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Fault Diagnosis of Discrete Event Systems under Unknown Initial
Conditions

Alejandro White, Ali Karimoddini, and Rong Su

This paper proposes a novel diagnosis technique for Discrete Event Systems (DESs) plant models. The developed diagnosis tool, so
called diagnoser, is able to detect and isolate the occurrence of system’s faults without the knowledge of the system’s past behavior.
This allows the diagnoser to asynchronously begin its diagnosis of a system’s behavior at any time instance of system operation
(including post fault occurrences); consequently removing the generally required synchronous initialization between a diagnoser and
the system under diagnosis. The necessary and sufficient conditions are derived for the diagnosability of a given DES plant under
this asynchronous situation. Several examples are provided to illustrate the details of the proposed diagnosis framework.
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[. INTRODUCTION

ESPITE all efforts, almost all engineered systems are
faulty or become faulty over time. This requires the
development of systematic approaches that detect and com-
pensate the faulty behavior(s) of a system [1]-[4]. A fault
can be defined as a malfunction in system’s component(s)
(actuators, sensors, processors, mechanical parts, software, etc)
that results in unacceptable or degraded system performance,
and/or system instability. In this paper, we study the fault
diagnosis problem within the Discrete Event Systems (DESs)
framework [5]-[8] due to the fact that DES models naturally
capture faults as abrupt changes (events) in the system, which
facilitates the analysis of faulty behaviors of the system. There
are different techniques for fault diagnosis of DESs. In [9], an
off-line diagnosis technique was introduced. Later, in [10],
an automated online diagnosis technique was developed for
DESs and the diagnosability of DES systems. Diagnosability
is a concept that allows the diagnoser (man or man-made)
to determine if all system faults may indeed be detected
within a finite number of post-fault transitions in the system.
The approach later was extended to decentralized [11], [12],
modular/distributed [13], [14], robust and safe [15]-[17] di-
agnosis structures. A comprehensive review of fault diagnosis
techniques for discrete event systems can be found in [18]. In
all of the aforementioned techniques, it is required to initialize
and run the diagnoser synchronously with the plant. This
allows the diagnoser to diagnose faults based on a rich set
of information including both pre- and post-fault behaviours
in the system. However, the requirement for synchronous
initialization of the diagnoser and the system under diagnosis
would not be practically easy to meet.
Therefore, to address this problem, this paper proposes a
systematic and analytical approach to construct a diagnoser
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that can be asynchronously turned on at any time, even
after the occurrence of a fault. The problem is that unlike
conventional diagnosis techniques, the asynchronous diagnoser
does not observe the past history of the system’s event
occurrences before the activation of the diagnoser, leaving
the diagnoser with the challenge of diagnosing faults using
only the future behaviors of the system, observed after the
activation of the diagnoser. In contrast to existing methods,
where the initial state of the system and correspondingly the
initial state of the diagnoser are generally assumed to be non-
faulty, upon its initialization, the asynchronous diagnoser is
no longer able to assume that the current state of the system
is normal. In [19], an asynchronous state-based diagnoser
is introduced to detect permanent faults in a DES system.
Compared to [19], this paper discusses the fault diagnosis
problem within the context of event-based DES paradigm. In
the proposed approach, unlike the state-based framework, the
system under diagnosis is not restricted to be partitioned into
disjoint and disconnected set of normal and faulty states. More
importantly, compared to [19] and our preliminary results
on developing an asynchronous diagnoser in [20], this paper
goes beyond the development of the diagnoser by introducing
a formal definition for asynchronous diagnosis and diagnos-
ability, providing the necessary and sufficient conditions for
asynchronous diagnosability, and comparing synchronous and
asynchronous diagnosis and diagnosability.

The rest of the paper is organized as follows. Section II,
provides the necessary background and notations for DES
modeling of the original system and formulates the asyn-
chronous fault diagnosis problem. In Section III, an algorithm
for constructing the asynchronous diagnoser is presented,
accompanied by an illustrative example detailing the steps of
the proposed algorithm. In Section IV, we formally define
asynchronous diagnosability and provide the necessary and
sufficient conditions to check the asynchronous diagnosability.
The proposed asynchronous diagnosis technique is compared
with traditionally synchronous diagnosis techniques in Section
V. Section VI concludes the paper.
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II. PROBLEM FORMULATION

Consider a plant which is modeled as a non-deterministic
finite-state Discrete-Event System (DES) represented by a
four-tuple,

G = (X,E,57$()) (l)

where X is the state space of the system, zp € X is the
system’s initial state, 3 is the finite set of events, and ¢ :
X x ¥ — 2% (2% is the power set of X) is the state transition
relation; a partial relation that determines all feasible system
state transitions caused by events.

The system’s event set . can be partitioned into two disjoint
sets: the observable event set (2J,) and the unobservable event
set (X,). A sequence of events is called a string or trace. For
a string ¢, |¢| indicates its length. With the abuse of notation,
we use e € s to say that the event e belongs to the string s,
if e is one of the events forming the string s. £* (the Kleene
closure of ¥) is the set of all possible finite strings over the set
3, including the zero-length string . A set of strings form a
language. The concatenation of two strings s; and sy is shown
by s1.52. Extending the transition rule, d, to the strings, it can
be recursively defined as d(x,s.e) = | d(y,e).

yed(x,s)

The set of strings that can be generated by G from the state
zis Lo(z) = {s € ¥* | §(z,s) # 0}. The language of
the plant, L¢, is the set of all sequences of strings that can
be generated by the automaton G from the state zy, which
can be captured by Lg(zo). The language L/ = {t € X" |
s.t € L} is the set of all traces in L that occur immediately
following s € L. The extension closure of the language L¢,
denoted by ext(L¢), can be defined as ext(Lg) := {v € ¥* |
Ju € Lg:uv € Lg}.

We define unobservable reach UR(z) = {y € X | Ju €
X5,y € d(x,u)}, as the set of all of the system’s states
(with the inclusion of z itself) that are reachable from state
x via strings solely consisting of unobservable events. Also,
UE(s,z) = {s.t | t € ¥ and st € Lg(x)} specifies the
set of all unobservable extensions of s concatenated with the
string s and generated from the state x.

The presented system model encompasses the system’s
normal and failed behavior, where the set of system faults, > ¢,
is a subset of the system’s event set, 2. Similar to [10], we
partition the system’s faults, ¥ ¢, as the union of m different
types X, Xfy, .oy 2, . We also consider the worst case
scenario that faults are unobservable Xy C X,. However,
the paper’s derivations are valid for the case that faults are
observable as well.

Definition 1: We refer to a string t € L as an “F;-faulty”
string if there exists an event f € Xy, such that f € ¢t. A
string ¢t € L is called “non-Fi-faulty” if for all f € Xy,
we have f ¢ t. Finally, a string t € L is referred to as a
“normal” string if for all f € Xy, and for all ¢ = 1,...,m,
fét.

Definition 2: State x € X in G is F;-faulty if it is reachable
by an Fj-faulty string, i.e., 3t € L& and 3f € Xy, such that
x € 6(xo,t) and f € t. Similarly, state z € X is non-F;-faulty,
if it is reachable by a non-Fj-faulty string, i.e., s € Lg so
that Vf € Xy, f ¢ s and x € (o, ).

Remark 1: Since a state may be reached by different normal
or faulty strings, a state z € X in G can be both F;-faulty
and non-Fj-faulty, if it is reachable by both a Fj-faulty string
and a non-F;-faulty string.

Our purpose is to diagnose the occurrence of (unobserv-
able) faults from the observable behavior of the system. The
system’s observable behavior can be described by the natural
projection of the system’s language to the observable event set
of the system. The natural projection onto observable event set,
P :¥* — X%, can be defined as follows:

e Pe) =

. P(e)—e if e € 3,

o Ple)=¢,ife¢ X,
P(s.e) = P(s)P(e), for s € ¥* and e € %.

This definition can be further extended to a language £;
as P(Ly) = {P(s) | s € L1}. The inverse projection of a
string w € 3} into £ C X% is P;'(w) = {s € £y | P(s) =
w}, and the inverse projection of a language Lo into £ is

P (L2) = U Pzl(s).

To analyze the faulty behaviors of a plant G, we assume
that the model of the system containing both faulty and normal
behaviors is given. Further, we assume that the language of
the plant, Lg, is live, ie., Vo € X,do0 € X such that
d(z,0) is defined. This ensures that after the occurrence of
a fault there is ample time provided to monitor the system’s
behavior, and diagnose the fault occurrence. Furthermore, we
assume that the lengths of unobservable strings in Lg are
bounded by n,, otherwise, the plant G may become trapped
in a cycle of unobservable events, in turn making the diagnosis
impossible. Given this information, fault diagnosis is the art
of distinctively characterizing the system’s behavior in order
to detect, identify, and locate fault occurrences solely based
upon external observations of the system. This can be formally
formulated as follows:

Problem 1: Assume that a discrete event system G has been
running and has generated a string s. Not knowing the past
history of the system G and its generated string s, start the
diagnosis process, i.e., for any successive string ¢t € Lg/s,
where ¢ occurs upon starting the diagnosis process, only from
the observation P(t), determine if 3f € Xy such that f € s.t.
If yes, identify the type of fault, X, where f € ¥y, and
locate the fault by finding the system state x € X subsequently
reached upon fault occurrence.

III. CONSTRUCTING THE DIAGNOSER

To address the fault diagnosis problem described in Prob-
lem 1, we propose to develop an asynchronous diagnoser,
which provides diagnostics by extracting information from the
original system’s observable events in order to estimate the
original system’s current state location and current condition
(faulty or non-faulty). The proposed asynchronous diagnoser
is a deterministic finite-state DES represented by a four-tuple:

Gq = (Qa, 24,04, 0) 2

where Q; C 2X*L is the state space of the diagnoser,

Yq = X, is the event set, §, is the state transition rule, g
is the diagnoser’s initial state, and L is the diagnostic label
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Fig. 1: The DES model of a UAV involved in a search mission in
which the events « and 3 are for “traveling back to the hangar” and
“searching for a target” The fault events f; and f> are for “loss of
the communication link” and “fuel leakage/low.”

set. The diagnostic labels are defined as L = {N} U 2%,
F ={F,F,, ..., F,}, where F; is a label representing the
faults in Xy, ¢ = 1,...,m, and N is a label representing
the condition of normal system operation. The diagnoser’s
states are in the form of g4 = {(z1,41), ..., (zk, lx)}, where
x; € X and ¢; C L. In fact, the states of the diagnoser are
sets of ordered pairs, (x;,¢;), consisting of the estimations
of the original system state, x;, and their corresponding fault
indicator label sets, ¢;. From these ordered pairs, (z;,¢;), we
can detect the occurrence of the faults and isolate fault types,
as /; carries the information about the occurred faults, and x;
indicates the current state (location) of the system. Next, we
will discuss the procedure to find the states of the diagnoser
and the transition rules.

Upon the occurrence of each observable event, the diagnoser
will update its estimations of the state of the original system.
In addition, the diagnoser will append its estimation of the
system’s condition to the estimated states of the system in the
form of a label set £ C L. Assuming that the current condition
of the system is captured by ¢, followed by the occurrence
of a string ¢ € ¥*, the update of the label set ¢ to a new
label set ¢ is carried out by the Label Updating Function,
V:LxX¥*— L, where ¢/ =V ({,t) =:

3)

{N}, if t={N} and Vf e Xy, f¢t,
{F; € FIF; €l or 3f € ¥y;, f €t}, Otherwise

The asynchronous diagnoser may be activated at any time
instance, independent of the original system’s operation. For
this purpose, the asynchronous diagnoser starts wide and
narrows down its estimate of the original system’s state and
condition as it receives more information from its observations.
Because the diagnoser is not synchronously activated with
respect to the original system, upon activation, the diagnoser
is completely unknowing of the original system’s current state
and condition. Therefore, the diagnoser’s initial state is as
follows:

g0 = {(W, VUN}L )t € La(xo),y € 6(x0,t)} ()

Following activation of the diagnoser, observance of e €
>, will cause the diagnoser to update its estimation of the
original system’s state and condition. Starting from gg, we may
now define the diagnoser’s set of states, (4, and construct its

3

transition relation, dg : Q4 X X, — Qg, as follows:

da(g.e) = {(y, V((,t)[(x,¢) € ¢,t € UE(e, ),y € 6(x,1)}
(&)
Algorithm 1 summarizes the diagnoser construction process.
Assuming that the original system, G, is initially normal (non-
faulty), the algorithm starts with g9 = {(zo,{N})} as the
initial state of the diagnoser, and then, extends go to = €
UR(xz0) by qo = qo U {(z,0)|z € é(xo,u), v € X3, £ =
V({N},u)}, and will continue the process by searching over
all other possible strings in £(G).

Algorithm 1 Constructing an Asynchronous Diagnoser

Initialization:
a0 = {(z0. (N D)}:
Step 1: Constructing ¢,
© = oU{@ 0l € dwou), u € T, ¢ =
VN )k
repeat
for (z,£) € go and e € ,, do
if 3t € UE(e,x) such that Jy € 0(z,e) and
(y7 V(ﬁ, t)) §é q0 then
a0 = a0 U{(y, V(L)
end if
end for
until There is no new pair (z,1) in g.
Step 2: Constructing Q) 4
Qa = qo;
repeat
for ¢ € Q4 and e € X, do
if 94(q, e) is defined and d,4(q,€) € Q4 then
Add 64(g,e) to Qs
end if
end for
until There is no new state d4(q, ) for all e € 3,

In Step 1, the algorithm constructs gy, and in Step 2, it
constructs the remaining accessible diagnoser states ¢ € Qg.
The following example illustrates the implementation of the
algorithm.

Example 1: Consider an unmanned aerial vehicle (UAV)
involved in a search mission to find a particular target. A
simple model for this search mission is the automaton Gy,
shown in Fig. 1, with ¥ = {«, 5, f1, f2}, X0 = {a, 8},
Yo = {fi.fo}, and By = {f1, fo}, Xy, = {fi}, and
Y4, = {f2}. In this model, the event 3 is for “searching for
a target,” the event « is for “traveling back to the hangar,”
f1 is a fault event that is activated in case of “loss of
the communication link” and the fault event f5 is for “fuel
leakage/low”. In case the UAV loses the communication link, it
continues searching around (to possibly get connected again),
and if there is a fuel leakage or low fuel level, the UAV quickly
returns to the hangar.

Following Step 1 of Algorithm 1, we will have
g = {LANDL{F.(2,AND).(2,{F1}).(3,{F1}),
4,{F1}).(5,{F2}).(5,{F1, F2})}. Following Step 2 of the
algorithm, other states of the diagnoser and the transition
function d4 can be found as shown in Fig. 2. In this figure,
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Fig. 2: The constructed diagnoser G4, for the plant G given in Fig. 1

instead of the pair (5,{Fi,F>}), we have simply used
(5, F1 F3). Similar notation is used for other pairs and other
diagnosers’ figures in this paper.

Example 2: For the plant (G1, imagine that f5 has occurred
and the plant G is in state 5. Then, we turn on the di-
agnoser, and the diagnoser starts from ¢y. When the event
a € Y, happens in the plant G, the diagnoser switches to
a1 = {(1,{N}),(1,{F1}), (5,{F2}), (5,{F%, F2})}, which is
an F5-uncertain state. But if we wait for another transition,
the event o € X, happens again in the plant G, resulting
in the diagnoser transiting to g3, which is an F,-certain state,
implying that the fault of type F% has occurred during the
system’s operation.

The following two lemmas provide some properties of the
developed diagnoser, which will be used in future derivations.

Lemma 1: If 04(qk,ex) = qr+1 then for any pair
(k+1,lr+1) € Qr+1, there must exist at least one pair (2, £x)
in g and t € Pe_xi(ﬁc)(ek) such that 11 € 6(xg, tx).
Proof: From Equation 5, we know that gqpy1 =
dalge,er) = U {(0(z,t),V(L,t))}. Therefore, for any

(z,0)Eqr
tEUE(ep,,x)

(k+1,%k+1) € qr+1, there exists at least one pair (zy, ¢x) in

gi such that x4 € 6(xy, tx), where ¢y € Pe;(ﬁc)(ek). |

Lemma 2: Consider d4(qx, ex) = qx+1, where (g, Ux) in g,
($k+17€k+1) in Qk+1, Tk+1 € 5($k,tk), tr € Pe_zi(/v‘g)(ek)' If
F; ¢ €k+1’ then Fj ¢ lg.

Proof: From Equation 3, we know that if F; € f, it will
be propagated and F; € {1 = V(¢,t). Conversely, If F; ¢
€k+1, then F; ¢ i |

IV. ASYNCHRONOUS DIAGNOSABILITY

Once the diagnoser is constructed, an important question is:
upon the diagnoser’s asynchronous activation, is the diagnoser
capable of definitively diagnosing system faults that occur pre

and/or post diagnoser activation. This can be achieved if the
system under diagnosis is asynchronously diagnosable, which
can be formally defined as follows:

Definition 3: (F;-Asynchronous Diagnosability) The
DES system G with the live language Lg, is said to be
F;-Asynchronously diagnosable with respect to the fault type
F; and the natural projection P, if for all s € Lg, f € Xy,
f € s, there exist an upper bound n; € N, such that for any
string t € L/, with [t| > n;, the following condition holds:

{Vuv € Le,v € Py, (P))} = [ €uv, [ €Xy (6)

Activation of

the diagnoser
Xo s t
i [ J
P(t)
LN Observed string
E v

P)y=Plw)=>fcuv
Fig. 3: Illustration of asynchronous diagnosability.

Definition 4: (Asynchronous Diagnosability) The plant G
with the live language L, is said to be asynchronously
diagnosable with respect to the fault set ¥; and the natural
projection P, if it is Fj-asynchronously diagnosable with
respect to all fault types F;, t = 1,...,m.

To graphically illustrate the concept of asynchronous di-
agnosability, Figure 3 shows an example of a faulty string s,
which is succeeded by a string ¢. The string P(t) represents all
observations after the activation of the diagnoser. If there is any
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other string v in L with the same observations, P(t) = P(v),
then v and its predecessor string w should contain a fault
event (f € w.v). Otherwise, we should increase the number
of observations (extend ¢ to ¢’ and v to v’, where t < ¢’ and
v <o), until either f € wv’ or P(¥') # P(v'). If by finite
number of observations we cannot distinguish whether a fault
has occurred from the post-activation observations, the system
becomes asynchronously undiagnosabile.

Remark 2: Unlike synchronous diagnosis [10] where all the
system behavioral information (pre- and post-fault occurrence)
is available to the diagnoser, in asynchronous diagnosis, the
diagnoser only has access to the system behavioral infor-
mation that occurs after the diagnoser’s activation. This can
be observed in Definitions 3 and 4 where the asynchronous
diagnosis requires faulty strings to be distinguishable only
from their extension closure.

Although Definitions 3 and 4 describe the asynchronous
diagnosability, it is difficult to check the diagnosability con-
dition given in (7) over all faulty strings in L. Theorem 1,
therefore, will derive the necessary and sufficient conditions
to indirectly check the asynchronous diagnosability based on
the structure of the diagnoser. For this purpose, we need to
first provide a few definitions:

Definition 5: Consider ¢ = {(x1,41),...,(xar,lr)} € Qq.
Then, q is said to be

e Normal if ¢, = {N} forall k =1,..., M.
o Fj-certain if F; € ¢y for all k =1,..., M.
o Fj-uncertain if 3n,m such that F; € £, but F; ¢ £,,.

Definition 6: A cycle in G is called Fj;-certain if all of its
states are Fj-certain; otherwise, it is called a non-Fj-certain
cycle. A cycle of Fj-uncertain states in (G4 is called an F;-
uncertain cycle.

Definition 7: (F;-indeterminate cycle) A set of Fj-uncertain
states g1, G2, .--.Gn € Qg forms an Fj-indeterminate cycle if
and only if

o The states qi1, g2, ..., and ¢, form a cycle in Gy, i.e.,
5d(Qk7 6k) = qk+1 for k = 17 sy — 1, 5d(qna en) =1,
and e, € X, k=1,...,n.

e The cycle g1, go, ....qn, in G4 can be inversely projected
back to at least one cycle of non-F;-faulty states and one
cycle of Fj-faulty states in the original system G, i.e.,
each state of the cycle, g, contains (x, {;) and (z},,¢},)
so that

- F; ¢ {, and F; € E;C

- 1, T9,..., Ty form a cycle in G so that z;41 €
§(zk,tr), Kk = 1,...,n — 1, and 1 € 6(zp,tn),
where ¢, € Pe_mlf(ﬁg)(ek.) fork=1,...,n.

- 24, xh,..., x), form a cycle in G so that $;f+1 €
Oz, ), kK =1,...,n—1, and 2} € d(z],t]),

where ¢} € Pe;i(ﬁc)(ek) fork=1,...,n.

In other words, an Fj-indeterminate cycle is a cycle of Fj-
uncertain states in the diagnoser, of which there exists a cor-
responding cycle of non-F;-faulty states, and a corresponding
cycle of Fj;-faulty states in the original system.

Upon entering an Fj-indeterminate cycle, the diagnoser will
be unable to definitively detect and isolate faults of type Fj,

as it will be discussed in Theorem 1. Before that, we need the
following lemma.

Lemma 3: Consider the diagnoser GG; constructed for a plant

G with a live language L, that has a cycle of Fj;-uncertain
states q1, g2, -..» Gn € Qq such that 04(qg, ex) = qx+1, for
k=1,...,n—1, d4(gn,en) = q1, e € Lo, k =1,...,n.
Assume that this cycle is not an Fj-indeterminate cycle. If
before or after entering this cycle of Fj-uncertain states a fault
of type F; occurs, then the diagnoser will transit out of the
cycle of F;-uncertain states after a finite number of transitions.
Proof: The states q1, qo, ...,q, are F;-uncertain, therefore each
state gi contains at least two pairs of (xy, ¢x) and (z},, ¢},) so
that F; ¢ {, and F; € ¢}, for k = 1,...,n. Since ¢, k =
1,...,n, do not form an Fj-indeterminate cycle, according to
Definition 7, either there does not exist a cycle of non-Fj-
faulty pairs (xg,{)) (the corresponding non-F;-faulty states
x), do not form a cycle in GG), or there does not exist a cycle
of F;-faulty pairs (z,¢},) (the corresponding F;-faulty states
). do not form a cycle in G). The former case is impossible
to happen. This can be proven by a backward reachability
induction and by applying Lemmas 1 and 2. Now, consider
the following two possible situations:
Case 1 (A fault f € Xy, occurs before diagnoser G4 enters
the cycle of Fj-uncertain states): If after the occurrence of the
fault f € Xy,, the diagnoser enters this cycle of Fj-uncertain
states by reaching the state q; of the cycle, one of the states
x}, in G will be reached, which corresponds to (x},,¢},) € g
and F; € E;C. This is due to the fact that after the occurrence
of the fault f € ¥y, only Fj-faulty states in G are reachable.
Case 2 (A fault f € ¥y, occurs while the diagnoser G is in
the cycle of Fj-uncertain states ): If the diagnoser is in one
of the states g of the aforementioned cycle of Fj-uncertain
states, and the fault f € ¥y, occurs, upon observing the first
observable event, the diagnoser will switch to the state gx41 of
the cycle, in which the faulty state x;g 11 in GG will be reached,
which corresponds to (), 1,0}, 1) € qpy1 and F; € £; ;.

In both cases, as the plant G is live and has no cycle of
unobservable events, visiting F;-faulty states will continue.
However, since the finite set of F;-faulty pairs (z},¢,) do
not form a cycle, each can be visited only once, and then, the
diagnoser has to leave the cycle. B

We now can prove Theorem 1, which explains the necessary
and sufficient conditions for asynchronous diagnosability of a
given DES plant G based on the structure of its diagnoser G .

Theorem 1: (Asynchronous Diagnosability Theorem) The
plant G with the live language L, and with the asynchronous
diagnoser G4, constructed in Section III, is F;-asynchronously
diagnosable if and only if, there does not exist an Fj-
indeterminate cycle in Gy.

Proof of Necessity: We prove that if G is Fj-asynchronously
diagnosable, then there is no Fj-indeterminate cycle in Gg.
For this purpose, by contradiction, assume that there is an
Fi-indeterminate cycle, q1, g2, ..., qn, in Gg, such that
da(qr,ex) = Qk+1, 9a(Gn,n) = qu, ex € Lo, k= 1,...,n.
According to Definition 7, any Fj-indeterminate cycle in
Gq corresponds to at least one cycle of Fj-faulty states xf,

Th,..., T, in G such that 25, € o(x),1}), =] € d(xy,, 1),
t), € Pe_mi(ﬁc)(ek) for k =1,...,n; and one cycle of non-F;
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faulty states 1, Z2,..., &, in G such that zy; € §(xg, tg),
E=1,....,n—1, 21 € 0(zn,tn), tx € Pe_wi(ﬁc)(ek) for
k=1,...,n, for which («},¢;) and (zx, %) € qx, F; € €},
and F; ¢ 0y, k=1, ..., n.

Without loss of generality, assume that in this Fj-
indeterminate cycle, the F;-faulty pair (24,¢}) in ¢1, F; € ¢},
is the first F;-faulty pair that is reachable from one of the pairs
in go by a string r, ¢ = d4(qo, 7). This means that the state
x} has to be reached from a pair (y(, ¢;) € go, with a string
Ty € Pe;i(ﬁc)(r), such that §(yg,r;,) = . Correspondingly,
since ¢; is an Fj-uncertain state, there exists a pair (x1,¢1) €
q1, F; ¢ ¢y, which is reachable from a pair (yo,%) € qo,
F; ¢ £y, with a non-F;-faulty string r,, € Pe_mi( £o) (r) meaning
that §(yo,ry) = x1, f & 1y, Vf € Xy, Also, according to
the construction procedure of the diagnoser, for the states yo
and yj, there exist strings w,w’ € Lg such that Vf € Xy,
f ¢ w, §(zo,w) = yo and 6(xg,w") = y,. Figure 4 shows
the graphical representation of the described situation. Now,
since ] is an F;-faulty state, two cases may happen: there
exists a f € Xy, such that f € w’ (if the fault occurs before
the diagnoser activation) or f € r{l (if the fault occurs after
the activation of the diagnoser), based on which, we will have
two following cases:

Case 1 (fault occurs before the diagnoser activation, f € w’):
Let t = r(thty...t;,), with arbitrary large K so that
[lt]| > mn; for any n; € IN. Also, corresponding to the
elements of Definition 4, set the strings s = w’, v = w, and
v =ry(tita..t,) K

Case 2 (fault occurs after the diagnoser activation, f € r’y):
Let t = (t)th...t,)X, with arbitrary large K so that [|t|| > n;
for any n; € IN. Also, corresponding to the elements of
Definition 4, set the strings s = w’r;, u = wry, and
v = (titg...t,)

In both cases, the arbitrary long string ¢ is in Lg/,, v €
Pe;zls([:a)(P(t)) and uv € Lg, where f € s but for all
'€ Yg.. f ¢ wv, which violates the Fj-asynchronous
diagnosability condition in Definition 4 and contradicts with

the assumption which was made at the beginning of this proof.

Proof of Sufficiency: Next, we prove that if there is no Fj-
indeterminate cycle in G4, then G is F;-asynchronously diag-
nosable. For this purpose, we show that upon its occurrence,
fault f € X¢,, can be diagnosed by reaching an Fj-certain
state within a finite number of transitions in G. Let’s consider
the case that a fault f € ¥, has occurred before activating the
diagnoser. When activated, the diagnoser enters go. Since G
is live and has no cycle of unobservable events (the length of
unobservable strings are bounded), the state of diagnoser keeps
changing. This means that upon observing the first observable
event, the diagnoser will update its estimation of the system
state and condition, and transits to a new state. Since f € Xy,
has occurred in the past, the diagnoser will either transition
to an Fj-certain state, which trivially diagnoses the fault
occurrence, or transition to an Fj-uncertain state. For the latter
case, however, we can prove that the diagnoser will eventually
reach an Fj-certain state. For this purpose, we know that if

€n

v r oy €1 i
Gy — 0:20) Vo, o) = = = »(x1, £1) (X1, €1) X3, 45) (x2,¢2)

qo q1 qz

Fig. 4: An F;-indeterminate cycle in G4 can be projected to
an infinitely large Fj-faulty string and an infinitely large non-Fj-
faulty string with the same observation, making the system Fj-
asynchronously undiagnosable.

f € Xy, has occurred in the past, an Fj-uncertain state may
only reach either an Fj-uncertain state or an Fj-certain state.
Also, if the diagnoser transitions to a cycle of Fj-uncertain
states, based on the sufficiency part’s assumption, it will not
be a Fj-indeterminate cycle, and hence, based on Lemma
3, the diagnoser will leave the cycle. Since the diagnoser
has a finite number of states, the state of diagnoser cannot
remain Fj-uncertain and will eventually transition to an Fj-
certain state, concluding that the fault type F; has occurred
in the past. If the fault f € Xy, occurs after activation of
the diagnoser, upon observing the first observable event, the
diagnoser will transition to either an Fj-certain state or an Fj-
uncertain state, and the same argument can be applied to show
that the diagnoser will switch to an Fj-certain state and will
diagnose the fault occurrence in a finite number of diagnoser
state transitions.

Example 3: For the plant G; in Example 1, there are three
cycles of Fj;-uncertain states in G4; in Fig. 2:

1) Cycle 1 consists of g5, g7 and ¢qg, which are Fj5-
uncertain.

2) Cycle 2 consists of only g3 which is F}-uncertain.

3) Cycle 3 consists of g; and g4 which are both F3-
uncertain and F5-uncertain.

Cycle 1 in G4, corresponds to a cycle of non-Fh-faulty
states in G114 _ %o 1 p 9 h 3 . However, for this

\—/

B
cycle there does not exist any cycle of Fy-faulty states in G.

Therefore, this cycle of Fh-uncertain states in G4y is not Fy-
indeterminate.

Cycle 2 in G4, corresponds to a self-loop in GG; at the state
x = 5, which is both Fj-faulty and non-F}-faulty, concluding
Cycle 2 is F-indeterminate.

Cycle 3 in G4; corresponds to a cycle of non-Fy-faulty

states in Gp: 1 _f, 9 . However, for this cycle there does

x_ S

[e%

0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2912712, IEEE

Transactions on Automatic Control

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. X, NO. X

not exist any cycle of Fy-faulty states in GG1. Therefore, this
cycle of Fy-uncertain states in G4, is not an Fh-indeterminate.
However, the states ;1 = 1 and 2> = 2 in G, are both F}-
faulty and non-F)-faulty, concluding that Cycle 3 is an F-
indeterminate cycle.

All in all, Cycle 2 and Cycle 3 are F)-indeterminate and
there is no F,-indeterminate cycle in this diagnoser. Hence,
based on Theorem 1, we can conclude that the plant G
is Fy-asynchronously diagnosable but not Fj-asynchronously
diagnosable. Then, based on Definition 4, the plant G; is not
asynchronously diagnosable.

V. ASYNCHRONOUS DIAGNOSIS VS SYNCHRONOUS
DIAGNOSIS

In synchronous diagnosis [10], all the system behavioral
information (pre- and post-fault occurrence) is available to the
diagnoser, G 4. Accordingly, the synchronous diagnosability
can be defined as:

Definition 8: (F;-synchronous Diagnosability [10]) The
plant G with the live language Lg, is said to be Fj-
Synchronously diagnosable with respect to the fault type F;
and the natural projection P, if for all s € Lg, f € Xy,
f € s, there exists an upper bound n; € N, such that for any
string t € L, with [t| > n;, the following condition holds:

{Vw e Lg,w € Pe;i(ﬁc)(P(s.t))} =few (7

The generic string s.t in the above definition, represents
both the past history of the system starting from z, s, and post
fault observations, ¢. However, in the proposed asynchronous
diagnosis in this paper, the diagnoser only has access to the
system behavioral information that occurs after the diagnoser’s
activation. This can be observed in Definitions 3 and 4,
where the asynchronous diagnosis requires faulty strings to
be distinguishable only from their extension closure ¢ instead
of full observation of the system s.t.

An interesting question would be what is the relation
between the synchronous and asynchronous diagnosability.
Intuitively, asynchronous diagnosability implies synchronous
diagnosability, as it is proven in the following theorem:

Theorem 2: If G is Fj-asynchronously diagnosable, then it
is F;-synchronously diagnosable.

Proof: By contradiction assume that the system G is not Fj-
synchronously diagnosable. Therefore, based on Definition
8, there exists a string s € Lg, f € X, f € s, an
(infinitely) large string ¢ € L5/ and a string w € Lg,w €

P;Ei(ﬁc)(P(s.t))}, such that f ¢ w. Now, let u = €
and v = w. Then, for the string s € Lg, f € Xy,

[ € s, with arbitrarily long string ¢t € Lg/s, we have
u € E.q,v € Pe;i([;q)(P(t))} but fgé uv, violating
the conditions in Definition 3, contradicting with the Fj-

asynchronously diagnosablilty of G. B

Synchronous diagnosability, however, does not always im-
ply the asynchronous diagnosability. Figure 5, for example,
shows the plant Gy with ¥y = Xy = {f}, which is syn-
chronously diagnosable but is not asynchronously diagnosable
due to the Fi-indeterminate cycle consisting of Fj-uncertain
states ¢; and ¢4 in G4, in Figure S.c.

Since the synchronous diagnoser G54 contains all projected
strings, and their associated states, it is possible to use the
structure of G4 to indirectly determine if system G is asyn-
chronously diagnosable. Theorem 3 describes the conditions
that a synchronously diagnosable plant is asynchronously diag-
nosable, solely based on the synchronous diagnoser structure.
Before that, we need the following definition:

Definition 9: Let states q1, go, ..., ¢, form a cycle in Ggq
such that 04(qr,ex) = g1 k= 1,...,n — 1, 04(qn,€n) =
q1- If there exists a separate cycle of states in Ggq with
Sa(qy,ex) = Qo K =1,...,m =1, da(q,,en) = ¢y, then
the cycles ¢1, go, ..., ¢, and ¢}, ¢b, ..., g, in G4 are called
associated cycles.

Example 4: Cycle s3, s3 and cycle s5, s4 in G4, in Figure
5.b are associated cycles.

Theorem 3: An F;-synchronously diagnosable plant G with
synchronous diagnoser G g4, is F;-asynchronously diagnosable
if and only if for any Fj-certain cycle in G4, there does not
exist an associated non- Fj-certain cycle.

Proof of Necessity: We prove that if G is asynchronously
diagnosable, then for any Fj-certain cycle in G4 there does
not exist an associated cycle of non-Fj;-faulty states in Ggq.
For this purpose, assume that there exists an Fj-certain cycle
in Gsa, q15 @3> s @y» in Gggq, Where 64(qy,er) = @4y
kE=1,...,n—1, 64(q,,en) = ¢}. By contradiction, assume
that for this Fj-certain cycle in G4y there exists an associated
cycle of non-F;-faulty states in Gsq, g1, G2, .-, Qn, SO that
6d(q1m ek) = Qk+1 k=1,...,n—1, 6d(Qn7 en) = ¢1. From the
construction procedure of G4, we know that for the F;-certain

cycle in Ggg, 4}, @5, ..., q,,, there exists a cycle of F;-faulty
states in G such that z;_, € §(z),t,), k = 1,...,n -1,
x) € 6(x),¢,) and P(t}.th...t}) = er.ea...e,. On the

other hand, by a backward induction it can be proven that for
every cycle of non- Fj;-certain states in asynchronous diagnoser
G4, there exist at least one corresponding cycle of non-Fj-
faulty states in G. Therefore, for the non-Fj-faulty states
41, G2, - Gn in Ggq, there exists a corresponding cycle
of non-F;-faulty states in G such that zp41 € O0(zp,t),
k=1,....n—1, 1 € 6($n,tn) and P(tltgtn> =
e1.es...e,. For these two cycles, therefore, we will have
P(thth ... t) = P(t1.ta...t,).

Assume that states x1 and 2 are reachable from the initial
state, o, in G, by the strings u and s, i.e., 1 € §(zp,u) and
x} € 0(xo,s). Consider the string ¢ = (t}.t...1,)"Lg/s
and v = (lfl.tg...f,n)K,cg/u, where K = kniny € NN,
ny = [t).th...t)], na = |[t1.t2...t,|, and k is an arbitrarily
large number. With this setup, f; € st but f; ¢ wuwv,
st,uv € Lg. However, from the infinitely large post-
activation observations P(t), one cannot distinctly detect the
occurrence of the fault f;, as P(v) = P(t), f; € st, and
fi ¢ wv, which contradictorily violates the Fj;-asynchronous
diagnosability condition in Definition 3 for the plant G.
Proof of Sufficiency: To have the system G F;-asynchronously
diagnosable, it is sufficient to have no Fj-indeterminate cycle
in G4 (Theorem 1). To check this indirectly from G4, since
Gsq contains all projected strings and their associated states,
any Fj-certain cycle in G54 with an associated cycle of non-
F;-faulty states can create an Fj-indeterminate cycle in Gg.
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Fig. 5: (a) The DES plant G2, (b) the synchronous diagnoser G4, for the plant G, (c) the asynchronous diagnoser G, for the plant Go.

Since G4 is Fj-synchronously diagnosable, there is no Fj-
indeterminate cycle in G,4. Therefore, the only remaining
sufficient condition is to have no Fj-certain cycle in G4 with
an associated cycle of non-F;-faulty states. Otherwise, the F;-
certain cycle in G 44 with an associated non-F;-faulty cycle,
form an Fj-indeterminate cycle in G4, whose Fj-certain states
are rooted in an Fj-certain cycle in Gg4 and whose non-Fj-
certain states are rooted in a non-Fj-certain cycle in G44. B

Example 5: In Figure 5.b, the cycle of s, s3 in G4q, is Fi-
certain and cycle of ss, s4 in G4g, is Normal (so is non-Fj-
faulty). This creates an F}-indeterminate cycle in G4, (Figure
Sc), thus G4 is not asynchronously diagnosable, conforming
Theorem 3.

VI. CONCLUSION

Through this paper, we introduced the new concept of
asynchronous diagnosability and developed a systematic and
analytical approach to construct a diagnoser that is able to
detect and isolate faults in a DES plant without having access
to the history of the past behaviors of the system. This allows
the diagnoser to be asynchronously activated anytime, even
after the occurrence of the faults. Moreover, we provided the
necessary and sufficient conditions to check the asynchronous
diagnosability of a given DES plant based on the structure of
the constructed diagnoser. Lastly, the necessary and sufficient
conditions were derived for asynchronous diagnosability based
upon the structure of the synchronous diagnoser.

ACKNOWLEDGMENT

The authors would like to acknowledge the support from
NSF under the award number 1832110, Air Force Research
Laboratory and OSD for sponsoring this research under agree-
ment number FA8750-15-2-0116, and Singapore Ministry of
Education Academic Research Grant RG91/18-(S)-SU RONG
(VP). The first author would like to acknowledge the support
from Title III HBGI grant from the U.S. Department of
Education.

REFERENCES

[11 R. M. Murray, K. J. Astrom, S. P. Boyd, R. W. Brockett, and G. Stein,
“Future directions in control in an information-rich world,” IEEE Control
Systems Magazine, vol. 23, no. 2, pp. 20-33, 2003.

[2] J. Carreno, G. Galdorisi, S. Koepenick, and R. Volner, “Autonomous
systems: Challenges and opportunities,” DTIC Document, Tech. Rep.,
2010.

[3] A. Pouliezos and G. S. Stavrakakis, Real time fault monitoring of
industrial processes. Springer Science & Business Media, 2013, vol. 12.

[4] P. M. Frank, “Fault diagnosis in dynamic systems using analytical
and knowledge-based redundancy: A survey and some new results,”
Automatica, vol. 26, no. 3, pp. 459474, 1990.

[5] C. G. Cassandras and S. Lafortune, Introduction to discrete event
systems. Springer Science & Business Media, 2009.

[6] P. J. Ramadge and W. M. Wonham, “The control of discrete event
systems,” Proceedings of the IEEE, vol. 77, no. 1, pp. 81-98, 1989.

[71 N. Ran, H. Su, A. Giua, and C. Seatzu, “Codiagnosability analysis of
bounded petri nets,” IEEE Transactions on Automatic Control, vol. 63,
no. 4, pp. 1192-1199, 2018.

[8] A. Boussif, M. Ghazel, and K. Klai, “Dpn-sog: A software tool for fault
diagnosis of labeled petri nets using the semi-symbolic diagnoser,” in
11éme Colloque sur la Modélisation des Systemes Réactifs (MSR 2017),
2017.

[9] F. Lin, “Diagnosability of discrete event systems and its applications,”
Discrete Event Dynamic Systems, vol. 4, no. 2, pp. 197-212, 1994.

[10] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and
D. Teneketzis, “Diagnosability of discrete-event systems,” IEEE Trans-
actions on Automatic Control, vol. 40, no. 9, pp. 1555-1575, 1995.

[11] Y. Wang, T.-S. Yoo, and S. Lafortune, “Diagnosis of discrete event
systems using decentralized architectures,” Discrete Event Dynamic
Systems, vol. 17, no. 2, pp. 233-263, 2007.

[12] W. Qiu and R. Kumar, “Decentralized failure diagnosis of discrete event
systems,” IEEE Transactions on Systems, Man and Cybernetics, Part A:
Systems and Humans, vol. 36, no. 2, pp. 384-395, 2006.

[13] O. Contant, S. Lafortune, and D. Teneketzis, “Diagnosability of discrete
event systems with modular structure,” Discrete Event Dynamic Systems,
vol. 16, no. 1, pp. 9-37, 2006.

[14] R. Su and W. M. Wonham, “Global and local consistencies in distributed
fault diagnosis for discrete-event systems,” IEEE Transactions on Auto-
matic Control, vol. 50, no. 12, pp. 1923-1935, 2005.

[15] A. Paoli and S. Lafortune, “Safe diagnosability for fault-tolerant su-
pervision of discrete-event systems,” Automatica, vol. 41, no. 8, pp.
1335-1347, 2005.

[16] L. K. Carvalho, J. C. Basilio, and M. V. Moreira, “Robust diagnosis
of discrete event systems against intermittent loss of observations,”
Automatica, vol. 48, no. 9, pp. 2068-2078, 2012.

[17] S. T. S. Lima, J. C. Basilio, S. Lafortune, and M. V. Moreira, “Robust
diagnosis of discrete-event systems subject to permanent sensor failures.”
in WODES, 2010, pp. 90-97.

[18] J. Zaytoon and S. Lafortune, “Overview of fault diagnosis methods for
discrete event systems,” Annual Reviews in Control, vol. 37, no. 2, pp.
308-320, 2013.

[19] S. H. Zad, R. H. Kwong, and W. M. Wonham, “Fault diagnosis in
discrete-event systems: framework and model reduction,” IEEE Trans-
actions on Automatic Control, vol. 48, no. 7, pp. 1199-1212, 2003.

[20] A. White and A. Karimoddini, “Asynchronous fault diagnosis of discrete
event systems,” in 2017 American Control Conference (ACC), May 2017,
pp. 3224-3229.

0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



