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Abstract

To efficiently evaluate system reliability based on Monte Carlo simulation, importance sampling is used
widely. The optimal importance sampling density was derived in 1950s for the deterministic simulation
model, which maps an input to an output deterministically, and is approximated in practice using various
methods. For the stochastic simulation model whose output is random given an input, the optimal impor-
tance sampling density was derived only recently. In the existing literature, metamodel-based approaches
have been used to approximate this optimal density. However, building a satisfactory metamodel is often dif-
ficult or time-consuming in practice. This paper proposes a cross-entropy based method, which is automatic
and does not require specific domain knowledge. The proposed method uses an expectation—maximization
algorithm to guide the choice of a mixture distribution model for approximating the optimal density. The
method iteratively updates the approximated density to minimize its estimated discrepancy, measured by
estimated cross-entropy, from the optimal density. The mixture model’s complexity is controlled using the
cross-entropy information criterion. The method is empirically validated using extensive numerical studies
and applied to a case study of evaluating the reliability of wind turbine using a stochastic simulation model.
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1. Introduction

Many computer simulation models can be generally categorized into deterministic simulation models and
stochastic simulation models. In a deterministic simulation model, the simulator will produce a fixed output
for the same input values. In this paper, we focus on stochastic simulation models. Due to extra stochastic
elements in the simulation model, given a fixed input value, the output is a random variable representing
the outcome of the simulation. Despite its flexible modeling capacity, stochastic simulation models can be

more complex and computationally costly to generate a simulation outcome.
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One of the applications of Monte Carlo simulation is to compute an estimator of a system’s expected
output. In Monte Carlo simulation, one draws inputs from a suitable probability distribution, calculates the
output, and repeats the process multiple times to obtain different outputs. The estimate of the expected
output can be the average of those simulated outputs. Monte Carlo simulation is widely used with both
deterministic simulation models and stochastic simulation models. As the computing power advances over
the past decades, the reliance on Monte Carlo simulation has increased in various engineering disciplines.
Particularly in reliability engineering, Monte Carlo simulation is widely used to study the behavior and
reliability of a system, often through estimating its failure probability.

However, the reliability evaluation based on Monte Carlo simulation remains challenging. The more
closely the simulation model mimics the real system, the more computationally expensive each simulation
run is. Moreover, highly reliable systems such as wind turbines or nuclear reactors require many simulation
replications to encounter a rare event of interest such as a system failure, which translates to further demand
for computational resources [I]. These challenges are exacerbated with stochastic simulation models, which
often have to be run multiple times at the same input value. These challenges highlight the importance of
improving computational efficiency of the reliability study with stochastic simulation models.

Among techniques to speed up Monte Carlo simulation in rare event probability estimation, also known
as variance reduction techniques, importance sampling (IS) is one of the most promising methods [2, ],
especially with deterministic simulation models [4]. IS can boost the simulation efficiency by reducing the
number of required simulation runs to achieve a target variance of failure probability estimator [5l [6]. IS
methods are also used with stochastic simulation models in various applications, such as finance [7], insurance
[8], reliability [9, 10, [IT], communication networks [12], and queueing operations [13, 14} [15].

Variance reduction techniques for stochastic black-box simulation models are relatively few. Most of
existing techniques ‘open up’ the stochastic black-box to gain the simulation efficiency, for example, by
exploiting promising sample paths of underlying stochastic processes or by identifying important conditional
events (e.g., splitting [16], [I7, [I8], subset simulation [I9] 20], and conditional Monte Carlo [21, 22]). The
existing methods that do not open up the stochastic black-box generally rely on importance sampling [23] [24].
In theory, stratification method (or stratified sampling) alone can improve the efficiency, but it is still used
in conjunction with importance sampling in practice for greater efficiency gain [25].

Theoretically, if the inputs are drawn from the optimal IS density, the variance of the probability estimator
will be minimized and we can save the most computational cost. However, the theoretically optimal IS density
is generally not implementable in practice and often necessitates some approximations such as a metamodel-
based method [23] 26, 27] or the cross-entropy (CE) method [28] [29]. Metamodel-based IS aims to represent
the original high-fidelity, but black-box, simulation model by a surrogate model of which outputs can be

more efficiently computed. From the surrogate model, the optimal IS density can be approximated to reduce



the variance of the failure probability estimator [30]. From another perspective, CE-based IS aims to find
an IS density that is as close as possible to the theoretically optimal IS density, where closeness is measured
by the Kullback-Leibler divergence [28]. The CE method has been widely used for estimating the optimal IS
density with deterministic simulation models. However, to the best of our knowledge, there is no literature
exploring the CE method’s application to stochastic simulation models. Thus, this paper proposes a novel
method called the cross-entropy based stochastic importance sampling (CE-SIS) to approximate the optimal
IS density for stochastic simulation models.

The main contribution of the proposed CE-based method is the automation of approximating the optimal
IS density for stochastic simulation models. In the literature, metamodel-based IS methods are predominant
[23, 24]. The construction of a metamodel of a stochastic simulation model often requires substantial efforts
of engineers and statisticians to appropriately model the additional randomness embedded in the simulation
model. For example, the wind turbine simulation model in our case study uses over 8 million random variables
to simulate 3-dimensional time-marching wind field in each run. It is challenging to build a metamodel to
capture such large uncertainties based on a few hundreds of pilot runs of the simulation model, as detailed in
[23]. As demonstrated in our case study in Section [5] our proposed method achieves comparable estimation
performance without such efforts and resources to build a highly sophisticated metamodel. Also, as discussed
in our numerical studies in Section[d] a poorly constructed metamodel can even substantially undermine the
IS performance. In contrast, the proposed method performs reliably in a wide variety of settings (except for
the cases where the user already knows the method should fail), showing the promise for various applications
in practice.

One challenge of the CE-based IS is the dilemma between parametric and nonparametric representation
of the candidate optimal IS density. In the standard CE method for deterministic simulation models, the
candidate IS density is confined to a parametric family. Some of the popular parametric IS densities are
multivariate Bernoulli and multivariate Gaussian, thanks to their simple random variate generation and
convenient updating formulae for CE minimization. However, parametric IS can be too rigid to capture
the complicated important region and it is often difficult to validate the parametric model assumptions
[31]. Nonparametric approach can offer flexibility to overcome such limitations. One of the most popular
nonparametric density approximation methods is the kernel approach [32]. Besides its flexibility, the kernel
approach also has its own drawback. The probability density model is not as parsimonious as (a mixture
of) parametric density models. This lack of parsimony often makes subsequent inference and analysis of
the resulting model computationally intensive [33] [34]. For stochastic simulation models, the parametric IS
approach needs a strong assumption but the variance of the IS estimator converges to the optimal variance
faster than the nonparametric IS approach [24]. The nonparametric IS approach requires weak assumptions

but the variance reduction rate is not as fast as the parametric IS approach [24]. To achieve a good balance



between flexibility and efficiency in the CE-SIS method, we express the candidate IS density for stochastic
simulation models using a mixture of parametric distributions. We particularly focus our study on the
Gaussian mixture model due to its flexibility to model a smooth distribution.

The proposed method is validated with extensive numerical studies and a case study on wind turbine
reliability evaluation. In the case study, our method is benchmarked against a state-of-the-art metamodel-
based IS method in the literature. Approximating the optimal IS density automatically without relying
on expert domain knowledge (which is often necessary for metamodel construction), the CE-SIS method
demonstrates comparable results. This shows the advantage of the CE-SIS method in situations when
building a high-quality metamodel is difficult or time-consuming; the CE-SIS method would conveniently

provide substantial computational saving potentially more than metamodel-based methods.
2. Background

The crude Monte Carlo (CMC) method samples the input, X € R?, from a known probability density
function, f(x) [2] . From the input X, a simulator generates the output, ¥ € R. If the simulation model
is deterministic, Y is a deterministic function of X, i.e., Y = ¢g(X). For the stochastic simulation model, YV’
is stochastic for a given X. Due to the random vector € within the simulation model, it generates different
outputs Y even at a fixed input X.

In reliability engineering, a quantity of interest is the so-called failure probability, P (Y > [), where [ is a
pre-specified threshold on a system that fails if Y exceeds [. Note that any failure event set can be expressed
as {Y > [} using a transformation. To estimate the failure probability, the following CMC estimator is most

commonly used,

n

ISCMCZ%Z]I(Yi>Z)7 (1)

i=1
where n is the total number of simulation replications, and I (Y; > 1) is an indicator function that takes value
of 1if Y; > [ and value of 0, otherwise. The estimator in is an unbiased estimator for P (Y > ). For
the deterministic simulation model, the failure probability is equivalent to E¢[I (¢(X) > )], where I(-) is the
indicator function and the subscript, f, appended to the expectation operator, E, denotes that the expecta-
tion is taken with respect to f, the density from which X is drawn. For the stochastic simulation model, the
failure probability is the expectation of the conditional failure probability, expressed as E;[P (Y > | X)].
In a highly reliable system, the failure probability can be very low. It may take many simulation runs
until a failure occurs. In some cases, each simulation run can be computationally very expensive. In order
to obtain a good estimator of the failure probability, the number of simulation runs can be large. To save
the computational resource, IS changes the sampling distribution of X from f(x) to another distribution
g(x) that makes the failure events more likely. Sampling X from ¢(x) makes the estimator in no longer

unbiased.



For the deterministic simulation model, to make the failure probability estimator unbiased, the IS esti-

mator becomes

5 1¢ f(Xs)
Pprs = — E I(Y; >1 ) 2
n-- ( ) q(X;) ( )
where X;, i = 1,...,n, is sampled from ¢(x) instead of f(x) [2]. Y; is the output from the simulator

corresponding to the input X,;. The variance of Pprg is minimized if X is sampled from the optimal IS
density [4]

Lg(x) > 1) f(x)

P(Y > 1) ®)

qp1s(x) =

Here, the indicator function I (g(x) > [) can be evaluated only by running the simulator since the function
g(x) is unknown. The denominator P(Y > [) is the unknown quantity that we want to estimate. Thus, ¢prs
is not implementable in practice, and approximation of ¢prs is required. As mentioned above, for the
deterministic simulation model, the optimal IS density can be approximated using methods such as the
metamodel-based method (e.g., by building a metamodel of g(x) or I (g(x) > I) to construct a parametric
or nonparametric IS density) and the CE method (e.g., by finding a parametric IS density close to ¢prs in
terms of CE). Hereafter, we call the IS method for a deterministic simulation model DIS.

For the stochastic simulation model, to capture the extra randomness, the unbiased IS estimator becomes

R 11 & : X;

where m is the number of distinct input X,; at which the stochastic simulation model is run N; times to obtain
the outputs, Yj(i), j=1,...,N;. Thus, 2111 N, is equal to the total number of simulation replications, n.
Such N; replications at the same X; value capture the additional randomness € within the simulation model.
Hereafter, we call the IS method for a stochastic simulation model SIS.

Similar to DIS, the variance of Pg;g is desired to be as small as possible. Minimizing the variance requires
two steps [23]:

(a) sampling X from

gsrs(x) = leqf(x) \/is(x) (1 = s(x)) + s(x)2, (5)

where s(x) is P(Y > | X = x) and Cj; is the normalizing constant; and

(b) allocating replications to X; by
n(l—s(X;))
1+(n—1)s(X;)

n 7
m n(l—s(X;))
Zj:l 1+(n71)s(JXj)

N; =



Since the conditional probability, s(x), is unknown in practice, the IS method for a stochastic simulation
model requires the approximation of s(x), ¢srs, and N;. This paper will focus on how the CE method can
be extended to approximate gsrs. In the next subsection, we first review how the CE method is applied to

approximate g¢prs.

2.1. CE Method for DIS

The CE method is originally developed to find the density that best approximates the optimal density
of DIS [28]. The standard parametric CE method limits the search space for the optimal IS density ¢*(x)
to a pre-specified parametric family (e.g., Gaussian, Poisson, gamma, etc.), {g(x;0): 8 € ©(d) C R4}, and
seeks the density ¢(x;0%) that is closest to the optimal density ¢*(x). The closeness is measured by the
Kullback-Leibler divergence [28],

Dla"(x).a(x:6)) = [ 4" ()" (x)dx — [ 4(x) gl 6) . (7)

This quantity is always non-negative and takes zero if and only if ¢*(x) = ¢(x; 6) almost everywhere. Thus,
minimizing D(g*(x), ¢(x;0)) over € O leads to q(x;0") = ¢*(x) if ¢* belongs to the same parametric
family as q(x;0%).

Minimizing D(¢*(x), ¢(x;0)) in over 0 is equivalent to minimizing its second term, known as the

cross-entropy (CE)

Cg" (%), 4(x; 8)) = — / ¢ (x) log ¢ (x; 0) dx, (8)

because the first term in is a constant over . As shown in , the optimal IS density can be expressed
as ¢*(x) o< h(x)f(x), where h(x) is I (g(x) > I) for DIS. The CE method aims to equivalently minimize
€(6) =~ [ hx)7(x)log (x:6) dx
= —Es[h(X)logq (X;0)]
- / h(x) L% 10 g (x: 0)q (x: 6) dx (9)
q (X; 0/) ) b)
= */h(X)w(X;O')logq(X; 0)q (x;0") dx

= —Eqg[h(X)w(X;0') log ¢ (X; 0)], (10)

where 0, 8’ € ©(d), and f(x) is the original density of X. The likelihood ratio f(x)/q (x;@’) is denoted by
w(x;0"). Note that the equality in (9) holds under the condition that ¢ (x;6’) = 0 implies h(x)f(x) = 0.
This condition can be easily satisfied by ensuring that the support of ¢ includes the support of f even if h

is unknown. The condition is always satisfied by the Gaussian mixture model. In practice, the CE method



finds 6 that minimizes the following IS estimator of ,

n

- 1
c(6) = _E;h(xi)w(xi)logqo{i;g)v (11)
where X, = 1,...,n, is sampled from g(x; él) Note that by writing w(X;), we surpress the notation for

dependence of w on 6’ in . Using this IS estimator, the CE method minimizes the CE iteratively:

Step 1. Sample X;,i = 1,...,n, from q(x; é/) At the first iteration, q(x;é/) can be flexible (e.g., f is

commonly used).
Step 2. Find § = argmingee C(8), where C(0) is in (11).
Step 3. Set ' = § and start the next iteration from Step 1 until some stopping criterion is met.

This procedure iteratively refines ¢(x; é) However, the refinement is limited, as the parameter search
space, O, is restricted by a pre-defined parametric family.

Some studies [33, [34] explore nonparametric approaches to allow greater flexibility on the candidate IS
density than the standard CE method. However, as mentioned before, the flexibility comes with costs:
finding the optimal density [34] or sampling from the optimized density [33] is computationally challeng-
ing. Essentially, the two extremes of the spectrum on expressing the candidate IS density depend on the
relationship between d (the number of parameters in a candidate IS density) and n (the total number of
simulation replications). A candidate IS density can be parametric with d < n or nonparametric with
d < n (i.e., d has the same order of magnitude as n). To bridge the gap between the two extremes, recent
studies [311 [35 [36] [37] consider the mixture of parametric distributions, where d can vary between 1 and n.
This approach is particularly desirable for engineering applications because (a) it can be as flexible as we
want; (b) it is easy and fast to sample from the mixture of parametric distributions; and (c¢) the mixture IS
density provides an insight into the engineering system (e.g., means of mixture components often coincide
with the so-called ‘hot spots’, where the system likely fails.). Particularly in [38], the candidate distribution
is expressed by the Gaussian mixture model (GMM) and an expectation—maximization (EM) algorithm is
used to minimize the cross-entropy estimator in . More recently and independently, another group of

researchers [37] also proposes fundamentally the same EM algorithm to fit a GMM within the CE method.

2.2. Gaussian Mizture Model and EM Algorithm

The GMM of k mixture components takes the following form:

k
a(x;0) = > a;q(x; %), (12)
j=1
where the component weights, a;, j = 1,...,k, are positive and sum to one. The jth Gaussian component

density, g;, is specified by the mean, p;, and the covariance 3;. Thus, the parameter vector of GMM 6



denotes (a1,...,Qk, ty,- -y Mg, 21, -, 2k). Since 6 is a function of k, the GMM model can be explicitly
written as ¢(x; 0(k)). For simplicity, we will write the GMM as ¢(x; @) unless we should express different
models in terms of k.

To minimize (11f), the gradient of (11]) with respect to 0 is set to zero:
1 n
—— h(X;)w(X;)Vel X;;0) =0. 13
@ D HXu(X) Vo log (X0 (13)

This leads to the updating equations as derived in [36]:
2y P(Xa)w(X)yig

Y X w(Xy) (14)
= SRR “

where
vy = k%qj(Xz';uj,Zj) -

Yo g a4y (X py, )
As the name suggests, the right-hand sides of the ‘updating’ equations , , involve

0:(alv"‘7ak‘7u'17"'7uk7217"'7216)

either explicitly or implicitly through 7;;. As such, the updating equations are interlocking with each other
and cannot be solved analytically. Thus, by starting with an initial value for 8 on the right-hand sides of the
updating equations, the left-hand sides are computed and plugged back to the right-hand sides iteratively
until the convergence is reached. This optimization procedure is a version of the EM algorithm that alternates
between the expectation step (computing 7;;) and the maximization step (updating 8).

A common challenge in using GMM to approximate the IS density is balancing between the estimated
model’s KL divergence (a closeness measure between the approximated IS density and the optimal one)
and the model complexity. The studies [31], [35, B6] that consider mixture models point out the difficulty
associated with the choice of the number of mixture components, k. They either assume that k is given
[311 B6] or follow a rule of thumb based on “some understanding of the structure of the problem at hand” [35].
More recently, an effective, but heuristic, clustering algorithm is also used to determine k [37]. Overcoming
the need of picking k a priori when using GMM to approximate the optimal DIS density, Choe [38] proposes
the cross-entropy information criterion (CIC) to select k automatically with a theoretical guarantee (i.e.,
CIC is an asymptotically unbiased estimator of the true cross-entropy).

2.8. Cross-Entropy Information Criterion
In order to balance between the cross-entropy estimate and the model complexity, the CE estimator is

minimized and the model complexity k is concurrently penalized. CIC for deterministic simulation models



takes the following form:

d

1
CICE5(d) = Cprs(0) + K e (18)
Ze Om( )
where m(®) is the number of input X sampled in iteration s such that we have XES),Z' =1,...,m®. The CE
estimator égl_sl)(é) and IA((DtI_;) are calculated using all the aggregated data up to iteration (¢t — 1):
t—1m(®
A(t=1) 4y _ (b (s). (). 9
Cors'(0) =~y S);;hx w(X{;0')log ¢ (X 0) (19)
t—1 m() A(5)
-(t—1 s
KD = Zh CNw(xV: 9. (20)

Note that d = (k — 1) + k(p + p(p + 1)/2) is the dimension of § and proportional to k, where p denotes
the dimension of the input X. The second term of the CIC in penalizes the model complexity by being
linearly proportional to d. The CIC is an asymptotically unbiased estimator of the cross-entropy (up to
a multiplicative constant) under one key assumption that there exists 8 such that ¢*(x) = ¢(x;0"), and
several other regularity conditions (see [38] for details) that are similarly required for the Akaike informa-
tion criterion (AIC) [39] to be an asymptotically unbiased estimator of the true log-likelihood. Since for
stochastic simulation models, h(x) is unknown, it has to be estimated through h(x). We will present the

CIC formulation for SIS in the next section.

3. Methodology

This section proposes a model selection solution to the estimation of the optimal IS density for stochastic
simulation models. We use the GMM to express candidates for the optimal density. The CIC will automati-
cally determine the mixture order k of the GMM and control the model complexity. Among different mixture
models, we choose the GMM since it is the most widely used mixture model thanks to its ability to model
any smooth distribution. In general, the proposed CE method is not limited to just the GMM. It can be
extended to other mixture models as long as we can minimize a CE estimator. In the convenient case of the
GMM, an EM algorithm can be applied to estimate the GMM parameters. Moreover, it is computationally
efficient to sample from the GMM.

It is natural to apply the concept of CIC in DIS to SIS. The expression of CIC involves h(x), which is
known in DIS but not in SIS. Hence we use the estimator h(x) which is a function of §(x), the estimated

probability of failure at a particular x value.



3.1. Approximations Necessary for Implementation

To implement the proposed method, we need to approximate h(X;),¢ = 1,...,m, for computing CIC,
evaluating the EM algorithm equations — to solve for é, and minimizing the CE estimator. For SIS,
h(x) = \/s(x) (1 — s(x)) /n+ s(x)? is unknown because s(x) is unknown. Thus, we estimate s(X;) by

N;

. 1 i
(X = 7 D1 (Yj() > l) (21)
1 le
and then estimate h(X;) by plugging in §(X;):
o R R R 2
hX;) = \/s(Xi) (1—-38(X;)) /n+ 8(X;)". (22)

We note that h(-) needs to be estimated only at the sampled X;,i = 1,...,m, for which we already have
run the simulator N; times and have the evaluation of §(X;) in to ultimately compute the estimator
in for the failure probability. Thus, by utilizing the already available information, this approximation of
h(X;),i=1,...,m, does not incur an extra computational cost.

As the sample size n tends to infinity while m is allowed to grow slowly than n (or as a special case, m
may be fixed), iL(XZ) converges to h(X,;) in probability for any ¢. Specifically, because N; = Op(n/m), if n
increases faster than m (i.e., m/n = o(1)), §(X;) in converges in probability to s(X;) for any ¢ by the
law of large numbers. Therefore, h(X;) in converges to h(X;) in probability for any i as n — oo, by the
continuous mapping theorem.

SIS also needs to allocate N; replications at each X;, as explained in Section In Appendix 1, we
show that for a large n > max!™, (1 — s(X;))/s(X;), the optimal N; in () is approximately proportional to

w(X;) — Pgrs. Thus, we decide N; based on this approximation. If w(X;) — Pgrs <0, we assign N; = 1,
to ensure the unbiasedness of Pgrg in . We note that such approximation of N; would not substantially
affect the performance of SIS because our numerical study results in Section[4 and other SIS implementation
results in [23] suggest that SIS is rather insensitive to the ratio of m to n, which determines the magnitude

of order of N;.
3.2. Aggregated Failure Probability Estimation

We aggregately use the samples obtained in all of the CE iterations. Instead of Pgrs in , we compute

the failure probability estimator ps(*tf)s using all the aggregated data up to iteration t:

g 1 Y Y f (X(‘S)>
50 _ (s) i
Pgrs = P ;) e v Ni(S) ; H(Yij > l) q<X(S)~é(s)> , (23)

where XES) is the i*" random input at iteration s, m(*) is the number of XES) drawn at iteration s, and NZ-(S)

is the number of simulation runs at each Xl(.s).
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The idea of data aggregation leads to the aggregated CIC formulation for stochastic simulation models
as follows:

Ity (d) = €L (6) + KUy -2

SIS Zt—l m(é) ’ (24)

where the CE estimator C_étl_;)(é) and K étj_sl) are calculated using all the aggregated data up to iteration

(t—1):

(4 A 1 2 s s) Als)
Cgtzsl)(e) =TT, ) Z Z A(XP)yw(X{"; 0

: )logg (XES); é) . (25)
2mom® 35S

Noting that Kg;sl ) in is an unbiased DIS estimator of the failure probability, we similarly set

S(t—1) | Bt—1
Kéfs ) = P:E*Is ). (26)

3.3. Summary of the Proposed Method (CE-SIS) and Implementation Guideline

For the EM initialization, the grid search of the optimal number of mixture components k(*)*, the stopping
criteria of the EM algorithm to minimize the quantity égggl) (é) in , and whole division of the replication
allocation Ni(t)7 we follow the same procedures in [38]. The details of implementation are provided in
Appendix 2.

We propose the CE-SIS pseudo-code in Algorithm

INPUT:

(0)

o Initialize the GMM q(x; 0 ) for the first iteration (e.g., GMM with k& = 1 and the identity covariance

matrix).

« Given a simulation budget, n, we pick the actual simulation runs at each iteration, n*), such that

S7_on® =n, where 7 denotes the total number of CE iterations.

« Fix the number of X values to draw, m®), for each iteration ¢ > 1 such that, for example, m® =~ 0.3n(*),
as adopted in [23]. According to [23], SIS should be generally insensitive to the ratio % Note that
at the first iteration ¢ = 0, we set m(9) = n(® or equivalently Ni(o) = 1, to explore the input space as

much as possible.

Figure[l]shows the evolution of the sampling density of X over iterations t = 0,1, 3,6, 9, 10 in a numerical
example in Section 4| The CE-SIS density (in green dash-dotted line) converges to the optimal SIS density
gsis in (in red dashed line) over iterations. At ¢ = 0 in the pilot run, X is sampled from a uniform
distribution (—5,5), instead of a GMM, to reflect no knowledge of important region in the example. After
about 6 iterations, the GMM starts picking up the important region effectively.

11



Algorithm 1 Approximating the optimal IS density for SIS

t=0
while ¢t < 7 do
if t =0 then
N9 =1forie{1,..., mO}
foric{1,...,m®} do
Sample XEO) from g(x; é(o)), an initial GMM

Generate the data using the simulator: D = D) = {(Xl(-o), Yl(lo))}

end for
Compute pg})s in
else
for ke {9 .. k) do
Using EM: é(t)(k) = argming .\ e (a(k)) éétf_sl)(é(k)) in

Let K7 (k) = PS75 (k) in
Compute CICg}S(d(k)) in
end for
Pick k®* = argmin, CICY) ;(d(k))
0" — o(kv)
foric{1,...,m®} do
Sample th) from g(x; é(t )
Compute \/{w(th)) — Pb(fl_sl)] .
end for

foric{1,...,m®} do

)

(t) p(t—1)
[“’(Xi )—Psrs ]+

Compute Ni(t) = maz | 1, (round)n® (D)

Ty [ =PV

+
end for
foric {1,...,m®} do
for j € {1,.. .,Ni(t)} do
Generate the data using the simulator: D®) = {(th), Ylgt))}
end for
end for
Aggregate data: D = UZ:O D)
Compute Pétl)s in
end if
t+—t+1

end while

12



Density

(a) Initial pilot sample: Uniform (—5,5). (b) 1st iteration: 4 GMM components.

Density

(c¢) 3rd iteration: 7 GMM components.  (d) 6th iteration: 6 GMM components.

Density
Density

(e) 9th iteration: 8 GMM components. (f) 10th (& final) iteration: 9 GMM com-

ponents.
Figure 1: Evolution of the CE-SIS density (in green dash-dotted line) that converges to the optimal SIS
density gsrs in (in red dashed line) within one simulation experiment for Cannemela example in Section
where the failure probability is 0.01 and the original input density f (in black solid line) is the standard

normal density.

(0
Algorithm [l assumes that the user of the algorithm can set an initial GMM q(x;B( )) such that the
mass of the density well covers potential failure regions. It ensures that the failure probability estimator
Pg})s at iteration 0 is non-zero with a sufficiently large m(®). If the user has no knowledge of potential

failure regions, the user can adapt the algorithm by adopting the multilevel CE procedure widely used in the
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literature [40] [41]. Specifically, the failure threshold level [ can be adjusted over iterations so that the failure
probability estimator can remain non-zero for the series of thresholds which approach the target threshold
[ over iterations. To keep Algorithm [I] simple and convey the main idea of the proposed method, we do
not present a multilevel-procedure algorithm, but we refer an interested reader to the following references
[40, @1].

The total number of CE iterations, 7, is set based on the simulation budget n = >_;_, n(*) that a user can
afford. However, the user can exercise the freedom to stop the algorithm early, for example, if the estimated
variance of the failure probability estimator in is small enough compared to the probability estimate
(e.g., the coefficient of variation is 20% or less). The user can use a consistent estimator of the variance
derived in [5]. On the other hand, if the user realizes that a larger 7 is needed to reduce the coefficient of
variation, then the algorithm can be set to continue to the next iteration.

At any iteration ¢ in Algorithm kfril)n can be always set to be 1 and k,(flzlx can be always set to be
the maximum number that yields the maximum dimension d of the parameter 8. Specifically, recall that
d is equal to (k — 1) + k(p + p(p + 1)/2) for a GMM with k components, where p denotes the dimension
of the input X. To estimate @, the total sample size n should be at least d, that is, n > d. Because

E=(d+1)/(p+plp+1)/2+1), we can set kS to be (n+1)/(p+plp+1)/2+1). In practice, the grid
(t)

search over k € {k,i.,---, k:r(fl)ax} to minimize CICg} 5(d(k)) does not require increasing k up to k.. For
algorithmic efficiency, we take a heuristic approach from [38] that uses the moving average (with the window
size of four) of the CIC to stop increasing k when the moving average starts to increase.

In practice, the major computational cost of Algorithm [Iflies in running the (high-fidelity) simulator to
obtain Yig.t). Compared to this cost (e.g., roughly 1 minute per run in our case study), the running times
of iterative procedures in the algorithm are negligible. For example, running the EM algorithm, minimizing

the CIC, and computing Ni(t), 1,...,m® in each iteration take seconds.

4. Numerical Studies

In this section, we conduct extensive numerical studies to investigate the performances and sensitivities
of the CE-SIS algorithm with respect to five aspects: target failure probability to estimate (Table {f), ™
ratio (Table , distribution of univariate input X (Table , dimension of multivariate input X (Table ,
and standard deviation of Y|X (Table 4)). We use two numerical examples from the literature [5, 24] for
which metamodel-based SIS methods are already applied. Assuming that the data-generating processes are
unknown, we compare the performance of the CE-SIS algorithm with the metamodel-based approaches.
Alongside we also present the results from the optimal SIS algorithm (using the optimal density in and
the allocation in @) that utilizes the full knowledge of the data-generating processes (e.g., the conditional

probability s(X) =P > 1] X)).
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4.1. Cannamela Example: Univariate Input
As a numerical example with the univariate input X, we use an example from [23] that modified a
deterministic simulation model example originally from Cannamela et al. [42] into a stochastic simulation

model example. Its data generating structure is as follows:
X ~N@O1),  YIX ~N(u(X),0%(X)),
where the mean and the standard deviation are:

1(X) = 0.95X% (1 +0.5cos(5X) + 0.5 cos(10X)),

o(X)=140.7|X| 4 0.4cos(X) + 0.3 cos(14X).

The metamodel-based SIS method in [5] constructs a metamodel of Y|X and uses it to estimate the
conditional probability s(X) =P(Y > 1| X), which is in turn needed to approximate the optimal density in
and the allocation in (6). This metamodel assumes the knowledge that Y'|X follows a normal distribution.
This assumption is strong since such distribution is typically unknown for a stochastic simulation model in
practice. With the distributional assumption, the metamodel approximates the parameters, mean u(X) and
standard deviation o(X) of Y|X, using cubic spline functions of X in the generalized additive model for
location, scale and shape (GAMLSS) framework [43]. An interested reader is referred to [5] for the modeling
details. The metamodel is built using a pilot dataset of 3000 simulation replications and the IS experiment
is based on 10,000 simulation replications. To ensure that both methods use the same simulation budget, for
the CE-SIS method, we use n(9) = 3000 and n® = 1000 for ¢t = 1,...,10. For the pilot/initial data of both
methods, we sample X from the uniform distribution (—5,5) assuming no knowledge of important regions
(akin to an uninformative prior in Bayesian inference).

A performance metric we use is the CMC ratio, which is defined as

CMC ratio =

nemc’
where n is the total number of simulation replications (e.g., 3000 + 10000 for metamodel-based SIS, 3000
-+ 10000 for CE-SIS, and 10000 for the optimal SIS since we do not need to build the metamodel for the
optimal SIS.) and ncpe is the total number of simulation replications required for the CMC simulation to
achieve the same standard error as each method, which is calculated as

P(1-P)
nocMmc = TSEZ
Note that S.E. is the standard error of each method. P is the target failure probability P (Y > 1) we would
like to estimate. The smaller CMC ratio translates to a smaller number of replications used in each row’s
method divided by the number of replications necessary for CMC in to achieve the standard error in the

row, which means better computational saving for the same accuracy level.
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We determine the threshold I for the target failure probability P (Y > ) using a large-scale Monte Carlo
simulation (with 107 replications) so that [ yields the target failure probability.
The simulation experiment is repeated 500 times to obtain the results. Using this example, we study

performances of the CE-SIS algorithm with respect to the following three aspects:
o Target failure probability P (Y > {): 0.01,0.001,0.0001 in Table

o % ratio: 0.1, 0.3, 0.5, 0.7, 0.9 in Table E} Recall that m is the number of distinct X values and n is

the total number of simulation runs.
o Distribution of X:

— Normal distribution with mean 0 and standard deviation 1,
— t-distribution with the number of degrees of freedom (df) equal to 5 or 10,

— Weibull distribution with scale parameter of 1 and shape parameter of 1 or 1.5

in Table @l Both non-normal distributions have heavier tails than the normal distribution, especially

heavier when df is 5 for the ¢-distribution and the shape parameter is 1 for the Weibull distribution.

As shown in Table ] CE-SIS provides significant computational saving over CMC. The saving is larger
when we estimate the probability of a rarer event, as expected of an IS scheme [23]. However, the CE-SIS
underperforms the metamodel-based approach, which assumes the knowledge of the conditional distribution
of Y|X. We remark that the performance of metamodel-based SIS can be made arbitrarily better or worse
by changing the metamodel. For instance, if the metamodel of s(X) is a constant over X (i.e., no knowledge
of which region is more important), then the metamodel-based SIS density (see (F])) reduces to the original
input density f so that the performance of SIS becomes equal to that of CMC. Thus, we instead use a
good metamodel from the literature and present the result as a point of reference. In reality, the underlying
data-generating distribution is unknown and likely much more complex, rendering the construction of a good
metamodel difficult, especially when the pilot sample size is limited. In contrast, the CE-SIS method can
automatically and conveniently yield a good SIS density.

From Table [d] and Table [4] it is also observed that the CE-SIS method is generally robust to different
¢ ratios and distributions of X, in comparison to the metamodel-based SIS. The marked exceptions occur
when the original input density f is highly heavy-tailed: ¢(df = 5) and Weibull(1,1). Such large standard
errors and CMC ratios are expected because the optimal SIS density in is proportional to f and thus
heavy-tailed for the given f. Any GMM (i.e., a finite mixture of Gaussian distributions) cannot model
heavy-tailed distributions by definition of heavy-tailedness. A good news is that in practice, users of the
CE-SIS algorithm always know whether f is heavy-tailed or not. Thus, they can work around the issue (e.g.,

use a mixture of heavy-tailed distributions such as t distributions).
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Table 1: Comparison between CE-SIS, metamodel-based SIS, and optimal SIS with respect to different target probability

m

P (Y > 1) to estimate. 7 ratio is fixed at 0.3. The results are based on 500 experiments.
P(Y >1) Threshold ! Method Mean S.E. CMC Ratio

0.010000 9.13 CE-SIS 0.009984  0.000391 20.08%
Metamodel ~ 0.010007  0.000292 11.20%
Optimal SIS 0.009994  0.000229 5.30%
0.001000 14.60 CE-SIS 0.001001  0.000097 12.27%
Metamodel  0.001001  0.000031 1.22%
Optimal SIS  0.001000 0.000023 0.51%
0.000100 24.29 CE-SIS 0.000100  0.000005 0.35%
Metamodel  0.000100 0.000001 0.01%
Optimal SIS 0.000102  0.000002 0.02%

Table 2: Comparison between CE-SIS, metamodel-based SIS, and optimal SIS with respect to different % ratios. The target
probability P (Y > I) to estimate is fixed at 0.01. The results are based on 500 experiments.
T ratio  Threshold [ Method Mean S.E. CMC Ratio

n

0.1 9.13 CE-SIS 0.009975  0.000371 18.09%
Metamodel  0.010013  0.000338 15.02%
Optimal SIS 0.010015 0.000234 5.52%
0.3 9.13 CE-SIS 0.009984  0.000391 20.08%
Metamodel  0.010007  0.000292 11.20%
Optimal SIS  0.009994 0.000229 5.30%
0.5 9.13 CE-SIS 0.009979  0.000493 31.93%
Metamodel  0.010014 0.000213 5.93%
Optimal SIS  0.009980 0.000233 5.48%
0.7 9.13 CE-SIS 0.009993 0.000357 16.70%
Metamodel  0.010009 0.000215 6.07%
Optimal SIS 0.009992 0.000237 5.65%
0.9 9.13 CE-SIS 0.009966  0.000495 32.13%
Metamodel  0.009998  0.000206 5.58%
Optimal SIS 0.010022 0.000231 5.37%
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Table 3: Comparison between CE-SIS, metamodel-based SIS, and optimal SIS with respect to different distributions of X. The

m

target probability P (Y > [) to estimate is fixed at 0.01. - ratio is fixed at 0.3. The results are based on 500 experiments.
X Distribution Threshold [ Method Mean S.E. CMC Ratio

N(0,1) 9.13 CE-SIS 0.009984  0.000391 20.08%
Metamodel  0.010007  0.000292 11.20%
Optimal SIS 0.009994  0.000229 5.30%
t(df =5) 16.97 CE-SIS 0.009457 0.001477 286.28%
Metamodel  0.009991  0.000076 0.77%
Optimal SIS 0.009995  0.000097 0.95%
t(df = 10) 12.02 CE-SIS 0.010002  0.000377 18.64%
Metamodel  0.010005 0.000132 2.30%
Optimal SIS 0.010002  0.000121 1.48%
Weibull(1,1) 23.57 CE-SIS 0.008840 0.001883 465.66%
Metamodel  0.010002 0.000108 1.52%
Optimal SIS 0.009999  0.000057 0.33%
Weibull(1,1.5) 10.38 CE-SIS 0.009964 0.000268 9.41%
Metamodel  0.009994  0.000195 4.99%
Optimal SIS 0.010000  0.000146 2.15%
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4.2. Ackley Example: Multivariate Input

As a numerical example with the multivariate input X = (Xi,...,Xy) € R? we use an example from

[24] that modified an example in Ackley [44] as follows:
X ~N(0,I), YX~NwX),1),

where the mean is:
/1 1<
2
u(X) =20 <1 — exp (—0.2 p 1X]] >> + <exp(1) — exp (d ZE:I Cos(27rXi)>> .

For the construction of a metamodel, we adopt the same metamodel-based approach in [24] that fits
a logistic regression model on a pilot dataset to estimate s(X) = P(Y > 1| X). However, their model
so(X) = (1+ 690+91X1+'“+9dxd)_1 considers only linear terms of X = (Xj,...,Xy) and cannot well model
s(X) that has a symmetry with respect to the origin (see u(X)). Accordingly, the resulting metamodel-
based SIS tends to yield the standard error as large as CMC [24]. Thus, assuming the knowledge of the
symmetric structure, we add quadratic terms of X in the logistic regression model as follows: sy(X) =
(1 + ea(’“’lX1*92)(%*'“*9”*1)(”9”)(3)_1. The model parameter vector 6 is estimated using least-square
fitting as in [24].

To conduct simulation experiments, we use essentially the same setup as in Cannemela example in the
previous subsection. That is, we determine the failure threshold [ using a Monte Carlo simulation (with 107
replications). We use the same simulation budget for both methods: the metamodel-based SIS uses the pilot
sample of size 3000 and the IS sample of size 10,000; the CE-SIS method uses n(?) = 3000 and n") = 1000
for t =1,...,10. For the pilot/initial sample of both methods, we generate X from the uniform distribution
over the d-dimensional hypercube (—5,5)¢. The simulation experiment is repeated 500 times to obtain the
results. Using this example, we study performances of the CE-SIS algorithm with respect to the following
two aspects:

 Dimension d of X: 1,2,4 in Table [d
o Standard deviation o of Y|X: 1,2,4 in Table

Table [4] shows, as expected, all SIS methods perform worse as the dimension d of X and the standard
deviation o of Y|X get larger. These results echo the existing knowledge from the literature. Specifically, it
is known that when d increases, IS suffers as it becomes difficult to narrow down the important region [45].
Also, when o is larger, it is known that the greater randomness within the stochastic simulation model makes
SIS perform worse [23]. An interesting finding is that CE-SIS performs better than the metamodel-based

SIS when d and o are small. But, as d and o get larger, inferring the data-generating structure from data
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Table 4: Comparison between CE-SIS, metamodel-based SIS, and optimal SIS with respect to different dimension d of X and
standard deviation o of Y|X. The target probability P (Y > [) to estimate is fixed at 0.01. - ratio is fixed at 0.3. The results
are based on 500 experiments.

Parameter  Threshold [ Method Mean S.E. CMC Ratio

d=1,0=1 10.27 CE-SIS 0.009940  0.000334 14.65%
Metamodel  0.009928  0.000523 35.96%
Optimal SIS 0.009986  0.000215 6.06%
d=1,0=2 11.43 CE-SIS 0.009982  0.000664 57.97%
Metamodel ~ 0.009983  0.000808 85.65%
Optimal SIS 0.009948  0.000434 24.68%
d=1,0=4 14.98 CE-SIS 0.009998  0.000915 109.82%
Metamodel  0.010041  0.000879 101.56%
Optimal SIS  0.010069 0.000762 76.30%
d=20=1 9.37 CE-SIS 0.009957  0.000634 52.74%
Metamodel  0.010039 0.000616 49.76%
Optimal SIS 0.009999  0.000301 11.90%
d=2,0=2 10.86 CE-SIS 0.009967  0.000759 75.64%
Metamodel ~ 0.010002  0.000839 92.45%
Optimal SIS 0.009957  0.000623 51.03%
d=2,0=4 14.85 CE-SIS 0.010028 0.001332 232.84%
Metamodel ~ 0.010054  0.000977 125.38%
Optimal SIS 0.009999  0.000833 91.22%
d=4,0=1 8.70 CE-SIS 0.010025  0.000750 73.87%
Metamodel ~ 0.010004 0.000705 65.22%
Optimal SIS  0.009992 0.000451 26.65%
d=4,0=2 10.48 CE-SIS 0.009839 0.001679 370.05%
Metamodel ~ 0.009922  0.000956 120.10%
Optimal SIS 0.009945 0.000780 79.84%
d=4,0=4 14.76 CE-SIS 0.009372  0.003848  1944.85%
Metamodel ~ 0.010009  0.001022 137.24%
Optimal SIS 0.009986  0.000904 107.21%
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becomes harder for the CE-SIS algorithm, so that the metamodel-based SIS performs better as it uses the
partial knowledge of the data-generating structure (i.e., symmetry with respect to the origin).

We hope that the numerical studies here provide informative demonstration of the advantages and limi-
tations of the CE-SIS method. This metamodel-free approach generally performs well in comparison to the
metamodel-based approaches that assume partial knowledge of the data-generating structure. But, a user
should be careful when a) the original distribution of input X is heavy-tailed, b) X is multivariate, or c¢) the

conditional distribution of Y|X is suspected to have generally large variances across X.

5. Case Study

This section presents an application of the CE-SIS method to the case study on wind turbine reliability
evaluation. We compare the performance between the CE-SIS method and the metamodel-based method
[23], using the same CMC ratio metric in Section

The reliability of a wind turbine is subject to stochastic weather [46]. To incorporate the randomness
into the reliability evaluation of a turbine design, the international standard, IEC 61400-1 [47], requires
the turbine designer to use stochastic simulations. The reliability of a wind turbine is typically evaluated
using computationally expensive aerodynamic simulators (each simulation run takes roughly 1 minute on a
typical PC available nowadays) developed by the U.S. National Renewable Energy Laboratory. Specifically,
TurbSim is used to generate a 3-dimensional time-marching wind profile, and FAST is used to simulate a
turbine’s structural load responses [23], 48] [49]. Each simulation represents a 10-min simulated operation of
the turbine. The national lab acknowledges the computational challenges in using the stochastic simulations
and makes efforts to accelerate the simulation experiment [25] 50]. We adopt the identical simulation setup
used in the national lab’s benchmark simulation experiment in [5I]. An interested reader is referred to [51]
for details of the simulation setup, as it involves long technical specifications of the wind profile and the wind
turbine design.

We are interested in estimating the probability of a failure event which is defined as the bending moment
at a wind turbine’s blade root exceeding a specified threshold. In particular, we study two bending moment
types: edgewise bending moment (which is parallel to the blade edge) and flapwise bending moment (which
is perpendicular to the blade plane) (see Figure [2)). We estimate the probability that a bending moment
exceeds a threshold [, where [ = 8,600 kNm for edgewise bending moment and [ = 13,800 kNm for flapwise
bending moment, both of which occur with around 5% probability.

The input wind speed, X, is drawn from the truncated Rayleigh density [23| [62] defined as:

B fr(7)
1@ = Flwon) — Fr@m)’

where fr is the untruncated Raleigh density with the shape parameter, 104/2/7, and Fg is the corresponding
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Flapwise

Edgewise

Figure 2: Diagram of a wind turbine blade where the directions of edgewise and flapwise bending moments

are indicated at the blade root.

cummulative distribution function. The cut-in and cut-out wind speed are x;;, = 3 m/s and xy,r = 25 m/s,
respectively, denoting the range of wind speeds for which a wind turbine operates.
In the metamodel-based method in [23], the conditional probability s(X) =P(Y > | X) is approximated

using a nonhomogenous Generalized Extreme Value (GEV) distribution:

— -1/
PY<y|X=z)= eXp<—(1+f(y(,(“;)x))) 1§>’ for £ #£0 o
exp <_ oxXp (_%ﬂﬁ()@)> ) otherwise,

where u(z) and o(x) are the location and scale parameter functions, respectively, modeled with cubic smooth-
ing spline functions under the GAMLSS framework. The shape parameter £ is fixed as a constant, with
estimated value £ = —0.0359 (—0.0529) for the edgewise (flapwise) case. The goodness-of-fit of the GEV
distribution is tested using the Kolmogorov-Smirnov test. The metamodel is built using a pilot sample of
600 simulation replications and in addition, the metamodel-based method uses 1000 (2000) replications for
the failure probability estimation for edgewise (flapwise) bending moment.

In the CE-SIS method, we allocate the same simulation budget as the metamodel-based method. We use
n(® =600 and n® = 100 (200) for t = 1,...,10 for the edgewise (flapwise) case.

Table [5] compares the results based on 50 repetitions of each method. The CE-SIS method has slightly
smaller (larger) standard error than the metamodel-based method for the edgewise (flapwise) bending mo-
ment. Accordingly, both methods save the similar level of computational resource compared to CMC, as
indicated by the CMC Ratio. In the metamodel-based method, the metamodel is carefully built by fitting

a nonhomogeneous GEV distribution to the pilot data. We can see that the performance of the CE-SIS
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method is comparable to that of the metamodel-based SIS with a high quality metamodel. Note that since
CE-SIS is an automated method, it can be particularly helpful when building a metamodel is difficult. We
also observe that the computational saving in the edgewise case is more substantial than the flapwise case.
This is because the approximated SIS density is not very different from the original density in the flapwise
case (this phenomenon is first observed and discussed extensively in [23], to which an interested reader is
referred). Nevertheless, we see that the CE-SIS method, without requiring domain knowledge about the

underlying process, can still capture this information satisfactorily.

Table 5: Comparison between the metamodel-based SIS and the CE-SIS method for the case study
Response Method Mean S.E. CMC Ratio

Edgewise Metamodel 0.0486 0.0018 7.0%
CE-SIS 0.0486 0.0015 4.9%
Flapwise Metamodel 0.0514 0.0028 32%
CE-SIS 0.0535 0.0030 37%

6. Conclusion

We propose a method called the cross-entropy based stochastic importance sampling (CE-SIS) which
can efficiently construct an importance sampling density for a stochastic simulation model. The CE-SIS
method uses an EM algorithm to minimize the estimated cross-entropy from a candidate IS density to the
optimal IS density while penalizing the model complexity concurrently. The method automatically refines
the estimated IS density, thus not requiring the specific domain knowledge for building a metamodel, which
is often difficult or time-consuming in practice. We focus on a candidate IS density expressed as a Gaussian
mixture model, which is both flexible and computationally efficient, while the extension to other mixture
models is possible. The application of the cross-entropy information criterion allows a sound choice of the
mixture model complexity for the CE-SIS method. By aggregating all the data from previous iterations
and effectively allocating the number of replications at each input value, the CE-SIS method utilizes the
available information efficiently under a given simulation budget. The numerical studies and case study show
the advantages and limitations of the CE-SIS method in comparison to the metamodel-based SIS and crude

Monte Carlo simulation.
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Appendix 1: Approximation of IV;

We seek an asymptotic approximation of the optimal allocation size,
n(1—s(X,;))
1+(n—1)s(X;)

n )
m (1—s(%,)
Zj:l IZ(nfl)s(JXj)

N; =

First, we show s(X;) ~ ﬂs)’f). For a large n > max[; (1 — s(X;))/s(X;), we can approximate

1 1
asrs(X0) = 100 [ Lo (1 %) + X
. n

1 2

~ — f(X; X;
£ I X3
1) s(X,)

== i) (A
Cq

for any 4 = 1,..., m. This asymptotic approximation may be not good for some N; if s(X;) is close to zero.

However, in that case, ¢(X;) is small too, and such X; is unlikely to be sampled in the first place. Therefore,

we can approximate

X,
c gsrs(Xi)

s(X) X))

Q

where the second approximation is based on the fact that the estimated IS density approximates the optimal
density.

Furthermore, for a large n > max!", (1 — s(X;))/s(X;), we can also approximate

n

~ / £(x) \/13()() (1= 5(x)) + s(x)* dx
{x: s(x)>1/(n+1)} n

~
~

1 2
Cq = v, fx) \/S(X) (1= s(x)) + s(x)” dx

f(x) s(x) dx

/{x: s(x)>1/(n+1)}

~ Psrs,

where X is the support of f. Thus, it follows that
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Therefore, for a large n,

o ’LU(XZ) _pS]S.

Although it does not happen frequently, if w(X;) — Pgrg < 0, then we set the corresponding N; as 1, the

smallest allocation possible to maintain the unbiasedness of the SIS estimator.

Appendix 2: Implementation details of the CE-SIS algorithm

Since the EM algorithm will lead to a local optimum for non-convex problems, we use 10 random initial-
izations of @ and choose the best minimizer @ of (fgl_;)(é) in to reduce the impact of initial guess of 8
on the algorithm’s performance [53].

By monitoring the condition numbers of the Gaussian components’ covariances [53], the number of
components k can also be controlled to prevent over-fitting issue within the EM algorithm. We choose a
singularity threshold of 10° for the covariance matrix. Exceeding the threshold will signify an ill-conditioned
matrix. If more than a half of the 10 initializations observe ill-conditions, we stop the EM algorithm and
consider k.« is reached for that iteration.

Checking the convergence of the EM algorithm is through monitoring the reduction of (fgl_;)(é) in .
In the numerical studies in Section [] iterating the updating equations in the EM algorithm is stopped if the
reduction of (fg;;)(é) is less than 1% or a specified maximum number of iterations is reached.

)

For the Ni(t) allocation at each iteration ¢, we round the calculated Ni(t to the nearest integer and we set

N i(t) = 1 if the rounding leads to 0 (see Algorithm. The positive or negative difference between Z;Zl Ni(t)

and n® due to the rounding is distributed across the Ni(t) ’s sequentially to make sure we strictly stay within

the simulation budget at each iteration. Note that SIS is generally insensitive to variations of NZ-(t)’s7

shown in Table [4 and reported in [23].
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