embryos; embryos injected with standard (std) MO or
844 with *Vgl4l*, *Vgl4b*, *Yap*, *Taz*, *Yap* and *Taz*, *Tead1a* or *Tead3a* MOs; embryos injected with
845 ASO; rescue experiments of morphant phenotypes by injection of MO insensitive RNA;
846 incubation with 2.5 μ M of Verteporfin, a *Yap* inhibitor. For each experiment the name of gene,
847 name and amount of MO and/or RNA injected are indicated on the left. For double *Yap/Taz* MO-
848 KD, 4 ng *Yap* MOsp and 4 ng *Taz* MOsp2 have been injected. DFC “name of the gene” MO
849 indicates DFC-targeted knockdown experiment (G. Wang, Yost, & Amack, 2013b). (MO + RNA)
850 stands for rescue experiment of the indicated MO together with 100 ng of the corresponding,
851 MO insensitive, mRNA. (C) Schematic of functional domains present in WT and in *Vgl4l*, *Vgl4b*,
852 *Yap*, *Taz* and *Tead3a* mutants. nls: nuclear localization signal, PDZ: PDZ-binding motif, TA:
853 transcription activation domain, TB: TEAD binding domain, TcoF-BD: transcription cofactor
854 binding domain, TEA: DNA-binding TEA/ATTS domain, TDU: TONDU domain, WW: WW
855 domain. Numbers indicate the position of the last amino-acid of each peptide. (D) Laterality
856 defects of homozygous mutant embryos and of embryos homozygous mutant for *Taz*,

857 heterozygous for Yap, analyzed as described in (B) for their cardiac jogging at 25 hpf.

858 Numerical data for (B) and (D) are provided in **Figure 1 - Source data**.

859

860 **Figure 1-figure supplement 1: Immunodetection of Yap protein in nuclei of DFCs. (A)** Yap
861 protein is present in nuclei of dorsal marginal cells at 75% epiboly. **(B)** Double labeling for Yap
862 and Sox17 identifying these cells to be DFCs. **(C)** Sox17 immunolabeling revealing the DFCs.

863

864 **Figure 1-figure supplement 2:** Expression of *lefty1* (*lft1*) at 20 hpf in embryos depleted in their
865 DFCs (DFC specific loss-of-function) in *Vgll4l*, *Vgll4b*, *Yap*, *Taz*, *Tead1a* and *Tead3a*
866 morphants. Graphs indicate the percentage of embryos with normal expression of *lft1* in the left
867 heart primordium and the left dorsal diencephalon (yellow), with abnormal bilateral *lft1*
868 expression in the two heart primordia and in left and right dorsal diencephalon (light blue) and
869 with *situs inversus* with *lft1* expression in the right heart primordium and in the right dorsal
870 diencephalon (dark blue). n: number of embryos analyzed. Numerical data for (B) and (D) are
871 provided in **Figure 1 – figure supplement 2 - Source data**.

872

873 **Figure 1-figure supplement 3: Phenotype of *vgll4l*, *vgll4b*, *yap*, *yaz* and *tead3a***
874 **homozygous mutant embryos. (A-F)** Side view of live WT embryo (A) and of embryos
875 homozygous (-/-) mutant for *vgll4l* (B), *vgll4b* (C), *yap* (D), *taz* (E) and *tead3a* (F) at 2 days of
876 development showing that the global morphology of the embryo is not affected by loss of
877 function of these TFs/TcoFs. **(G-L)** Cardiac jogging at 25 hours post fertilization (hpf) in (G) WT
878 (L jog: left jog) and in homozygous mutants visualized by *in situ* hybridization with *myosin light*
879 *chain 7* (*myl7*) probed at 25 hpf for *vgll4l* (H), *vgll4b* (I), *yap* (J), *taz* (K) and *tead3a* (L) mutants.
880 Embryos with abnormal laterality (R jog - right jog or no jog) are presented. Embryos are in front
881 view except in (L, R jog) presented in dorsal view.

882

883 **Figure 2: Loss of function of Hippo TFs/TcoFs affects the formation of the Left-Right**
884 **Organizer. (A-D)** Illustration of the strong decrease in the size of the KV at the 12-somite stage
885 in loss-of-function conditions shown in brightfield for **(A)** a control embryo (Ctrl) and for **(B)** a
886 TEAD1a morphant embryo (Tead1a-MO) and by *in situ* hybridization using a *dand5* probe in **(C)**
887 Ctrl and in **(D)** Vgll4b morphant embryo (Vgll4b-MO). **(E-H)** Effect of Vgll4l (V4l), Vgll4b (V4b),
888 Tead1a (T1a), Tead3a (T3a) loss of function and of Yap/Taz (Y/T) double loss of function on:
889 **(E)** the size of the KV (expressed as the area of the planar projection of its lumen), **(F)** the
890 number of DFCs present at early gastrula stage (60% epiboly) and at the end of gastrulation
891 (bud stage), **(G)** the proliferation of the DFCs measured as their mitotic index at 75% of epiboly,
892 **(H)** the survival of DFCs measured as their apoptotic index at 90% epiboly. In all cases control
893 (Ctrl) embryos were injected with 8ng of Standard MO. Graph indicates the mean of each
894 experiment, error bars indicate standard deviation and dots indicate the individual measurement
895 for DFC groups or individual KV in control and loss of function conditions. Statistical significance
896 between controls and the different loss-of-function conditions: two-tailed unpaired t-test. *p ≤
897 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001. ns: not significant. Numerical data for **(E-H)** and
898 details of statistical analysis are provided in **Figure 2 - Source data**.

899

900 **Figure 2-figure supplement 1: KV defects in homozygous *vgll4l*, *vgll4b*, *yap*, *taz* and**
901 ***tead3a* mutants. (A-F)** Dorsal view of the KV of the *Tg(sox17:GFP)^{s870}* line. KV cilia (red) are
902 detected by immunolabelling using an anti-acetylated tubulin antibody in **(A)** WT embryo of the
903 *Tg(sox17:GFP)^{s870}* line and in homozygous mutant (-/-) embryos of **(B)** *vgll4l^{va1/va1}*; *s870Tg*, **(C)**
904 *vgll4b^{va2/va2}*; *s870Tg*, **(D)** *yap^{va3/va3}*; *s870Tg*, **(E)** *taz/wwtr1^{va4/va4}* and **(G)** *tead3a^{sa14593/sa14593}*;
905 *s870Tg* lines. Scale bars: 20 μm.

906

907 **Figure 2-figure supplement 2: Gain of function of Yap results in the formation of a larger**
908 **KV. (A, B)** Brightfield view of the KV in **(A)** WT and **(B)** an embryo overexpressing Yap in DFCs

909 at the 12-somite stage (12s). (C, D) Visualization of the KV (green) and of KV cilia (red –
910 immunolabeling using an anti-acetylated tubulin antibody) at the 12-somite stage in (C) WT
911 embryos of the *Tg(sox17:GFP)^{s870}* line and (D) embryo of the same line overexpressing Yap in
912 DFCs. Scale bars 20 μ m. (E-F) lateral view of (E) a WT embryo and (F) an embryo
913 overexpressing Yap in the DFCs at the 18-somite stage (18s). Arrows point to the KV. (G)
914 Quantification of the size of the KV (expressed as the area of the planar projection of its lumen)
915 in WT and in Yap gain of function. (H) Quantification of the number of cells present in the DFCs
916 at early gastrula stage and in the KV at the 12-somite stage. Numerical data for (G-H) and
917 details of statistical analysis are provided in **Figure 2 – figure Supplement 2 - Source data**.
918

919 **Figure 3: Loss of function of Hippo TFs/TcoFs leads to a reduction of the length of motile
920 cilia of the KV. (A-C)** Visualization of KV cilia at the 10-somite stage using an anti-acetylated
921 tubulin antibody in (A) control embryos of the WT *Tg(dusp6:GFP)* line showing both KV cells
922 (green) and cilia (red) or (B) only cilia. (C) cilia in *Vgll4b* morphant. Scale bar: 40 μ m. (D) Length
923 of KV cilia in Control (Ctrl) embryos and in *Vgll4l*, *Vgll4b*, *Yap/Taz*, *Tead1a* and *Tead3a*
924 morphant embryos. Control (Ctrl) embryos were injected with 8 ng of Standard MO. Graph
925 indicates the mean of cilia length, error bars the standard deviation. Statistical significance
926 between controls and different loss-of-function conditions: two-tailed unpaired t-test. ****p \leq
927 0.0001. Numerical data and details of statistical analysis are provided in **Figure 3 – source
928 data**.

929 **Figure 4: DFC specific genes downregulated in *Vgll4l* loss of function.** Whole-mount *in situ*
930 hybridization for genes that are expressed in DFCs at 70-90% epiboly in control (Ctrl) embryos
931 and that are strongly downregulated in *Vgll4l* MO knockdown. Embryos are in dorsal view,
932 animal pole to the top (A-L), in vegetal pole view dorsal to the right (M-W) and in lateral view

933 anterior to the top dorsal to the right (**X**). Name of the genes probed is indicated in between
934 control (top) and Vgll4l loss of function embryos (bottom).

935

936 **Figure 4 - figure supplement 1: Effect of DFC specific MO knockdowns on the expression**
937 **of a selection of DFC specific genes.** DFC specific MO knockdown for Vgll4l ($Vgll4l^{DFC-MO}$, 8
938 ng Vgll4l MOsp), Yap (Yap^{DFC-MO} , 8 ng of Yap MOsp) and DFC targeted injection of control
939 morpholino (ctrl, 8 ng std MO) analyzed by *in situ* hybridization for the expression of DFC
940 specific genes. The name of the genes probed is indicated in the lower left corner of each panel.
941 Embryos are in dorsal view animal pole to the top except *dnmt3bb.1* and *mbd3b* that are in a
942 vegetal pole view dorsal to the right.

943

944 **Figure 4 - figure supplement 2: Differential expression at late gastrulation of the genes**
945 **analyzed by *in situ* hybridization in Vgll4l depleted embryos.** Box plots of the expression of
946 the genes presented in Figure 4 in Control embryos (Ctrl - gray), in Vgll4 (red) and in Yap/Taz
947 (blue) loss-of-function conditions. Gene expression in control samples was normalized to 1 and
948 the amount of transcripts (expressed as normalized counts) is indicated for the control. For
949 Vgll4l loss of function the 24 genes analyzed are differentially expressed ($|log2FoldChange| > 1$,
950 adjusted p-value < 0.05). This is also the case for Yap/Taz loss-of-function except when
951 mentioned otherwise: ns (not significant). Numerical data and adjusted p-value for all conditions
952 are available in **Supplementary File 1**. Adjusted p-value is < 0.0001 for all differentially
953 downregulated genes in Vgll4l or Yap/Taz loss-of-function conditions. The box in box-plots
954 indicates the first and third quantile and the black horizontal bar within the box illustrates the
955 median (or second quantile). The ends of the whiskers are set at $1.5 * \text{IQR}$ (IQR)
956 above the third quartile (Q3) and $1.5 * \text{IQR}$ below the first quartile (Q1).

957

958

959 **Figure 5: Transcriptome analysis of DFCs lacking Vgll4l or Yap/Taz function**

960 **(A)** Principal component analysis (PCA) of DFC transcriptomes for *Vgll4l* morphants (red),
961 Yap/Taz double morphants (blue) and control (green) showing that the four experimental
962 replicates were highly reproducible and strongly clustered while each experimental condition
963 segregated in distinct groups. **(B)** Venn diagram illustrating overlaps of differentially expressed
964 genes (DEGs) between groups of DFCs lacking activity of *Vgll4l* (red line) or Yap/Taz (blue
965 line). Downregulated genes (green), upregulated genes (orange). **(C)** Significant DEGs for *Vgll4l*
966 (top, red) and for Yap/Taz (bottom, blue) were analyzed for selected biological processes. Bars
967 represent the percentage of associated genes assigned to an unique GO term with the absolute
968 number of associated genes located at the end of the bars (p-value corrected with Benjamini-
969 Hochberg : **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001). **(D)** Heatmap of DEGs whose loss of
970 function is associated with DFCs and/or KV phenotypes. **(E)** Examples of genes downregulated
971 in *Vgll4l* or in Yap/Taz depleted embryos: *dnaaf4* which is required for cilia movement (Tarkar et
972 al., 2013), *atp6ap1b* known to mediate DFC proliferation (Gokey, Dasgupta, & Amack, 2015b);
973 *cfr* that controls KV lumen expansion (Navis, Marjoram, & Bagnat, 2013); *cdc14aa* that
974 contributes to ciliogenesis (Clement, Solnica-Krezel, & Gould, 2011). *ttc25* that is critical for cilia
975 formation and function (Xu et al., 2015) is downregulated in both *Vgll4l* and Yap/Taz loss of
976 function but is not a DEG for Yap/Taz. Finally *daw1* that is essential for dynein assembly and
977 ciliary motility (Gao, Wang, Amack, & Mitchell, 2010) is downregulated only in *Vgll4l* loss of
978 function. Graph bars indicate the mean expression expressed in normalized counts, the error
979 bars the standard deviation and the dots, the value of each biological replicate. Statistical
980 significance between controls and the different loss of function conditions: two-tailed unpaired t-
981 test. ****p ≤ 0.0001. ns: not significant (either p > 0.05 and/or |log2FoldChange|<1). Numerical
982 data for **(E)** are available in **Supplementary File 1**.

983

984 **Figure 6: Regulation by Vgll4l or by Yap/Taz of critical genes from major signaling**
985 **pathways controlling the formation of the KV. (A)** Strong downregulation of *nodal related 1*
986 (*ndr1*) expression in Vgll4l and Yap/Taz morphants. For Vgll4l, loss of *Ndr1* transcripts is
987 associated with a strong decrease of the expression of *smad2a*, a R-smad known to transduce
988 Nodal signaling, as well as to a strong upregulation of the expression of Nodal feedback
989 antagonists, *lefty1* (*lft1*) and *lefty2* (*lft2*). In Yap/Taz loss of function, the strong decrease in *ndr1*
990 expression is associated with a decrease in expression of *smad3a*, another R-Smad
991 transducing Nodal signaling, but not with an upregulation of *lft1/2*. **(B)** There is a strong
992 downregulation of expression of ligand (Wnt11) and receptors (Fzd8a and Fzd10 for Vgll4l,
993 Fzd8a for Yap/Taz) of the non-canonical Wnt pathway. **(C)** Expression of ligands (Fgf8a and
994 Fgf1a for Vgll4l; Fgf1a for Yap/Taz) and receptor (Fgfr1a) of the FGF signaling pathway is
995 strongly downregulated in both Vgll4l and Yap/Taz loss-of-function conditions. Transcripts of the
996 positive regulator (Cnpy1) are strongly decreased in Vgll4l loss of function. **(D)** The expression
997 of ligands (Dla, Jag2b) and receptors (Notch1a, Notch1b and Notch3) of the Notch pathway is
998 downregulated in DFCs lacking either Vgll4l or Yap/Taz. Bar graphs depict the mean expression
999 of genes in DFCs of control (grey), Vgll4l (red) and Yap/Taz (blue) loss of function expressed as
1000 normalized counts with error bars indicating standard deviation. Dots indicate the individual
1001 value of each biological replicate (n=4). Statistical significance between controls and the
1002 different loss-of-function conditions: two-tailed unpaired t-test. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001,
1003 ****p ≤ 0.0001. ns: not significant (either p > 0.05 or |log2FoldChange|<1). Numerical data are
1004 available in **Supplementary File 1**.

1005

1006

1007 **Figure 7: Vgll4l and Yap/Taz regulate expression of TFs required for KV formation.**
1008 Transcripts of Sox32, Sox17, Tbx1a, Tbx16, Foxj1a and Rfx2 are expressed in DFCs and are all
1009 significantly downregulated in Vgll4l and Yap/Taz morphants. The bar graphs depict the mean

1010 expression of genes in DFCs of control (grey), Vgll4l (red) and Yap/Taz (blue) loss of function
1011 expressed as normalized counts with error bars indicating standard deviation. Dots indicate the
1012 individual value of each biological replicate (n=4). Statistical significance between controls and
1013 loss of function conditions: two-tailed unpaired t-test. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤
1014 0.0001. ns: not significant (p > 0.05 and/or |log2 fold change| <1). Numerical data are available
1015 in **Supplementary File 1**.

1016 **Figure 8: Vgll4l regulates expression of epigenetic factors writers and readers of DNA**
1017 **methylation marks.** The bar graphs depict the mean expression of genes in DFCs of control
1018 (grey), Vgll4l (red) loss of function expressed as normalized counts with error bars indicating
1019 standard deviation. Dots indicate the individual value of each biological replicate (n=4).
1020 Statistical significance between controls and loss of function conditions: two-tailed unpaired t-
1021 test. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001. ns: not significant (p > 0.05 and/or |log2
1022 fold change| <1). Numerical data are available in **Supplementary File 1**.

1023 **Figure 9: Similarity between phenotypes of Dnmt3bs, Mbd3s and Vgll4l loss of function**
1024 **in DFCs. (A)** Loss of function of writers (*dnmt3s*) and readers (*mbds*) of DNA methylation marks
1025 strongly disrupt embryo laterality, analyzed by examining cardiac jogging at 25 hpf. Graphs
1026 indicate the percentage of embryos with normal Left jog (L jog - yellow), Right jog (R jog – dark
1027 blue) or no jog (light blue), at 25 hpf in control embryos (injected with 8 ng Standard - Std - MO),
1028 MO KDs (8 ng each MO) or in homozygous mutant embryos (−/−). **(B-F)** Phenotype analysis of
1029 LRO defects in morphants. **(B)** Size of the KV expressed in surface area of the planar projection
1030 of its lumen, **(C)** number of DFCs at the end of gastrulation, **(D)** Mitotic index at 80% epiboly, **(E)**
1031 Apoptotic index at gastrulation and **(F)** Length of KV cilia in : control (Ctrl) embryos (grey), Vgll4l
1032 (red), Dnmt3bb.1 (green) or Mbd3b (blue) MO knockdowns. Statistical significance between
1033 controls and loss of function conditions: two-tailed unpaired t-test. *p ≤ 0.05, **p ≤ 0.01, ***p ≤

1034 0.001, ****p ≤ 0.0001. Numerical data (A-H) and details of statistical analysis for (B-F) are
1035 provided in **Figure 9 - Source data**. (G) Injection of 100 ng of *in vitro* synthesized Dnmt3bb.1
1036 RNA partially rescues laterality defects of VgII4I morphants (8 ng VgII4I MO), scored on cardiac
1037 jogging at 25 hpf.

Figure 10: Effect of VgII4I and Dnmt3bb.1 loss of function on DNA methylation in DFCs nuclei. (A-F) Immunolabeling of DFC nuclei of embryos of the *Tg(Sox17:GFP)* strain with antibodies to 5 methyl Cytosine (5meC) in (A-C) WT and (D-F) *vgl4I* homozygous mutant. Dotted lines delimit the DFC clusters. (G) Quantification of DNA methylation measured by immunofluorescence intensity. The values on the graph correspond to the mean of 5meC fluorescence intensity per nuclei (FI/nuclei) quantified with the ImageJ software on all nuclei of DFC clusters in morphants for VgII4I and Dnmt3bb.1 and in embryos from a cross between two heterozygous VgII4I mutants that have been individually genotyped after measurement of FI/nuclei of their DFCs. Fluorescence intensity per nuclei is expressed in relative units (R.U.). Statistical significance between controls (standard MO or *vgl4I* +/+) and loss of function conditions: two-tailed unpaired t-test. ns, not significant (p>0.05), *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001. Numerical data and details of statistical analysis for (G) are provided in **Figure 10 - Source data**.

Additional Files

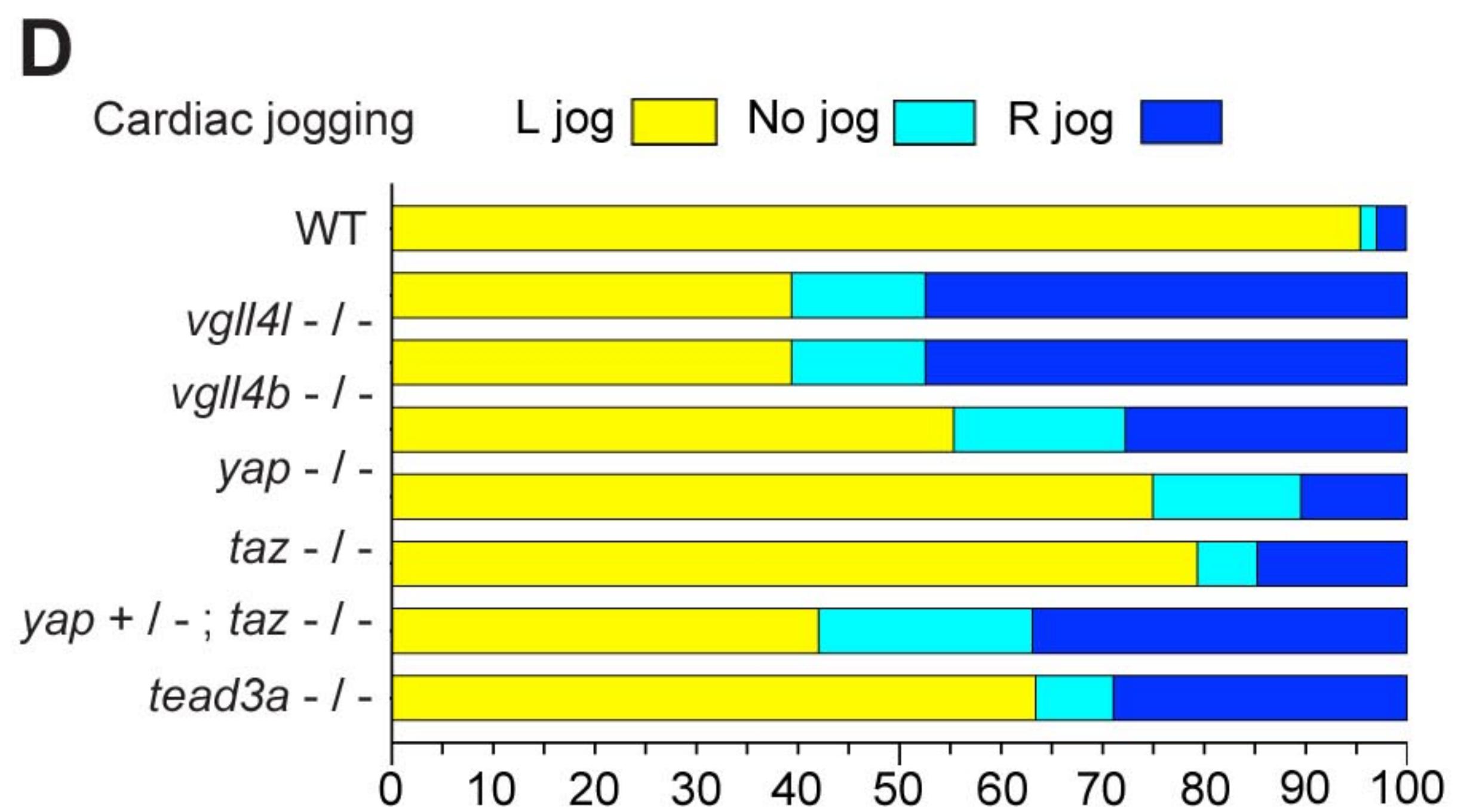
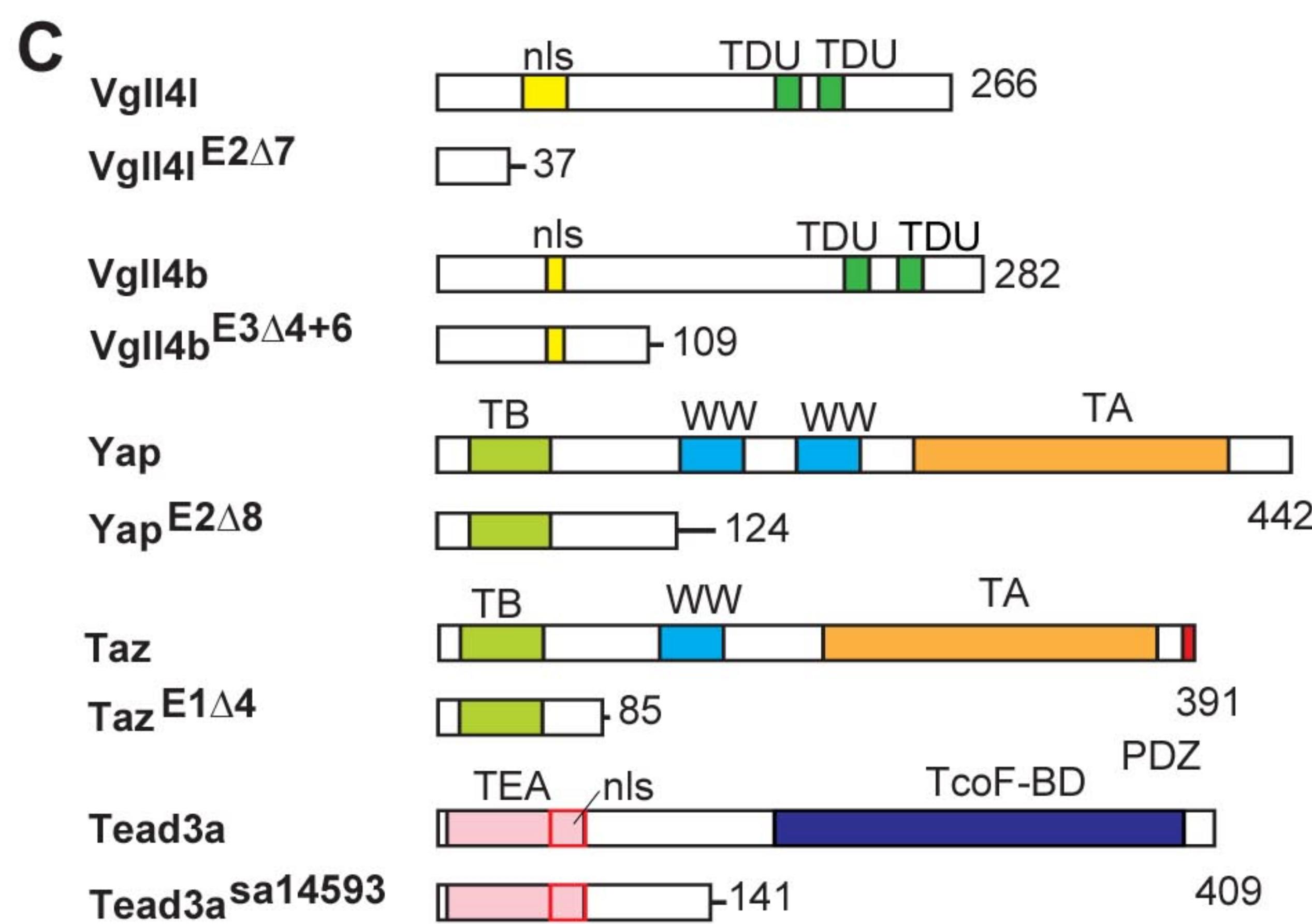
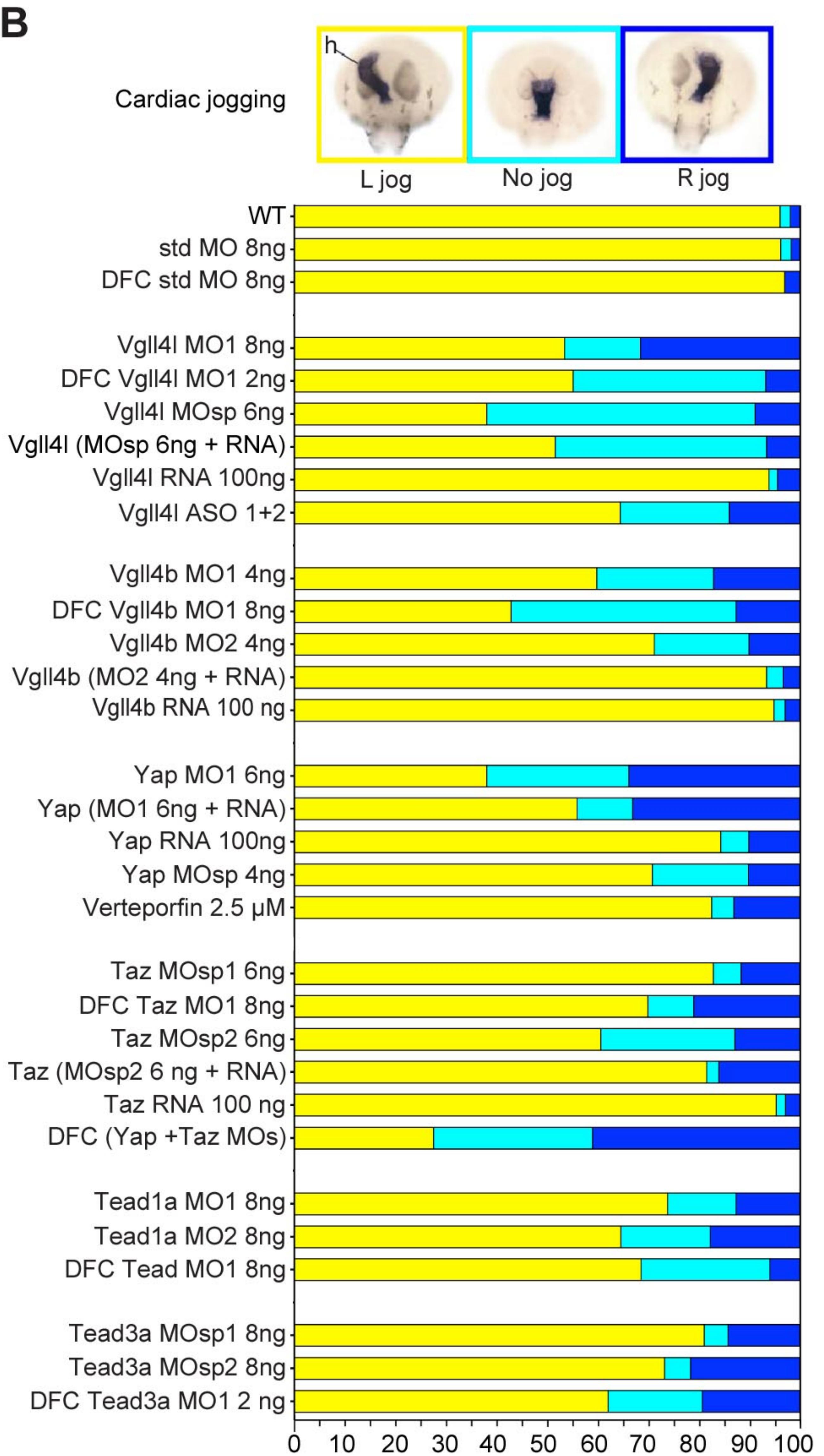
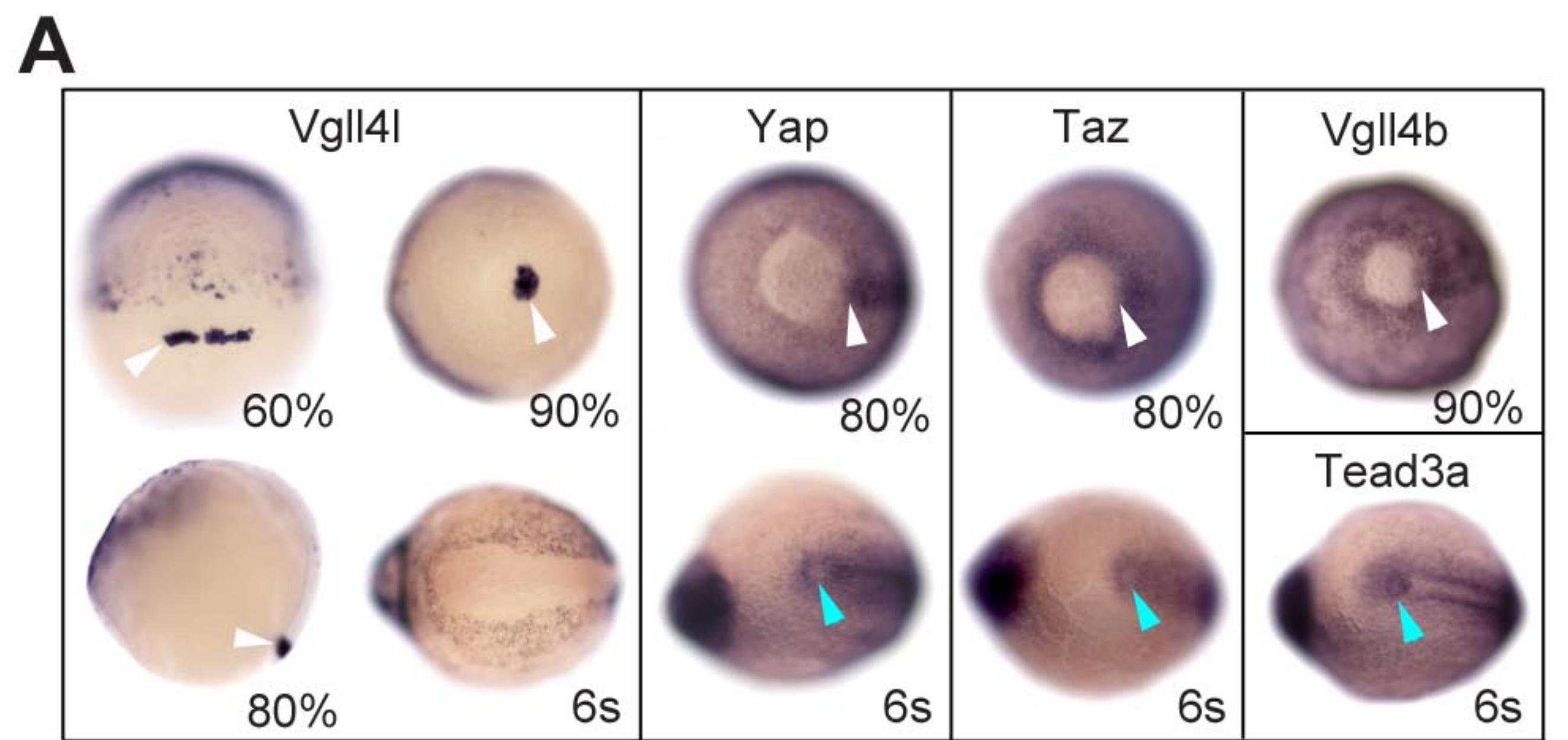
Supplementary File 1: Transcriptome of DFCs at 80% epiboly in Control (Ctrl), VgII4I and Yap/Taz loss-of-function.

Supplementary File 2: Regulation of the expression by VgII4I and Yap/Taz of zebrafish homologs of Yap direct target genes in mammals. Table summarizing the variation of

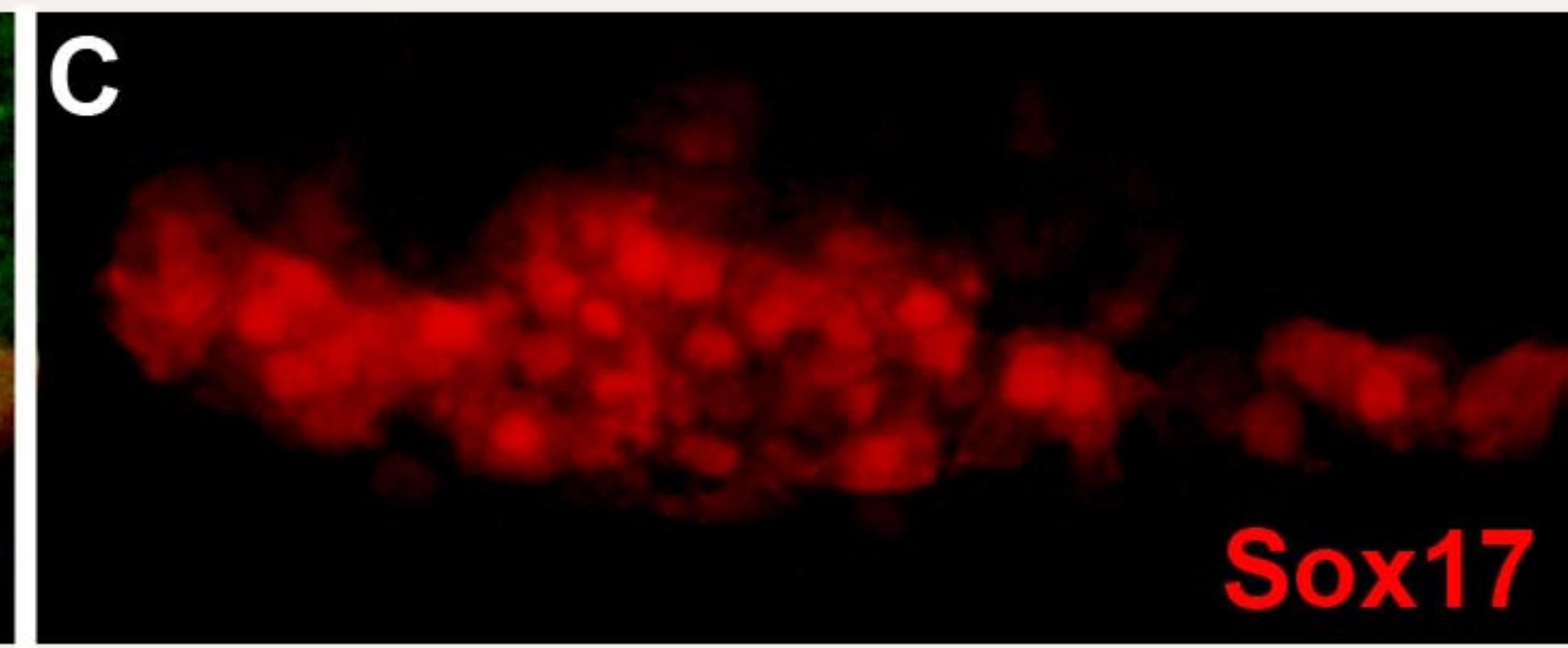
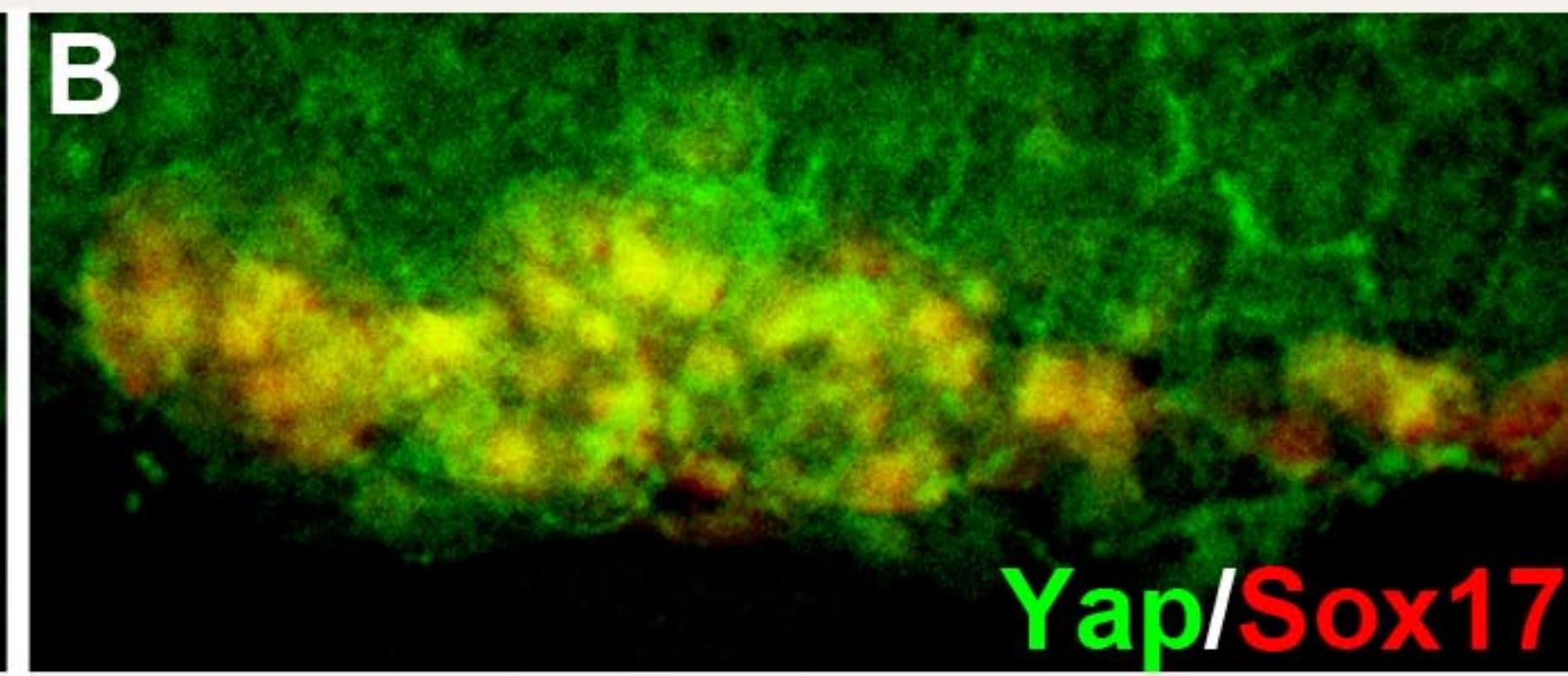
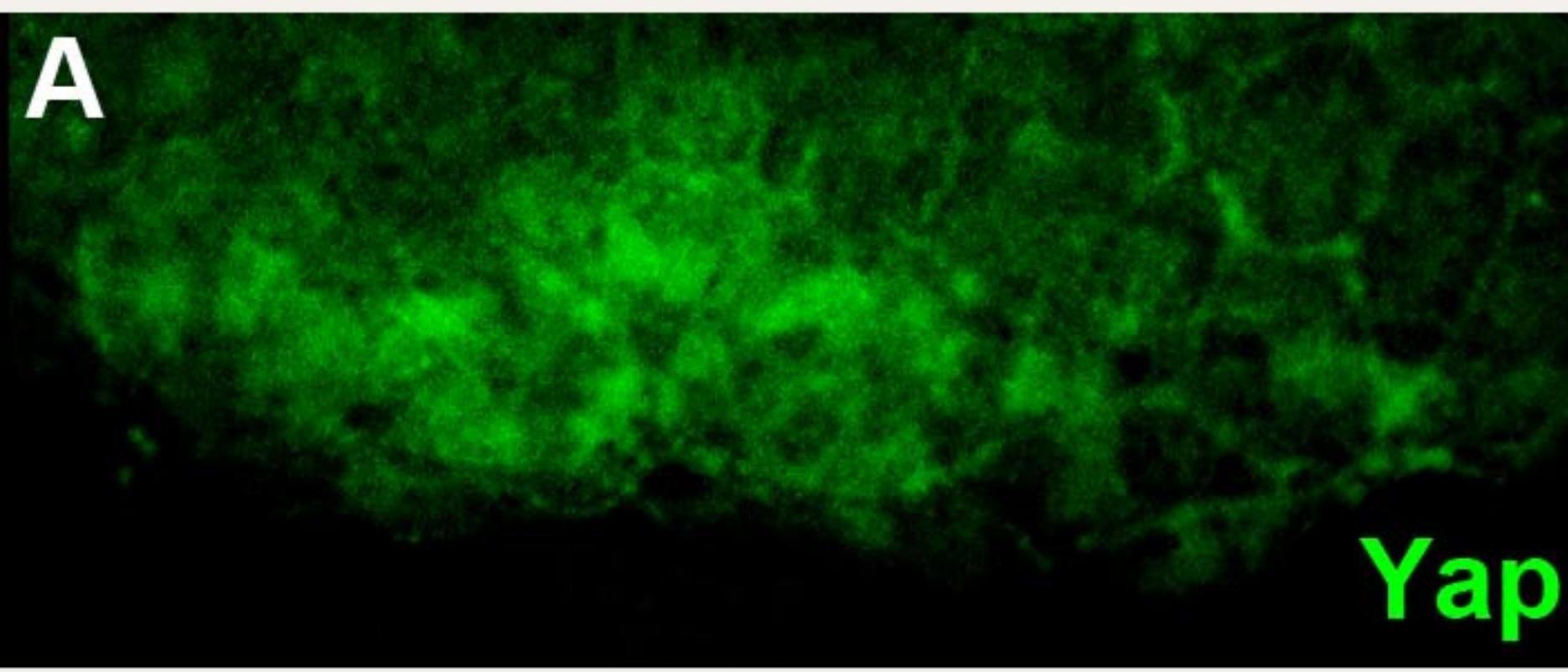
expression (fold change) of genes differentially expressed (normalized counts >1, $|\log_{2}\text{foldchange}| \geq 1$, adjusted P value $\leq 0,05$) between control and *Vgll4l* or *Yap/Taz* morphants for 143 zebrafish homologs of *Yap* direct target genes in mammals. Reference source for the set of *Yap* direct target genes: (1) (Zanconato et al., 2015), (2) (Y. Wang et al., 2018), (3) (Lin et al., 2015)

Supplementary File 3: Expression of genes known to be required for DFCs and/or KV development in control and in *Vgll4l* or *Yap/Taz* loss-of-function condition.

Supplementary File 4: Expression of genes coding for proteins involved in ciliogenesis and known to be required for proper function of the LRO in control and in *Vgll4l* or *Yap/Taz* loss-of-function condition.





Supplementary File 5: Sequence of primers used to generate sgRNAs and for screening Crispr/Cas9 mutants.

Supplementary File 6: Position of MO, ASO target sequences and of mutations in *vgll4l*, *vgll4b*, *yap*, *taz*, *tead1a* and *tead3a*.




Supplementary File 7: Sequences of mutations in *vgll4l*, *vgll4b*, *yap*, *taz*, *tead1a* and *tead3a*.

Supplementary File 8: Position of MO target sequences and mutations in *dnmt3bb.1*, *dnmt3bb.2*, *dnmt3ba*, *mbd3a* and *mbd3b*.

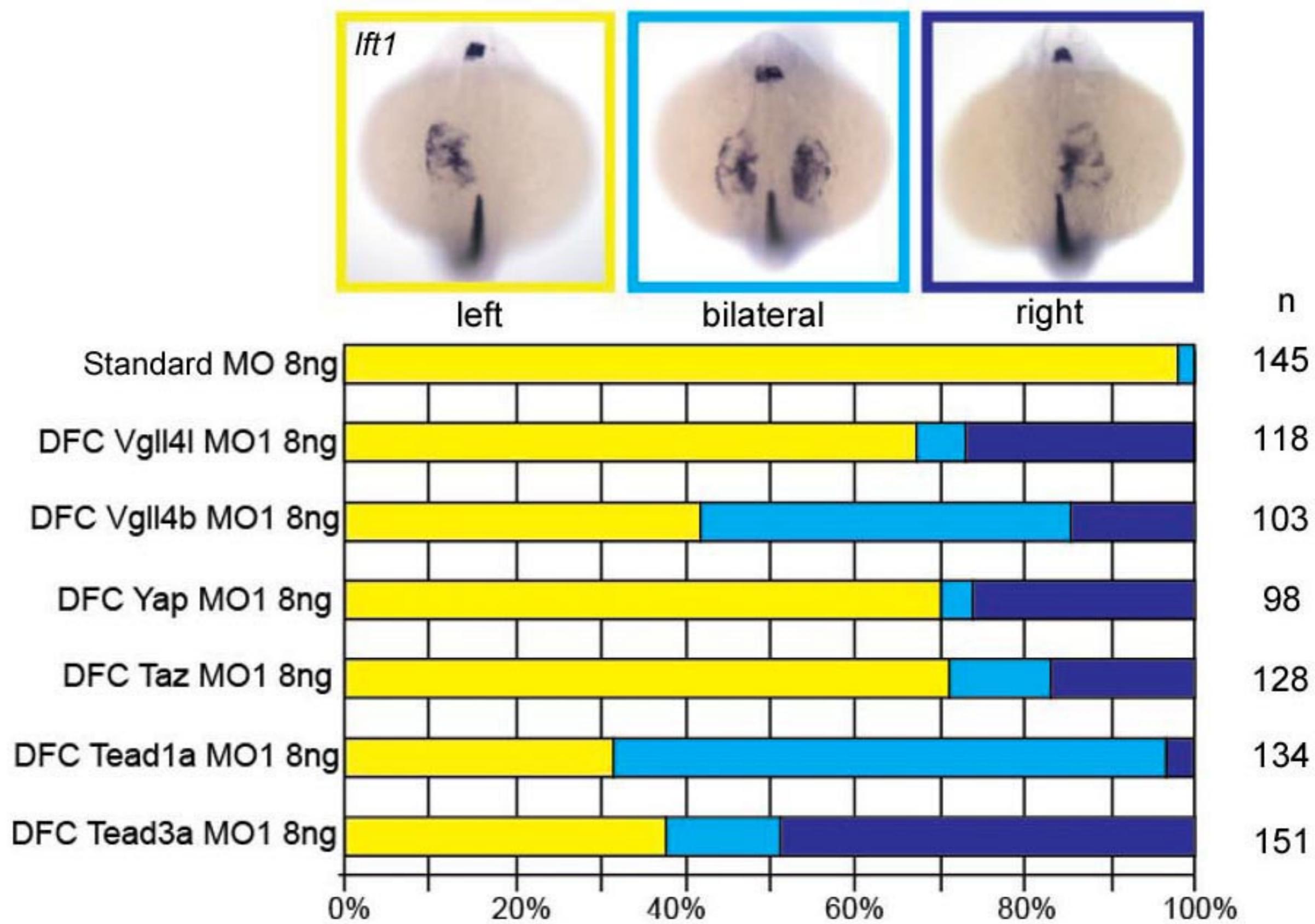

Supplementary File 9: Sequence of *dnmt3bb.1*, *dnmt3bb.2* and *dnmt3ba* mutants.

Figure 1

Figure 1-figure supplement 1

Figure 1-figure supplement 2

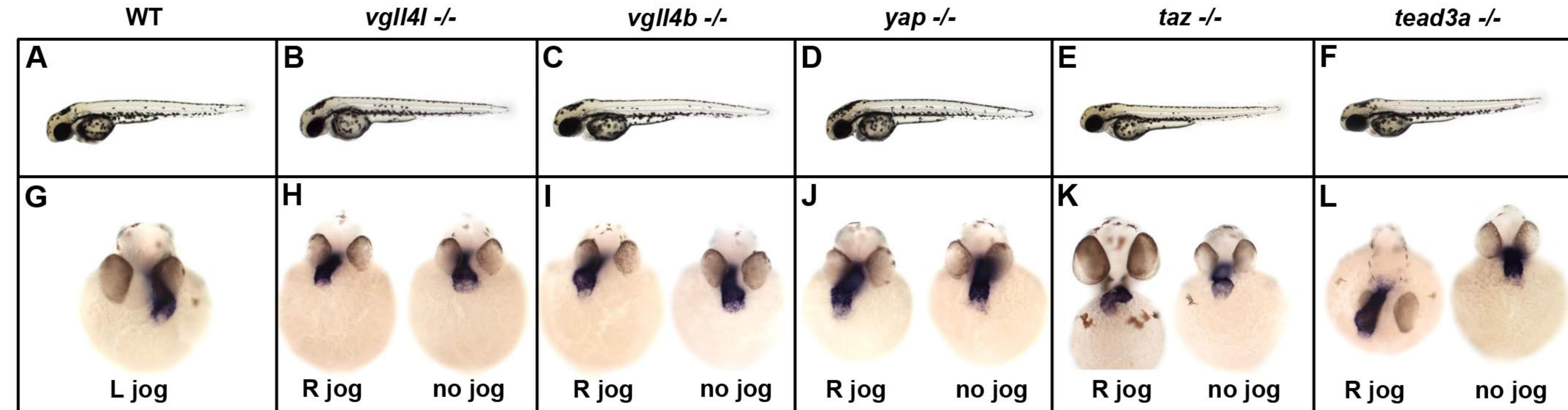


Figure 1 figure supplement 3

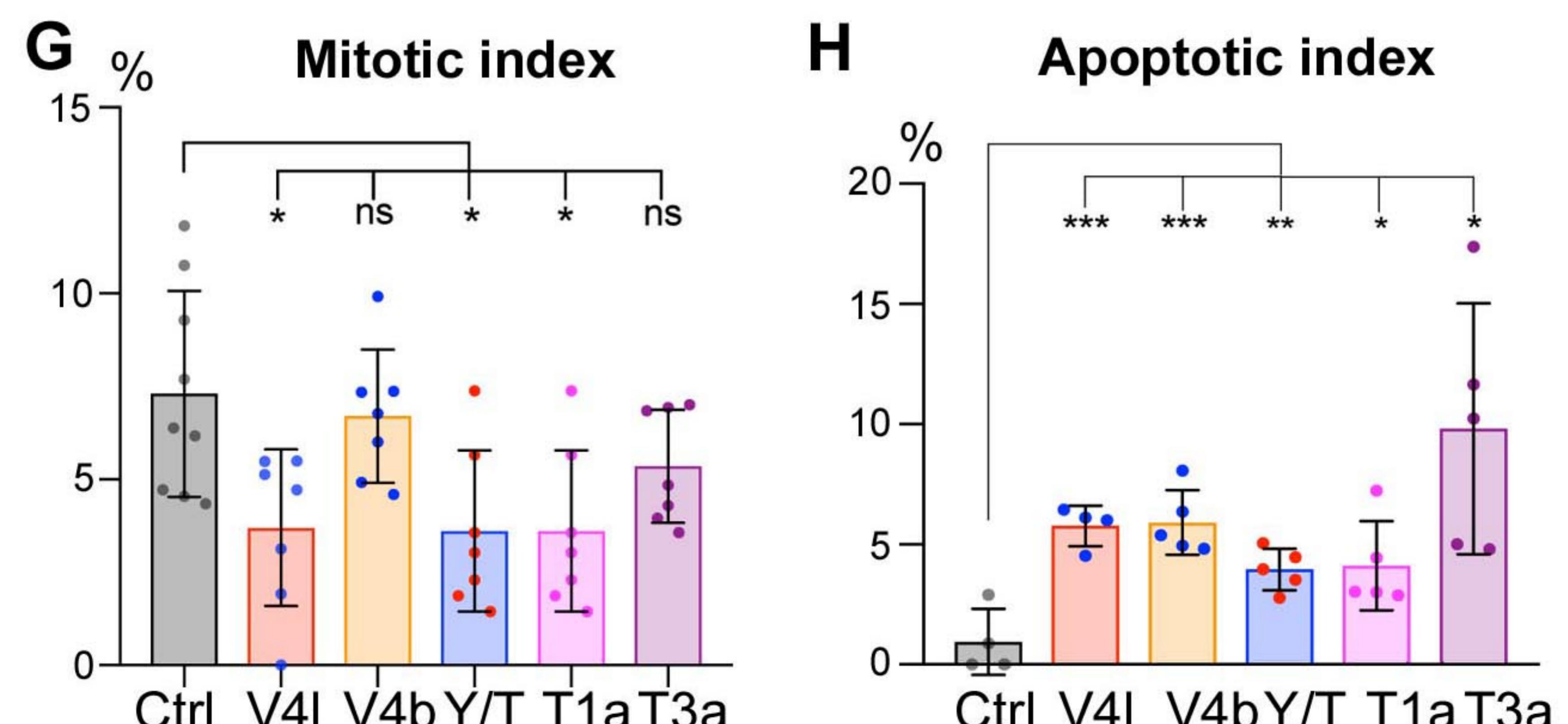
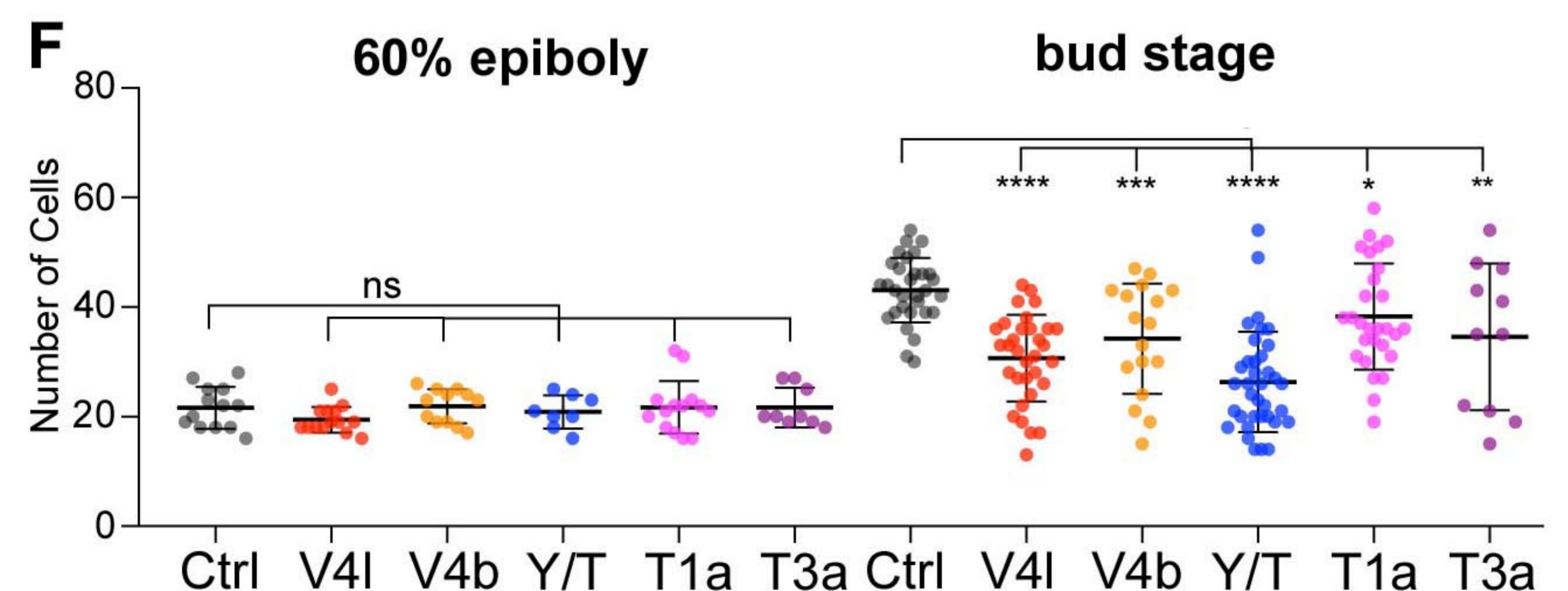
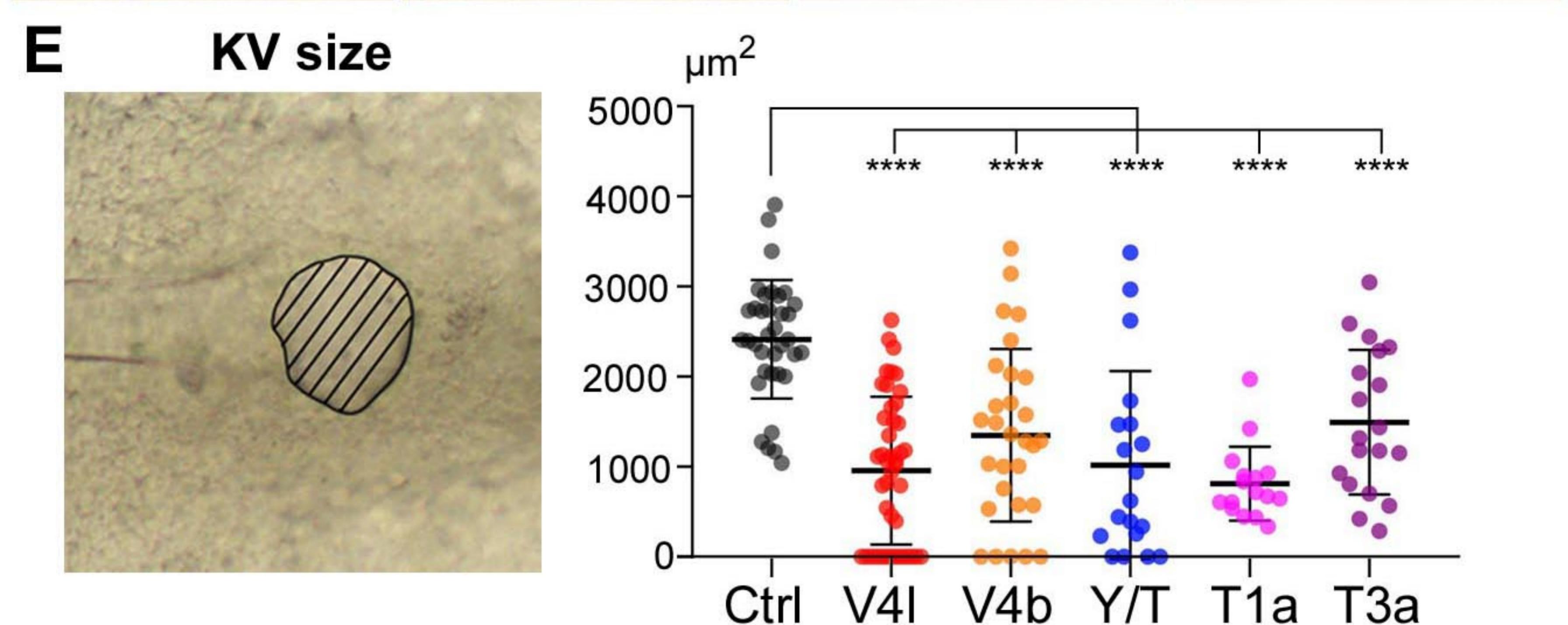
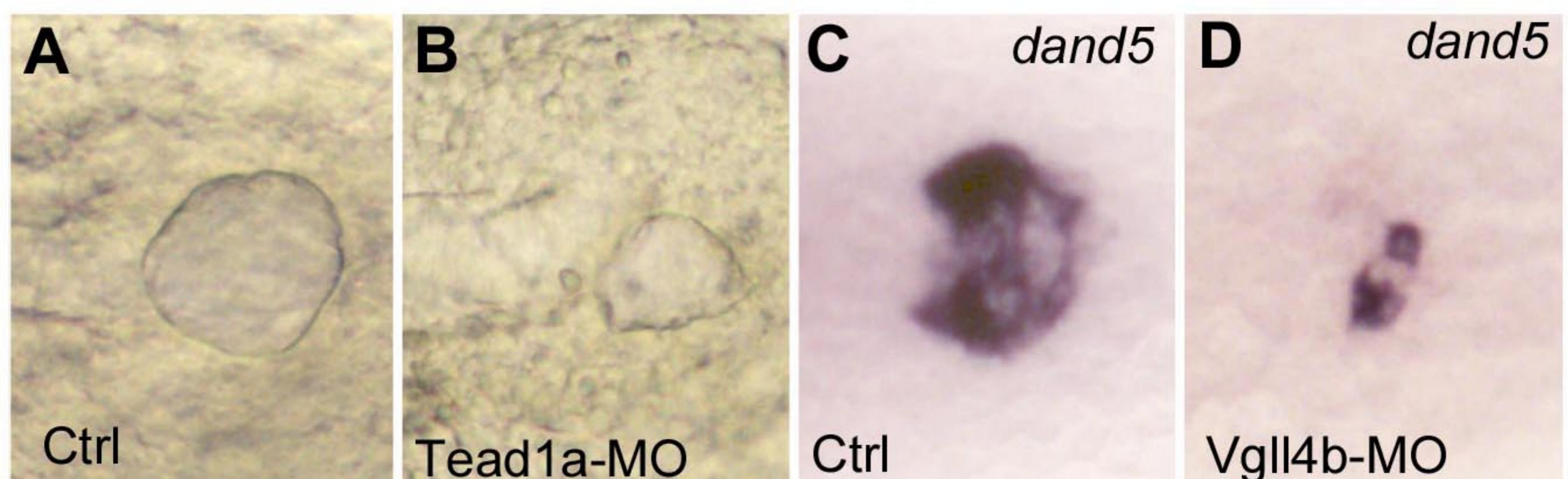





Figure 2

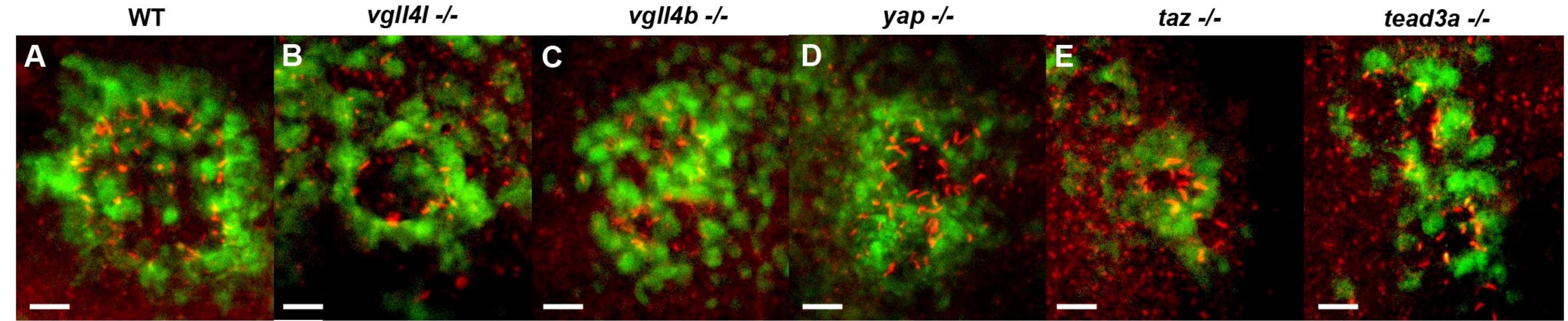


Figure 2-figure supplement 1

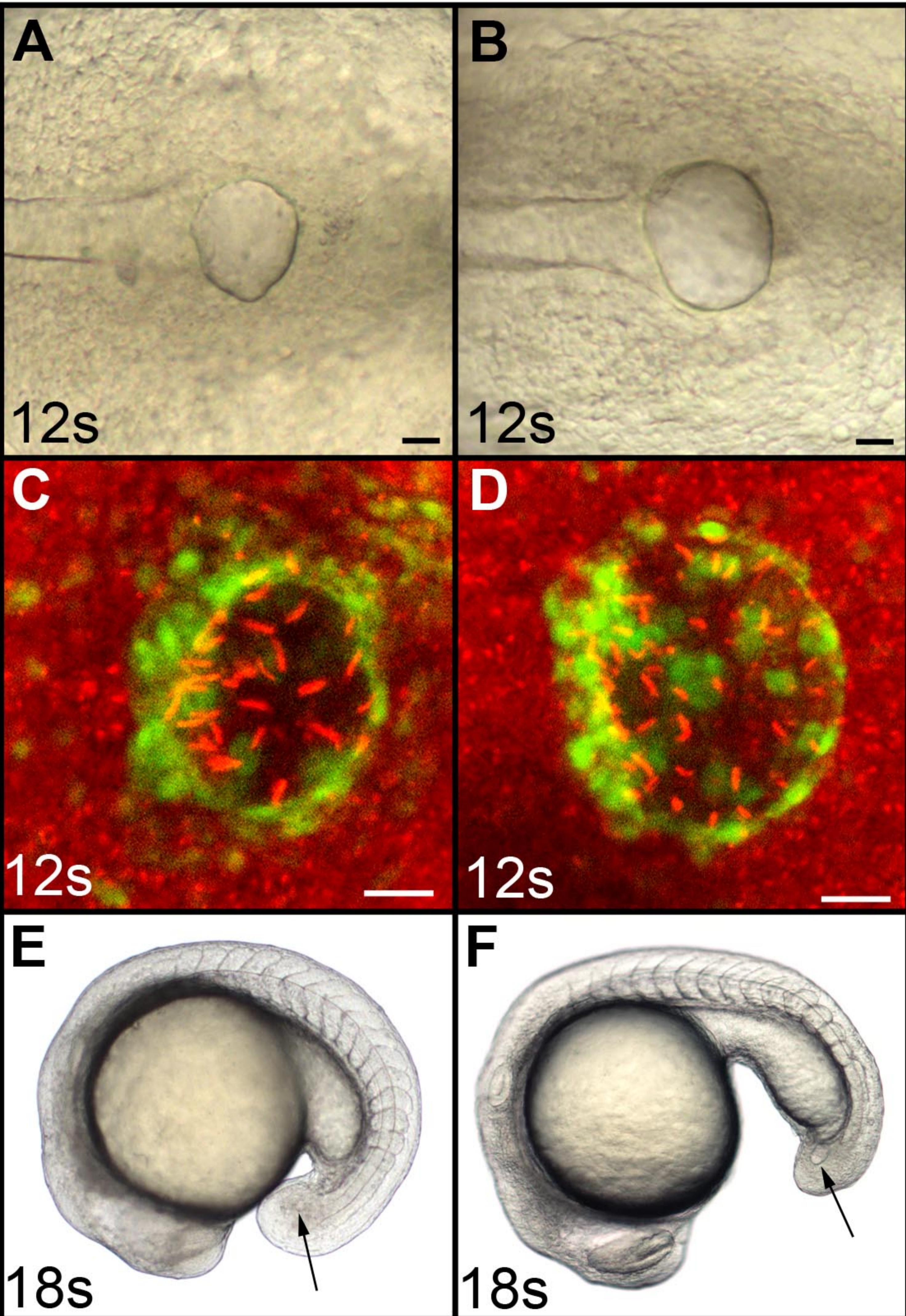
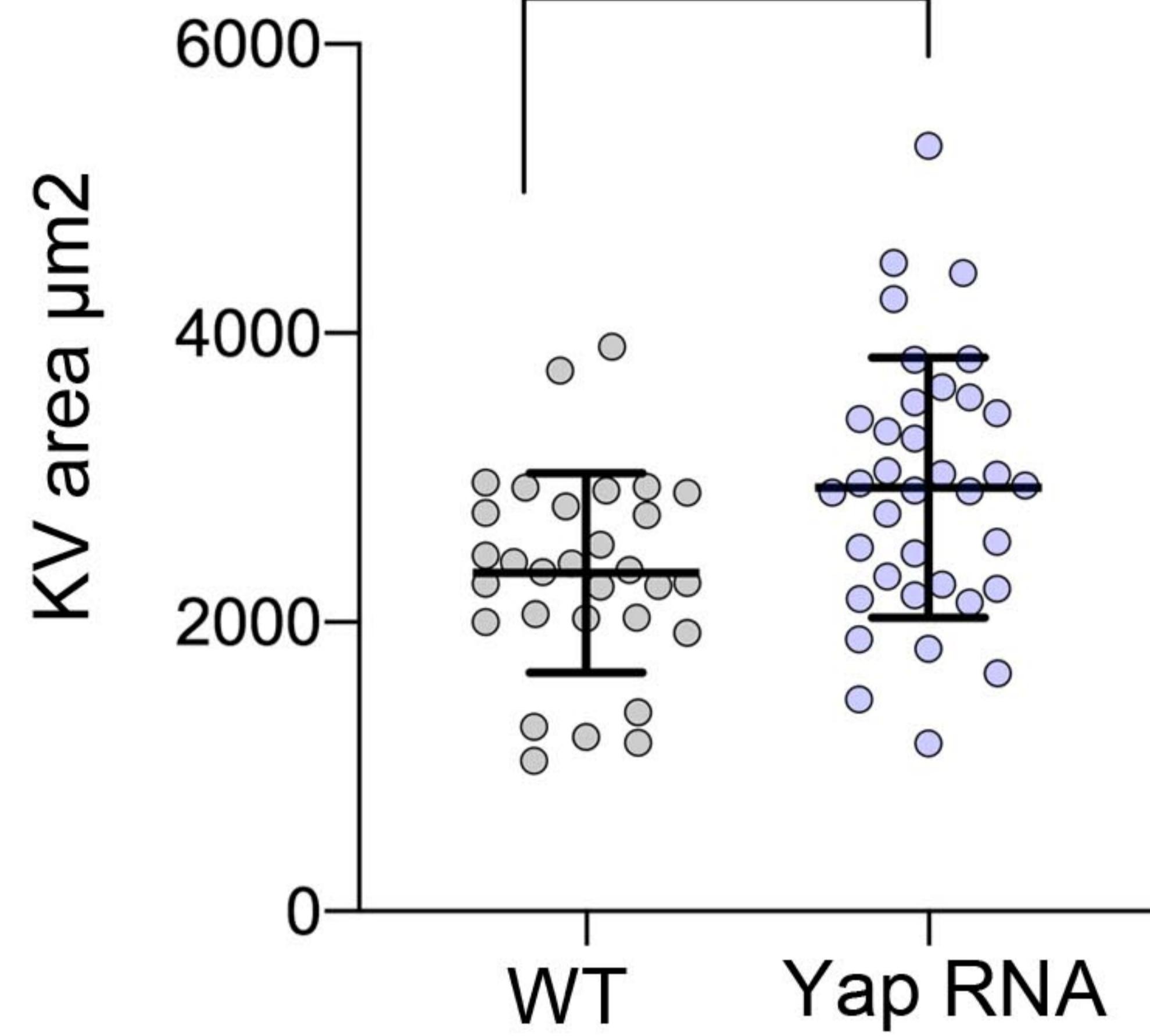
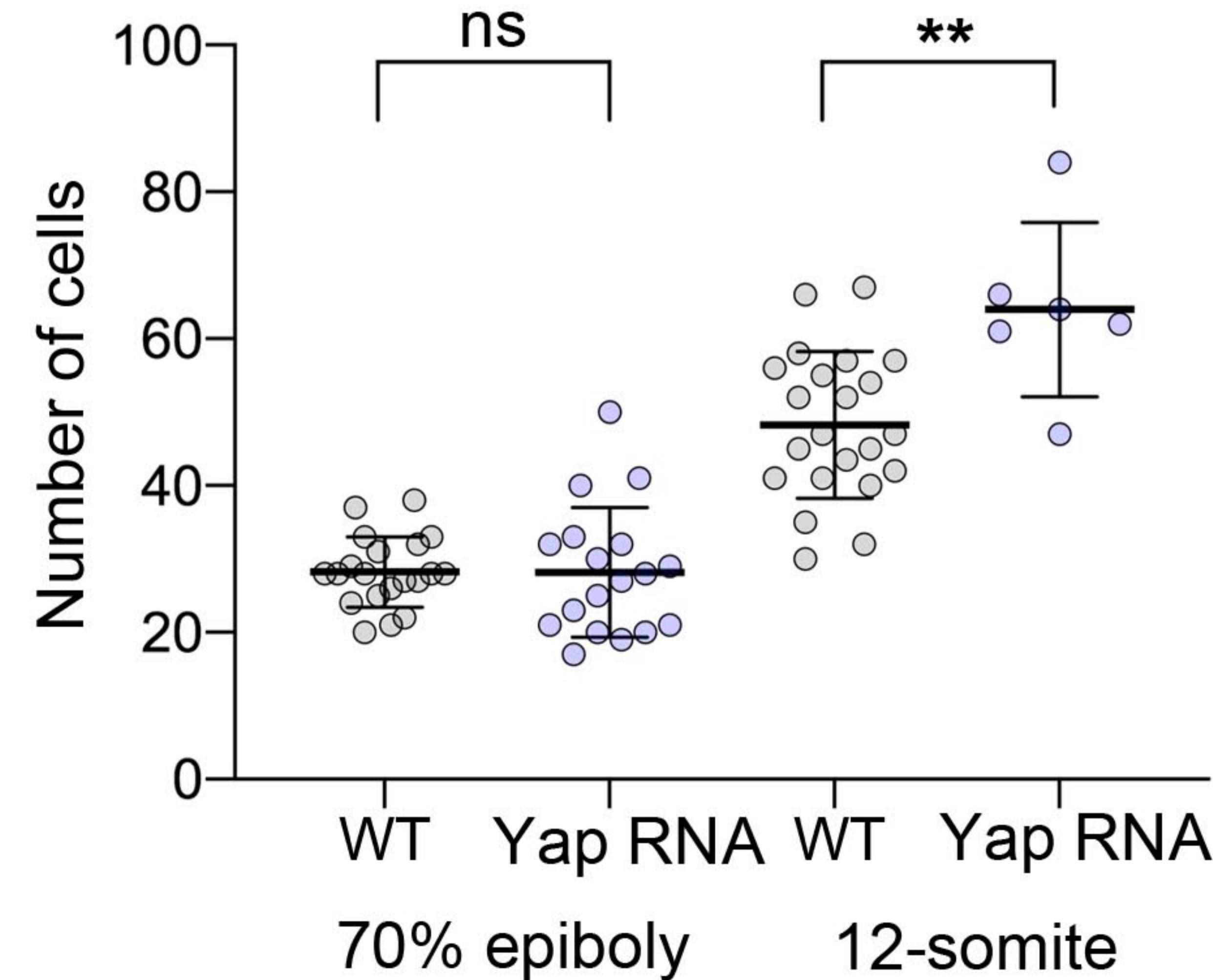
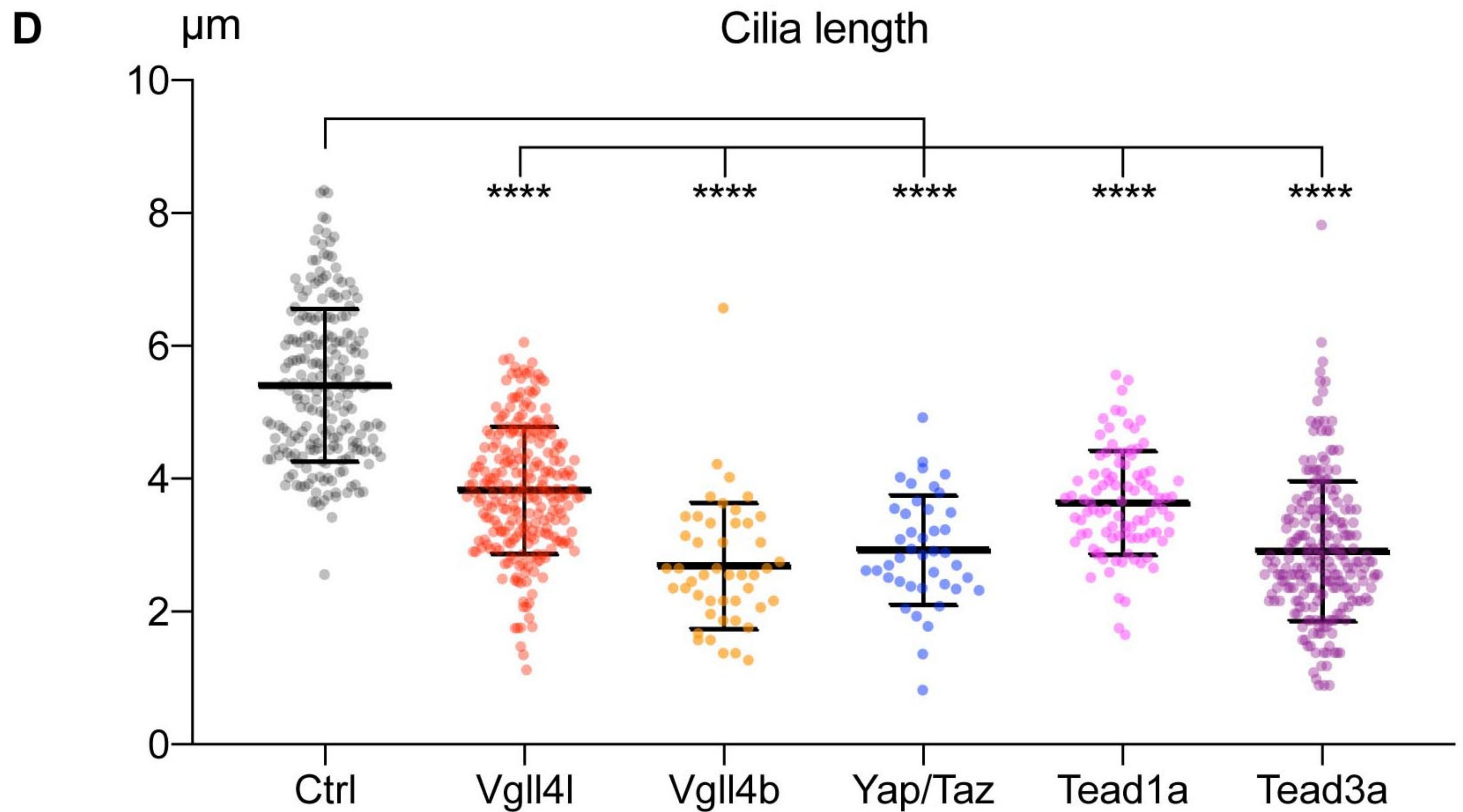
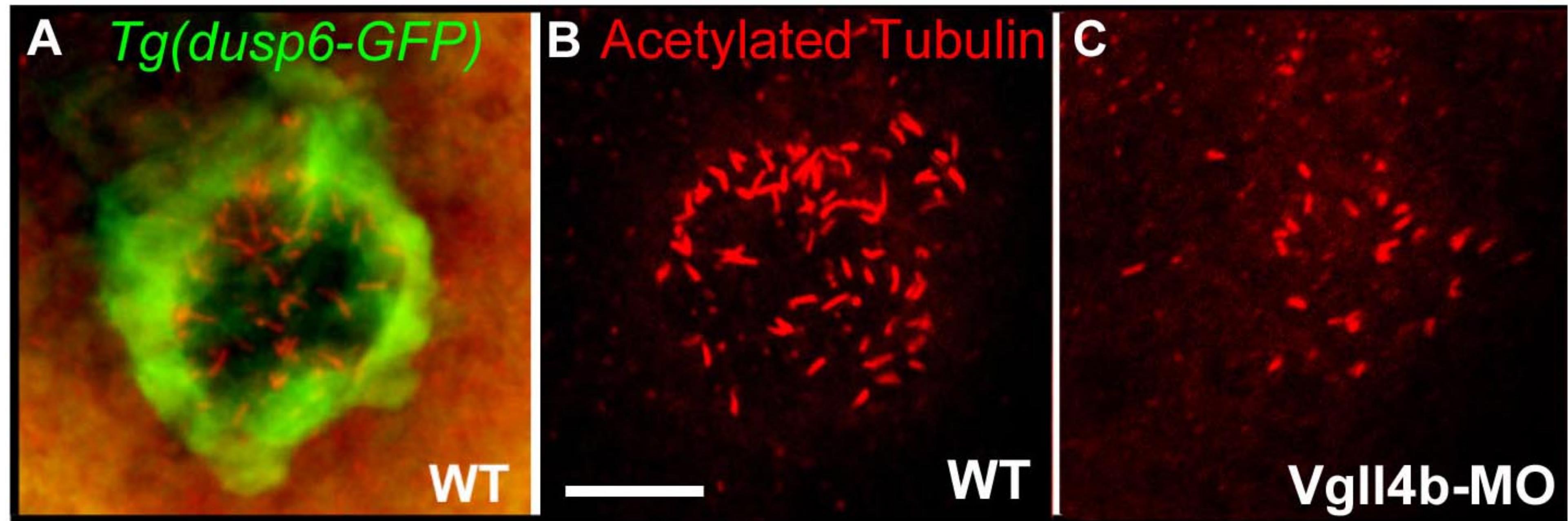





WT**Yap GOF****G****H**

Figure 2-figure supplement 2

Figure 3

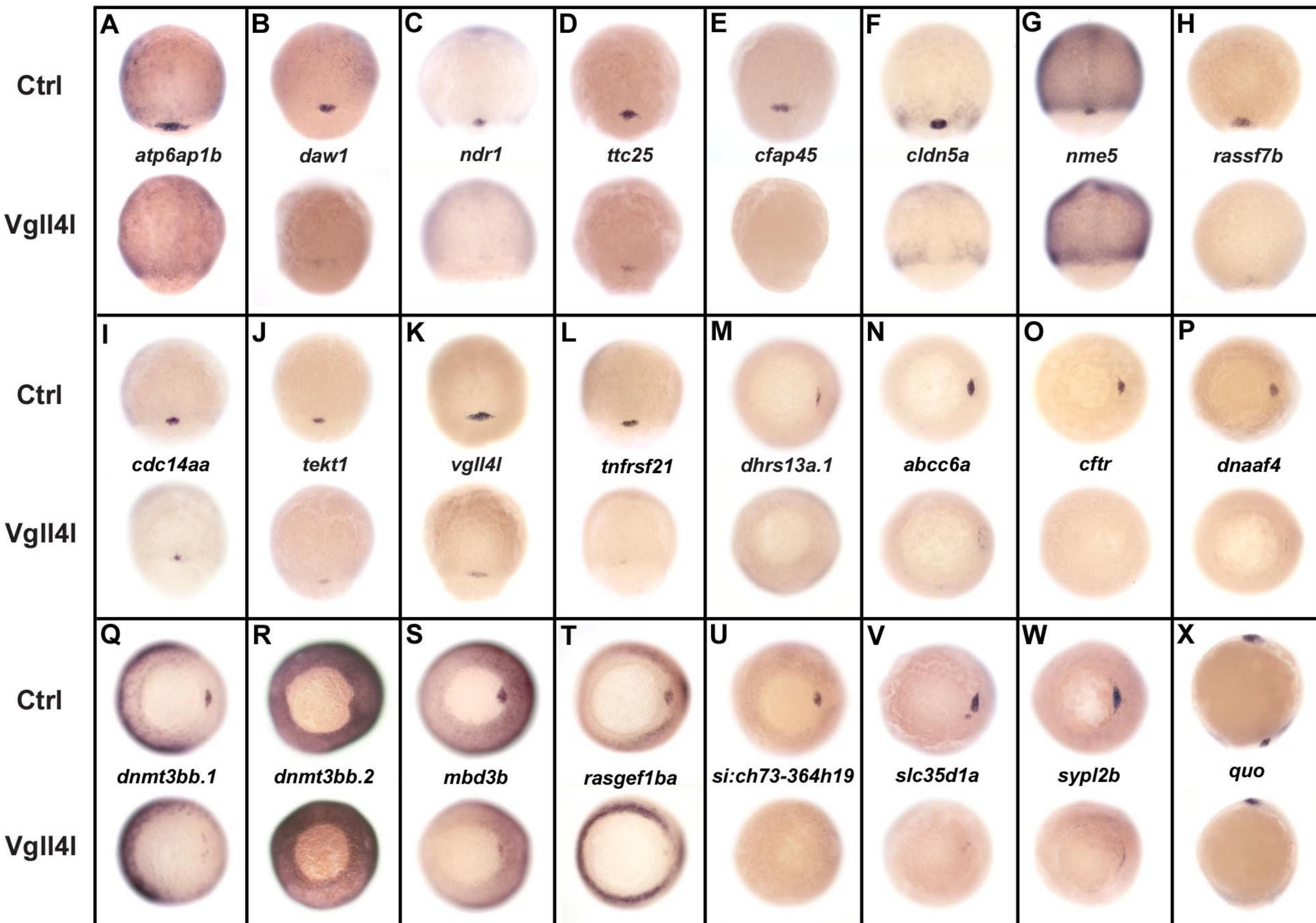
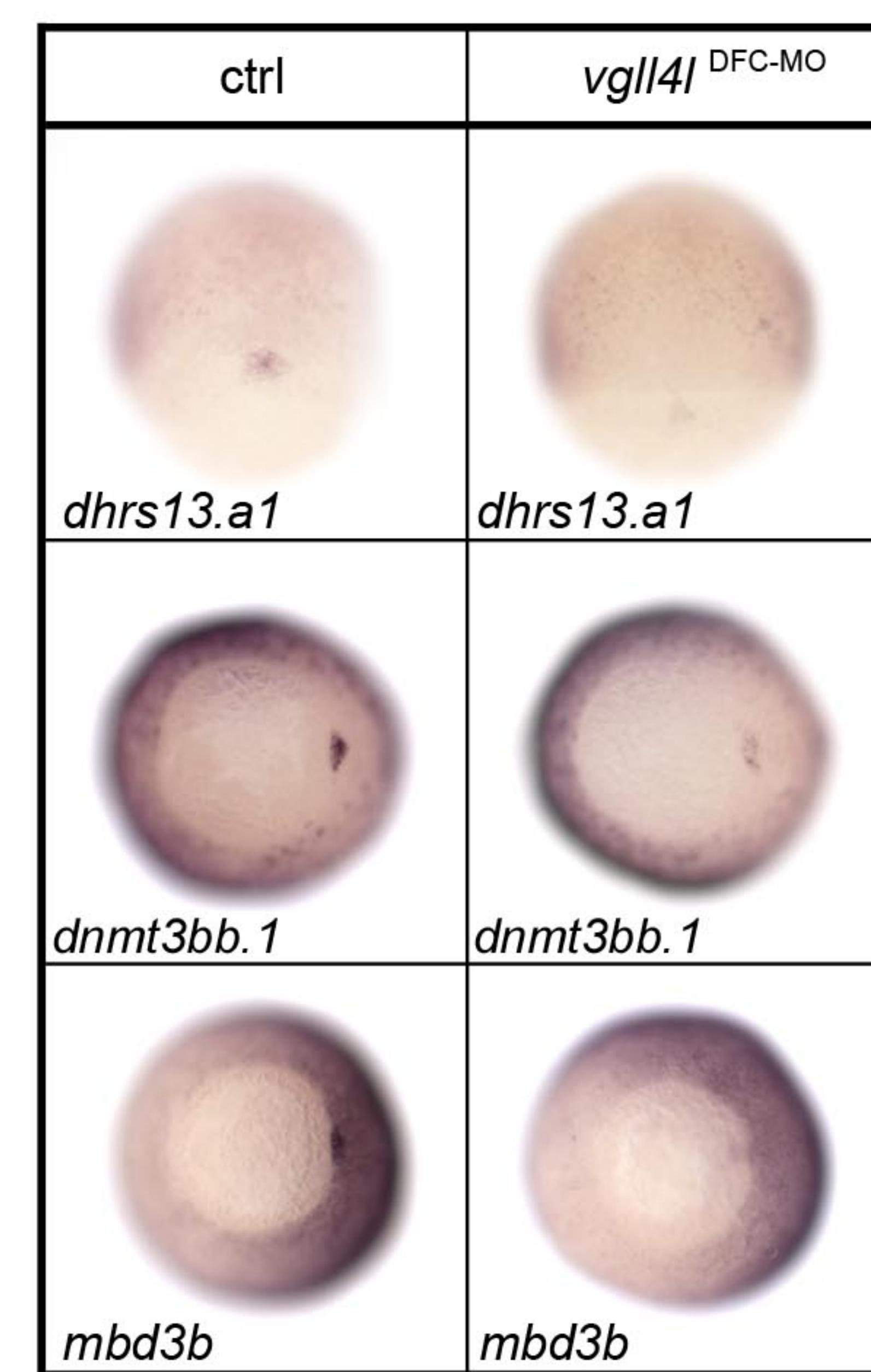
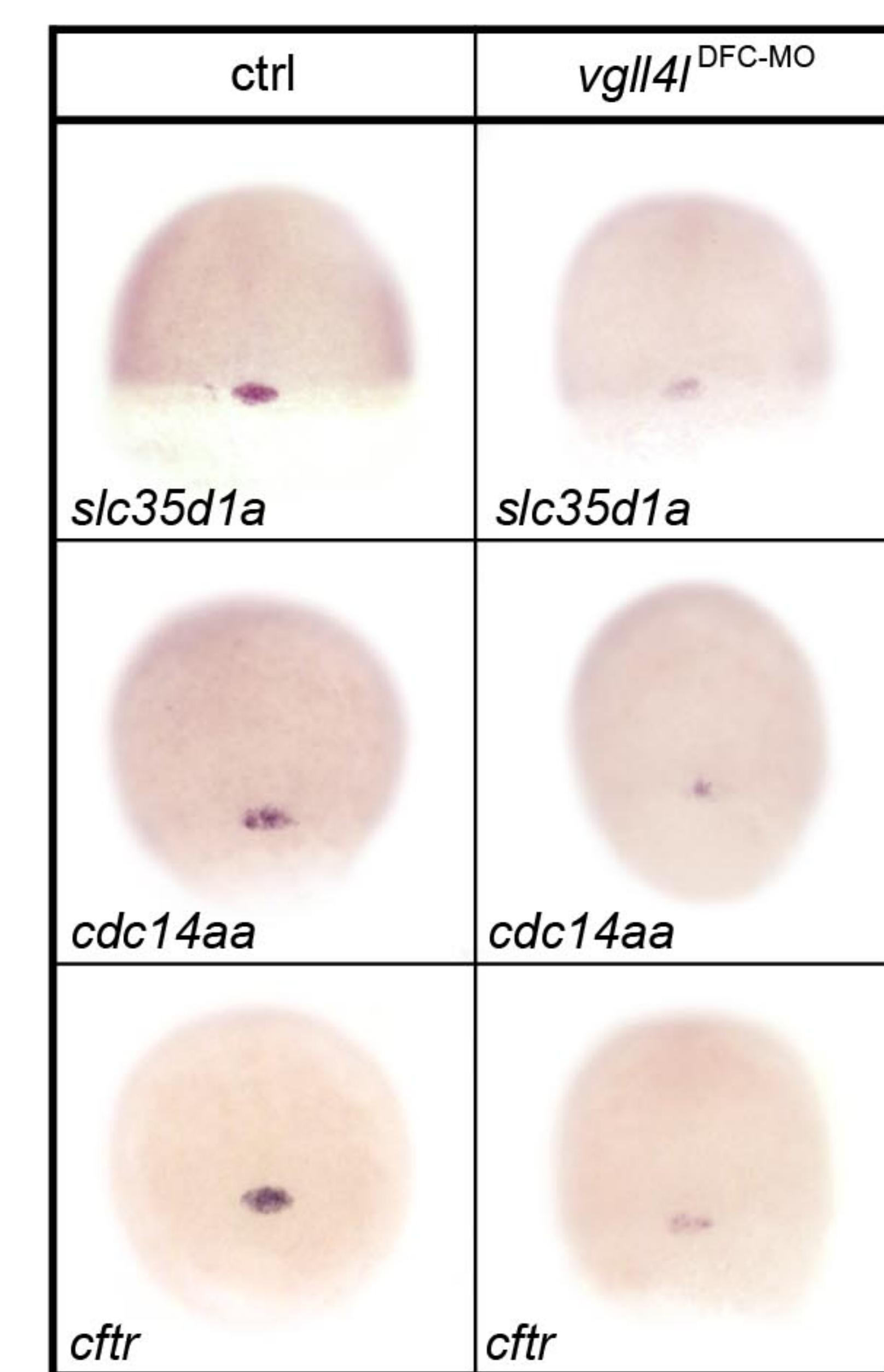
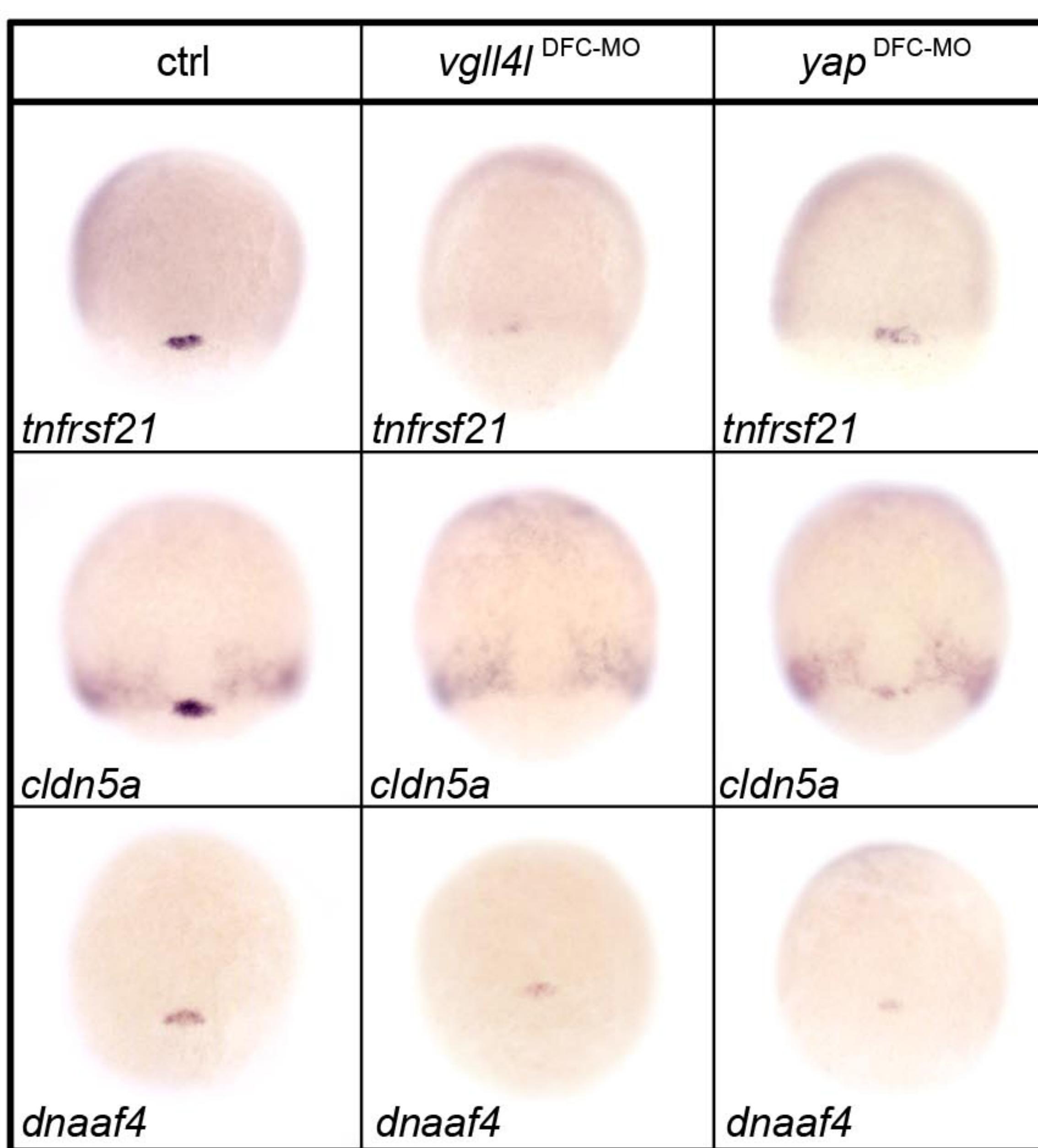
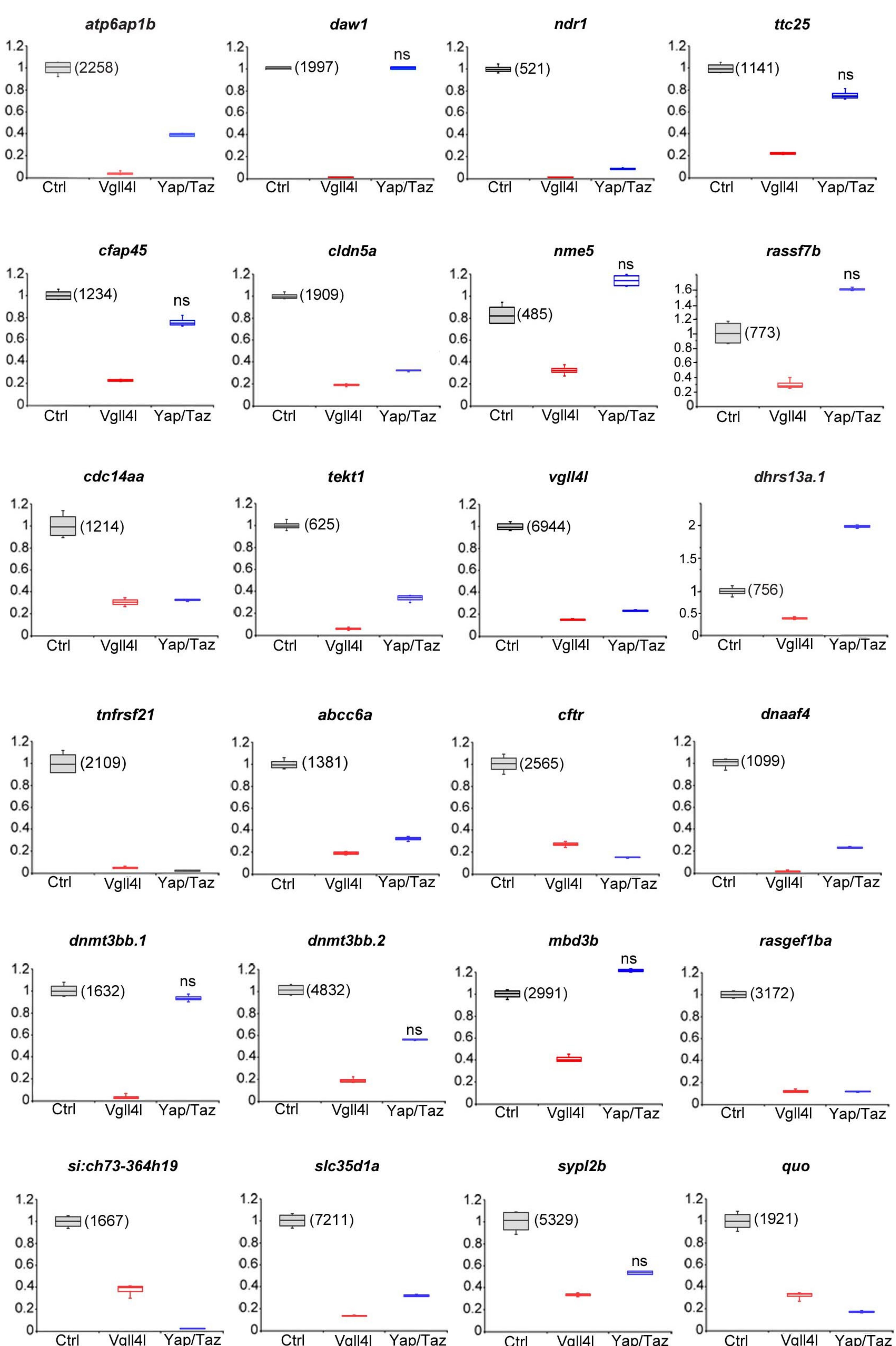
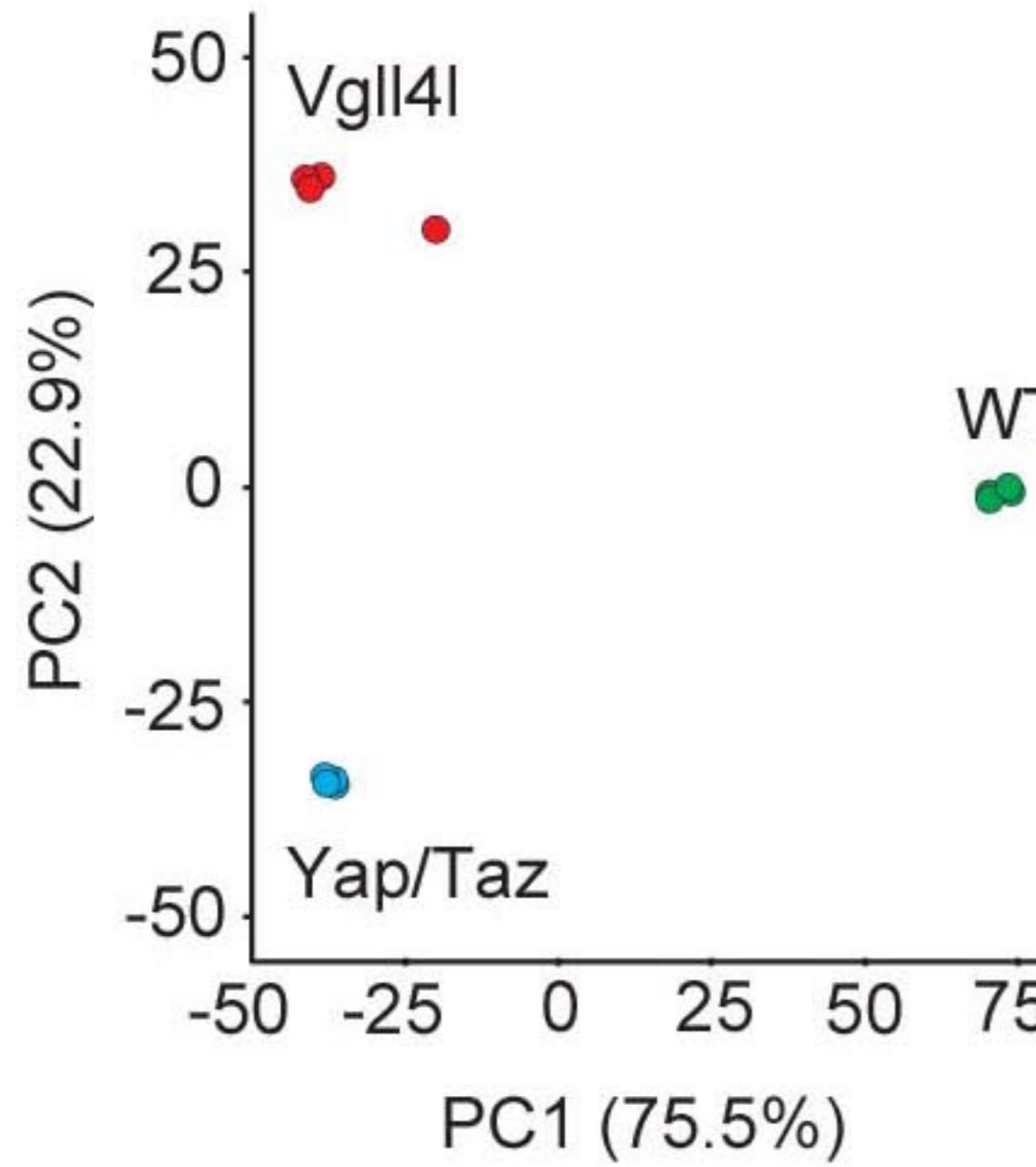
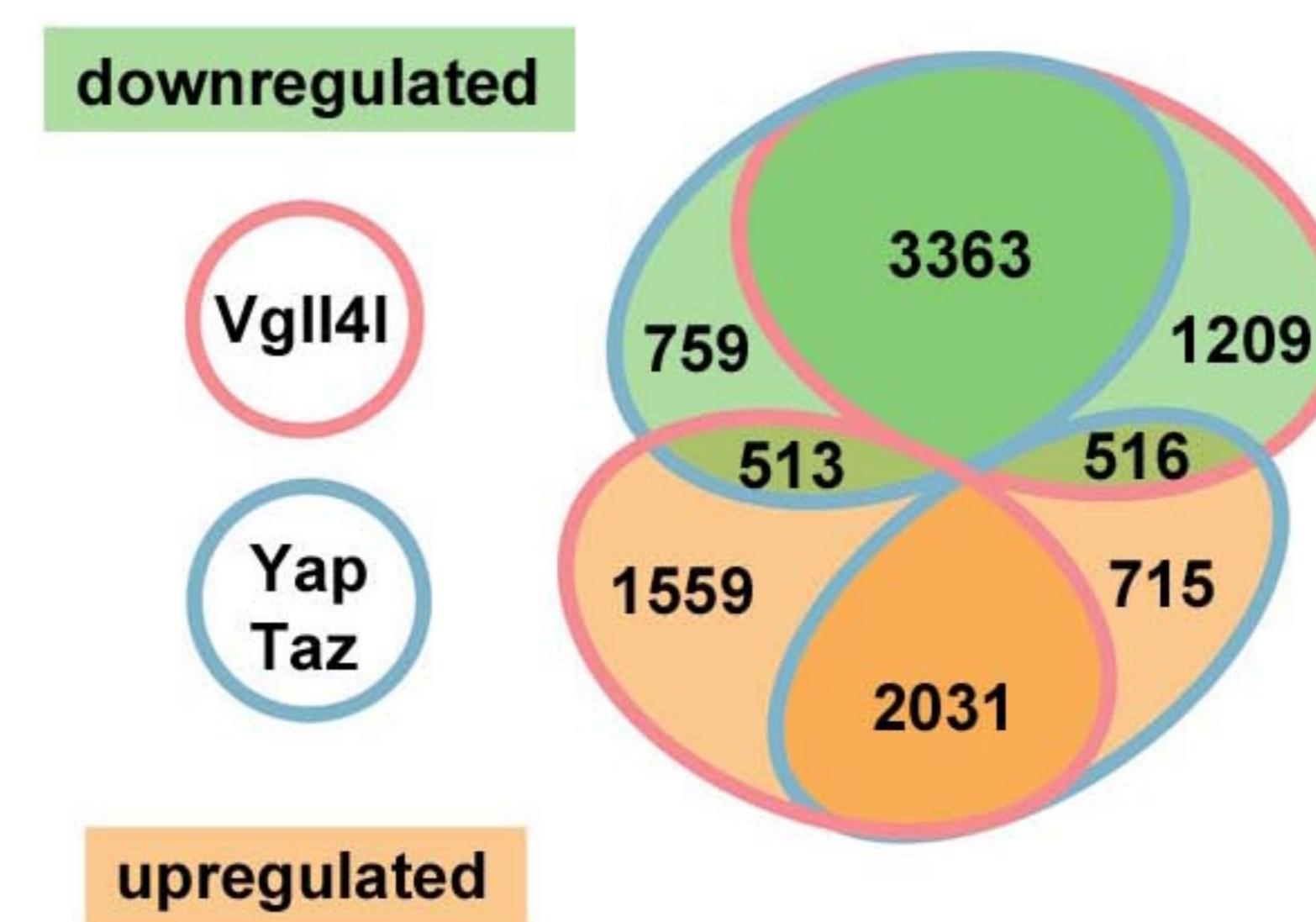
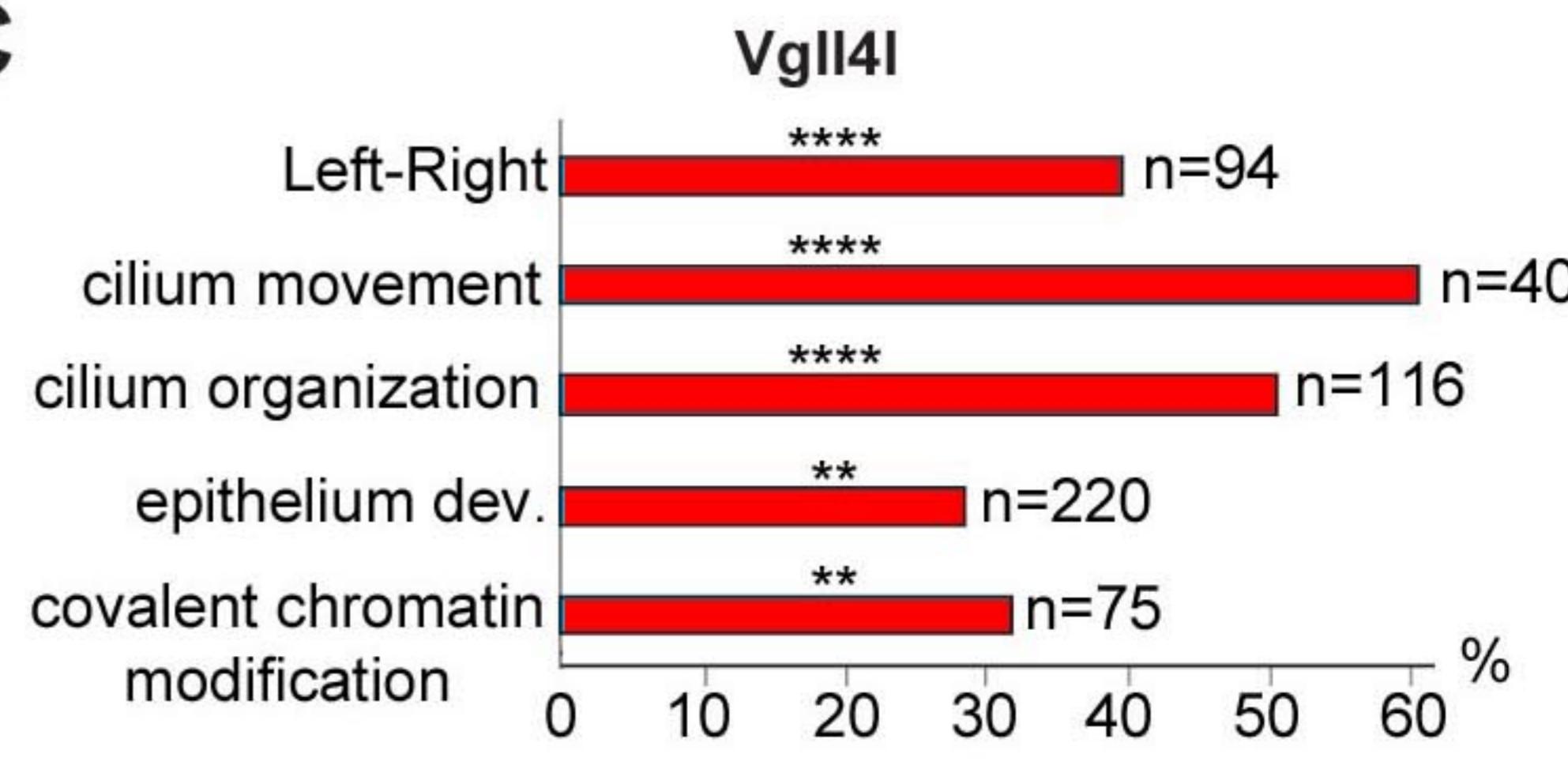
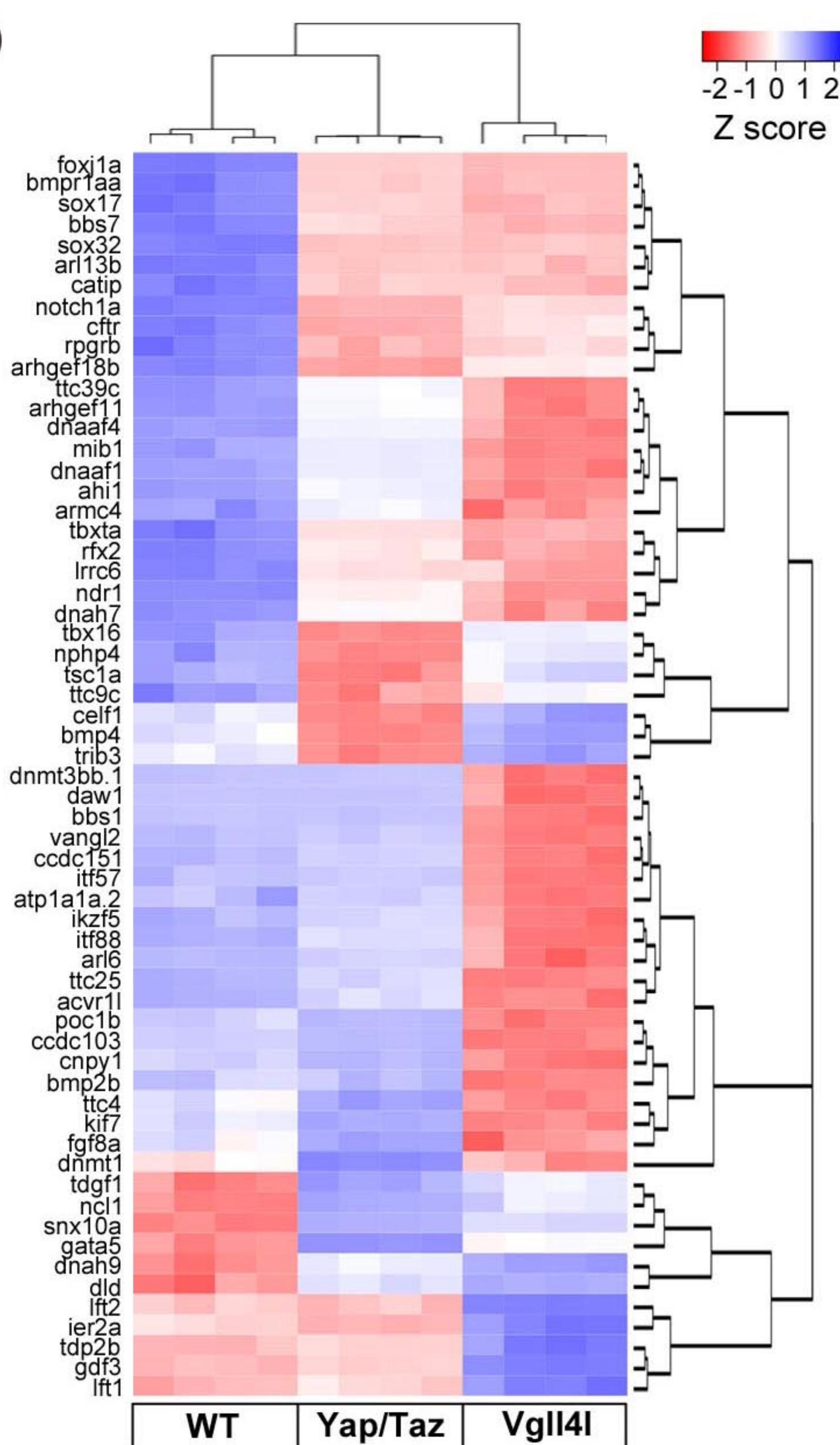
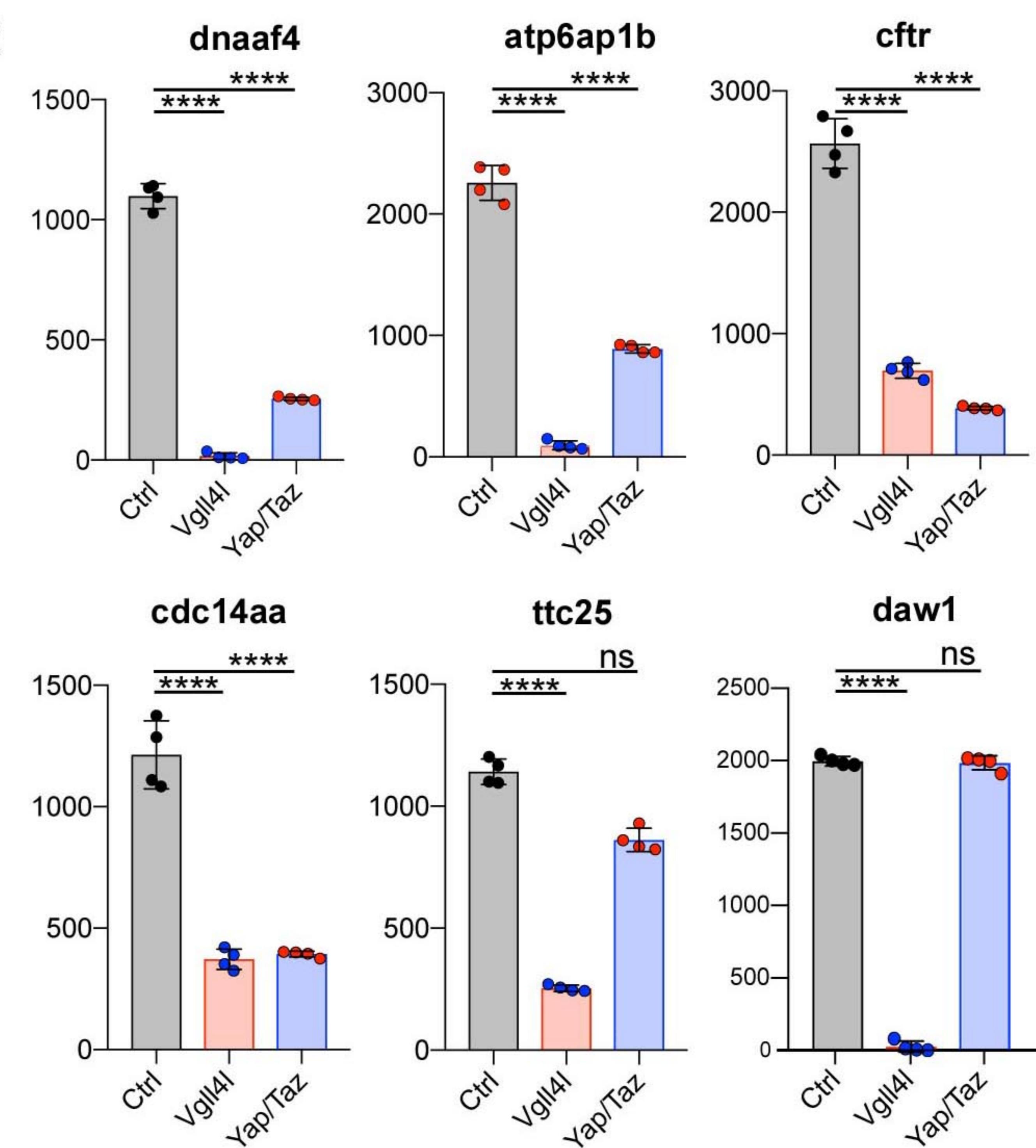
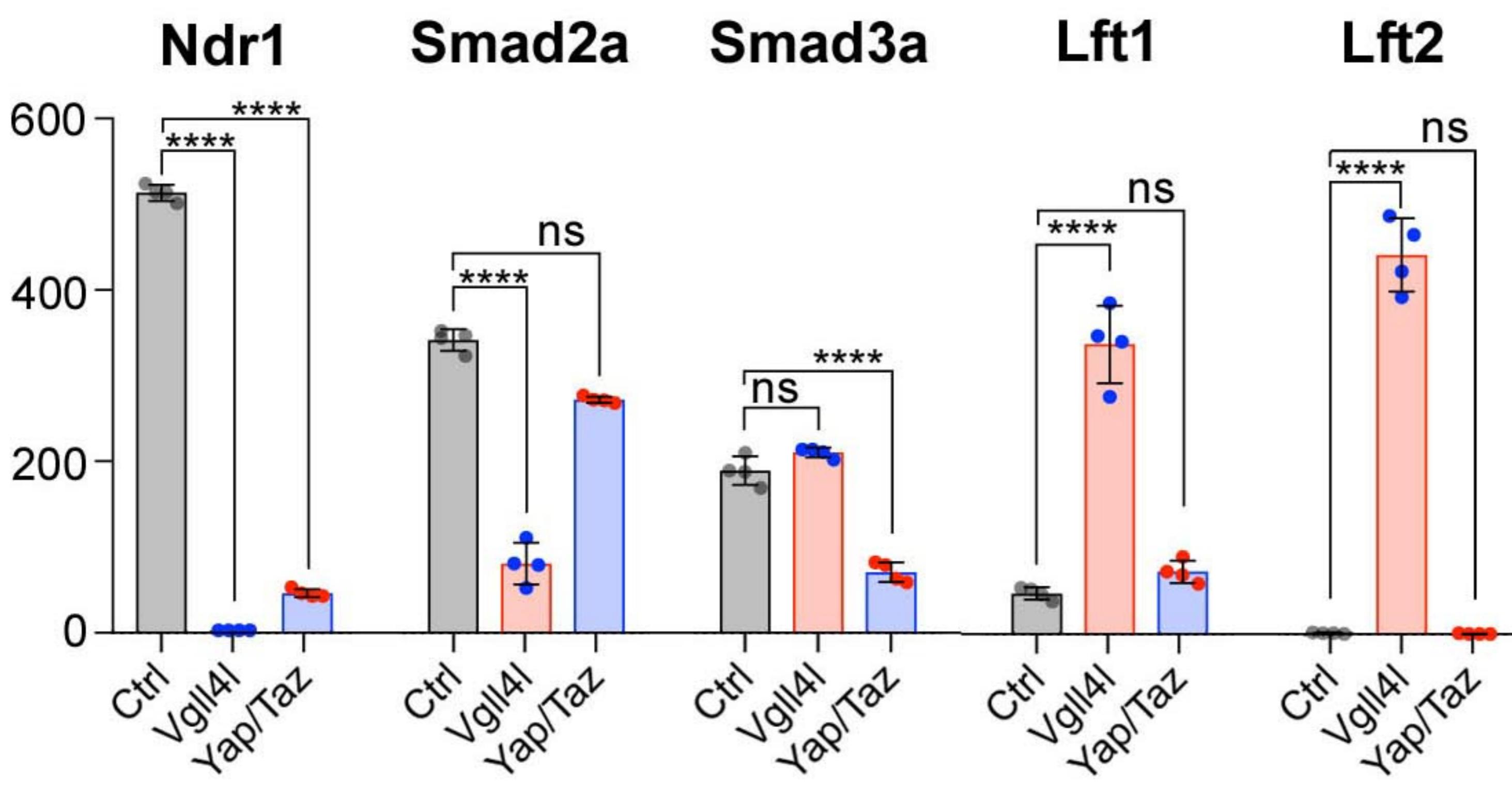
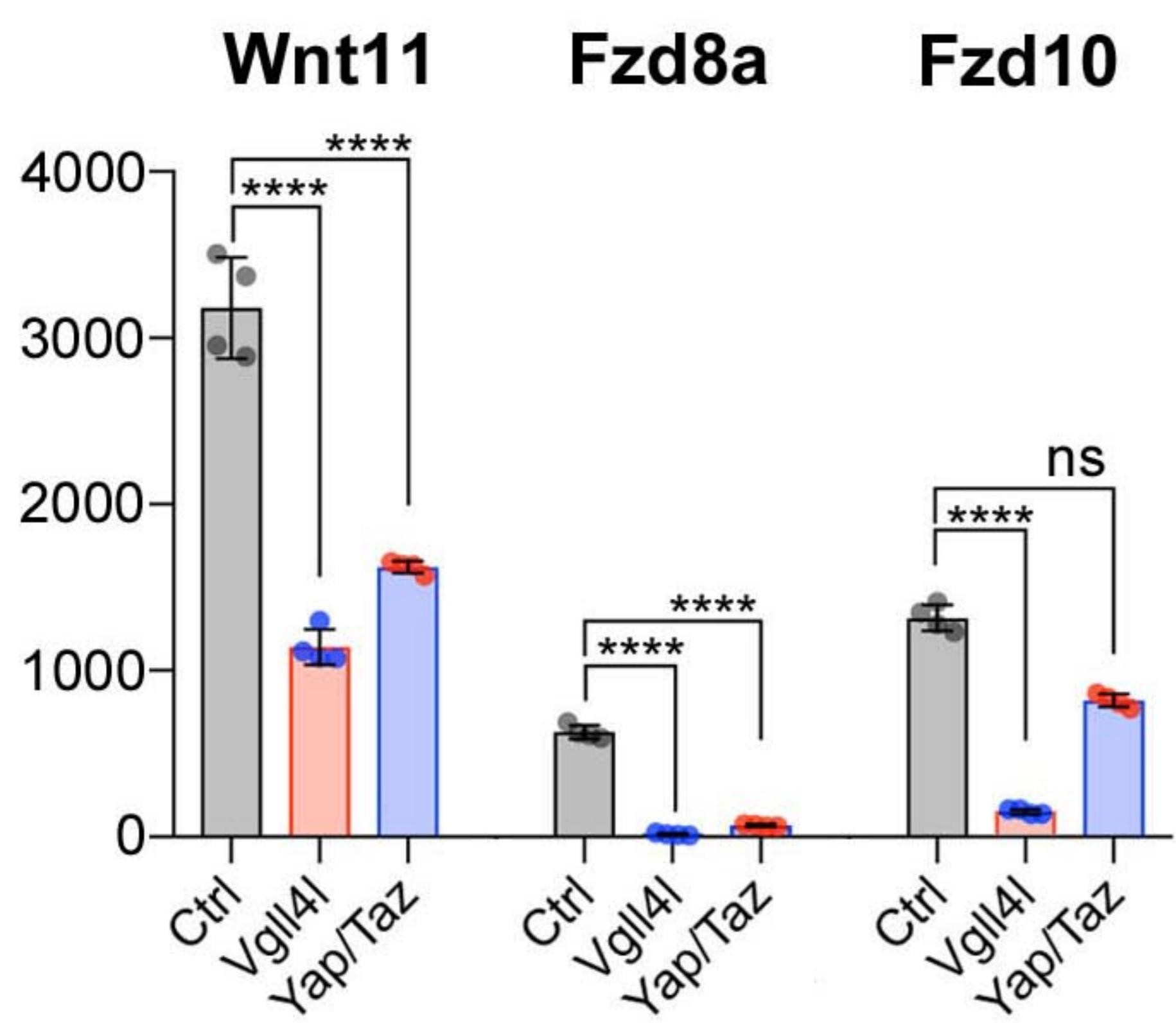
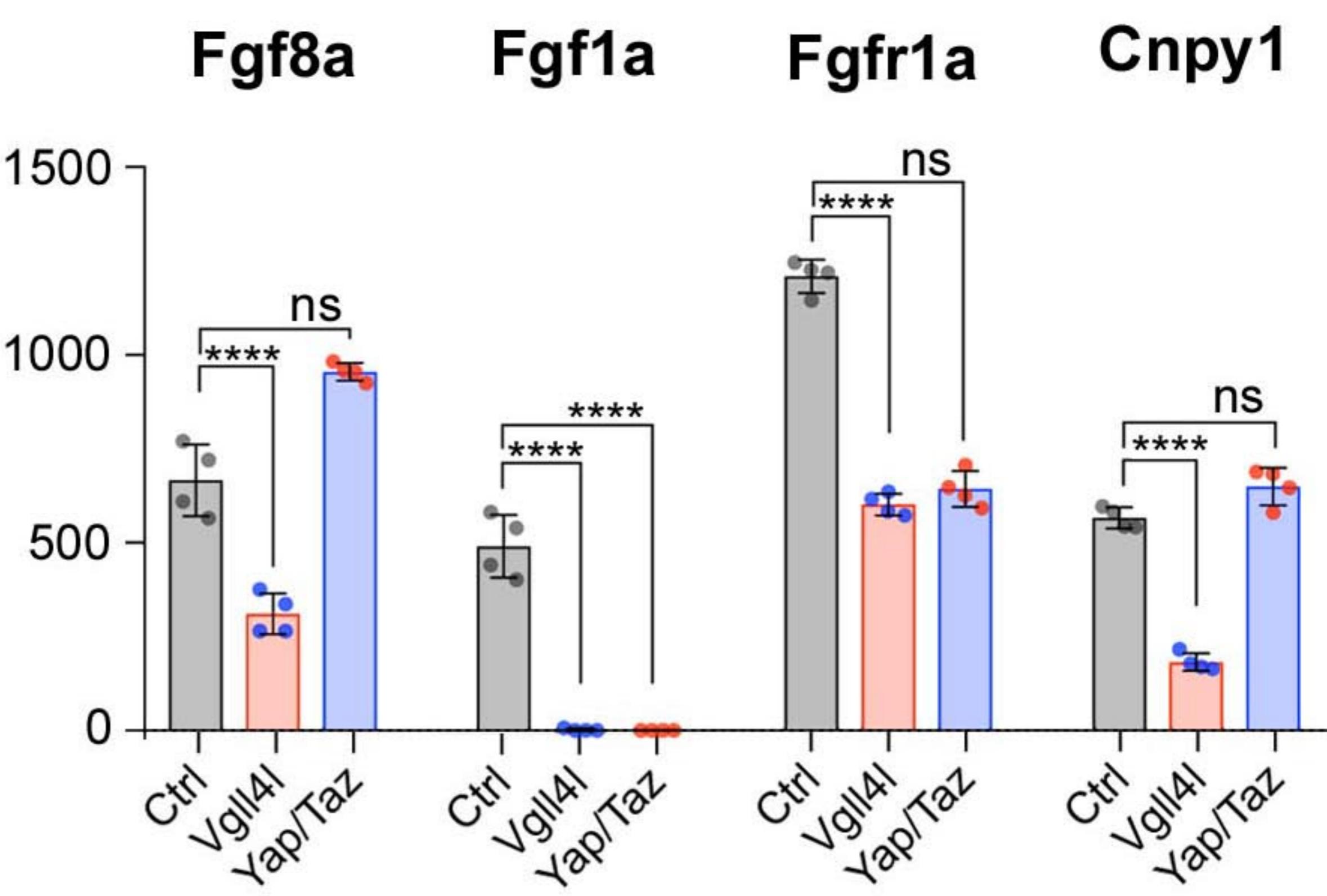
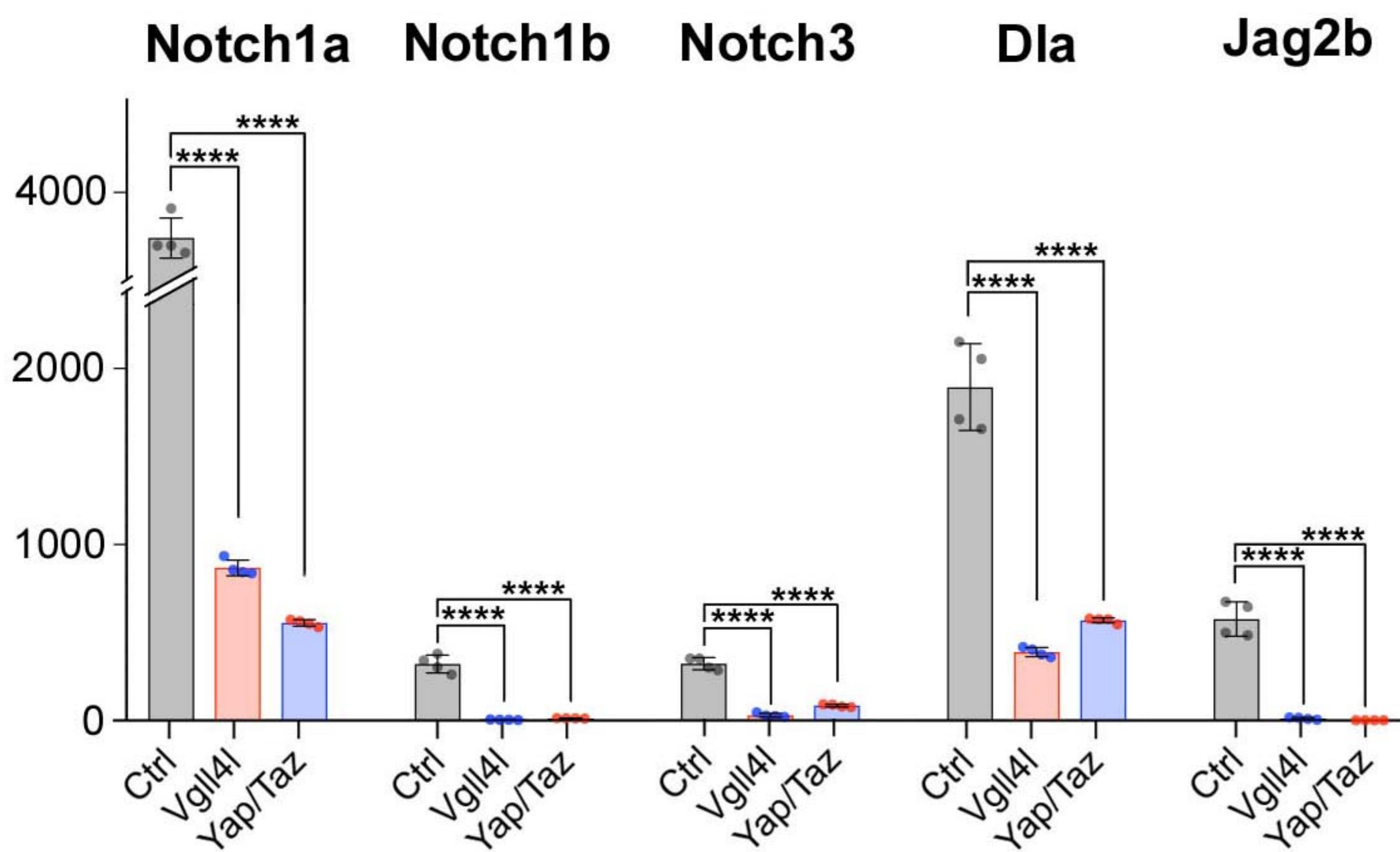
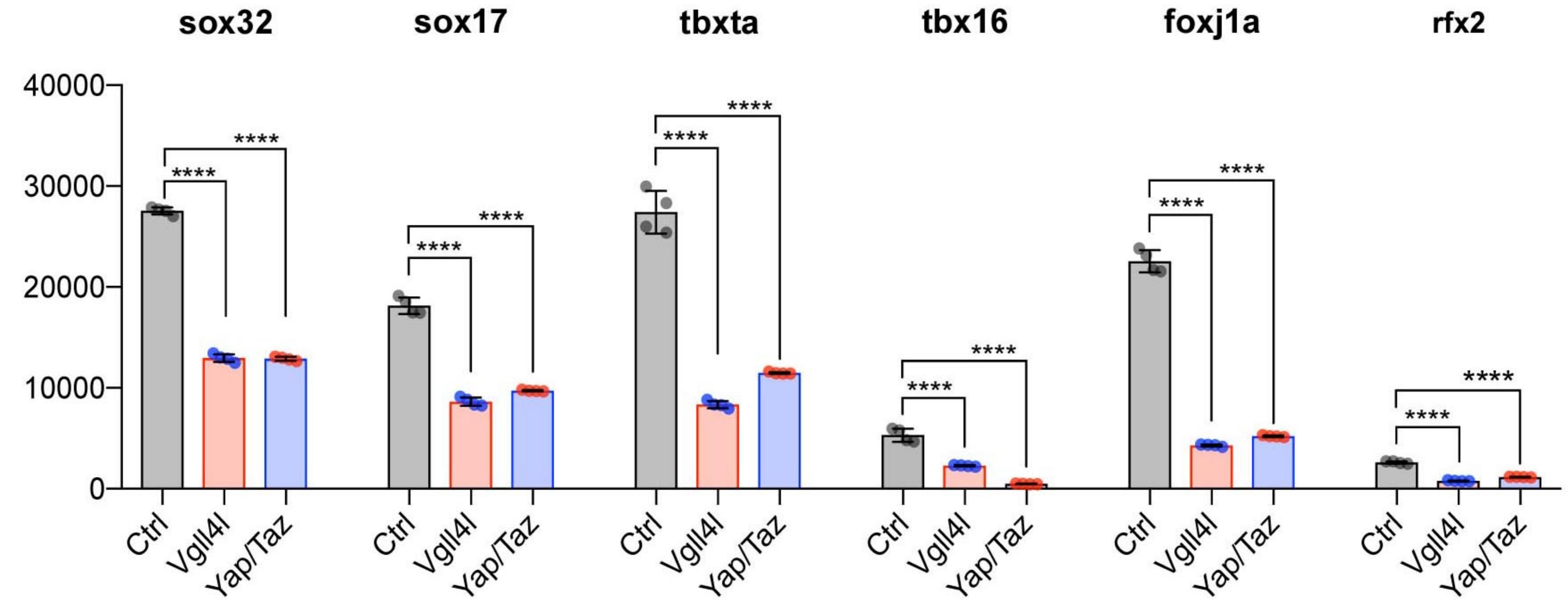
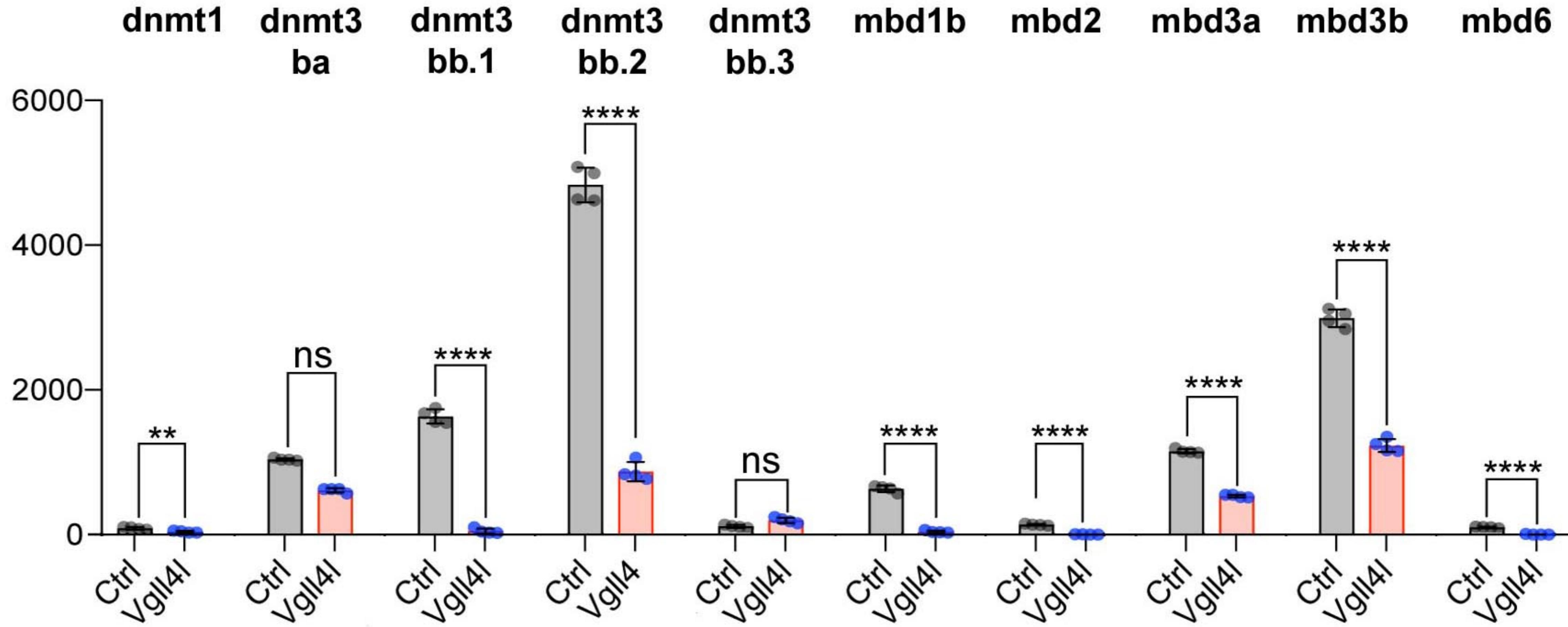


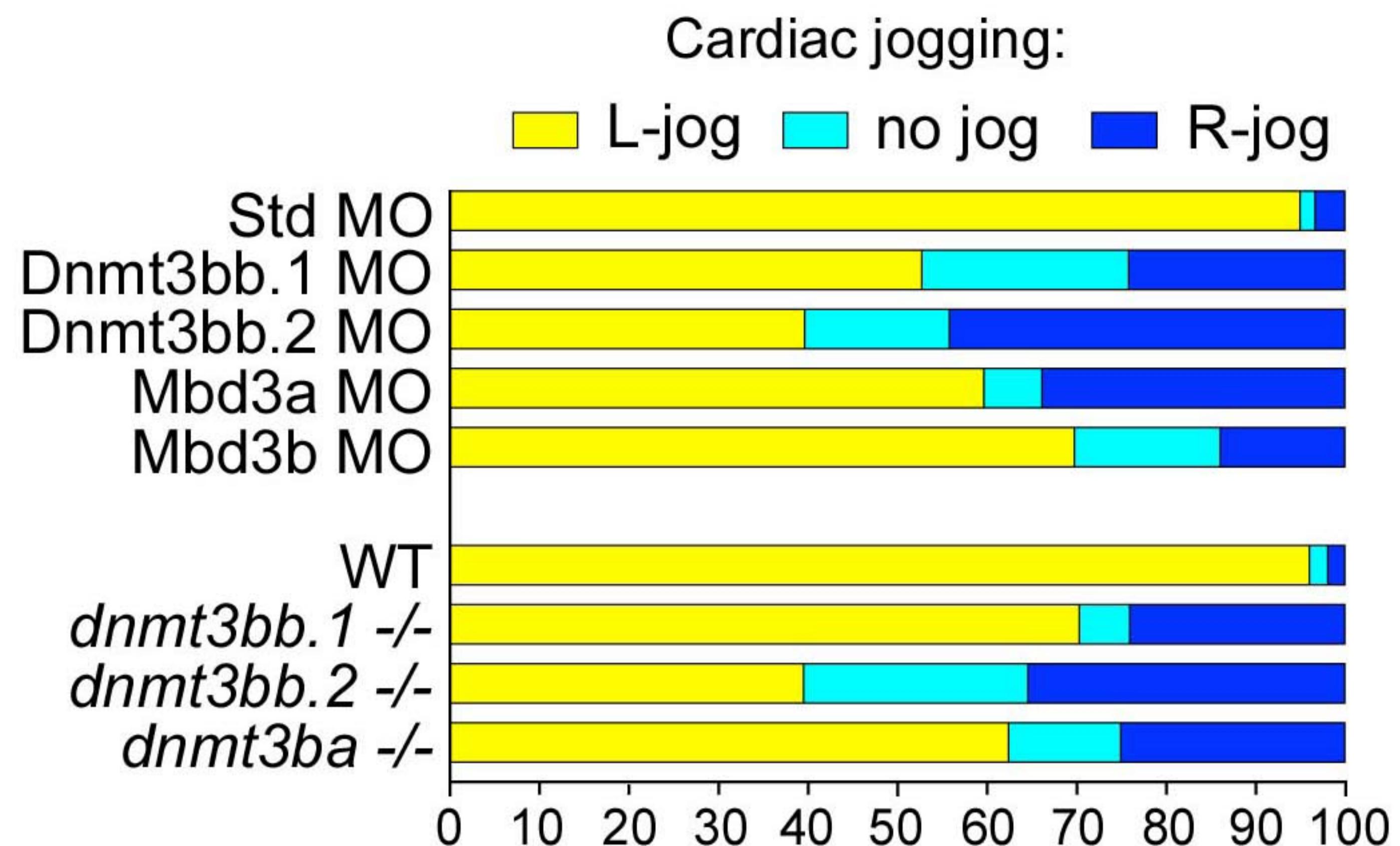
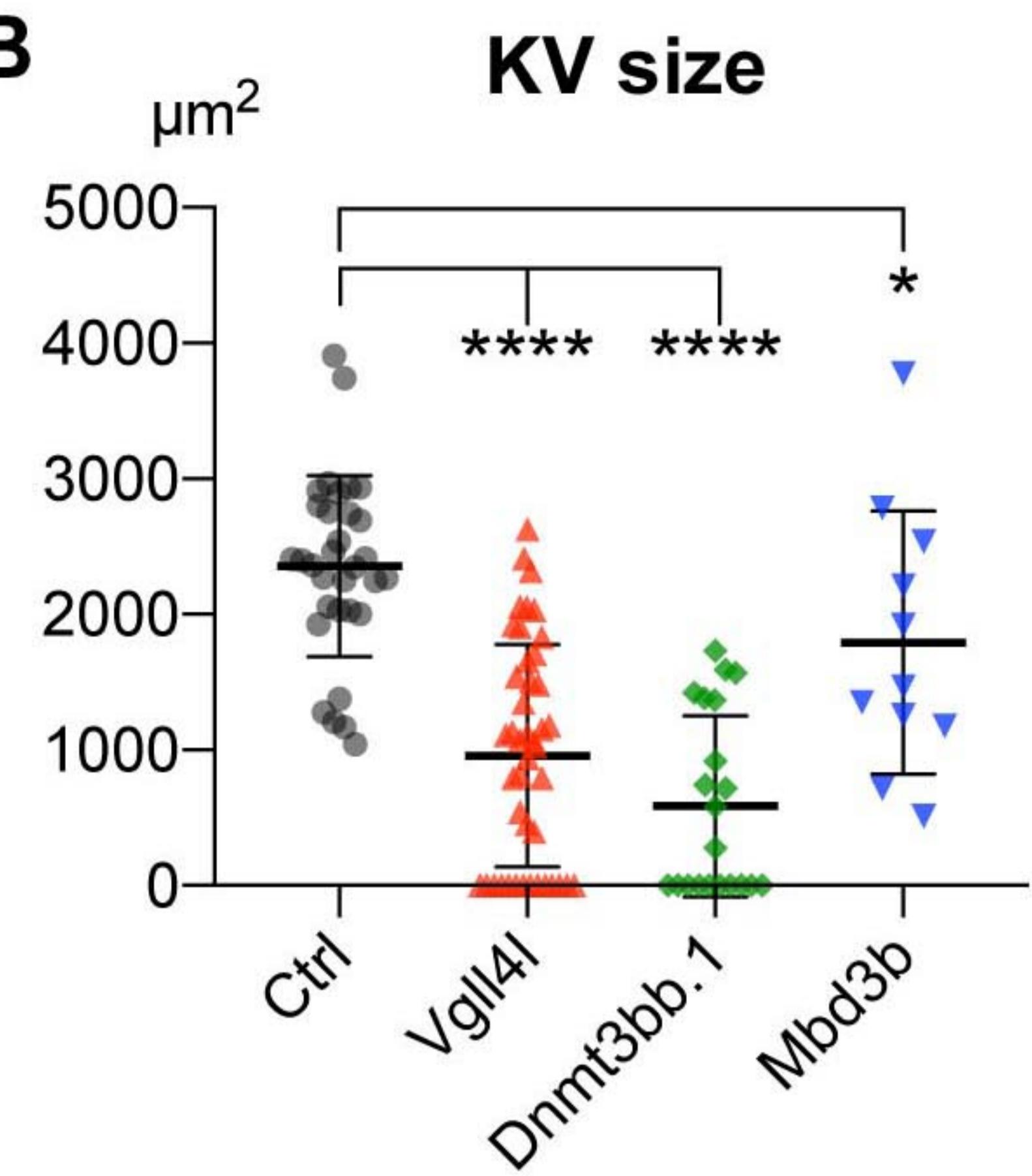
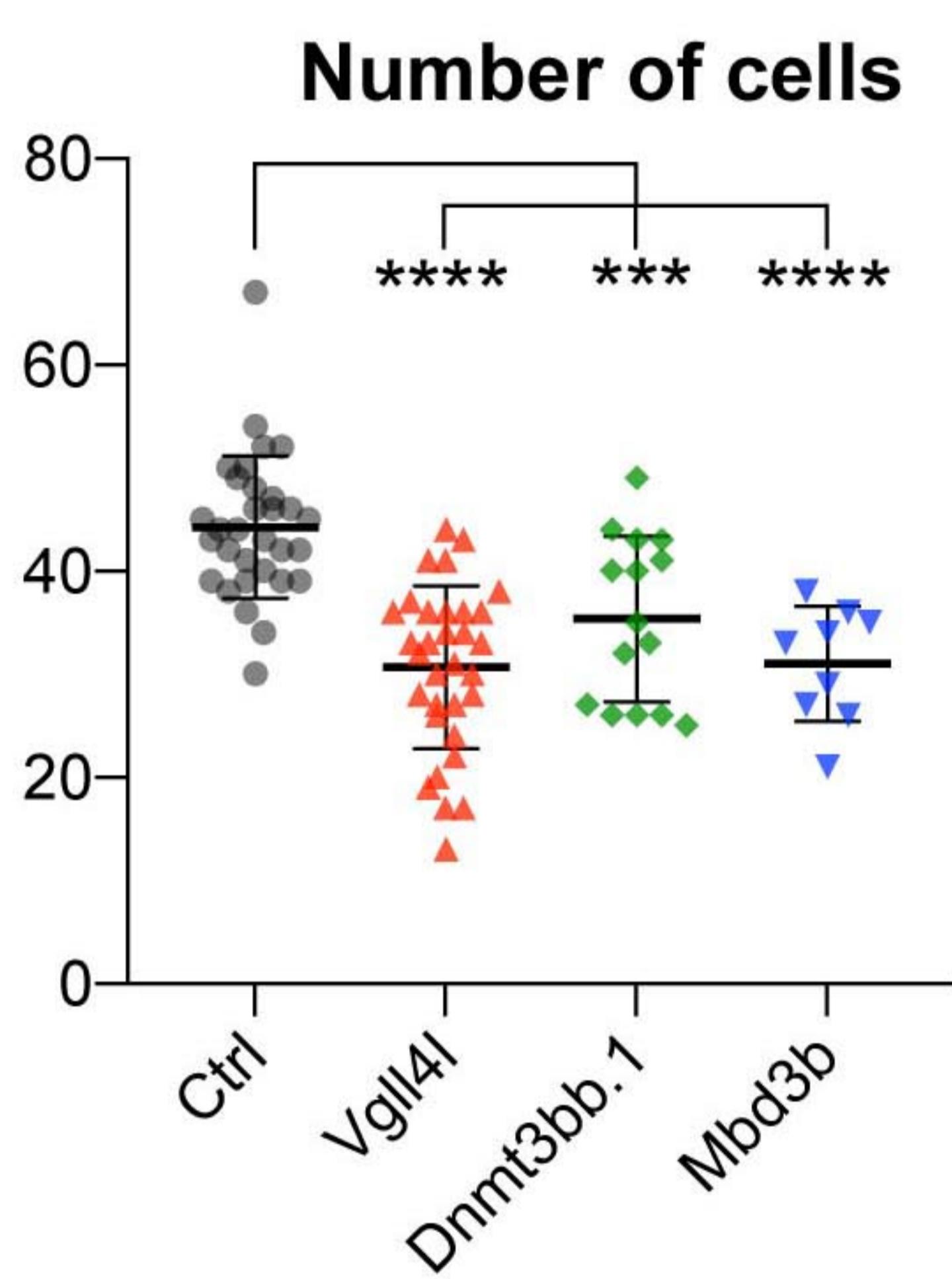
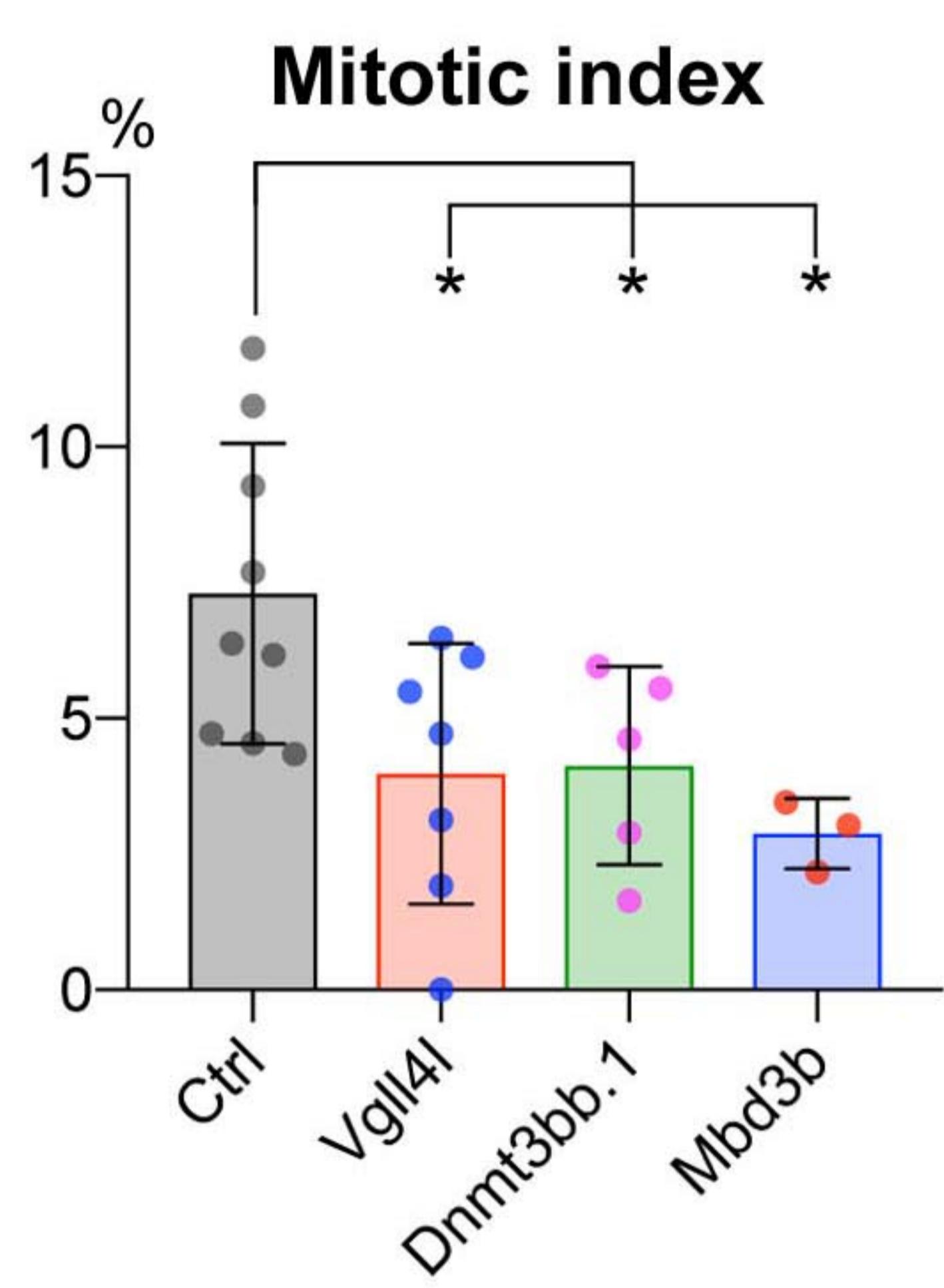
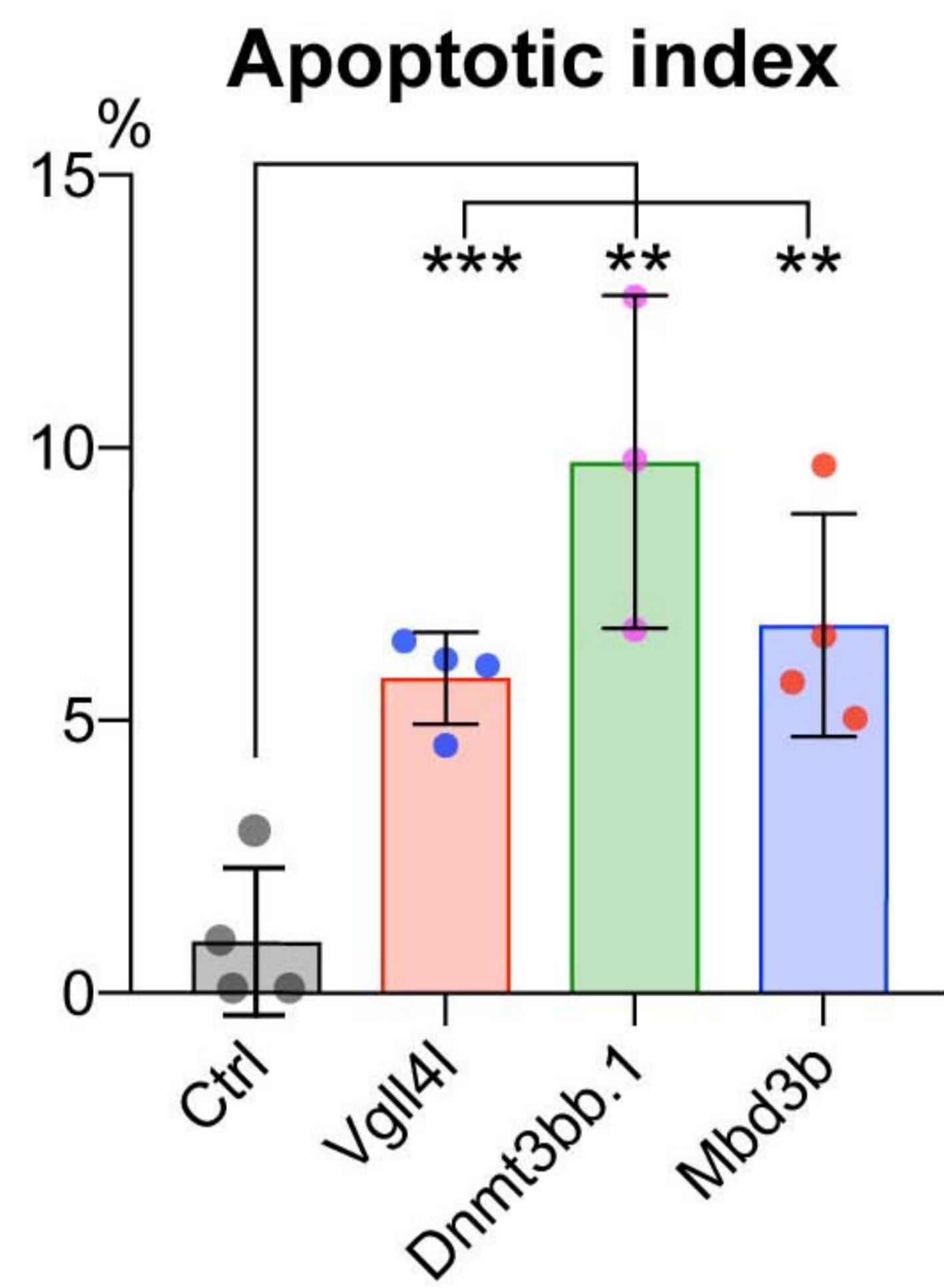
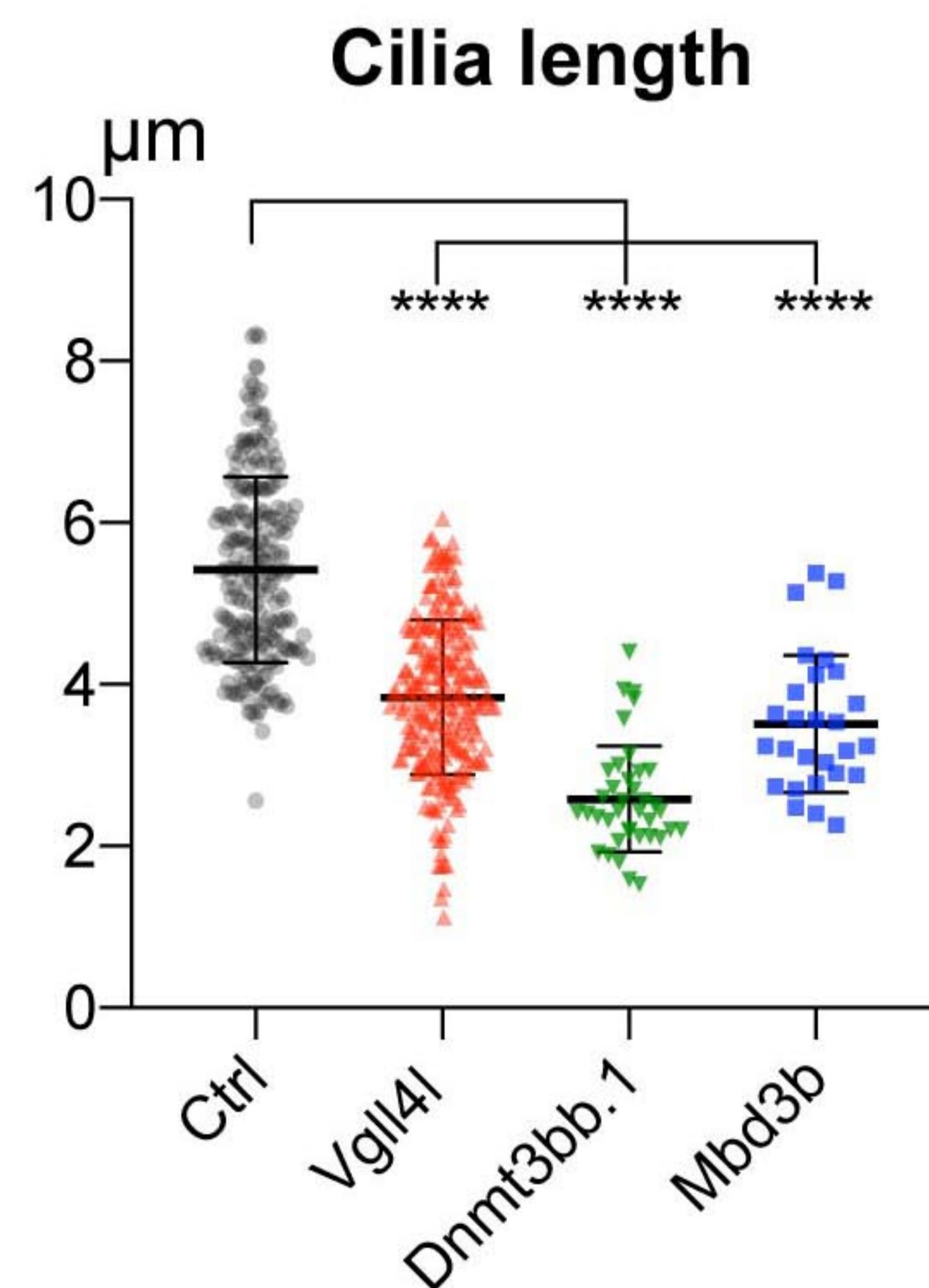
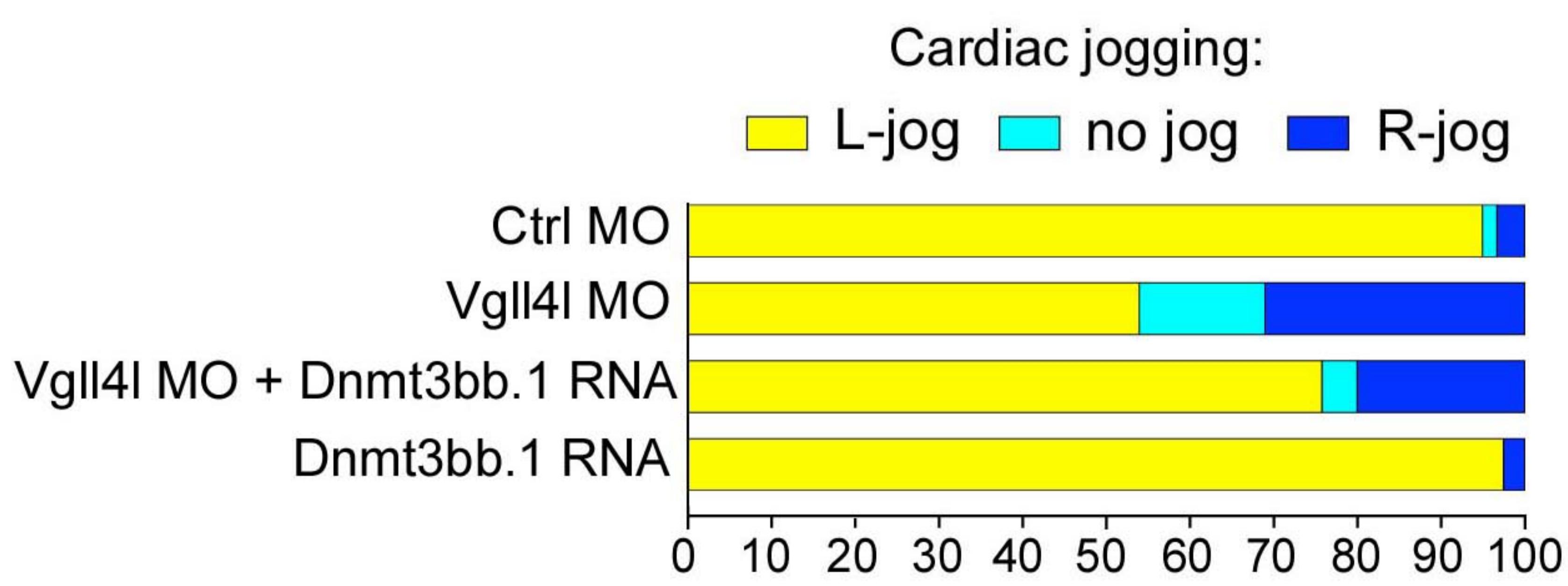
Figure 4


Figure 4-figure supplement 1


Figure 4-figure supplement 2

A**B****C****D****E****Figure 5**








A**B****C****D****Figure 6**

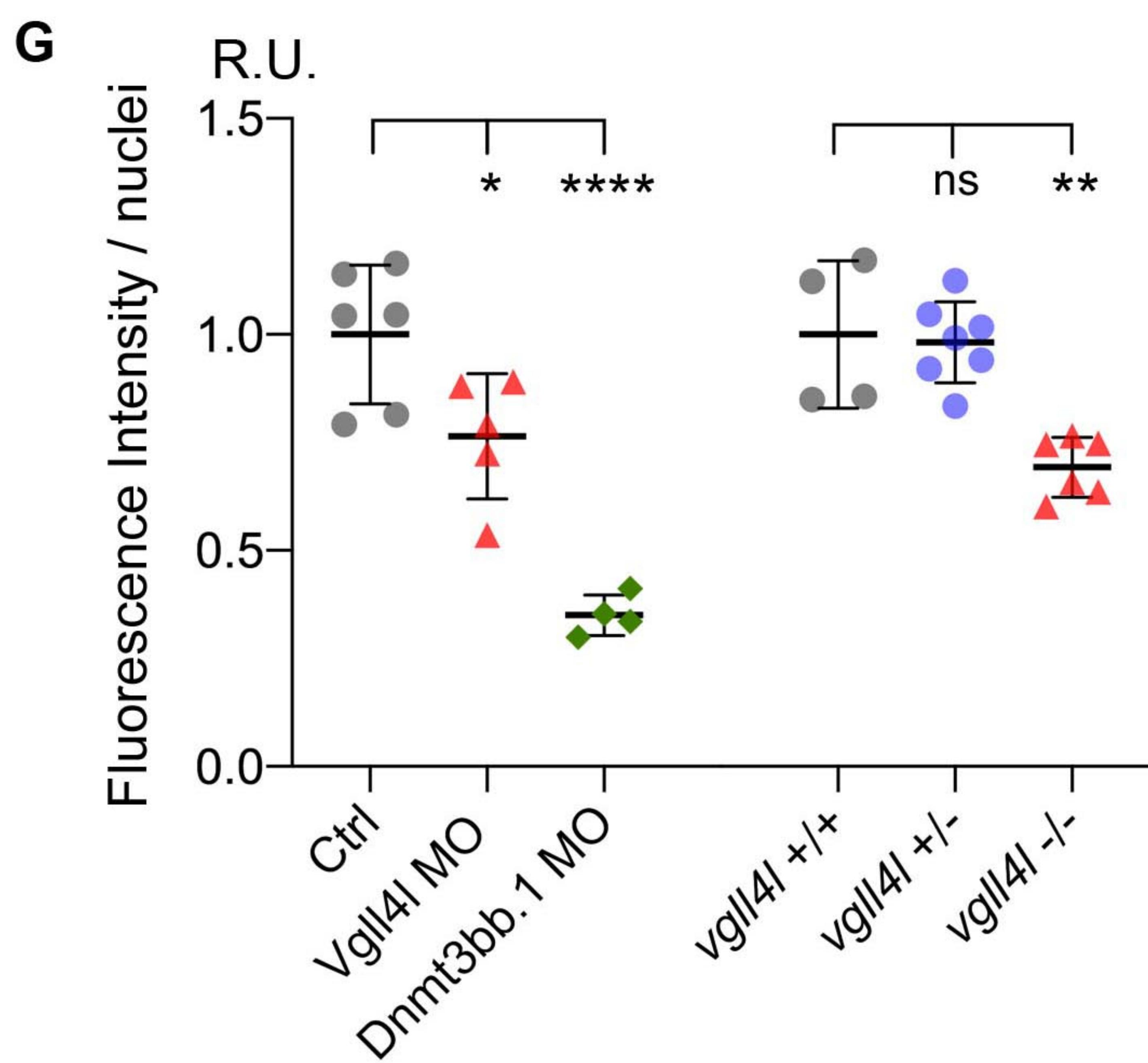
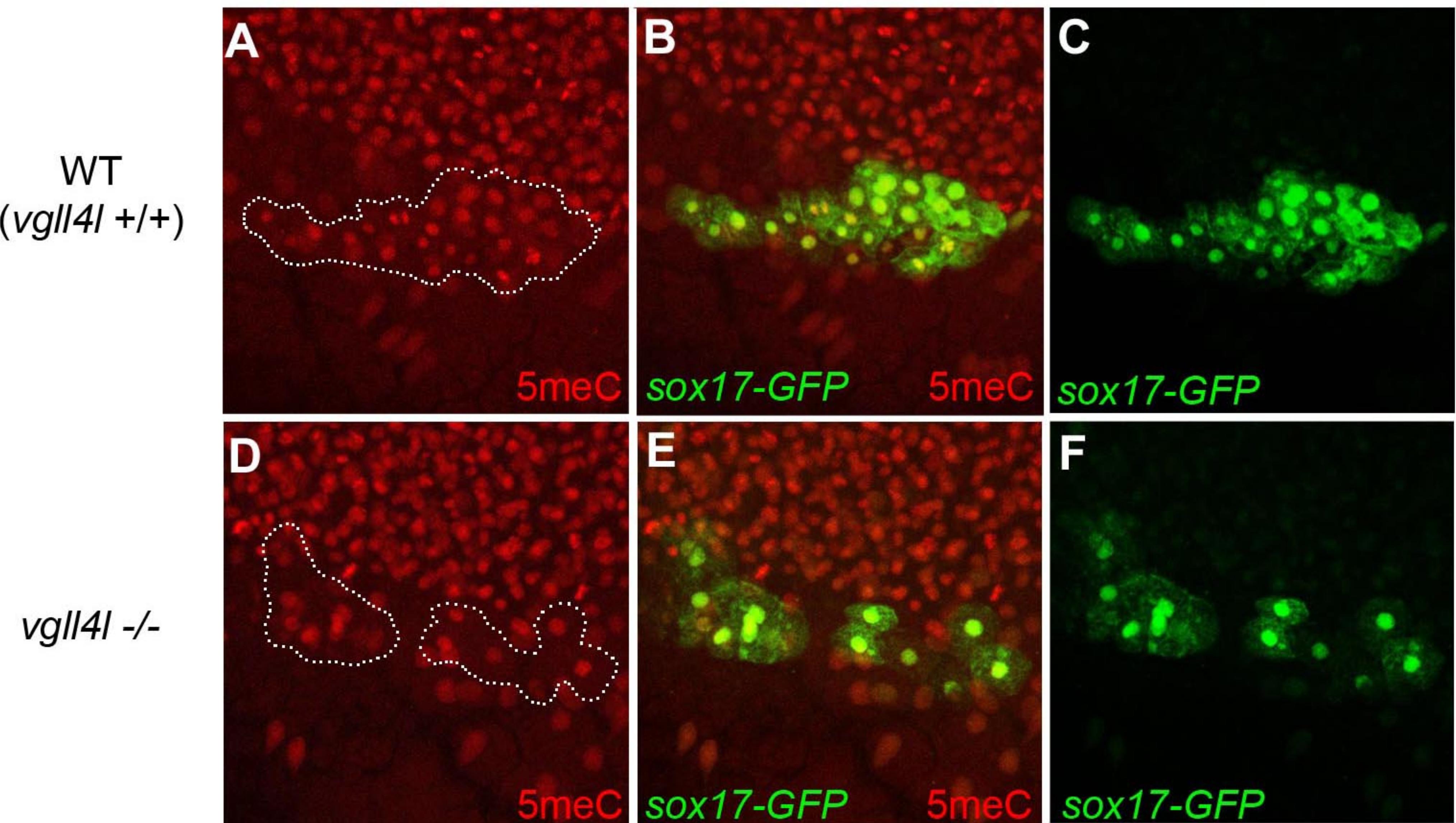



Figure 7

Figure 8

A**B****C****D****E****F****G****Figure 9**

Figure 10