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Abstract

To efficiently evaluate system reliability based on Monte Carlo simulation, importance sampling is used

widely. The optimal importance sampling density was derived in 1950s for the deterministic simulation

model, which maps an input to an output deterministically, and is approximated in practice using various

methods. For the stochastic simulation model whose output is random given an input, the optimal impor-

tance sampling density was derived only recently. In the existing literature, metamodel-based approaches

have been used to approximate this optimal density. However, building a satisfactory metamodel is often dif-

ficult or time-consuming in practice. This paper proposes a cross-entropy based method, which is automatic

and does not require specific domain knowledge. The proposed method uses an expectation–maximization

algorithm to guide the choice of a mixture distribution model for approximating the optimal density. The

method iteratively updates the approximated density to minimize its estimated discrepancy, measured by

estimated cross-entropy, from the optimal density. The mixture model’s complexity is controlled using the

cross-entropy information criterion. The method is empirically validated using extensive numerical studies

and applied to a case study of evaluating the reliability of wind turbine using a stochastic simulation model.

Keywords: Monte Carlo, variance reduction, mixture model, cross-entropy information criterion

1. Introduction

Many computer simulation models can be generally categorized into deterministic simulation models and

stochastic simulation models. In a deterministic simulation model, the simulator will produce a fixed output

for the same input values. In this paper, we focus on stochastic simulation models. Due to extra stochastic

elements in the simulation model, given a fixed input value, the output is a random variable representing

the outcome of the simulation. Despite its flexible modeling capacity, stochastic simulation models can be

more complex and computationally costly to generate a simulation outcome.
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One of the applications of Monte Carlo simulation is to compute an estimator of a system’s expected

output. In Monte Carlo simulation, one draws inputs from a suitable probability distribution, calculates the

output, and repeats the process multiple times to obtain different outputs. The estimate of the expected

output can be the average of those simulated outputs. Monte Carlo simulation is widely used with both

deterministic simulation models and stochastic simulation models. As the computing power advances over

the past decades, the reliance on Monte Carlo simulation has increased in various engineering disciplines.

Particularly in reliability engineering, Monte Carlo simulation is widely used to study the behavior and

reliability of a system, often through estimating its failure probability.

However, the reliability evaluation based on Monte Carlo simulation remains challenging. The more

closely the simulation model mimics the real system, the more computationally expensive each simulation

run is. Moreover, highly reliable systems such as wind turbines or nuclear reactors require many simulation

replications to encounter a rare event of interest such as a system failure, which translates to further demand

for computational resources [1]. These challenges are exacerbated with stochastic simulation models, which

often have to be run multiple times at the same input value. These challenges highlight the importance of

improving computational efficiency of the reliability study with stochastic simulation models.

Among techniques to speed up Monte Carlo simulation in rare event probability estimation, also known

as variance reduction techniques, importance sampling (IS) is one of the most promising methods [2, 3],

especially with deterministic simulation models [4]. IS can boost the simulation efficiency by reducing the

number of required simulation runs to achieve a target variance of failure probability estimator [5, 6]. IS

methods are also used with stochastic simulation models in various applications, such as finance [7], insurance

[8], reliability [9, 10, 11], communication networks [12], and queueing operations [13, 14, 15].

Variance reduction techniques for stochastic black-box simulation models are relatively few. Most of

existing techniques ‘open up’ the stochastic black-box to gain the simulation efficiency, for example, by

exploiting promising sample paths of underlying stochastic processes or by identifying important conditional

events (e.g., splitting [16, 17, 18], subset simulation [19, 20], and conditional Monte Carlo [21, 22]). The

existing methods that do not open up the stochastic black-box generally rely on importance sampling [23, 24].

In theory, stratification method (or stratified sampling) alone can improve the efficiency, but it is still used

in conjunction with importance sampling in practice for greater efficiency gain [25].

Theoretically, if the inputs are drawn from the optimal IS density, the variance of the probability estimator

will be minimized and we can save the most computational cost. However, the theoretically optimal IS density

is generally not implementable in practice and often necessitates some approximations such as a metamodel-

based method [23, 26, 27] or the cross-entropy (CE) method [28, 29]. Metamodel-based IS aims to represent

the original high-fidelity, but black-box, simulation model by a surrogate model of which outputs can be

more efficiently computed. From the surrogate model, the optimal IS density can be approximated to reduce
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the variance of the failure probability estimator [30]. From another perspective, CE-based IS aims to find

an IS density that is as close as possible to the theoretically optimal IS density, where closeness is measured

by the Kullback-Leibler divergence [28]. The CE method has been widely used for estimating the optimal IS

density with deterministic simulation models. However, to the best of our knowledge, there is no literature

exploring the CE method’s application to stochastic simulation models. Thus, this paper proposes a novel

method called the cross-entropy based stochastic importance sampling (CE-SIS) to approximate the optimal

IS density for stochastic simulation models.

The main contribution of the proposed CE-based method is the automation of approximating the optimal

IS density for stochastic simulation models. In the literature, metamodel-based IS methods are predominant

[23, 24]. The construction of a metamodel of a stochastic simulation model often requires substantial efforts

of engineers and statisticians to appropriately model the additional randomness embedded in the simulation

model. For example, the wind turbine simulation model in our case study uses over 8 million random variables

to simulate 3-dimensional time-marching wind field in each run. It is challenging to build a metamodel to

capture such large uncertainties based on a few hundreds of pilot runs of the simulation model, as detailed in

[23]. As demonstrated in our case study in Section 5, our proposed method achieves comparable estimation

performance without such efforts and resources to build a highly sophisticated metamodel. Also, as discussed

in our numerical studies in Section 4, a poorly constructed metamodel can even substantially undermine the

IS performance. In contrast, the proposed method performs reliably in a wide variety of settings (except for

the cases where the user already knows the method should fail), showing the promise for various applications

in practice.

One challenge of the CE-based IS is the dilemma between parametric and nonparametric representation

of the candidate optimal IS density. In the standard CE method for deterministic simulation models, the

candidate IS density is confined to a parametric family. Some of the popular parametric IS densities are

multivariate Bernoulli and multivariate Gaussian, thanks to their simple random variate generation and

convenient updating formulae for CE minimization. However, parametric IS can be too rigid to capture

the complicated important region and it is often difficult to validate the parametric model assumptions

[31]. Nonparametric approach can offer flexibility to overcome such limitations. One of the most popular

nonparametric density approximation methods is the kernel approach [32]. Besides its flexibility, the kernel

approach also has its own drawback. The probability density model is not as parsimonious as (a mixture

of) parametric density models. This lack of parsimony often makes subsequent inference and analysis of

the resulting model computationally intensive [33, 34]. For stochastic simulation models, the parametric IS

approach needs a strong assumption but the variance of the IS estimator converges to the optimal variance

faster than the nonparametric IS approach [24]. The nonparametric IS approach requires weak assumptions

but the variance reduction rate is not as fast as the parametric IS approach [24]. To achieve a good balance
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between flexibility and efficiency in the CE-SIS method, we express the candidate IS density for stochastic

simulation models using a mixture of parametric distributions. We particularly focus our study on the

Gaussian mixture model due to its flexibility to model a smooth distribution.

The proposed method is validated with extensive numerical studies and a case study on wind turbine

reliability evaluation. In the case study, our method is benchmarked against a state-of-the-art metamodel-

based IS method in the literature. Approximating the optimal IS density automatically without relying

on expert domain knowledge (which is often necessary for metamodel construction), the CE-SIS method

demonstrates comparable results. This shows the advantage of the CE-SIS method in situations when

building a high-quality metamodel is difficult or time-consuming; the CE-SIS method would conveniently

provide substantial computational saving potentially more than metamodel-based methods.

2. Background

The crude Monte Carlo (CMC) method samples the input, X ∈ Rp, from a known probability density

function, f(x) [2] . From the input X, a simulator generates the output, Y ∈ R. If the simulation model

is deterministic, Y is a deterministic function of X, i.e., Y = g(X). For the stochastic simulation model, Y

is stochastic for a given X. Due to the random vector ϵ within the simulation model, it generates different

outputs Y even at a fixed input X.

In reliability engineering, a quantity of interest is the so-called failure probability, P (Y > l), where l is a

pre-specified threshold on a system that fails if Y exceeds l. Note that any failure event set can be expressed

as {Y > l} using a transformation. To estimate the failure probability, the following CMC estimator is most

commonly used,

P̂CMC = 1
n

n∑
i=1

I (Yi > l) , (1)

where n is the total number of simulation replications, and I (Yi > l) is an indicator function that takes value

of 1 if Yi > l and value of 0, otherwise. The estimator in (1) is an unbiased estimator for P (Y > l). For

the deterministic simulation model, the failure probability is equivalent to Ef [I (g(X) > l)], where I(·) is the

indicator function and the subscript, f , appended to the expectation operator, E, denotes that the expecta-

tion is taken with respect to f , the density from which X is drawn. For the stochastic simulation model, the

failure probability is the expectation of the conditional failure probability, expressed as Ef [P (Y > l | X)].

In a highly reliable system, the failure probability can be very low. It may take many simulation runs

until a failure occurs. In some cases, each simulation run can be computationally very expensive. In order

to obtain a good estimator of the failure probability, the number of simulation runs can be large. To save

the computational resource, IS changes the sampling distribution of X from f(x) to another distribution

q(x) that makes the failure events more likely. Sampling X from q(x) makes the estimator in (1) no longer

unbiased.
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For the deterministic simulation model, to make the failure probability estimator unbiased, the IS esti-

mator becomes

P̂DIS = 1
n

n∑
i=1

I (Yi > l) f(Xi)
q(Xi)

, (2)

where Xi, i = 1, . . . , n, is sampled from q(x) instead of f(x) [2]. Yi is the output from the simulator

corresponding to the input Xi. The variance of P̂DIS is minimized if X is sampled from the optimal IS

density [4]

qDIS(x) = I (g(x) > l) f(x)
P(Y > l) . (3)

Here, the indicator function I (g(x) > l) can be evaluated only by running the simulator since the function

g(x) is unknown. The denominator P(Y > l) is the unknown quantity that we want to estimate. Thus, qDIS

is not implementable in practice, and approximation of qDIS is required. As mentioned above, for the

deterministic simulation model, the optimal IS density can be approximated using methods such as the

metamodel-based method (e.g., by building a metamodel of g(x) or I (g(x) > l) to construct a parametric

or nonparametric IS density) and the CE method (e.g., by finding a parametric IS density close to qDIS in

terms of CE). Hereafter, we call the IS method for a deterministic simulation model DIS.

For the stochastic simulation model, to capture the extra randomness, the unbiased IS estimator becomes

P̂SIS = 1
m

m∑
i=1

⎛⎝ 1
Ni

Ni∑
j=1

I
(

Y
(i)

j > l
)⎞⎠ f(Xi)

q(Xi)
, (4)

where m is the number of distinct input Xi at which the stochastic simulation model is run Ni times to obtain

the outputs, Y
(i)

j , j = 1, . . . , Ni. Thus,
∑m

i=1 Ni is equal to the total number of simulation replications, n.

Such Ni replications at the same Xi value capture the additional randomness ϵ within the simulation model.

Hereafter, we call the IS method for a stochastic simulation model SIS.

Similar to DIS, the variance of P̂SIS is desired to be as small as possible. Minimizing the variance requires

two steps [23]:

(a) sampling X from

qSIS(x) = 1
Cq

f(x)
√

1
n

s(x) (1− s(x)) + s(x)2
, (5)

where s(x) is P(Y > l | X = x) and Cq is the normalizing constant; and

(b) allocating replications to Xi by

Ni = n

√
n(1−s(Xi))

1+(n−1)s(Xi)∑m
j=1

√
n(1−s(Xj))

1+(n−1)s(Xj)

, i = 1, . . . , m. (6)
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Since the conditional probability, s(x), is unknown in practice, the IS method for a stochastic simulation

model requires the approximation of s(x), qSIS , and Ni. This paper will focus on how the CE method can

be extended to approximate qSIS . In the next subsection, we first review how the CE method is applied to

approximate qDIS .

2.1. CE Method for DIS

The CE method is originally developed to find the density that best approximates the optimal density

of DIS [28]. The standard parametric CE method limits the search space for the optimal IS density q∗(x)

to a pre-specified parametric family (e.g., Gaussian, Poisson, gamma, etc.), {q(x; θ) : θ ∈ Θ(d) ⊂ Rd}, and

seeks the density q(x; θ∗) that is closest to the optimal density q∗(x). The closeness is measured by the

Kullback-Leibler divergence [28],

D(q∗(x), q(x; θ)) =
∫

q∗(x) ln q∗(x) dx−
∫

q∗(x) ln q(x; θ) dx. (7)

This quantity is always non-negative and takes zero if and only if q∗(x) = q(x; θ) almost everywhere. Thus,

minimizing D(q∗(x), q(x; θ)) over θ ∈ Θ leads to q(x; θ∗) = q∗(x) if q∗ belongs to the same parametric

family as q(x; θ∗).

Minimizing D(q∗(x), q(x; θ)) in (7) over θ is equivalent to minimizing its second term, known as the

cross-entropy (CE)

C(q∗(x), q(x; θ)) = −
∫

q∗(x) log q (x; θ) dx, (8)

because the first term in (7) is a constant over θ. As shown in (3), the optimal IS density can be expressed

as q∗(x) ∝ h(x)f(x), where h(x) is I (g(x) > l) for DIS. The CE method aims to equivalently minimize

C(θ) = −
∫

h(x)f(x) log q (x; θ) dx

= −Ef [h(X) log q (X; θ)]

= −
∫

h(x) f(x)
q (x; θ′) log q (x; θ)q (x; θ′) dx (9)

= −
∫

h(x)w(x; θ′) log q (x; θ)q (x; θ′) dx

= −Eq[h(X)w(X; θ′) log q (X; θ)], (10)

where θ, θ′ ∈ Θ(d), and f(x) is the original density of X. The likelihood ratio f(x)/q (x; θ′) is denoted by

w(x; θ′). Note that the equality in (9) holds under the condition that q (x; θ′) = 0 implies h(x)f(x) = 0.

This condition can be easily satisfied by ensuring that the support of q includes the support of f even if h

is unknown. The condition is always satisfied by the Gaussian mixture model. In practice, the CE method
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finds θ̂ that minimizes the following IS estimator of (10),

C̄(θ) = − 1
n

n∑
i=1

h(Xi)w(Xi) log q(Xi; θ) , (11)

where Xi, i = 1, . . . , n, is sampled from q(x; θ̂
′
). Note that by writing w(Xi), we surpress the notation for

dependence of w on θ̂
′

in (11). Using this IS estimator, the CE method minimizes the CE iteratively:

Step 1. Sample Xi, i = 1, . . . , n, from q(x; θ̂
′
). At the first iteration, q(x; θ̂

′
) can be flexible (e.g., f is

commonly used).

Step 2. Find θ̂ = argminθ∈Θ C̄(θ), where C̄(θ) is in (11).

Step 3. Set θ̂
′
= θ̂ and start the next iteration from Step 1 until some stopping criterion is met.

This procedure iteratively refines q(x; θ̂). However, the refinement is limited, as the parameter search

space, Θ, is restricted by a pre-defined parametric family.

Some studies [33, 34] explore nonparametric approaches to allow greater flexibility on the candidate IS

density than the standard CE method. However, as mentioned before, the flexibility comes with costs:

finding the optimal density [34] or sampling from the optimized density [33] is computationally challeng-

ing. Essentially, the two extremes of the spectrum on expressing the candidate IS density depend on the

relationship between d (the number of parameters in a candidate IS density) and n (the total number of

simulation replications). A candidate IS density can be parametric with d ≪ n or nonparametric with

d ≍ n (i.e., d has the same order of magnitude as n). To bridge the gap between the two extremes, recent

studies [31, 35, 36, 37] consider the mixture of parametric distributions, where d can vary between 1 and n.

This approach is particularly desirable for engineering applications because (a) it can be as flexible as we

want; (b) it is easy and fast to sample from the mixture of parametric distributions; and (c) the mixture IS

density provides an insight into the engineering system (e.g., means of mixture components often coincide

with the so-called ‘hot spots’, where the system likely fails.). Particularly in [38], the candidate distribution

is expressed by the Gaussian mixture model (GMM) and an expectation–maximization (EM) algorithm is

used to minimize the cross-entropy estimator in (11). More recently and independently, another group of

researchers [37] also proposes fundamentally the same EM algorithm to fit a GMM within the CE method.

2.2. Gaussian Mixture Model and EM Algorithm

The GMM of k mixture components takes the following form:

q(x; θ) =
k∑

j=1
αj qj

(
x; µj , Σj

)
, (12)

where the component weights, αj , j = 1, . . . , k, are positive and sum to one. The jth Gaussian component

density, qj , is specified by the mean, µj , and the covariance Σj . Thus, the parameter vector of GMM θ
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denotes (α1, . . . , αk, µ1, . . . , µk, Σ1, . . . , Σk). Since θ is a function of k, the GMM model can be explicitly

written as q(x; θ( k)). For simplicity, we will write the GMM as q(x; θ) unless we should express different

models in terms of k.

To minimize (11), the gradient of (11) with respect to θ is set to zero:

− 1
n

n∑
i=1

h(Xi)w(Xi)∇θ log q (Xi; θ) = 0. (13)

This leads to the updating equations as derived in [36]:

αj =
∑n

i=1 h(Xi)w(Xi)γij∑n
i=1 h(Xi)w(Xi)

, (14)

µj =
∑n

i=1 h(Xi)w(Xi)γijXi∑n
i=1 h(Xi)w(Xi)γij

, (15)

Σj =
∑n

i=1 h(Xi)w(Xi)γij(Xi − µj)(Xi − µj)T∑n
i=1 h(Xi)w(Xi)γij

, (16)

where

γij =
αj qj

(
Xi; µj , Σj

)∑k
j′=1 αj′ qj′

(
Xi; µj′ , Σj′

) . (17)

As the name suggests, the right-hand sides of the ‘updating’ equations (14), (15), (16) involve

θ = (α1, . . . , αk, µ1, . . . , µk, Σ1, . . . , Σk)

either explicitly or implicitly through γij . As such, the updating equations are interlocking with each other

and cannot be solved analytically. Thus, by starting with an initial value for θ on the right-hand sides of the

updating equations, the left-hand sides are computed and plugged back to the right-hand sides iteratively

until the convergence is reached. This optimization procedure is a version of the EM algorithm that alternates

between the expectation step (computing γij) and the maximization step (updating θ).

A common challenge in using GMM to approximate the IS density is balancing between the estimated

model’s KL divergence (a closeness measure between the approximated IS density and the optimal one)

and the model complexity. The studies [31, 35, 36] that consider mixture models point out the difficulty

associated with the choice of the number of mixture components, k. They either assume that k is given

[31, 36] or follow a rule of thumb based on “some understanding of the structure of the problem at hand” [35].

More recently, an effective, but heuristic, clustering algorithm is also used to determine k [37]. Overcoming

the need of picking k a priori when using GMM to approximate the optimal DIS density, Choe [38] proposes

the cross-entropy information criterion (CIC) to select k automatically with a theoretical guarantee (i.e.,

CIC is an asymptotically unbiased estimator of the true cross-entropy).

2.3. Cross-Entropy Information Criterion

In order to balance between the cross-entropy estimate and the model complexity, the CE estimator is

minimized and the model complexity k is concurrently penalized. CIC for deterministic simulation models
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takes the following form:

CIC(t)
DIS(d) = C̄(t−1)

DIS (θ̂) + K̂(t−1)
DIS

d∑t−1
s=0 m(s)

, (18)

where m(s) is the number of input X sampled in iteration s such that we have X(s)
i , i = 1, . . . , m(s). The CE

estimator C̄(t−1)
DIS (θ̂) and K̂

(t−1)
DIS are calculated using all the aggregated data up to iteration (t− 1):

C̄(t−1)
DIS (θ̂) = − 1∑t−1

s=0 m(s)

t−1∑
s=0

m(s)∑
i=1

h(X(s)
i )w(X(s)

i ; θ̂
(s)

) log q
(

X(s)
i ; θ̂

)
(19)

K̂
(t−1)
DIS = 1∑t−1

s=0 m(s)

t−1∑
s=0

m(s)∑
i=1

h(X(s)
i )w(X(s)

i ; θ̂
(s)

). (20)

Note that d = (k − 1) + k(p + p(p + 1)/2) is the dimension of θ̂ and proportional to k, where p denotes

the dimension of the input X. The second term of the CIC in (18) penalizes the model complexity by being

linearly proportional to d. The CIC is an asymptotically unbiased estimator of the cross-entropy (up to

a multiplicative constant) under one key assumption that there exists θ∗ such that q∗(x) = q(x; θ∗), and

several other regularity conditions (see [38] for details) that are similarly required for the Akaike informa-

tion criterion (AIC) [39] to be an asymptotically unbiased estimator of the true log-likelihood. Since for

stochastic simulation models, h(x) is unknown, it has to be estimated through ĥ(x). We will present the

CIC formulation for SIS in the next section.

3. Methodology

This section proposes a model selection solution to the estimation of the optimal IS density for stochastic

simulation models. We use the GMM to express candidates for the optimal density. The CIC will automati-

cally determine the mixture order k of the GMM and control the model complexity. Among different mixture

models, we choose the GMM since it is the most widely used mixture model thanks to its ability to model

any smooth distribution. In general, the proposed CE method is not limited to just the GMM. It can be

extended to other mixture models as long as we can minimize a CE estimator. In the convenient case of the

GMM, an EM algorithm can be applied to estimate the GMM parameters. Moreover, it is computationally

efficient to sample from the GMM.

It is natural to apply the concept of CIC in DIS to SIS. The expression of CIC involves h(x), which is

known in DIS but not in SIS. Hence we use the estimator ĥ(x) which is a function of ŝ(x), the estimated

probability of failure at a particular x value.
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3.1. Approximations Necessary for Implementation

To implement the proposed method, we need to approximate h(Xi), i = 1, . . . , m, for computing CIC,

evaluating the EM algorithm equations (14)-(17) to solve for θ̂, and minimizing the CE estimator. For SIS,

h(x) =
√

s(x) (1− s(x)) /n + s(x)2 is unknown because s(x) is unknown. Thus, we estimate s(Xi) by

ŝ(Xi) = 1
Ni

Ni∑
j=1

I
(

Y
(i)

j > l
)

(21)

and then estimate h(Xi) by plugging in ŝ(Xi):

ĥ(Xi) =
√

ŝ(Xi) (1− ŝ(Xi)) /n + ŝ(Xi)2
. (22)

We note that h(·) needs to be estimated only at the sampled Xi, i = 1, . . . , m, for which we already have

run the simulator Ni times and have the evaluation of ŝ(Xi) in (21) to ultimately compute the estimator

in (4) for the failure probability. Thus, by utilizing the already available information, this approximation of

h(Xi), i = 1, . . . , m, does not incur an extra computational cost.

As the sample size n tends to infinity while m is allowed to grow slowly than n (or as a special case, m

may be fixed), ĥ(Xi) converges to h(Xi) in probability for any i. Specifically, because Ni = Op(n/m), if n

increases faster than m (i.e., m/n = o(1)), ŝ(Xi) in (21) converges in probability to s(Xi) for any i by the

law of large numbers. Therefore, ĥ(Xi) in (22) converges to h(Xi) in probability for any i as n→∞, by the

continuous mapping theorem.

SIS also needs to allocate Ni replications at each Xi, as explained in Section 2. In Appendix 1, we

show that for a large n≫ maxm
i=1 (1− s(Xi))/s(Xi), the optimal Ni in (6) is approximately proportional to√

w(Xi)− P̂SIS . Thus, we decide Ni based on this approximation. If w(Xi)− P̂SIS ≤ 0, we assign Ni = 1,

to ensure the unbiasedness of P̂SIS in (4). We note that such approximation of Ni would not substantially

affect the performance of SIS because our numerical study results in Section 4 and other SIS implementation

results in [23] suggest that SIS is rather insensitive to the ratio of m to n, which determines the magnitude

of order of Ni.

3.2. Aggregated Failure Probability Estimation

We aggregately use the samples obtained in all of the CE iterations. Instead of P̂SIS in (4), we compute

the failure probability estimator P̄
(t)
SIS using all the aggregated data up to iteration t:

P̄
(t)
SIS = 1

t + 1

t∑
s=0

1
m(s)

m(s)∑
i=1

1
N

(s)
i

N
(s)
i∑

j=1
I
(

Y
(s)

ij > l
) f

(
X(s)

i

)
q
(

X(s)
i ; θ̂

(s)) , (23)

where X(s)
i is the ith random input at iteration s, m(s) is the number of X(s)

i drawn at iteration s, and N
(s)
i

is the number of simulation runs at each X(s)
i .
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The idea of data aggregation leads to the aggregated CIC formulation for stochastic simulation models

as follows:

CIC(t)
SIS(d) = C̄(t−1)

SIS (θ̂) + K̂
(t−1)
SIS

d∑t−1
s=0 m(s)

, (24)

where the CE estimator C̄(t−1)
SIS (θ̂) and K̂

(t−1)
SIS are calculated using all the aggregated data up to iteration

(t− 1):

C̄(t−1)
SIS (θ̂) = − 1∑t−1

s=0 m(s)

t−1∑
s=0

m(s)∑
i=1

ĥ(X(s)
i )w(X(s)

i ; θ̂
(s)

) log q
(

X(s)
i ; θ̂

)
. (25)

Noting that K̂
(t−1)
DIS in (18) is an unbiased DIS estimator of the failure probability, we similarly set

K̂
(t−1)
SIS = P̄

(t−1)
SIS . (26)

3.3. Summary of the Proposed Method (CE-SIS) and Implementation Guideline

For the EM initialization, the grid search of the optimal number of mixture components k(t)∗, the stopping

criteria of the EM algorithm to minimize the quantity C̄(t−1)
SIS (θ̂) in (25), and whole division of the replication

allocation N
(t)
i , we follow the same procedures in [38]. The details of implementation are provided in

Appendix 2.

We propose the CE-SIS pseudo-code in Algorithm 1:

INPUT:

• Initialize the GMM q(x; θ̂
(0)

) for the first iteration (e.g., GMM with k = 1 and the identity covariance

matrix).

• Given a simulation budget, n, we pick the actual simulation runs at each iteration, n(t), such that∑τ
t=0 n(t) = n, where τ denotes the total number of CE iterations.

• Fix the number of X values to draw, m(t), for each iteration t ≥ 1 such that, for example, m(t) ≈ 0.3n(t),

as adopted in [23]. According to [23], SIS should be generally insensitive to the ratio m(t)

n(t) . Note that

at the first iteration t = 0, we set m(0) = n(0) or equivalently N
(0)
i = 1, to explore the input space as

much as possible.

Figure 1 shows the evolution of the sampling density of X over iterations t = 0, 1, 3, 6, 9, 10 in a numerical

example in Section 4. The CE-SIS density (in green dash-dotted line) converges to the optimal SIS density

qSIS in (5) (in red dashed line) over iterations. At t = 0 in the pilot run, X is sampled from a uniform

distribution (−5, 5), instead of a GMM, to reflect no knowledge of important region in the example. After

about 6 iterations, the GMM starts picking up the important region effectively.
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Algorithm 1 Approximating the optimal IS density for SIS
t = 0

while t ≤ τ do

if t = 0 then

N
(0)
i = 1 for i ∈ {1, . . . , m(0)}

for i ∈ {1, . . . , m(0)} do

Sample X(0)
i from q(x; θ̂

(0)
), an initial GMM

Generate the data using the simulator: D = D(0) = {(X(0)
i , Y

(0)
i1 )}

end for

Compute P̄
(0)
SIS in (23)

else

for k ∈ {k(t)
min, . . . , k

(t)
max} do

Using EM: θ̂
(t)

(k) = argminθ̂(k)∈Θ(d(k)) C̄
(t−1)
SIS (θ̂(k)) in (25)

Let K̂
(t−1)
SIS (k) = P̄

(t−1)
SIS (k) in (26)

Compute CIC(t)
SIS(d(k)) in (24)

end for

Pick k(t)∗ = argmink CIC(t)
SIS(d(k))

θ̂
(t)
← θ̂(k(t)∗)

for i ∈ {1, . . . , m(t)} do

Sample X(t)
i from q(x; θ̂

(t)
)

Compute
√[

w(X(t)
i )− P̄

(t−1)
SIS

]
+

end for

for i ∈ {1, . . . , m(t)} do

Compute N
(t)
i = max

⎛⎝1, (round)n(t)

√[
w(X(t)

i
)−P̄

(t−1)
SIS

]
+∑m(t)

i=1

√[
w(X(t)

i
)−P̄

(t−1)
SIS

]
+

⎞⎠
end for

for i ∈ {1, . . . , m(t)} do

for j ∈ {1, . . . , N
(t)
i } do

Generate the data using the simulator: D(t) = {(X(t)
i , Y

(t)
ij )}

end for

end for

Aggregate data: D =
⋃t

s=0D(s)

Compute P̄
(t)
SIS in (23)

end if

t← t + 1

end while
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(a) Initial pilot sample: Uniform (−5, 5).
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(b) 1st iteration: 4 GMM components.
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(c) 3rd iteration: 7 GMM components.
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(d) 6th iteration: 6 GMM components.
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(e) 9th iteration: 8 GMM components.
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(f) 10th (& final) iteration: 9 GMM com-

ponents.

Figure 1: Evolution of the CE-SIS density (in green dash-dotted line) that converges to the optimal SIS

density qSIS in (5) (in red dashed line) within one simulation experiment for Cannemela example in Section 4

where the failure probability is 0.01 and the original input density f (in black solid line) is the standard

normal density.

Algorithm 1 assumes that the user of the algorithm can set an initial GMM q(x; θ̂
(0)

) such that the

mass of the density well covers potential failure regions. It ensures that the failure probability estimator

P̄
(0)
SIS at iteration 0 is non-zero with a sufficiently large m(0). If the user has no knowledge of potential

failure regions, the user can adapt the algorithm by adopting the multilevel CE procedure widely used in the

13



literature [40, 41]. Specifically, the failure threshold level l can be adjusted over iterations so that the failure

probability estimator can remain non-zero for the series of thresholds which approach the target threshold

l over iterations. To keep Algorithm 1 simple and convey the main idea of the proposed method, we do

not present a multilevel-procedure algorithm, but we refer an interested reader to the following references

[40, 41].

The total number of CE iterations, τ , is set based on the simulation budget n =
∑τ

t=0 n(t) that a user can

afford. However, the user can exercise the freedom to stop the algorithm early, for example, if the estimated

variance of the failure probability estimator in (23) is small enough compared to the probability estimate

(e.g., the coefficient of variation is 20% or less). The user can use a consistent estimator of the variance

derived in [5]. On the other hand, if the user realizes that a larger τ is needed to reduce the coefficient of

variation, then the algorithm can be set to continue to the next iteration.

At any iteration t in Algorithm 1, k
(t)
min can be always set to be 1 and k

(t)
max can be always set to be

the maximum number that yields the maximum dimension d of the parameter θ. Specifically, recall that

d is equal to (k − 1) + k(p + p(p + 1)/2) for a GMM with k components, where p denotes the dimension

of the input X. To estimate θ, the total sample size n should be at least d, that is, n ≥ d. Because

k = (d + 1)/(p + p(p + 1)/2 + 1), we can set k
(t)
max to be (n + 1)/(p + p(p + 1)/2 + 1). In practice, the grid

search over k ∈ {k(t)
min, . . . , k

(t)
max} to minimize CIC(t)

SIS(d(k)) does not require increasing k up to k
(t)
max. For

algorithmic efficiency, we take a heuristic approach from [38] that uses the moving average (with the window

size of four) of the CIC to stop increasing k when the moving average starts to increase.

In practice, the major computational cost of Algorithm 1 lies in running the (high-fidelity) simulator to

obtain Y
(t)

ij . Compared to this cost (e.g., roughly 1 minute per run in our case study), the running times

of iterative procedures in the algorithm are negligible. For example, running the EM algorithm, minimizing

the CIC, and computing N
(t)
i , 1, . . . , m(t), in each iteration take seconds.

4. Numerical Studies

In this section, we conduct extensive numerical studies to investigate the performances and sensitivities

of the CE-SIS algorithm with respect to five aspects: target failure probability to estimate (Table 4), m
n

ratio (Table 4), distribution of univariate input X (Table 4), dimension of multivariate input X (Table 4),

and standard deviation of Y |X (Table 4). We use two numerical examples from the literature [5, 24] for

which metamodel-based SIS methods are already applied. Assuming that the data-generating processes are

unknown, we compare the performance of the CE-SIS algorithm with the metamodel-based approaches.

Alongside we also present the results from the optimal SIS algorithm (using the optimal density in (5) and

the allocation in (6)) that utilizes the full knowledge of the data-generating processes (e.g., the conditional

probability s(X) = P(Y > l | X)).
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4.1. Cannamela Example: Univariate Input

As a numerical example with the univariate input X, we use an example from [23] that modified a

deterministic simulation model example originally from Cannamela et al. [42] into a stochastic simulation

model example. Its data generating structure is as follows:

X ∼ N (0, 1) , Y |X ∼ N
(
µ(X) , σ2(X)

)
,

where the mean and the standard deviation are:

µ(X) = 0.95X2 (1 + 0.5 cos(5X) + 0.5 cos(10X)) ,

σ(X) = 1 + 0.7 |X|+ 0.4 cos(X) + 0.3 cos(14X).

The metamodel-based SIS method in [5] constructs a metamodel of Y |X and uses it to estimate the

conditional probability s(X) = P(Y > l | X), which is in turn needed to approximate the optimal density in

(5) and the allocation in (6). This metamodel assumes the knowledge that Y |X follows a normal distribution.

This assumption is strong since such distribution is typically unknown for a stochastic simulation model in

practice. With the distributional assumption, the metamodel approximates the parameters, mean µ(X) and

standard deviation σ(X) of Y |X, using cubic spline functions of X in the generalized additive model for

location, scale and shape (GAMLSS) framework [43]. An interested reader is referred to [5] for the modeling

details. The metamodel is built using a pilot dataset of 3000 simulation replications and the IS experiment

is based on 10,000 simulation replications. To ensure that both methods use the same simulation budget, for

the CE-SIS method, we use n(0) = 3000 and n(t) = 1000 for t = 1, . . . , 10. For the pilot/initial data of both

methods, we sample X from the uniform distribution (−5, 5) assuming no knowledge of important regions

(akin to an uninformative prior in Bayesian inference).

A performance metric we use is the CMC ratio, which is defined as

CMC ratio = n

nCMC
,

where n is the total number of simulation replications (e.g., 3000 + 10000 for metamodel-based SIS, 3000

+ 10000 for CE-SIS, and 10000 for the optimal SIS since we do not need to build the metamodel for the

optimal SIS.) and nCMC is the total number of simulation replications required for the CMC simulation to

achieve the same standard error as each method, which is calculated as

nCMC = P (1− P )
S.E.2

.

Note that S.E. is the standard error of each method. P is the target failure probability P (Y > l) we would

like to estimate. The smaller CMC ratio translates to a smaller number of replications used in each row’s

method divided by the number of replications necessary for CMC in (1) to achieve the standard error in the

row, which means better computational saving for the same accuracy level.
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We determine the threshold l for the target failure probability P (Y > l) using a large-scale Monte Carlo

simulation (with 107 replications) so that l yields the target failure probability.

The simulation experiment is repeated 500 times to obtain the results. Using this example, we study

performances of the CE-SIS algorithm with respect to the following three aspects:

• Target failure probability P (Y > l): 0.01, 0.001, 0.0001 in Table 4.

• m
n ratio: 0.1, 0.3, 0.5, 0.7, 0.9 in Table 4. Recall that m is the number of distinct X values and n is

the total number of simulation runs.

• Distribution of X:

– Normal distribution with mean 0 and standard deviation 1,

– t-distribution with the number of degrees of freedom (df) equal to 5 or 10,

– Weibull distribution with scale parameter of 1 and shape parameter of 1 or 1.5

in Table 4. Both non-normal distributions have heavier tails than the normal distribution, especially

heavier when df is 5 for the t-distribution and the shape parameter is 1 for the Weibull distribution.

As shown in Table 4, CE-SIS provides significant computational saving over CMC. The saving is larger

when we estimate the probability of a rarer event, as expected of an IS scheme [23]. However, the CE-SIS

underperforms the metamodel-based approach, which assumes the knowledge of the conditional distribution

of Y |X. We remark that the performance of metamodel-based SIS can be made arbitrarily better or worse

by changing the metamodel. For instance, if the metamodel of s(X) is a constant over X (i.e., no knowledge

of which region is more important), then the metamodel-based SIS density (see (5)) reduces to the original

input density f so that the performance of SIS becomes equal to that of CMC. Thus, we instead use a

good metamodel from the literature and present the result as a point of reference. In reality, the underlying

data-generating distribution is unknown and likely much more complex, rendering the construction of a good

metamodel difficult, especially when the pilot sample size is limited. In contrast, the CE-SIS method can

automatically and conveniently yield a good SIS density.

From Table 4 and Table 4, it is also observed that the CE-SIS method is generally robust to different
m
n ratios and distributions of X, in comparison to the metamodel-based SIS. The marked exceptions occur

when the original input density f is highly heavy-tailed: t(df = 5) and Weibull(1, 1). Such large standard

errors and CMC ratios are expected because the optimal SIS density in (5) is proportional to f and thus

heavy-tailed for the given f . Any GMM (i.e., a finite mixture of Gaussian distributions) cannot model

heavy-tailed distributions by definition of heavy-tailedness. A good news is that in practice, users of the

CE-SIS algorithm always know whether f is heavy-tailed or not. Thus, they can work around the issue (e.g.,

use a mixture of heavy-tailed distributions such as t distributions).
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Table 1: Comparison between CE-SIS, metamodel-based SIS, and optimal SIS with respect to different target probability

P (Y > l) to estimate. m
n

ratio is fixed at 0.3. The results are based on 500 experiments.

P (Y > l) Threshold l Method Mean S.E. CMC Ratio

0.010000 9.13 CE-SIS 0.009984 0.000391 20.08%

Metamodel 0.010007 0.000292 11.20%

Optimal SIS 0.009994 0.000229 5.30%

0.001000 14.60 CE-SIS 0.001001 0.000097 12.27%

Metamodel 0.001001 0.000031 1.22%

Optimal SIS 0.001000 0.000023 0.51%

0.000100 24.29 CE-SIS 0.000100 0.000005 0.35%

Metamodel 0.000100 0.000001 0.01%

Optimal SIS 0.000102 0.000002 0.02%

Table 2: Comparison between CE-SIS, metamodel-based SIS, and optimal SIS with respect to different m
n

ratios. The target

probability P (Y > l) to estimate is fixed at 0.01. The results are based on 500 experiments.
m
n ratio Threshold l Method Mean S.E. CMC Ratio

0.1 9.13 CE-SIS 0.009975 0.000371 18.09%

Metamodel 0.010013 0.000338 15.02%

Optimal SIS 0.010015 0.000234 5.52%

0.3 9.13 CE-SIS 0.009984 0.000391 20.08%

Metamodel 0.010007 0.000292 11.20%

Optimal SIS 0.009994 0.000229 5.30%

0.5 9.13 CE-SIS 0.009979 0.000493 31.93%

Metamodel 0.010014 0.000213 5.93%

Optimal SIS 0.009980 0.000233 5.48%

0.7 9.13 CE-SIS 0.009993 0.000357 16.70%

Metamodel 0.010009 0.000215 6.07%

Optimal SIS 0.009992 0.000237 5.65%

0.9 9.13 CE-SIS 0.009966 0.000495 32.13%

Metamodel 0.009998 0.000206 5.58%

Optimal SIS 0.010022 0.000231 5.37%
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Table 3: Comparison between CE-SIS, metamodel-based SIS, and optimal SIS with respect to different distributions of X. The

target probability P (Y > l) to estimate is fixed at 0.01. m
n

ratio is fixed at 0.3. The results are based on 500 experiments.

X Distribution Threshold l Method Mean S.E. CMC Ratio

N (0, 1) 9.13 CE-SIS 0.009984 0.000391 20.08%

Metamodel 0.010007 0.000292 11.20%

Optimal SIS 0.009994 0.000229 5.30%

t(df = 5) 16.97 CE-SIS 0.009457 0.001477 286.28%

Metamodel 0.009991 0.000076 0.77%

Optimal SIS 0.009995 0.000097 0.95%

t(df = 10) 12.02 CE-SIS 0.010002 0.000377 18.64%

Metamodel 0.010005 0.000132 2.30%

Optimal SIS 0.010002 0.000121 1.48%

Weibull(1, 1) 23.57 CE-SIS 0.008840 0.001883 465.66%

Metamodel 0.010002 0.000108 1.52%

Optimal SIS 0.009999 0.000057 0.33%

Weibull(1, 1.5) 10.38 CE-SIS 0.009964 0.000268 9.41%

Metamodel 0.009994 0.000195 4.99%

Optimal SIS 0.010000 0.000146 2.15%
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4.2. Ackley Example: Multivariate Input

As a numerical example with the multivariate input X = (X1, . . . , Xd) ∈ Rd, we use an example from

[24] that modified an example in Ackley [44] as follows:

X ∼ N (0, I) , Y |X ∼ N (µ(X) , 1) ,

where the mean is:

µ(X) = 20
(

1− exp
(
−0.2

√
1
d
∥X∥2

))
+
(

exp(1)− exp
(

1
d

d∑
i=1

cos(2πXi)
))

.

For the construction of a metamodel, we adopt the same metamodel-based approach in [24] that fits

a logistic regression model on a pilot dataset to estimate s(X) = P(Y > l | X). However, their model

sθ(X) =
(
1 + eθ0+θ1X1+...+θdXd

)−1 considers only linear terms of X = (X1, . . . , Xd) and cannot well model

s(X) that has a symmetry with respect to the origin (see µ(X)). Accordingly, the resulting metamodel-

based SIS tends to yield the standard error as large as CMC [24]. Thus, assuming the knowledge of the

symmetric structure, we add quadratic terms of X in the logistic regression model as follows: sθ(X) =(
1 + eθ0+θ1X1+θ2X2

1 +...+θ2d−1Xd+θ2dX2
d

)−1
. The model parameter vector θ is estimated using least-square

fitting as in [24].

To conduct simulation experiments, we use essentially the same setup as in Cannemela example in the

previous subsection. That is, we determine the failure threshold l using a Monte Carlo simulation (with 107

replications). We use the same simulation budget for both methods: the metamodel-based SIS uses the pilot

sample of size 3000 and the IS sample of size 10,000; the CE-SIS method uses n(0) = 3000 and n(t) = 1000

for t = 1, . . . , 10. For the pilot/initial sample of both methods, we generate X from the uniform distribution

over the d-dimensional hypercube (−5, 5)d. The simulation experiment is repeated 500 times to obtain the

results. Using this example, we study performances of the CE-SIS algorithm with respect to the following

two aspects:

• Dimension d of X: 1, 2, 4 in Table 4.

• Standard deviation σ of Y |X: 1, 2, 4 in Table 4.

Table 4 shows, as expected, all SIS methods perform worse as the dimension d of X and the standard

deviation σ of Y |X get larger. These results echo the existing knowledge from the literature. Specifically, it

is known that when d increases, IS suffers as it becomes difficult to narrow down the important region [45].

Also, when σ is larger, it is known that the greater randomness within the stochastic simulation model makes

SIS perform worse [23]. An interesting finding is that CE-SIS performs better than the metamodel-based

SIS when d and σ are small. But, as d and σ get larger, inferring the data-generating structure from data
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Table 4: Comparison between CE-SIS, metamodel-based SIS, and optimal SIS with respect to different dimension d of X and

standard deviation σ of Y |X. The target probability P (Y > l) to estimate is fixed at 0.01. m
n

ratio is fixed at 0.3. The results

are based on 500 experiments.

Parameter Threshold l Method Mean S.E. CMC Ratio

d = 1, σ = 1 10.27 CE-SIS 0.009940 0.000334 14.65%

Metamodel 0.009928 0.000523 35.96%

Optimal SIS 0.009986 0.000215 6.06%

d = 1, σ = 2 11.43 CE-SIS 0.009982 0.000664 57.97%

Metamodel 0.009983 0.000808 85.65%

Optimal SIS 0.009948 0.000434 24.68%

d = 1, σ = 4 14.98 CE-SIS 0.009998 0.000915 109.82%

Metamodel 0.010041 0.000879 101.56%

Optimal SIS 0.010069 0.000762 76.30%

d = 2, σ = 1 9.37 CE-SIS 0.009957 0.000634 52.74%

Metamodel 0.010039 0.000616 49.76%

Optimal SIS 0.009999 0.000301 11.90%

d = 2, σ = 2 10.86 CE-SIS 0.009967 0.000759 75.64%

Metamodel 0.010002 0.000839 92.45%

Optimal SIS 0.009957 0.000623 51.03%

d = 2, σ = 4 14.85 CE-SIS 0.010028 0.001332 232.84%

Metamodel 0.010054 0.000977 125.38%

Optimal SIS 0.009999 0.000833 91.22%

d = 4, σ = 1 8.70 CE-SIS 0.010025 0.000750 73.87%

Metamodel 0.010004 0.000705 65.22%

Optimal SIS 0.009992 0.000451 26.65%

d = 4, σ = 2 10.48 CE-SIS 0.009839 0.001679 370.05%

Metamodel 0.009922 0.000956 120.10%

Optimal SIS 0.009945 0.000780 79.84%

d = 4, σ = 4 14.76 CE-SIS 0.009372 0.003848 1944.85%

Metamodel 0.010009 0.001022 137.24%

Optimal SIS 0.009986 0.000904 107.21%
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becomes harder for the CE-SIS algorithm, so that the metamodel-based SIS performs better as it uses the

partial knowledge of the data-generating structure (i.e., symmetry with respect to the origin).

We hope that the numerical studies here provide informative demonstration of the advantages and limi-

tations of the CE-SIS method. This metamodel-free approach generally performs well in comparison to the

metamodel-based approaches that assume partial knowledge of the data-generating structure. But, a user

should be careful when a) the original distribution of input X is heavy-tailed, b) X is multivariate, or c) the

conditional distribution of Y |X is suspected to have generally large variances across X.

5. Case Study

This section presents an application of the CE-SIS method to the case study on wind turbine reliability

evaluation. We compare the performance between the CE-SIS method and the metamodel-based method

[23], using the same CMC ratio metric in Section 4.

The reliability of a wind turbine is subject to stochastic weather [46]. To incorporate the randomness

into the reliability evaluation of a turbine design, the international standard, IEC 61400-1 [47], requires

the turbine designer to use stochastic simulations. The reliability of a wind turbine is typically evaluated

using computationally expensive aerodynamic simulators (each simulation run takes roughly 1 minute on a

typical PC available nowadays) developed by the U.S. National Renewable Energy Laboratory. Specifically,

TurbSim is used to generate a 3-dimensional time-marching wind profile, and FAST is used to simulate a

turbine’s structural load responses [23, 48, 49]. Each simulation represents a 10-min simulated operation of

the turbine. The national lab acknowledges the computational challenges in using the stochastic simulations

and makes efforts to accelerate the simulation experiment [25, 50]. We adopt the identical simulation setup

used in the national lab’s benchmark simulation experiment in [51]. An interested reader is referred to [51]

for details of the simulation setup, as it involves long technical specifications of the wind profile and the wind

turbine design.

We are interested in estimating the probability of a failure event which is defined as the bending moment

at a wind turbine’s blade root exceeding a specified threshold. In particular, we study two bending moment

types: edgewise bending moment (which is parallel to the blade edge) and flapwise bending moment (which

is perpendicular to the blade plane) (see Figure 2). We estimate the probability that a bending moment

exceeds a threshold l, where l = 8,600 kNm for edgewise bending moment and l = 13,800 kNm for flapwise

bending moment, both of which occur with around 5% probability.

The input wind speed, X, is drawn from the truncated Rayleigh density [23, 52] defined as:

f(x) = fR(x)
FR(xout)− FR(xin) ,

where fR is the untruncated Raleigh density with the shape parameter, 10
√

2/π, and FR is the corresponding
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Edgewise

Flapwise

Figure 2: Diagram of a wind turbine blade where the directions of edgewise and flapwise bending moments

are indicated at the blade root.

cummulative distribution function. The cut-in and cut-out wind speed are xin = 3 m/s and xout = 25 m/s,

respectively, denoting the range of wind speeds for which a wind turbine operates.

In the metamodel-based method in [23], the conditional probability s(X) = P(Y > l | X) is approximated

using a nonhomogenous Generalized Extreme Value (GEV) distribution:

P (Y ≤ y | X = x) =

⎧⎪⎨⎪⎩
exp

(
−
(

1 + ξ
(

y−µ(x)
σ(x)

))−1/ξ
)

, for ξ ̸= 0

exp
(
− exp

(
−y−µ(x)

σ(x)

))
, otherwise,

(27)

where µ(x) and σ(x) are the location and scale parameter functions, respectively, modeled with cubic smooth-

ing spline functions under the GAMLSS framework. The shape parameter ξ is fixed as a constant, with

estimated value ξ̂ = −0.0359 (−0.0529) for the edgewise (flapwise) case. The goodness-of-fit of the GEV

distribution is tested using the Kolmogorov-Smirnov test. The metamodel is built using a pilot sample of

600 simulation replications and in addition, the metamodel-based method uses 1000 (2000) replications for

the failure probability estimation for edgewise (flapwise) bending moment.

In the CE-SIS method, we allocate the same simulation budget as the metamodel-based method. We use

n(0) = 600 and n(t) = 100 (200) for t = 1, . . . , 10 for the edgewise (flapwise) case.

Table 5 compares the results based on 50 repetitions of each method. The CE-SIS method has slightly

smaller (larger) standard error than the metamodel-based method for the edgewise (flapwise) bending mo-

ment. Accordingly, both methods save the similar level of computational resource compared to CMC, as

indicated by the CMC Ratio. In the metamodel-based method, the metamodel is carefully built by fitting

a nonhomogeneous GEV distribution to the pilot data. We can see that the performance of the CE-SIS
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method is comparable to that of the metamodel-based SIS with a high quality metamodel. Note that since

CE-SIS is an automated method, it can be particularly helpful when building a metamodel is difficult. We

also observe that the computational saving in the edgewise case is more substantial than the flapwise case.

This is because the approximated SIS density is not very different from the original density in the flapwise

case (this phenomenon is first observed and discussed extensively in [23], to which an interested reader is

referred). Nevertheless, we see that the CE-SIS method, without requiring domain knowledge about the

underlying process, can still capture this information satisfactorily.

Table 5: Comparison between the metamodel-based SIS and the CE-SIS method for the case study

Response Method Mean S.E. CMC Ratio

Edgewise Metamodel 0.0486 0.0018 7.0%

CE-SIS 0.0486 0.0015 4.9%

Flapwise Metamodel 0.0514 0.0028 32%

CE-SIS 0.0535 0.0030 37%

6. Conclusion

We propose a method called the cross-entropy based stochastic importance sampling (CE-SIS) which

can efficiently construct an importance sampling density for a stochastic simulation model. The CE-SIS

method uses an EM algorithm to minimize the estimated cross-entropy from a candidate IS density to the

optimal IS density while penalizing the model complexity concurrently. The method automatically refines

the estimated IS density, thus not requiring the specific domain knowledge for building a metamodel, which

is often difficult or time-consuming in practice. We focus on a candidate IS density expressed as a Gaussian

mixture model, which is both flexible and computationally efficient, while the extension to other mixture

models is possible. The application of the cross-entropy information criterion allows a sound choice of the

mixture model complexity for the CE-SIS method. By aggregating all the data from previous iterations

and effectively allocating the number of replications at each input value, the CE-SIS method utilizes the

available information efficiently under a given simulation budget. The numerical studies and case study show

the advantages and limitations of the CE-SIS method in comparison to the metamodel-based SIS and crude

Monte Carlo simulation.
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Appendix 1: Approximation of Ni

We seek an asymptotic approximation of the optimal allocation size,

Ni = n

√
n(1−s(Xi))

1+(n−1)s(Xi)∑m
j=1

√
n(1−s(Xj))

1+(n−1)s(Xj)

, i = 1, . . . , m.

First, we show s(Xi) ≈ P̂SIS

w(Xi) . For a large n≫ maxm
i=1 (1− s(Xi))/s(Xi), we can approximate

qSIS(Xi) = 1
Cq

f(Xi)
√

1
n

s(Xi) (1− s(Xi)) + s(Xi)2

≈ 1
Cq

f(Xi)
√

s(Xi)2

= 1
Cq

f(Xi) s(Xi)

for any i = 1, . . . , m. This asymptotic approximation may be not good for some Ni if s(Xi) is close to zero.

However, in that case, q(Xi) is small too, and such Xi is unlikely to be sampled in the first place. Therefore,

we can approximate

s(Xi) ≈ Cq
qSIS(Xi)

f(Xi)

≈ Cq

w(Xi)
,

where the second approximation is based on the fact that the estimated IS density approximates the optimal

density.

Furthermore, for a large n≫ maxm
i=1 (1− s(Xi))/s(Xi), we can also approximate

Cq =
∫

Xf

f(x)
√

1
n

s(x) · (1− s(x)) + s(x)2 dx

≈
∫

{x: s(x)>1/(n+1)}
f(x)

√
1
n

s(x) · (1− s(x)) + s(x)2 dx

≈
∫

{x: s(x)>1/(n+1)}
f(x) s(x) dx

≈ P̂SIS ,

where Xf is the support of f . Thus, it follows that

s(Xi) ≈
P̂SIS

w(Xi)
.
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Therefore, for a large n,

Ni ∝

√
n (1− s (Xi))

1 + (n− 1) s (Xi)

≈

√
1− s (Xi)

s (Xi)

≈

√1− P̂SIS

w(Xi)
P̂SIS

w(Xi)

∝
√

w(Xi)− P̂SIS .

Although it does not happen frequently, if w(Xi) − P̂SIS ≤ 0, then we set the corresponding Ni as 1, the

smallest allocation possible to maintain the unbiasedness of the SIS estimator.

Appendix 2: Implementation details of the CE-SIS algorithm

Since the EM algorithm will lead to a local optimum for non-convex problems, we use 10 random initial-

izations of θ and choose the best minimizer θ̂ of C̄(t−1)
SIS (θ̂) in (25) to reduce the impact of initial guess of θ

on the algorithm’s performance [53].

By monitoring the condition numbers of the Gaussian components’ covariances [53], the number of

components k can also be controlled to prevent over-fitting issue within the EM algorithm. We choose a

singularity threshold of 105 for the covariance matrix. Exceeding the threshold will signify an ill-conditioned

matrix. If more than a half of the 10 initializations observe ill-conditions, we stop the EM algorithm and

consider kmax is reached for that iteration.

Checking the convergence of the EM algorithm is through monitoring the reduction of C̄(t−1)
SIS (θ̂) in (25).

In the numerical studies in Section 4, iterating the updating equations in the EM algorithm is stopped if the

reduction of C̄(t−1)
SIS (θ̂) is less than 1% or a specified maximum number of iterations is reached.

For the N
(t)
i allocation at each iteration t, we round the calculated N

(t)
i to the nearest integer and we set

N
(t)
i = 1 if the rounding leads to 0 (see Algorithm 1). The positive or negative difference between

∑m
i=1 N

(t)
i

and n(t) due to the rounding is distributed across the N
(t)
i ’s sequentially to make sure we strictly stay within

the simulation budget at each iteration. Note that SIS is generally insensitive to variations of N
(t)
i ’s, as

shown in Table 4 and reported in [23].
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