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Abstract:In this paper, we propose the greedy smallest-cost-rate path first (GRASP) algorithm to

route power from sources to loads in a digital microgrid (DMG). Routing of power from distributed

energy resources (DERs) to loads of a DMG comprises matching loads to DERs and the selection of

the smallest-cost-rate path from a load to its supplying DERs. In such a microgrid, one DER may

supply power to one or many loads, and one or many DERs may supply the power requested by

a load. Because the optimal method is NP-hard, GRASP addresses this high complexity by using

heuristics to match sources and loads and to select the smallest-cost-rate paths in the DMG. We

compare the cost achieved by GRASP and an optimal method based on integer linear programming

on different IEEE test feeders and other test networks. The comparison shows the trade-offs between

lowering complexity and achieving optimal-cost paths. The results show that the cost incurred by

GRASP approaches that of the optimal solution by small margins. In the adopted networks, GRASP

trades its lower complexity for up to 18% higher costs than those achieved by the optimal solution.

Keywords:digital microgrid; power grid; integer linear programming; routing energy; distributed

energy resources; Dijkstra algorithm; integer linear programming

1. Introduction

The power grid infrastructure has been dramatically evolving from the traditional electrical grid

to the smart grid to make it more manageable and efficient [1–4]. Moreover, the interest in integrating

renewable resources into the grid to decrease greenhouse gas emissions into the atmosphere continues

to increase. It is no surprise that the next-generation smart grid will use optimized electricity generation

and transmission infrastructure, provide elastic electricity distribution, reduce peaks in power usage,

and sense and react to power outages by incorporating the Internet and information technologies

along with intelligent control algorithms [5,6].

Microgrids are becoming a functional and building block of the next-generation powergrids [1].

They enable local control for the distribution of power and configurations tailored to satisfy local

needs. These features are critical for improving the reliability and resilience of power distribution

in the occurrence of failures or natural disasters [7]. The flexibility of microgrids to embrace one or

multiple energy resources, configure one or multiple paths for redundancy, and the incorporation of

communications to monitor and control the configuration of distribution legs enable suchfeatures [8].

Moreover, microgrids have access to the main power line in addition to the local energy resources.

Therefore, microgrids can operate in grid-connected and islanded modes [9]. In a grid-connected
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mode, DERs may increase supply capacity, and in islanded mode, DERs may energize critical loads as

needed during extenuating circumstances, such as in emergencies.

Several works propose the concept of the digital grid (DG) as means to fulfill the requirements of

the next-generation power grid [10–19]. There are several approaches to the DG. They all share the

use of internet protocol (IP) addresses to identify lines and grid equipment, such as power routers,

to make them be able to communicate and participate in a the management and the distribution of

power. The DG not only enables a robust operation and a seamless integration of renewable energy

sources into a grid or microgrid, but it also leverages the incorporation of energy storage. The use of

energy storage habilitates the aggregation of power generated by different sources and the supply of

specific amounts of power to specific loads. The transmission of data in the Internet have inspired the

development of the DG [20–23].

The DG supplies energy in a specific amount and delivers it to a unique destination, such as a

piece of grid equipment, link interconnecting a substation, energy storage unit, or the final consuming

load. In the DG, the energy carries both the IP address of the recipient and information of the amount of

power delivered [14,24,25]. The transmission of the recipient address and the amount of granted power

may be performed by either power lines that also transmit data or by a parallel data network. On a

higher operating layer, a request-grant protocol is performed between loads and sources to schedule

the delivery of power [14,24,25]. In such a protocol, loads issue a request for the needed amount of

power, and one or several sources grant such requests and supply the requested amount of power.

The DG concept is particularly suited for managing a microgrid, which becomes a digital microgrid

(DMG). A service provider, acting as a DMG controller, may exercise centralized management for a

DMG with numerous sources.

Digitization of power (i.e., the supply of finite and exact amounts of power to a specific destination

or interconnection leg) makes it possible to route power from one or multiple energy sources to a

load of a DMG. This routing of power, however, is difficult to realize on a traditional microgrid. In a

DMG, the distribution network, formed by the interconnected transmission lines and cables, may yield

more than one path for a source to supply power to a load. Shinabo [26] considers a similar feature,

although the focus is the optimization of the power generation by multiple generators. Here, each

generator is independent and interconnected by a power router [27]. However, this approach suffers

from both limited scalability and uncontrollable power delivery because the power router only sets

the connection or disconnection of lines rather than controlling the amount of power delivery.

However, the efficiency of a DMG may be affected by the costs of power distribution. In this

paper, we are interested in minimizing the total cost, which we can model as power loss. We define

routing here as the selection of the smallest-cost-rate links and as an optimization problem that calls

for integer linear programming (ILP) as the solving approach [28]. The cost-rate is the rate that each

unit of power costs to distribute (i.e., cost= cost rate * power).

Because microgrids may count with multiple distributed energy resources (DERs), the routing

problem includes a matching between a load and one or multiple DERs to satisfy the load s power

demand. We show the optimal selected paths on different power networks, including different IEEE

test buses, where each of them includes a different number of energy sources and loads. While this

optimal method works well in the networks tested in this paper, we envision a power network with

a vast number of loads for which the high complexity of ILP would make the selection of paths

infeasible. Because the optimal ILP method is NP-hard, we propose the greedy smallest-cost-rate path

first (GRASP), a heuristic approach but with lower complexity than ILP. GRASP matches the loads to

sources and finds the smallest-cost-rate paths to route power in an iterative and greedy approach, and

it uses the Dijkstra algorithm as the path searching mechanism [29]. We analyze the cost of GRASP and

compare it with that of the optimal method. The discrepancy between the two approaches is the cost

associated with the reduction of algorithm complexity. We show that GRASP approaches the optimal

solution by 18% additional cost, but with a reduced computation complexity.
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Weorganizethispaperasfollows.Section2introducesanoptimalroutingandsourceassignment

methodandGRASP.Section3presentstheevaluationresultsoftheoptimalmethodandGRASP

fordifferentdistributionnetworks,includingIEEEtestbuses.Thissectionalsoincludesapractical

exampleoftheapplicationofGRASP.Section4presentsourconclusions.

2. Methods:OptimalandGRASP

Inaconventionalmicrogrid,thedeliveryofpowertakesplaceoverasinglesharedbus,which

directlyconnectsthepowersourcetoeachload.However,alargenumberofDERsinaDMGensemble

adistributedpowergeneration.ExamplesofsuchDERsarerooftopsolarpanels,windturbines,and

conventionalfossil-fuels-basedgenerators. Wemodelthesetofinterconnectionsformedbygenerators,

gridnodes(orpowerrouters),andloadsasagraphwhereedgesrepresentdistributionlinksand

nodesrepresentsources,powerrouters,orloads.Powerroutersmaybemulti-legdevices;theyenable

buildingadistributionnetworkwithmultipledistributionpaths.Therefore,aDMGmaydistribute

powertoloadsthroughdisjointlines.Here,severalloadsmayshareabusandthesupplyfrommany

DERsbuttheymayusediversepathstointerconnecttoDERs.TheDMGusesapowerrouterto

transferenergyfromonelink(orsmallergrid)toanother[30].Suchapowerrouterhasmultipleinputs

andoutputs,orlegs.Suchrouterscaninterconnectmultiplesegmentsandformanextendedmicrogrid.

Theendtopologyofthemicrogridwouldbeameshednetwork[11].Figure1showsthearchitecture

ofapowerrouter.Thispowerroutercomprisesapowerpath,whichdeliversenergytoloads,anda

datapath,whichtransmitstheinformationtomonitorthedemandandsupplyofenergy.Theinputs

andoutputsofthepowerrouterhandledataandpower.Here,energyisaggregatedorpartitionedby

theroutertosupplyamountsthatmatchthoserequested.

Figure1.Architectureofapowerrouter.Reproducedfrom[14].Publisher:IEEE.

Inthispaper,wefocusonoperatingexpenses(OPEX)oftheuseofpowerroutersinaDMG.

Weconsiderlossesonthetransmissionofpowertobetheassociatedcosts. Weconsidertwosourcesof

losses:transmissionlinesandpowerrouters.Thelinesmayhaveaconstantlossoroneproportional

totheenergytransmitted. Weadoptthelatterone.Theroutershavepowerlossesinherenttothe

transferofenergyfromoneinputtoanoutput,associatedwiththepowerrouteroperation.Also,

becausethemicrogridmaybeextended,theremaybeacostassociatedwiththeseextensions,as

worst-casescenarios.Forsimplicity,andwithoutlosinggenerality,weassociatethesecost-ratesto

eachlink.Becausesomelinksandpathsmayincurcostsaspowerflowsthroughthem,itisofinterest

tominimizethecost(oroverhead)ofpowerdistributionintheDMG.Wealsoaddressthepractical

issueofhowlinkscanbeinterconnectedtoenablemultiplesupplypathsbetweensourcesandloads,

andarealsousefulforfault-tolerantpurposes.Arouterwithmanylegsmayenabledustosetupa

complexnetworkthatincludesredundantpathsinthemicrogrid.
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Moreover, the presence of multiple DERs allows the supply to a load by a single or multiple

energy sources and an energy source to supply single or multiple loads. Thus, matching loads to

sources was also a process included in the routing of energy in a DMG. The minimum cost routes

include the assignment of sources to loads through minimum cost paths.

2.1. Problem De nition

The following example depicts the path and source assignment problem in the supply of power

requests in a DMG. Figure2a shows an example of a simple DMG. This network has two sources

(nodes 1 and 2), two loads (nodes 3 and 4), and two power routers (nodes 5 and 6). The two power

routers provide a path with links that share the power transmitted to both loads. Each source has a

supply capacity indicated by the labels (0.5R units for node 1 and R units for node 2), and the number

on each link indicates the cost per unit of transmitted power and the capacity (i.e., the amount of power

that the link can carry) as (p,q), respectively. Each load requests an amount of power, as indicated by

the labels beside the node.

In this example, node 3 requests R units of power, and node 4 requests 0.5R units. Figure2b shows

a path for transmitting power from node 2 (source) to node 3. This path has a low cost but leaves a

load request unsatisfied as there is no other path to connect to node 1 and because the shared link (link

from node 5 to node 6) has reached its capacity with the flow from node 2 to node 3.The figureshows

the flow that supplies power to Node 3 as a solid blue line. Figures2c,d shows the flow that supplies

node 4 as a dashed red line. Figure2c shows that the selected paths satisfy all requests, but the total

cost is high (7R). Figure2d shows a solution where the two loads are also satisfied, and the cost is

the lowest. This solution also shows an example of a source supplying two loads (node 2) and a load

receiving energy from two sources (node 3).

(a) (b) (c) (d)

Figure 2.Example of problem definition of source and path selection on a small digital microgrid

(DMG) model: (a) network model with paths, two sources and two loads; (b) Low cost path but

unsatisfied requests. Total cost is 4R; (c) satisfied requests but high routing cost. Total cost is 7R; and

(d) Lowest cost path and satisfied requests. Total cost is 6.5R.

As the example shows, the optimal routing of power in a DMG comprised of (a) the selection of

the lowest-cost path to supply each load, (b) the selection of sources that supply energy according to

their generation capacities, and (c) the consideration of the link transmission capacities.

2.2. Optimal Solution: Integer Linear Programming Formulation

We model the selection of paths with the smallest cost as an optimization problem to minimize the

energy cost on the distribution of energy. The cost and losses in the distribution network of the DMG

were linear and expressed with integer numbers, therefore, ILP is suitable for solving this optimization

problem. We first modeled the DMG as a distribution network. ConsiderG=(V,E)be a graph with

two special vertices: a sourcesandasinkt. Here,u, whereu∈V, is a node in the set of nodesV

and edge(i,j), such that(i,j)∈E, in the set of edgesE. Every edge has a capacitycap(i,j)≥0 and a

cost or weight associated with that edge. The capacity and cost are two main features of the edges in

the graph that indicate the maximum capacity of the link and cost per power unit (kW) transmitted,

respectively. One or multiple flows may use one edge. A flow is a real-valued function on edges that

occupies a portion of the power capacity of a link, and it is indicated asf(i,j). In practice, one can set
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thetransmittedcapacityastheamountofpower(orcurrent)thatthelinkcancarryandthatthesource

canprovide.Thepropertiesofaflowareasfollows:

• Capacityconstraints:f(i,j)≤cap(i,j).Iff(i,j)=cap(i,j),wesaythatedge(i,j)issaturated.

• Flowconservation(ateachnodeexceptthesourcesandsinks):∑f(i,j)=0,∀i∈V−{s,t}.

Thispropertyindicatesthatallflowsthatenteratransport(router)nodealsoexitthatnode.Here,

weassumethattheswitchingofpowerhasinsignificantenergyoverhead.

ThesetofILPequationsdescribethenetworkmodel,theselectionofpathsandthematching

betweenloadsandsources. Thissetofequationsconsistsofanobjectivefunctionandasetof

constraints.Theobjectivefunctionisdefinedasfollows:

min ∑
(i,j)∈E

dijxij. (1)

Subjectto:

0≤si,∀i∈Vs (2)

0≤tj,∀j∈Vt (3)

∑
j:(i,j)∈E

xij− ∑
j:(j,i)∈E

xji=si,∀i∈Vs (4)

∑
i:(i,j)∈E

xij− ∑
i:(j,i)∈E

xji=tj,∀j∈Vt (5)

∑
j:(i,j)∈E

xij− ∑
j:(j,i)∈E

xji=0,∀i∈V−Vs−Vt (6)

0≤xij≤cap(i,j),∀(i,j)∈E, (7)

wherexijistheamountofpowerthegeneratortransmitstotheload,dijisthecostperunitofpower

edge(i,j)carries,siandtjaretheamountofpowersourceigeneratesandsinkjrequests,respectively.

VsisasubsetofVthatcontainsallthesourcenodes.Similarly,Vtcontainsallthesinknodes.Here,

(1)definesthecostminimizationfunction,(2)and(3)areconstraintscorrespondingtotheamount

ofpowergeneratedbythesourcesandrequiredbythesinks,(4)and(5)describetheconservation

ofenergyflowofthepowersourcesandsinks,respectively,(6)describestheconservationofenergy

flowofthetransportnodes,and(7)showsthecapacityconstraintforeachlink.Thecomplexityofthe

optimalmethodfortheselectionofthesmallestcostpathisO(n(2|V|+2)(|V|a)(|V|+1)(|V|+2))wherenis

thelargestnumberoflegsofanetworknode,a=max{|(i,j)|,|Vs|,|Vt|};thelargestlinkcost,source

capacity,andloaddemand,and|V|isthenumberofnodesinthenetwork.

2.3.GreedySmallest-Cost-RatePathFirst(GRASP)Algorithm

Althoughtheoptimalmethodconvergestoanoptimalsolutionforenergyallocationinthe

presenceofmultipleenergysourcesandloads,themethodisNP-hard,sothatitscomplexityis

prohibitivelyhighforanetworkwithaconsiderablenumberofnodes[31].GRASPaimstomatch

sourcesandloadsand,incombination,findthesmallestcost-ratepathsinbetween,restrictedtothe

sourceandlinkcapacities,andthelossesassociatedtolinks.Byusingthecostrates,GRASPaims

toobtainasmallroutingcost.Itshouldbenotedthatthissmallestcostratemaynotbethesmallest

overallcostbuttheuseofthisparameterreducesthecomplexityoffindingthepathsincomparison

withtheoptimalmethod.Thealgorithmoperatesinaniterativeandgreedyapproach,anditsobjective

isalsodescribedbytheobjectivefunctionandconstraintsinSection2.2.GRASPfindsthekshortest

cost-ratepaths,onepereachload-sourcepairandmatchesloads(demands)toasmanysourcesas

neededwithanaggregatecapacitygenerationthatisabletosatisfythepowerdemandsoftheloads.

Thereareotherconstraintsinthisproblem:(a)theamountofpowerthattheselectedpathcan

carrywassetbyeither(1)thelinkwiththesmallestofpowercapacity;(2)thecapacityofthepower
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sourceand;(3)theamountofpowerthecustomerrequests.(b)Theselectionofapathcannotselect

acongestedlink(i.e.,alinkcarryinganamountofpowerequaltoitscapacity)foraccommodating

anotherrequest.Becausedifferentsourcesmaypartiallyfulfilthepowerrequestedbyaload,the

numberofpathsneededtosupplyademandingloadmaybemany.Aroutingalgorithmmustselect

thesourcesneededtosatisfyaloaddemandandwhosepathtothesource(s)incursintheminimum

transmissioncosts.ThispropertyisasignificantdifferencebetweenroutinginaDMGandthatin

computernetworks.

GRASPworksasfollows:

Step1. Findallsmallestcost-ratespathsbetweenforallloadandsources.

Step2. Selectthepathwiththesmallestcostratesamongthoseinstep1,whileconsideringthe

amountofpower(generation)capacityofthesource,thelinkcapacities,andtheamountsof

powerrequestedbytheloads.

Step3. Reservetheportionofthepathandsourcecapacityfortheroutedflowandconsiderthat

portionoftherequestsatisfied(ifnotall).

Step4. Decreasethecapacityofeachlinkontheselectedpathandsourcebytheminimumofthe

requestedamountandthatgranted.Iftheportionofavailablepowerleftononeofthelinks

oftheselectedpathorsourcesreacheszero,deletethislinkorsourcefromthesetobtainedin

step1.

Step5. Increasetheamountofpowergrantedtotheload,andiftherequestisfullsatisfyit,consider

thisloadsatisfied.

Step6. Repeattheprocess,startingfromstep1,untilallthecustomersreceivealltherequested

powerornotpathsorsourceremainsavailableforsupplyingtherequestedamountofpower.

Thepseudocodeofthisalgorithm,presentedinAlgorithm1,showsagreaterlevelofdetail.

Therefore,itiseasytoseethatthecomplexityofGRASPisthecomplexityofthesmallest-cost-rate

linksearchorO(|E|log|V|)[32]timesthenumberofloadstimesthenumberofsources,or

O(NsNL|E|log|V|),whereNsisthenumberDERs,NListhenumberofloadswhosepowerrequests

aresatisfied,and|E|isthenumberoflinksinthenetwork.
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Algorithm1Greedysmallest-cost-ratepathfirst(GRASP).

1:procedureCALCULATETOTALCOST
2: InitializeaconnectedgraphG(V,E)
3: total_cost←0
4: path←smallest-cost-ratepathsforsource-loadpairs
5: cost←costsofpath(i)inpath
6: loop:
7: ifnotpathandoneormoreloadsrequestpowerthen
8: returnNopaths;End
9: ifnoloadrequestpowerthen
10: returntotal_cost
11: else
12: min_cost←min(cost)%herecostisthecostrate
13: p←thei-thpathwithcost(i)==min_cost
14: cap_s←powercapacityofsourceonpathp
15: req_l←powerdemandsofloadonpathp
16: link_p←capacityofallthelinksonpathp
17: min_link_p←minimumpathcapacityp
18: min_tran←min(cap_s,req_l,min_link_p)
19: total_cost←total_cost+min_tran*cost(i)
20: cap_s←cap_s-min_tran
21: req_l←req_l-min_tran
22: link_p(i)←link_p(i)-min_tran∀linksofpathp
23: updatepathandcost:
24: s←sourceofpathp
25: l←loadofpathp
26: link_min←linkwithmincapacityofpathp
27: ifmin_tran==cap_sthen
28: deleteallthepathsincludingsources
29: deletethecostsfromcost
30: ifmin_tran==req_lthen
31: deleteallthepathsconnectedtoloadl
32: deletethecostsofcost
33: ifmin_tran==min_link_pthen
34: iflink_miningraphGthen
35: deletelink_min
36: findp_newwiththesmallest-costratecost_new
37: addp_newandcost_newtopathandcost
38: gotoloop

3.ResultsandAnalysis

Here,weevaluatethetotalcostincurredbytheoptimalmethodandGRASP. Weshowthe

applicationofbothmethodsontwodifferentnetworks.Onewasasimplenetworkandtheotherwas

NationalScienceFoundation(NSFNET).WhileNSFNETwasnotapowernetwork,wasisanexample

ofanetworkwithadifferentnumberofpathsbetweentwonodes(asincomputernetworks).Italso

showshowapowerdistributionbusmaylookaftertheadoptionofpowerrouters. Wealsoconsider

differentIEEEtestbuses,whichfoundtheiruseinvariouspowertests.Someofthesenetworkshada

smallnumberofpowersourcesandloads,andothershadalargenumberofboth,thuspresenting

differentscenarios.Thesenetworksoffereddifferentexamplesoftheapplicationofmulti-legnodes

andavarietyofpaths.
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3.1.ExampleDMGNetworks

3.1.1.ASimpleNetwork

First,weconsiderasimplenetwork,asFigures3and4show.Thesefiguresshowthecostand

capacitylinkassignmentandsourcecapacityforcase1.Intheremainderofthispaper,weshow

diagramsforcase1oftheconsiderednetworks.Inthisnetwork,therearethreepowersources,nodes

1–3,depictedingreencolor.Eachsourcenodehadagenerationcapacityof35kW,45kW,and20kW,

respectively,resultinginatotalgenerationof100kWavailabletothetwoloads;nodes10and11,

depictedinyellowcolor.Eachloadrequested50kW.Weindicateboththecost(e.g.,powerloss)per

unitofpowertransmittedthroughitandpowercapacity
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Figure3.Pathsselectedbytheoptimalmethodonasimplenetwork.

Weconsiderthreetestcasespernetwork. Weassignedanarbitrarycostandcapacityperlink

incase1. Wemodifiedthecostsandlinkcapacityofthelinksincase2totesttheselectionofa

differentpath. Wechangedtheamountofpowercapacityofsourcesanddemand(requests)for
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Figure4.Pathsselectedbygreedysmallest-cost-ratepathfirst(GRASP)onasimplenetwork.(a)Paths

selectedbyGRASPonasimplenetworkindicatingeachpowerflow.(b)PathsselectedbyGRASPona

simplenetworkindicatingtheaggregatedpower.

Ingeneral,theGRASPalgorithmgreedilyselectsthesmallest-cost-ratepathofallthesource-load

pairsineachiteration. Asshowninline4ofthepseudocode,thesmallest-cost-ratepathsofall

source-loadpairsarepre-calculatedandcachedinalistpath.Foreachiterationoftheloop,inline13,

pathp,whichisthesmallestoneamountthepathsinpath,willbeselectedandthesourceofthispath

isassignedtotheloadofthispath.ToshowhowtheproposedGRASPalgorithmworks,wetookthe

simplenetworkasanexample.AsshowninFigure4a,thebluearrowsshowtheselectedpathsby
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usingGRASP.First,GRASPcalculatesthesmallest-cost-ratepathofallthesource-loadpairs.Itselects

thepath1→5→9→11,wherea→ bmeansalinkselectedfromnodeatonodeb,thathasacost

rateequalto0.08.Thensource1transmits35kWofpowerthroughaslimitedbyitscapacity.Then,

itselects2→5→9→11asthesecondsmallest-cost-ratepath,totransmit5kWbecausethisisthe

maximumpowerthatcouldbetransmittedformnode5to9as35kWwerealreadyreservedonthis

link.GRASPkeepsgoinginthiswayuntilallthepowerdemandsaresatisfied.

Apathfromasourcetoaloadcanberepresentedbythepathcost,whichisthesumoflinkcosts,

andthepathcapacity,whichisthecapacityofthelinkwiththesmallestpowercapacityofalllinks

comprisingthepath.Thetotalcostisthesumofincurredflowcostsoneachlink:

Ct= ∑
(i,j)∈E

dijxij, (8)

whereCtisthetotalcost,dijisthecostperunitofpowertransmittedonedge(i,j),andxijisthe

amountofpowertransmittedonedge(i,j).

Figures3and4alsoshowtheselectedpathsandtheamountsofpowergrantedovereachselected

path,asbluearrows,selectedbytheoptimalmethodandGRASP,respectively.AsFigure4ashows,

somepowerflowssharesomeofthelinksintheselectedpathsastheyareassociatedwithsmall

costs.Figure4bshowsthetotalpowerflowingoneachlink.Thepoweronthelinksisthesumofthe

individualpowerperflowshowninFigure4. Weusethisrepresentationofresultsintheremainder

ofthispaper.Inthenetwork,thetotalcostofroutingpowerfromallthesourcestoalltheloadswas

12.7kW.However,thetotalcostachievedbyGRASPwas13.5kWoranincreaseof6.3%overthe

optimalsolution. Wealsoperformedatestforcases2and3(wedonotshowthefiguresforthesetwo

casesbecauseofthelimitedspace).Incase3,thepowercapacityofnodes1–3were40kW,40kW,and

20kW,respectively,andtheamountofpowerrequestedbynodes10and11was70kWand30kW,

respectively.Figure5showsthecomparisonsofthetotalcostincurredbytheoptimalmethodand

GRASPforeachthethreecases.Asthefigureshows,GRASPachievedacostof8.33%abovethe
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Figure5.CostcomparisonbetweentheoptimalsolutionandGRASPonthesimplenetwork.

Wealsoperformedroutecalculationsonmorecomplexnetworks,suchasNSFNET[33],IEEE14

test[34]andIEEE39testbuses[35,36].Inthissection,wepresentthetotalcostrecurredbyGRASPand

theoptimalmethod.Similarly,asinthesimplenetworkdiscussedabove,weconsiderthreedifferent

casesforeachnetwork.

3.1.2. NSFNET

Thisnetworkistheresultofaprogramofcoordinatedandevolvingprojectssponsoredbythe

NationalScienceFoundation(NSF)thatwasinitiatedin1985tosupportandpromoteadvanced

networkingamongU.S.researchandeducationinstitutions.Figures6and7showthisnetwork.

Thisnetworkhadthreesourcesandtwoloads,asinthesimplenetwork,butitalsohadalarger
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number of links and a higher node degree. The increased number of links in this network enabled a

wider selection of independent paths (i.e., paths with fewer or no shared link) of source-load pairs.

Particularly to this network, the cost of each link is directly proportional to the geographical distance

between two nodes (each node in NSFNET is a U.S. city) and the capacity of each link was set arbitrarily.
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Figure 6.Optimal path selection and source-load matching on the NSFNET network.
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Figure 7.Path selection and source-load matching by GRASP on the NSFNET network.

Figures6and7show the results of case 1 in NSFNET as resolved by the optimal method and

GRASP, respectively. Figure8shows the overall cost results obtained by these two methods. These

results indicate that GRASP fell 3.9% short of achieving the optimal solution by an increase of about

12.6 kW in case 2. Similarly to the simple network, case 2 of the NSFNET network used different link

costs and link power capacities from case 1, while case 3 used different power source capacities and

demands of power. Case 2 then is used to observe different route selection from case 1 as link costs are

modified, and case 3 may lead to the use of different paths but triggered by a different distribution on

power generation and demand. From these two cases, case 2 draws the larger discrepancy between

these two methods. However, the differences between the optimal solution and GRASP in the NSFNET

network are smaller than those achieved in the simple network. A possible cause of this improvement

is the larger number of routing options provided by the larger number of links and node order

in NSFNET.

Considering the complexity of NSFNET, the matching of sources and loads and the selected

distribution paths in this network is also represented by a power routing table, as Tables1and2. These

tables correspond to the path selection presented in Figures6and7, as obtained by the optimal method

and GRASP, respectively. These tables show the amounts of power assigned to the different links. In

each table,xijmeans the amount of power transmitted from nodeito nodej. A positivexijmeans that

the power flows from nodeito nodejand a negativexijmeans that the power flows from nodejto

nodei(opposite direction). Also, ifxij=0, there is no power flow between nodesiandj.
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Figure8.CostcomparisonbetweentheoptimalmethodandGRASPontheNSFNETnetwork.

Table1.PowerassignedtothelinksoftheNSFNETnetworkbyusingtheoptimalmethod.

EnergyRoutingTable(kW)

Node 1 2 3 4 5 6 7 8 9 10 11 12 13

1 0 0 6 0 0 0 0 29 0 0 0 0 0

2 0 0 10 35 0 0 0 0 0 0 0 0 0

3 -6 −10 0 0 0 0 36 0 0 0 0 0 0

4 0 −35 0 0 3 0 0 0 32 0 0 0 0

5 0 0 0 −3 0 3 0 0 0 0 0 0 0

6 0 0 0 0 −3 0 0 3 0 0 0 0 0

7 0 0 −36 0 0 0 0 0 0 36 0 0 0

8 −29 0 0 0 0 −3 0 0 0 0 32 0 0

9 0 0 0 −32 0 0 0 0 0 0 0 0 32

10 0 0 0 0 0 0 −36 0 0 0 −14 0 0

11 0 0 0 0 0 0 0 −32 0 14 0 0 18

12 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0 0 −32 0 −18 0 0

Table2.PowerassignedtothelinksoftheNSFNETnetworkbyGRASP.

EnergyRoutingTable(kW)

Node 1 2 3 4 5 6 7 8 9 10 11 12 13

1 0 0 6 0 0 0 0 29 0 0 0 0 0

2 0 0 10 35 0 0 0 0 0 0 0 0 0

3 −6 −10 0 0 0 0 36 0 0 0 0 0 0

4 0 −35 0 0 3 0 0 0 32 0 0 0 0

5 0 0 0 −3 0 3 0 0 0 0 0 0 0

6 0 0 0 0 −3 0 0 3 0 0 0 0 0

7 0 0 −36 0 0 0 0 0 0 36 0 0 0

8 −29 0 0 0 0 −3 0 0 0 0 32 0 0

9 0 0 0 −32 0 0 0 0 0 0 0 5 27

10 0 0 0 0 0 0 −36 0 0 0 −14 0 0

11 0 0 0 0 0 0 0 −32 0 14 0 −5 23

12 0 0 0 0 0 0 0 0 −5 0 5 0 0

13 0 0 0 0 0 0 0 0 −27 0 −23 0 0
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3.1.3.IEEE14bus

TheIEEE14bussystem[34]representsasimpleapproximationoftheAmericanElectricPower

systemasofFebruary1962.Thistestbushas14buses,fivegenerators(i.e.,sources),and11loads.

However,tostresstheperformanceofGRASPinthisnetwork,weassumeonlythreeloadsfrom

thoseinthebus.Inthisway,weincreasethesearchspacetomatchtheloadstothesourcesasthe

numberofsourcesismuchlargerthanthenumberofloads.Figures9and10showthematchedpairs

andresultingpathsbythetwoconsideredschemes.Thedatainthefiguresindicatetheamountof

powerprovidedbythesourcesandrequestedbytheloadsandthecostandcapacityofeachlinkof
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Figure10.Pathselectionandsource-loadmatchingperformedbyGRASPontheIEEE14bus.

TheresultsinthisfiguresshowthatthetotalcostofthepathsselectedbyGRASPiscomparable

tothatachievedbytheoptimalmethod,asFigure11shows.Thelargestdiscrepancyinthisscenario

was18.0%,whichwastheadditionalcostincurredbytheselectionsGRASPmake.
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Figure11.ComparisonofpowercostsachievedbytheoptimalmethodandGRASPontheIEEE14

bussystem.

3.1.4.IEEE39bus

Thiswasalargebus,ithad39buses,46transmissionlines,10powersources,and19loads.

Thisnetworkhadtwonodes,nodes31and39,representedinbluecolor,thatperformedacombined

functionalmode;eachnodegeneratedandspentenergy.Thesetwonodesplayedbothroles;apower

sourceandaload,atthesametime.

Figures12and13showtheresultsobtainedbytheoptimalmethodandGRASPonthistestbus.

Withthelargernumberofsourcesandcustomers,theIEEE39testbusshowedamuchmorecomplex

scenariothanthethreepreviousnetworktopologies.Here,loadshadalargernumberofchoicesof

sourcestoselect,butthenumberoflinksandnodeorderisequaltoorsmallerthanthoseconsidered

inNSFNET.Itwasexpectedthattherewerefewerchoicesforroutingpowerinthistestbusthanin

NSFNETandatthesametime,moreflowsneededtoberoutedbythelargernumberofloadsinthis
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Figure12.Optimalpathselectionandsource-loadmatchingontheIEEE39bus.

Figure14showsacomparisonofthedifferentcasestestedonthisnetwork.Thisgraphshowsthat

GRASPachieves9%asthemostsubstantialadditionalcostincomparisontotheoptimalsolutionin

case3.Figure15showsthelargestadditionalcostincurredbyGRASPincomparisontothoseobtained

bytheoptimalmethodforthethreeconsiderednetworksandcases.
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Figure15.SummaryofthelargestadditionalcostsrequiredbyGRASPforthedifferentconsidered

distributionnetworks.

3.2.AnExampleofaPracticalApplicationofGRASP

Weusedlow-frequencypowerdatacollectedfromsixhousesfromtheReferenceEnergy

DisaggregationDataSet(REDD)[37].Thedataofeachhouseconsistedofpowerconsumption

informationmeasuredfromdifferentappliances,suchasarefrigerator,lighting,microwave,etc.The
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datacontainedpowerconsumptionfromrealhomes,forthewholehouseaswellasforeachcircuitin

thehouse(labeledbythemaintypeofapplianceonthatcircuit).

Weusedthepowerconsumptionprofileofsixdifferenthousesasloadsandfivedifferentenergy

sources.Figure16showsthepowerprofilesfor24hofthesixloads.Theenergyresourceswerethree

photovoltaic(solar)generators[38]andtwowindturbinegenerators[39]. Weusedthesamepower

profileforthesolarandwindsources.Figure17
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WeusedtheIEEE14testbustointerconnectthesourcesandloads.Inthispracticalexample,

weusedonegeneratorofconstantpower(powerline)asnode1,twoidenticalSolargeneratorsas

nodes2and3,andtwoidenticalwind-turbinegenerators,asnodes6and8.Thepowercapacityof

theconstantpowergeneratoris10kW.TheloadsinthistestbuswereNodes12,13,14,11,5,and4as

houses1–6,respectively.

Weperformedpowerroutingforthisexample,andthesummaryofper-hourdistributionprovides

theresultsFigure18shows.Theseresultsshowthatthelargestcostdiscrepancyis0.1kWat6pm.

Figure19
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(b)GRASP solution

Figure 19.Routing of power at 6 pm on IEEE14 testbus by (a) the optimal method and (b) GRASP on

the practical example.

4. Conclusions

In a source-dense digital microgrid, the distribution of power consists of matching loads to

the power sources that can satisfy their power request, and of the selection of the lowest-cost paths

interconnecting them. Such paths transfer the requested amounts of power but with minimum total

costs. We considered the costs incurred by a function of the power transferred through the link. To

realize power routing, we first modelled the problem as an integer linear programming approach.

While this method provides an optimal solution, its complexity is NP-hard. Therefore, the application

of this optimal method on a digital microgrid with a large number of sources is prohibitive. As a

solution, we have proposed the greedy smallest-cost-rate path first algorithm, or GRASP in short,

to assign sources to loads and obtain the smallest cost routes between sources and loads. We tested

GRASP on four different network topologies, including IEEE test buses. We compared the total cost

obtained by the optimal method and GRASP. The results show that GRASP achieves comparable costs

as does the optimal solution, with a discrepancy of up to 18 % on the considered scenarios. We also

present a practical application of GRASP where we use the power consumption profile of six houses

and the actual power generation profile of five sources on IEEE14 testbus and show the differences

between the optimal method and GRASP. We showed that the largest discrepancy cost in this example

is 0.1 kW. Our analysis also shows that GRASP achieves these additional costs in exchange for a

computation complexity smaller than that of the optimal method.

Author Contributions:conceptualization, Z.J., V.S., and R.R.-C.; methodology, V.S. and Z.J.; investigation, Z.J.,
H.G. and R. R.-C.; writing, review and editing, Z.J., H.G., A.M., and R.R.-C.; project administration, R.R.-C.

Funding:This research was supported in part by the NSF Award CNS 1641033.

Con icts of Interest:The authors declare no conflict of interest.

References

1. Farhangi, H. The path of the smart grid.IEEE Power Energy Mag.2010,8, 18–28.

2. Office of Electricity Delivery and Energy Reliability.SmartGrid; 2010.

3. Gungor, V.C.; Lu, B.; Hancke, G.P. Opportunities and challenges of wireless sensor networks in smart grid.

IEEE Trans. Ind. Electron.2010,57, 3557–3564.

4. Bu, S.; Yu, F.R.; Cai, Y.; Liu, X.P. When the smart grid meets energy-efficient communications: Green wireless

cellular networks powered by the smart grid.IEEE Trans. Wirel. Commun.2012,11, 3014–3024.



Energies2019,xx,5 18 of 19

5. Feisst, C.; Schlesinger, D.; Frye, W. Smart grid: The role of electricity infrastructure in reducing greenhouse

gas emissions.Cisco Internet Bus. Solut. Group2008.

6. Yu, F.R.; Zhang, P.; Xiao, W.; Choudhury, P. Communication systems for grid integration of renewable energy

resources.IEEE Netw.2011,25, 22–29.

7. Saleh, M.S.; Althaibani, A.; Esa, Y.; Mhandi, Y.; Mohamed, A.A. Impact of clustering microgrids on their

stability and resilience during blackouts. In Proceedings of the 2015 International Conference on Smart Grid

and Clean Energy Technologies (ICSGCE), Offenburg, Germany, 20–23 October 2015; pp. 195–200.

8. Saleh, M.; Esa, Y.; Mohamed, A.A. Communication-Based Control for DC Microgrids.IEEE Trans. Smart Grid

2019,10, 2180–2195.

9. Ton, D.T.; Smith, M.A. The US department of energy s microgrid initiative.Electricity J.2012,25, 84–94.

10. Matsumoto, Y.; Yanabu, S. A vision of an electric power architecture for the next generation. Electrical Eng.

Jpn.2005,150, 18–25.

11. Abe, R.; Taoka, H.; McQuilkin, D. Digital grid: Communicative electrical grids of the future.IEEE Trans.

Smart Grid2011,2, 399–410.

12. Hikihara, T.; Tashiro, K.; Kitamori, Y.; Takahashi, R. Power Packetization and Routing for Smart Management

of Electricity. In Proceedings of the 10th International Energy Conversion Engineering Conference, Atlanta,

GA, USA, 30 July–1 August 2012; pp. 1–6, doi:10.2514/6.2012-3732.

13. Tashiro, K.; Takahashi, R.; Hikihara, T. Feasibility of power packet dispatching at in-home DC distribution

network. In Proceedings of the 2012 IEEE Third International Conference on Smart Grid Communications

(SmartGridComm), Tainan, Taiwan, 5–8 November 2012; pp. 401–405.

14. Xu, Y.; Rojas-Cessa, R.; Grebel, H. Allocation of discrete energy on a cloud-computing datacenter using a

digital power grid. In Proceedings of the 2012 IEEE International Conference on Green Computing and

Communications, Besancon, France, 20–23 November 2012; pp. 615–618.

15. Gelenbe, E. Energy packet networks: Adaptive energy management for the cloud. In Proceedings of the

ACM 2nd International Workshop on Cloud Computing Platforms, Bern, Switzerland, 10 April 2012; pp. 1–5.

16. Girbau-Llistuella, F.; Rodriguez-Bernuz, J.; Prieto-Araujo, E.; Sumper, A. Experimental validation of a single

phase intelligent power router. In Proceedings of the IEEE PES Innovative Smart Grid Technologies, Europe,

Istanbul, Turkey, 12–15 October 2014; pp. 1–6.

17. Matsuura, K.; Taoka, H.; Kato, R.; Abe, R. Digital grid in low-voltage distribution system. In Proceedings of

the 2015 IEEE Power & Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015; pp. 1–5.

18. Abe, R. Digital grid: Full of renew able energy in the future. In Proceedings of the 2016 IEEE International

Conference on Consumer Electronics-Taiwan (ICCE-TW), Nantou, Taiwan, 27–29 May 2016; pp. 1–2.

19. Nakano, H.; Okabe, Y. Toward implementing power packet networks. In Proceedings of the 2017 IEEE

International Conference on Consumer Electronics-Taiwan (ICCE-TW), Taipei, Taiwan, 12–14 June 2017;

pp. 199–200.

20. Saitoh, H.; Toyoda, J. A new concept of electric power network for the effective transportation of small

power of dispersed generation plants.IEEJ Trans. Power Energy1995,115, 568–575.

21. Medida, S.; Sreekumar, N.; Prasad, K.V. SCADA-EMS on the Internet. In Proceedings of the EMPD 98,

1998 International Conference on Energy Management and Power Delivery (Cat. No. 98EX137), Singapore,

5 March 1998; Volume 2, pp. 656–660.

22. Khatib, A.R.; Dong, Z.; Qiu, B.; Liu, Y. Thoughts on future Internet based power system information network

architecture. In Proceedings of the 2000 Power Engineering Society Summer Meeting (Cat. No. 00CH37134),

Seattle, WA, USA, 16–20 July 2000; Volume 1, pp. 155–160.

23. Reifenhaeuser, B.; Ebbes, A. Digitalized distribution system for the power supply. Internet of the energy;

Digitalisiertes Verteilungsnetz fuer die Stromversorgung. Internet der Energie.EW. Das Magazin fuer die

Energie Wirtschaft2013,112.

24. Rojas-Cessa, R.; Xu, Y.; Grebel, H. Management of a smart grid with controlled-delivery of discrete levels of

energy. In Proceedings of the 2013 IEEE Electrical Power & Energy Conference, Halifax, NS, Canada, 21–23

August 2013; pp. 1–6.

25. Rojas-Cessa, R.; Sahasrabudhe, V.; Miglio, E.; Balineni, D.; Kurylo, J.; Grebel, H. Testbed evaluations of a

controlled-delivery power grid. In Proceedings of the 2014 IEEE International Conference on Smart Grid

Communications (SmartGridComm), Venice, Italy, 3–6 November 2014; pp. 206–211.

https://doi.org/10.2514/6.2012-3732


Energies2019,xx,5 19 of 19

26. Shibano, K.; Kontani, R.; Hirai, H.; Hasegawa, M.; Aihara, K.; Taoka, H.; McQuilkin, D.; Abe, R. A linear

programming formulation for routing asynchronous power systems of the Digital Grid. Eur. Phys. J.

Spec. Top.2014,223, 2611–2620.

27. Murty, K.G.Linear Programming;Springer:NewYork,NY,USA 1983.

28. Garfinkel, R.S.Integer Programming; Technical Report;Wiley:Hoboken,NJ,USA,1972.

29. Dijkstra, E.W. A note on two problems in connexion with graphs.Numerische Math.1959,1, 269–271.

30. Rojas-Cessa, R.; Wong, C.K.; Jiang, Z.; Shah, H.; Grebel, H.; Mohamed, A. An Energy Packet Switch for

Digital Power Grids. In Proceedings of the 11th International Conference on Internet of Things (iThings

2018), Halifax, NS, Canada, 30 July–3 August 2018; pp. 1–8.

31. Papadimitriou, C.H. On the complexity of integer programming.J. ACM (JACM)1981,28, 765–768.

32. Barbehenn, M. A note on the complexity of Dijkstra s algorithm for graphs with weighted vertices.

IEEE Trans. Comput.1998,47, 263.

33. Frazer, K.NSFNET: A Partnership for High-Speed Networking;MeritNetwork:AnnArbor,MI,USA,1995.

34. Washington University.IEEE14 Test Bus;Publisher:city,stateabbreviationifUSA,country,2010.

35. Athay, T.; Podmore, R.; Virmani, S. A practical method for the direct analysis of transient stability.IEEE Trans.

Power Apparatus Syst.1979, pp. 573–584.

36. ICSEG.IEEE 39 Test Bus;Publisher:city,stateabbreviationifUSA,country,2010.

37. Kolter, J.Z.; Johnson, M.J. REDD: A public data set for energy disaggregation research. In Proceedings of the

Workshop on Data Mining Applications in Sustainability (SIGKDD), San Diego, CA, USA,21August2011;

Volume 25, pp. 59–62.

38. Parsons, B.; Hummon, M.; Cochran, J.; Stoltenberg, B.; Batra, P.; Mehta, B.; Patel, D.Variability of Power from

Large-Scale Solar Photovoltaic Scenarios in the State of Gujarat; Technical Report; National Renewable Energy

Lab. (NREL): Golden, CO, USA, 2014.

39. Nguyen, T.V. Integration of compressed air energy storage with wind turbine to provide energy source for

combustion turbine generator. In Proceedings of the IEEE PES Innovative Smart Grid Technologies, Europe,

Istanbul, Turkey, 12–15 October 2014; pp. 1–5.

c2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.



