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Fault Diagnosis of Discrete Event Systems under Unknown Initial
Conditions

Alejandro White, Ali Karimoddini, and Rong Su

This paper proposes a novel diagnosis technique for Discrete Event Systems (DESs) plant models. The developed diagnosis tool, so
called diagnoser, is able to detect and isolate the occurrence of system’s faults without the knowledge of the system’s past behavior.
This allows the diagnoser to asynchronously begin its diagnosis of a system’s behavior at any time instance of system operation
(including post fault occurrences); consequently removing the generally required synchronous initialization between a diagnoser and
the system under diagnosis. The necessary and sufficient conditions are derived for the diagnosability of a given DES plant under
this asynchronous situation. Several examples are provided to illustrate the details of the proposed diagnosis framework.

Index Terms—Fault Diagnosis; Discrete Event Systems; Automata; asynchronous Diagnosis; Uncertainty

I. INTRODUCTION

DESPITE all efforts, almost all engineered systems are
faulty or become faulty over time. This requires the

development of systematic approaches that detect and com-
pensate the faulty behavior(s) of a system [1]–[4]. A fault
can be defined as a malfunction in system’s component(s)
(actuators, sensors, processors, mechanical parts, software, etc)
that results in unacceptable or degraded system performance,
and/or system instability. In this paper, we study the fault
diagnosis problem within the Discrete Event Systems (DESs)
framework [5]–[8] due to the fact that DES models naturally
capture faults as abrupt changes (events) in the system, which
facilitates the analysis of faulty behaviors of the system. There
are different techniques for fault diagnosis of DESs. In [9], an
off-line diagnosis technique was introduced. Later, in [10],
an automated online diagnosis technique was developed for
DESs and the diagnosability of DES systems. Diagnosability
is a concept that allows the diagnoser (man or man-made)
to determine if all system faults may indeed be detected
within a finite number of post-fault transitions in the system.
The approach later was extended to decentralized [11], [12],
modular/distributed [13], [14], robust and safe [15]–[17] di-
agnosis structures. A comprehensive review of fault diagnosis
techniques for discrete event systems can be found in [18]. In
all of the aforementioned techniques, it is required to initialize
and run the diagnoser synchronously with the plant. This
allows the diagnoser to diagnose faults based on a rich set
of information including both pre- and post-fault behaviours
in the system. However, the requirement for synchronous
initialization of the diagnoser and the system under diagnosis
would not be practically easy to meet.

Therefore, to address this problem, this paper proposes a
systematic and analytical approach to construct a diagnoser
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that can be asynchronously turned on at any time, even
after the occurrence of a fault. The problem is that unlike
conventional diagnosis techniques, the asynchronous diagnoser
does not observe the past history of the system’s event
occurrences before the activation of the diagnoser, leaving
the diagnoser with the challenge of diagnosing faults using
only the future behaviors of the system, observed after the
activation of the diagnoser. In contrast to existing methods,
where the initial state of the system and correspondingly the
initial state of the diagnoser are generally assumed to be non-
faulty, upon its initialization, the asynchronous diagnoser is
no longer able to assume that the current state of the system
is normal. In [19], an asynchronous state-based diagnoser
is introduced to detect permanent faults in a DES system.
Compared to [19], this paper discusses the fault diagnosis
problem within the context of event-based DES paradigm. In
the proposed approach, unlike the state-based framework, the
system under diagnosis is not restricted to be partitioned into
disjoint and disconnected set of normal and faulty states. More
importantly, compared to [19] and our preliminary results
on developing an asynchronous diagnoser in [20], this paper
goes beyond the development of the diagnoser by introducing
a formal definition for asynchronous diagnosis and diagnos-
ability, providing the necessary and sufficient conditions for
asynchronous diagnosability, and comparing synchronous and
asynchronous diagnosis and diagnosability.

The rest of the paper is organized as follows. Section II,
provides the necessary background and notations for DES
modeling of the original system and formulates the asyn-
chronous fault diagnosis problem. In Section III, an algorithm
for constructing the asynchronous diagnoser is presented,
accompanied by an illustrative example detailing the steps of
the proposed algorithm. In Section IV, we formally define
asynchronous diagnosability and provide the necessary and
sufficient conditions to check the asynchronous diagnosability.
The proposed asynchronous diagnosis technique is compared
with traditionally synchronous diagnosis techniques in Section
V. Section VI concludes the paper.
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II. PROBLEM FORMULATION

Consider a plant which is modeled as a non-deterministic
finite-state Discrete-Event System (DES) represented by a
four-tuple,

G = (X,Σ, δ, x0) (1)

where X is the state space of the system, x0 ∈ X is the
system’s initial state, Σ is the finite set of events, and δ :
X×Σ→ 2X (2X is the power set of X) is the state transition
relation; a partial relation that determines all feasible system
state transitions caused by events.

The system’s event set Σ can be partitioned into two disjoint
sets: the observable event set (Σo) and the unobservable event
set (Σu). A sequence of events is called a string or trace. For
a string t, |t| indicates its length. With the abuse of notation,
we use e ∈ s to say that the event e belongs to the string s,
if e is one of the events forming the string s. Σ∗ (the Kleene
closure of Σ) is the set of all possible finite strings over the set
Σ, including the zero-length string ε. A set of strings form a
language. The concatenation of two strings s1 and s2 is shown
by s1.s2. Extending the transition rule, δ, to the strings, it can
be recursively defined as δ(x, s.e) =

⋃
y∈δ(x,s)

δ(y, e).

The set of strings that can be generated by G from the state
x is LG(x) = {s ∈ Σ∗ | δ(x, s) 6= ∅}. The language of
the plant, LG, is the set of all sequences of strings that can
be generated by the automaton G from the state x0, which
can be captured by LG(x0). The language LG/s = {t ∈ Σ∗ |
s.t ∈ LG} is the set of all traces in LG that occur immediately
following s ∈ LG. The extension closure of the language LG,
denoted by ext(LG), can be defined as ext(LG) := {v ∈ Σ∗ |
∃u ∈ LG : uv ∈ LG}.

We define unobservable reach UR(x) = {y ∈ X | ∃u ∈
Σ∗u, y ∈ δ(x, u)}, as the set of all of the system’s states
(with the inclusion of x itself) that are reachable from state
x via strings solely consisting of unobservable events. Also,
UE(s, x) = {s.t | t ∈ Σ∗u and s.t ∈ LG(x)} specifies the
set of all unobservable extensions of s concatenated with the
string s and generated from the state x.

The presented system model encompasses the system’s
normal and failed behavior, where the set of system faults, Σf ,
is a subset of the system’s event set, Σ. Similar to [10], we
partition the system’s faults, Σf , as the union of m different
types Σf1 , Σf2 , ...., Σfm . We also consider the worst case
scenario that faults are unobservable Σf ⊆ Σu. However,
the paper’s derivations are valid for the case that faults are
observable as well.

Definition 1: We refer to a string t ∈ LG as an “Fi-faulty”
string if there exists an event f ∈ Σfi , such that f ∈ t. A
string t ∈ LG is called “non-Fi-faulty” if for all f ∈ Σfi ,
we have f /∈ t. Finally, a string t ∈ LG is referred to as a
“normal” string if for all f ∈ Σfi and for all i = 1, ...,m,
f /∈ t.

Definition 2: State x ∈ X in G is Fi-faulty if it is reachable
by an Fi-faulty string, i.e., ∃t ∈ LG and ∃f ∈ Σfi such that
x ∈ δ(x0, t) and f ∈ t. Similarly, state x ∈ X is non-Fi-faulty,
if it is reachable by a non-Fi-faulty string, i.e., ∃s ∈ LG so
that ∀f ∈ Σfi , f /∈ s and x ∈ δ(x0, s).

Remark 1: Since a state may be reached by different normal
or faulty strings, a state x ∈ X in G can be both Fi-faulty
and non-Fi-faulty, if it is reachable by both a Fi-faulty string
and a non-Fi-faulty string.

Our purpose is to diagnose the occurrence of (unobserv-
able) faults from the observable behavior of the system. The
system’s observable behavior can be described by the natural
projection of the system’s language to the observable event set
of the system. The natural projection onto observable event set,
P : Σ∗ → Σ∗o, can be defined as follows:
• P (ε) = ε,
• P (e) = e, if e ∈ Σo,
• P (e) = ε, if e /∈ Σo,
• P (s.e) = P (s)P (e), for s ∈ Σ∗ and e ∈ Σ.
This definition can be further extended to a language L1

as P (L1) = {P (s) | s ∈ L1}. The inverse projection of a
string w ∈ Σ∗o into L1 ⊆ Σ∗ is P−1L1

(w) = {s ∈ L1 | P (s) =
w}, and the inverse projection of a language L2 into L1 is
P−1L1

(L2) =
⋃
s∈L2

P−1L1
(s).

To analyze the faulty behaviors of a plant G, we assume
that the model of the system containing both faulty and normal
behaviors is given. Further, we assume that the language of
the plant, LG, is live, i.e., ∀x ∈ X,∃σ ∈ Σ such that
δ(x, σ) is defined. This ensures that after the occurrence of
a fault there is ample time provided to monitor the system’s
behavior, and diagnose the fault occurrence. Furthermore, we
assume that the lengths of unobservable strings in LG are
bounded by no, otherwise, the plant G may become trapped
in a cycle of unobservable events, in turn making the diagnosis
impossible. Given this information, fault diagnosis is the art
of distinctively characterizing the system’s behavior in order
to detect, identify, and locate fault occurrences solely based
upon external observations of the system. This can be formally
formulated as follows:

Problem 1: Assume that a discrete event system G has been
running and has generated a string s. Not knowing the past
history of the system G and its generated string s, start the
diagnosis process, i.e., for any successive string t ∈ LG/s,
where t occurs upon starting the diagnosis process, only from
the observation P (t), determine if ∃f ∈ Σf such that f ∈ s.t.
If yes, identify the type of fault, Σfi , where f ∈ Σfi , and
locate the fault by finding the system state x ∈ X subsequently
reached upon fault occurrence.

III. CONSTRUCTING THE DIAGNOSER

To address the fault diagnosis problem described in Prob-
lem 1, we propose to develop an asynchronous diagnoser,
which provides diagnostics by extracting information from the
original system’s observable events in order to estimate the
original system’s current state location and current condition
(faulty or non-faulty). The proposed asynchronous diagnoser
is a deterministic finite-state DES represented by a four-tuple:

Gd = (Qd,Σd, δd, q0) (2)

where Qd ⊆ 2X×L is the state space of the diagnoser,
Σd = Σo is the event set, δd is the state transition rule, q0
is the diagnoser’s initial state, and L is the diagnostic label
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Fig. 1: The DES model of a UAV involved in a search mission in
which the events α and β are for “traveling back to the hangar” and
“searching for a target.” The fault events f1 and f2 are for “loss of
the communication link” and “fuel leakage/low.”

set. The diagnostic labels are defined as L = {N} ∪ 2F ,
F = {F1, F2, . . . , Fm}, where Fi is a label representing the
faults in Σfi , i = 1, ...,m, and N is a label representing
the condition of normal system operation. The diagnoser’s
states are in the form of qd = {(x1, `1), . . . , (xk, `k)}, where
xi ∈ X and `i ⊆ L. In fact, the states of the diagnoser are
sets of ordered pairs, (xi, `i), consisting of the estimations
of the original system state, xi, and their corresponding fault
indicator label sets, `i. From these ordered pairs, (xi, `i), we
can detect the occurrence of the faults and isolate fault types,
as `i carries the information about the occurred faults, and xi
indicates the current state (location) of the system. Next, we
will discuss the procedure to find the states of the diagnoser
and the transition rules.

Upon the occurrence of each observable event, the diagnoser
will update its estimations of the state of the original system.
In addition, the diagnoser will append its estimation of the
system’s condition to the estimated states of the system in the
form of a label set ` ⊆ L. Assuming that the current condition
of the system is captured by `, followed by the occurrence
of a string t ∈ Σ∗, the update of the label set ` to a new
label set `′ is carried out by the Label Updating Function,
∇ : L× Σ∗ → L, where `′ = ∇(`, t) =:

{
{N}, if ` = {N} and ∀f ∈ Σf , f /∈ t,
{Fi ∈ F |Fi ∈ ` or ∃f ∈ Σfi, f ∈ t}, Otherwise

(3)

The asynchronous diagnoser may be activated at any time
instance, independent of the original system’s operation. For
this purpose, the asynchronous diagnoser starts wide and
narrows down its estimate of the original system’s state and
condition as it receives more information from its observations.
Because the diagnoser is not synchronously activated with
respect to the original system, upon activation, the diagnoser
is completely unknowing of the original system’s current state
and condition. Therefore, the diagnoser’s initial state is as
follows:

q0 := {(y,∇({N}, t))|t ∈ LG(x0), y ∈ δ(x0, t)} (4)

Following activation of the diagnoser, observance of e ∈
Σo will cause the diagnoser to update its estimation of the
original system’s state and condition. Starting from q0, we may
now define the diagnoser’s set of states, Qd, and construct its

transition relation, δd : Qd × Σo → Qd, as follows:

δd(q, e) = {(y,∇(`, t))|(x, `) ∈ q, t ∈ UE(e, x), y ∈ δ(x, t)}
(5)

Algorithm 1 summarizes the diagnoser construction process.
Assuming that the original system, G, is initially normal (non-
faulty), the algorithm starts with q0 = {(x0, {N})} as the
initial state of the diagnoser, and then, extends q0 to x ∈
UR(x0) by q0 = q0 ∪ {(x, `)|x ∈ δ(x0, u), u ∈ Σ∗u, ` =
∇({N}, u)}, and will continue the process by searching over
all other possible strings in L(G).

Algorithm 1 Constructing an Asynchronous Diagnoser

Initialization:
q0 := {(x0, {N})};
Step 1: Constructing q0
q0 := q0

⋃
{(x, `)|x ∈ δ(x0, u), u ∈ Σ∗u, ` =

∇({N}, u)};
repeat

for (x, `) ∈ q0 and e ∈ Σo do
if ∃t ∈ UE(e, x) such that ∃y ∈ δ(x, e) and

(y,∇(`, t)) /∈ q0 then
q0 = q0 ∪ {(y,∇(`, t))};

end if
end for

until There is no new pair (x, l) in qo.
Step 2: Constructing Qd
Qd := q0;
repeat

for q ∈ Qd and e ∈ Σo do
if δd(q, e) is defined and δd(q, e) 6∈ Qd then

Add δd(q, e) to Qd;
end if

end for
until There is no new state δd(q, e) for all e ∈ Σo

In Step 1, the algorithm constructs q0, and in Step 2, it
constructs the remaining accessible diagnoser states q ∈ Qd.
The following example illustrates the implementation of the
algorithm.

Example 1: Consider an unmanned aerial vehicle (UAV)
involved in a search mission to find a particular target. A
simple model for this search mission is the automaton G1,
shown in Fig. 1, with Σ = {α, β, f1, f2}, Σo = {α, β},
Σu = {f1, f2}, and Σf = {f1, f2}, Σf1 = {f1}, and
Σf2 = {f2}. In this model, the event β is for “searching for
a target,” the event α is for “traveling back to the hangar,”
f1 is a fault event that is activated in case of “loss of
the communication link” and the fault event f2 is for “fuel
leakage/low”. In case the UAV loses the communication link, it
continues searching around (to possibly get connected again),
and if there is a fuel leakage or low fuel level, the UAV quickly
returns to the hangar.

Following Step 1 of Algorithm 1, we will have
q0 = {(1, {N}),(1, {F1}),(2, {N}),(2, {F1}),(3, {F1}),
(4, {F1}),(5, {F2}),(5, {F1, F2})}. Following Step 2 of the
algorithm, other states of the diagnoser and the transition
function δd can be found as shown in Fig. 2. In this figure,
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Fig. 2: The constructed diagnoser Gd1 for the plant G1 given in Fig. 1

instead of the pair (5, {F1, F2}), we have simply used
(5, F1F2). Similar notation is used for other pairs and other
diagnosers’ figures in this paper.

Example 2: For the plant G1, imagine that f2 has occurred
and the plant G1 is in state 5. Then, we turn on the di-
agnoser, and the diagnoser starts from q0. When the event
α ∈ Σo happens in the plant G1, the diagnoser switches to
q1 = {(1, {N}),(1, {F1}), (5, {F2}), (5, {F1, F2})}, which is
an F2-uncertain state. But if we wait for another transition,
the event α ∈ Σo happens again in the plant G1, resulting
in the diagnoser transiting to q3, which is an F2-certain state,
implying that the fault of type F2 has occurred during the
system’s operation.

The following two lemmas provide some properties of the
developed diagnoser, which will be used in future derivations.

Lemma 1: If δd(qk, ek) = qk+1 then for any pair
(xk+1, `k+1) ∈ qk+1, there must exist at least one pair (xk, `k)
in qk and tk ∈ P−1ext(LG)(ek) such that xk+1 ∈ δ(xk, tk).
Proof: From Equation 5, we know that qk+1 =
δd(qk, ek) =

⋃
(x,`)∈qk

t∈UE(ek,x)

{(δ(x, t),∇(`, t))}. Therefore, for any

(xk+1, `k+1) ∈ qk+1, there exists at least one pair (xk, `k) in
qk such that xk+1 ∈ δ(xk, tk), where tk ∈ P−1ext(LG)(ek). �

Lemma 2: Consider δd(qk, ek) = qk+1, where (xk, `k) in qk,
(xk+1, `k+1) in qk+1, xk+1 ∈ δ(xk, tk), tk ∈ P−1ext(LG)(ek). If
Fi /∈ `k+1, then Fi /∈ `k.
Proof: From Equation 3, we know that if Fi ∈ `k, it will
be propagated and Fi ∈ `k+1 = ∇(`, t). Conversely, If Fi /∈
`k+1, then Fi /∈ `k �

IV. ASYNCHRONOUS DIAGNOSABILITY

Once the diagnoser is constructed, an important question is:
upon the diagnoser’s asynchronous activation, is the diagnoser
capable of definitively diagnosing system faults that occur pre

and/or post diagnoser activation. This can be achieved if the
system under diagnosis is asynchronously diagnosable, which
can be formally defined as follows:

Definition 3: (Fi-Asynchronous Diagnosability) The
DES system G with the live language LG, is said to be
Fi-Asynchronously diagnosable with respect to the fault type
Fi and the natural projection P , if for all s ∈ LG, f ∈ Σfi ,
f ∈ s, there exist an upper bound ni ∈ N, such that for any
string t ∈ LG/s with |t| ≥ ni, the following condition holds:

{∀uv ∈ LG, v ∈ P−1ext(LG)(P (t))} ⇒ f ′ ∈ uv, f ′ ∈ Σfi (6)

Fig. 3: Illustration of asynchronous diagnosability.

Definition 4: (Asynchronous Diagnosability) The plant G
with the live language LG, is said to be asynchronously
diagnosable with respect to the fault set Σf and the natural
projection P , if it is Fi-asynchronously diagnosable with
respect to all fault types Fi, i = 1, ...,m.

To graphically illustrate the concept of asynchronous di-
agnosability, Figure 3 shows an example of a faulty string s,
which is succeeded by a string t. The string P (t) represents all
observations after the activation of the diagnoser. If there is any
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other string v in LG with the same observations, P (t) = P (v),
then v and its predecessor string u should contain a fault
event (f ∈ u.v). Otherwise, we should increase the number
of observations (extend t to t′ and v to v′, where t ≤ t′ and
v ≤ v′ ), until either f ∈ uv′ or P (t′) 6= P (v′). If by finite
number of observations we cannot distinguish whether a fault
has occurred from the post-activation observations, the system
becomes asynchronously undiagnosabile.

Remark 2: Unlike synchronous diagnosis [10] where all the
system behavioral information (pre- and post-fault occurrence)
is available to the diagnoser, in asynchronous diagnosis, the
diagnoser only has access to the system behavioral infor-
mation that occurs after the diagnoser’s activation. This can
be observed in Definitions 3 and 4 where the asynchronous
diagnosis requires faulty strings to be distinguishable only
from their extension closure.

Although Definitions 3 and 4 describe the asynchronous
diagnosability, it is difficult to check the diagnosability con-
dition given in (7) over all faulty strings in LG. Theorem 1,
therefore, will derive the necessary and sufficient conditions
to indirectly check the asynchronous diagnosability based on
the structure of the diagnoser. For this purpose, we need to
first provide a few definitions:

Definition 5: Consider q = {(x1, `1), . . . , (xM , `M )} ∈ Qd.
Then, q is said to be

• Normal if `k = {N} for all k = 1, ...,M .
• Fi-certain if Fi ∈ `k for all k = 1, ...,M .
• Fi-uncertain if ∃n,m such that Fi ∈ `n, but Fi /∈ `m.

Definition 6: A cycle in Gd is called Fi-certain if all of its
states are Fi-certain; otherwise, it is called a non-Fi-certain
cycle. A cycle of Fi-uncertain states in Gd is called an Fi-
uncertain cycle.

Definition 7: (Fi-indeterminate cycle) A set of Fi-uncertain
states q1, q2, ...,qn ∈ Qd forms an Fi-indeterminate cycle if
and only if

• The states q1, q2, ..., and qn form a cycle in Gd, i.e.,
δd(qk, ek) = qk+1, for k = 1, . . . , n−1, δd(qn, en) = q1,
and ek ∈ Σo, k = 1, . . . , n.

• The cycle q1, q2, ...,qn in Gd can be inversely projected
back to at least one cycle of non-Fi-faulty states and one
cycle of Fi-faulty states in the original system G, i.e.,
each state of the cycle, qk, contains (xk, `k) and (x′k, `

′
k)

so that

– Fi /∈ `k and Fi ∈ `′k.
– x1, x2,..., xn form a cycle in G so that xk+1 ∈
δ(xk, tk), k = 1, . . . , n − 1, and x1 ∈ δ(xn, tn),
where tk ∈ P−1ext(LG)(ek) for k = 1, . . . , n.

– x′1, x′2,..., x′n form a cycle in G so that x′k+1 ∈
δ(x′k, t

′
k), k = 1, . . . , n − 1, and x′1 ∈ δ(x′n, t

′
n),

where t′k ∈ P
−1
ext(LG)(ek) for k = 1, . . . , n.

In other words, an Fi-indeterminate cycle is a cycle of Fi-
uncertain states in the diagnoser, of which there exists a cor-
responding cycle of non-Fi-faulty states, and a corresponding
cycle of Fi-faulty states in the original system.

Upon entering an Fi-indeterminate cycle, the diagnoser will
be unable to definitively detect and isolate faults of type Fi,

as it will be discussed in Theorem 1. Before that, we need the
following lemma.

Lemma 3: Consider the diagnoser Gd constructed for a plant
G with a live language LG, that has a cycle of Fi-uncertain
states q1, q2, . . . , qn ∈ Qd such that δd(qk, ek) = qk+1, for
k = 1, . . . , n − 1, δd(qn, en) = q1, ek ∈ Σo, k = 1, . . . , n.
Assume that this cycle is not an Fi-indeterminate cycle. If
before or after entering this cycle of Fi-uncertain states a fault
of type Fi occurs, then the diagnoser will transit out of the
cycle of Fi-uncertain states after a finite number of transitions.
Proof: The states q1, q2, ...,qn are Fi-uncertain, therefore each
state qk contains at least two pairs of (xk, `k) and (x′k, `

′
k) so

that Fi /∈ `k and Fi ∈ `′k, for k = 1, . . . , n. Since qk, k =
1, . . . , n, do not form an Fi-indeterminate cycle, according to
Definition 7, either there does not exist a cycle of non-Fi-
faulty pairs (xk, `k) (the corresponding non-Fi-faulty states
xk do not form a cycle in G), or there does not exist a cycle
of Fi-faulty pairs (x′k, `

′
k) (the corresponding Fi-faulty states

x′k do not form a cycle in G). The former case is impossible
to happen. This can be proven by a backward reachability
induction and by applying Lemmas 1 and 2. Now, consider
the following two possible situations:
Case 1 (A fault f ∈ Σfi occurs before diagnoser Gd enters
the cycle of Fi-uncertain states): If after the occurrence of the
fault f ∈ Σfi , the diagnoser enters this cycle of Fi-uncertain
states by reaching the state qk of the cycle, one of the states
x′k in G will be reached, which corresponds to (x′k, `

′
k) ∈ qk

and Fi ∈ `′k. This is due to the fact that after the occurrence
of the fault f ∈ Σfi , only Fi-faulty states in G are reachable.
Case 2 (A fault f ∈ Σfi occurs while the diagnoser Gd is in
the cycle of Fi-uncertain states ): If the diagnoser is in one
of the states qk of the aforementioned cycle of Fi-uncertain
states, and the fault f ∈ Σfi occurs, upon observing the first
observable event, the diagnoser will switch to the state qk+1 of
the cycle, in which the faulty state x′k+1 in G will be reached,
which corresponds to (x′k+1, `

′
k+1) ∈ qk+1 and Fi ∈ `′k+1.

In both cases, as the plant G is live and has no cycle of
unobservable events, visiting Fi-faulty states will continue.
However, since the finite set of Fi-faulty pairs (x′k, `

′
k) do

not form a cycle, each can be visited only once, and then, the
diagnoser has to leave the cycle. �

We now can prove Theorem 1, which explains the necessary
and sufficient conditions for asynchronous diagnosability of a
given DES plant G based on the structure of its diagnoser Gd.

Theorem 1: (Asynchronous Diagnosability Theorem) The
plant G with the live language LG, and with the asynchronous
diagnoser Gd, constructed in Section III, is Fi-asynchronously
diagnosable if and only if, there does not exist an Fi-
indeterminate cycle in Gd.
Proof of Necessity: We prove that if G is Fi-asynchronously
diagnosable, then there is no Fi-indeterminate cycle in Gd.
For this purpose, by contradiction, assume that there is an
Fi-indeterminate cycle, q1, q2, . . . , qn, in Gd, such that
δd(qk, ek) = qk+1, δd(qn, en) = q1, ek ∈ Σo, k = 1, . . . , n.
According to Definition 7, any Fi-indeterminate cycle in
Gd corresponds to at least one cycle of Fi-faulty states x′1,
x′2,. . . , x′n in G such that x′k+1 ∈ δ(x′k, t′k), x′1 ∈ δ(x′n, t′n),
t′k ∈ P

−1
ext(LG)(ek) for k = 1, . . . , n; and one cycle of non-Fi
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faulty states x1, x2,..., xn in G such that xk+1 ∈ δ(xk, tk),
k = 1, . . . , n − 1, x1 ∈ δ(xn, tn), tk ∈ P−1ext(LG)(ek) for
k = 1, . . . , n, for which (x′k, `

′
k) and (xk, `k) ∈ qk, Fi ∈ `′k,

and Fi /∈ `k, k = 1, ..., n.
Without loss of generality, assume that in this Fi-

indeterminate cycle, the Fi-faulty pair (x′1, `
′
1) in q1, Fi ∈ `′1,

is the first Fi-faulty pair that is reachable from one of the pairs
in q0 by a string r, q1 = δd(q0, r). This means that the state
x′1 has to be reached from a pair (y′0, `

′
0) ∈ q0, with a string

r′y ∈ P−1ext(LG)(r), such that δ(y′0, r
′
y) = x′1. Correspondingly,

since q1 is an Fi-uncertain state, there exists a pair (x1, `1) ∈
q1, Fi /∈ `1, which is reachable from a pair (y0, `0) ∈ q0,
Fi /∈ `0, with a non-Fi-faulty string ry ∈ P−1ext(LG)(r) meaning
that δ(y0, ry) = x1, f /∈ ry,∀f ∈ Σfi . Also, according to
the construction procedure of the diagnoser, for the states y0
and y′0, there exist strings w,w′ ∈ LG such that ∀f ∈ Σfi ,
f /∈ w, δ(x0, w) = y0 and δ(x0, w

′) = y′0. Figure 4 shows
the graphical representation of the described situation. Now,
since x′1 is an Fi-faulty state, two cases may happen: there
exists a f ∈ Σfi such that f ∈ w′ (if the fault occurs before
the diagnoser activation) or f ∈ r′y (if the fault occurs after
the activation of the diagnoser), based on which, we will have
two following cases:
Case 1 (fault occurs before the diagnoser activation, f ∈ w′):
Let t = r′y(t′1t

′
2...t

′
n)K , with arbitrary large K so that

||t|| > ni for any ni ∈ N. Also, corresponding to the
elements of Definition 4, set the strings s = w′, u = w, and
v = ry(t1t2...tn)K .

Case 2 (fault occurs after the diagnoser activation, f ∈ r′y):
Let t = (t′1t

′
2...t

′
n)K , with arbitrary large K so that ||t|| > ni

for any ni ∈ N. Also, corresponding to the elements of
Definition 4, set the strings s = w′r′y , u = wry , and
v = (t1t2...tn)K .

In both cases, the arbitrary long string t is in LG/s, v ∈
P−1ext(LG)(P (t)) and uv ∈ LG, where f ∈ s but for all
f ′ ∈ Σf i, f

′ /∈ uv, which violates the Fi-asynchronous
diagnosability condition in Definition 4 and contradicts with
the assumption which was made at the beginning of this proof.
Proof of Sufficiency: Next, we prove that if there is no Fi-
indeterminate cycle in Gd, then G is Fi-asynchronously diag-
nosable. For this purpose, we show that upon its occurrence,
fault f ∈ Σfi , can be diagnosed by reaching an Fi-certain
state within a finite number of transitions in G. Let’s consider
the case that a fault f ∈ Σfi has occurred before activating the
diagnoser. When activated, the diagnoser enters q0. Since G
is live and has no cycle of unobservable events (the length of
unobservable strings are bounded), the state of diagnoser keeps
changing. This means that upon observing the first observable
event, the diagnoser will update its estimation of the system
state and condition, and transits to a new state. Since f ∈ Σfi
has occurred in the past, the diagnoser will either transition
to an Fi-certain state, which trivially diagnoses the fault
occurrence, or transition to an Fi-uncertain state. For the latter
case, however, we can prove that the diagnoser will eventually
reach an Fi-certain state. For this purpose, we know that if

Fig. 4: An Fi-indeterminate cycle in Gd can be projected to
an infinitely large Fi-faulty string and an infinitely large non-Fi-
faulty string with the same observation, making the system Fi-
asynchronously undiagnosable.

f ∈ Σfi has occurred in the past, an Fi-uncertain state may
only reach either an Fi-uncertain state or an Fi-certain state.
Also, if the diagnoser transitions to a cycle of Fi-uncertain
states, based on the sufficiency part’s assumption, it will not
be a Fi-indeterminate cycle, and hence, based on Lemma
3, the diagnoser will leave the cycle. Since the diagnoser
has a finite number of states, the state of diagnoser cannot
remain Fi-uncertain and will eventually transition to an Fi-
certain state, concluding that the fault type Fi has occurred
in the past. If the fault f ∈ Σfi occurs after activation of
the diagnoser, upon observing the first observable event, the
diagnoser will transition to either an Fi-certain state or an Fi-
uncertain state, and the same argument can be applied to show
that the diagnoser will switch to an Fi-certain state and will
diagnose the fault occurrence in a finite number of diagnoser
state transitions. �

Example 3: For the plant G1 in Example 1, there are three
cycles of Fi-uncertain states in Gd1 in Fig. 2:

1) Cycle 1 consists of q5, q7 and q8, which are F2-
uncertain.

2) Cycle 2 consists of only q3 which is F1-uncertain.
3) Cycle 3 consists of q1 and q4 which are both F1-

uncertain and F2-uncertain.
Cycle 1 in Gd1 corresponds to a cycle of non-F2-faulty

states in G1: 4
α // 1

β // 2
f1 // 3

β

hh . However, for this

cycle there does not exist any cycle of F2-faulty states in G1.
Therefore, this cycle of F2-uncertain states in Gd1 is not F2-
indeterminate.

Cycle 2 in Gd1 corresponds to a self-loop in G1 at the state
x = 5, which is both F1-faulty and non-F1-faulty, concluding
Cycle 2 is F1-indeterminate.

Cycle 3 in Gd1 corresponds to a cycle of non-F2-faulty
states in G1: 1

β // 2

α

__
. However, for this cycle there does
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not exist any cycle of F2-faulty states in G1. Therefore, this
cycle of F2-uncertain states in Gd1 is not an F2-indeterminate.
However, the states x1 = 1 and x2 = 2 in G1 are both F1-
faulty and non-F1-faulty, concluding that Cycle 3 is an F1-
indeterminate cycle.

All in all, Cycle 2 and Cycle 3 are F1-indeterminate and
there is no F2-indeterminate cycle in this diagnoser. Hence,
based on Theorem 1, we can conclude that the plant G1

is F2-asynchronously diagnosable but not F1-asynchronously
diagnosable. Then, based on Definition 4, the plant G1 is not
asynchronously diagnosable.

V. ASYNCHRONOUS DIAGNOSIS VS SYNCHRONOUS
DIAGNOSIS

In synchronous diagnosis [10], all the system behavioral
information (pre- and post-fault occurrence) is available to the
diagnoser, Gsd. Accordingly, the synchronous diagnosability
can be defined as:

Definition 8: (Fi-synchronous Diagnosability [10]) The
plant G with the live language LG, is said to be Fi-
Synchronously diagnosable with respect to the fault type Fi
and the natural projection P , if for all s ∈ LG, f ∈ Σfi ,
f ∈ s, there exists an upper bound ni ∈ N, such that for any
string t ∈ LG/s with |t| ≥ ni, the following condition holds:

{∀w ∈ LG, w ∈ P−1ext(LG)(P (s.t))} ⇒ f ∈ w (7)

The generic string s.t in the above definition, represents
both the past history of the system starting from x0, s, and post
fault observations, t. However, in the proposed asynchronous
diagnosis in this paper, the diagnoser only has access to the
system behavioral information that occurs after the diagnoser’s
activation. This can be observed in Definitions 3 and 4,
where the asynchronous diagnosis requires faulty strings to
be distinguishable only from their extension closure t instead
of full observation of the system s.t.

An interesting question would be what is the relation
between the synchronous and asynchronous diagnosability.
Intuitively, asynchronous diagnosability implies synchronous
diagnosability, as it is proven in the following theorem:

Theorem 2: If G is Fi-asynchronously diagnosable, then it
is Fi-synchronously diagnosable.
Proof: By contradiction assume that the system G is not Fi-
synchronously diagnosable. Therefore, based on Definition
8, there exists a string s ∈ LG, f ∈ Σfi , f ∈ s, an
(infinitely) large string t ∈ LG/s and a string w ∈ LG, w ∈
P−1ext(LG)(P (s.t))}, such that f /∈ w. Now, let u = ε
and v = w. Then, for the string s ∈ LG, f ∈ Σfi ,
f ∈ s, with arbitrarily long string t ∈ LG/s, we have
uv ∈ LG, v ∈ P−1ext(LG)(P (t))} but f /∈ uv, violating
the conditions in Definition 3, contradicting with the Fi-
asynchronously diagnosablilty of G. �

Synchronous diagnosability, however, does not always im-
ply the asynchronous diagnosability. Figure 5, for example,
shows the plant G2 with Σf = Σf1 = {f}, which is syn-
chronously diagnosable but is not asynchronously diagnosable
due to the F1-indeterminate cycle consisting of F1-uncertain
states q1 and q4 in Gd2 in Figure 5.c.

Since the synchronous diagnoser Gsd contains all projected
strings, and their associated states, it is possible to use the
structure of Gsd to indirectly determine if system G is asyn-
chronously diagnosable. Theorem 3 describes the conditions
that a synchronously diagnosable plant is asynchronously diag-
nosable, solely based on the synchronous diagnoser structure.
Before that, we need the following definition:

Definition 9: Let states q1, q2, . . . , qn form a cycle in Gsd
such that δd(qk, ek) = qk+1 k = 1, . . . , n − 1, δd(qn, en) =
q1. If there exists a separate cycle of states in Gsd with
δd(q

′
k, ek) = q′k+1 k = 1, . . . , n − 1 , δd(q′n, en) = q′1, then

the cycles q1, q2, . . . , qn and q′1, q′2, . . . , q′n in Gsd are called
associated cycles.

Example 4: Cycle s2, s3 and cycle s5, s4 in Gsd3 in Figure
5.b are associated cycles.

Theorem 3: An Fi-synchronously diagnosable plant G with
synchronous diagnoser Gsd, is Fi-asynchronously diagnosable
if and only if for any Fi-certain cycle in Gsd, there does not
exist an associated non-Fi-certain cycle.
Proof of Necessity: We prove that if G is asynchronously
diagnosable, then for any Fi-certain cycle in Gsd there does
not exist an associated cycle of non-Fi-faulty states in Gsd.
For this purpose, assume that there exists an Fi-certain cycle
in Gsd, q′1, q′2, ..., q′n, in Gsd, where δd(q

′
k, ek) = q′k+1

k = 1, . . . , n− 1 , δd(q′n, en) = q′1. By contradiction, assume
that for this Fi-certain cycle in Gsd there exists an associated
cycle of non-Fi-faulty states in Gsd, q1, q2, ..., qn, so that
δd(qk, ek) = qk+1 k = 1, . . . , n−1 , δd(qn, en) = q1. From the
construction procedure of Gsd, we know that for the Fi-certain
cycle in Gsd, q′1, q′2, ..., q′n, there exists a cycle of Fi-faulty
states in G such that x′k+1 ∈ δ(x′k, t

′
k), k = 1, . . . , n − 1,

x′1 ∈ δ(x′n, t
′
n) and P (t′1.t

′
2 . . . t

′
n) = e1.e2 . . . en. On the

other hand, by a backward induction it can be proven that for
every cycle of non-Fi-certain states in asynchronous diagnoser
Gd, there exist at least one corresponding cycle of non-Fi-
faulty states in G. Therefore, for the non-Fi-faulty states
q1, q2, ..., qn in Gsd, there exists a corresponding cycle
of non-Fi-faulty states in G such that xk+1 ∈ δ(xk, tk),
k = 1, . . . , n − 1, x1 ∈ δ(xn, tn) and P (t1.t2 . . . tn) =
e1.e2 . . . en. For these two cycles, therefore, we will have
P (t′1.t

′
2 . . . t

′
n) = P (t1.t2 . . . tn).

Assume that states x1 and x′1 are reachable from the initial
state, x0, in G, by the strings u and s, i.e., x1 ∈ δ(x0, u) and
x′1 ∈ δ(x0, s). Consider the string t = (t′1.t

′
2 . . . t

′
n)KLG/s

and v = (t1.t2 . . . tn)KLG/u, where K = kn1n2 ∈ N,
n1 = |t′1.t′2 . . . t′n|, n2 = |t1.t2 . . . tn|, and k is an arbitrarily
large number. With this setup, fi ∈ st but fi /∈ uv,
s.t, u.v ∈ LG. However, from the infinitely large post-
activation observations P (t), one cannot distinctly detect the
occurrence of the fault fi, as P (v) = P (t), fi ∈ st, and
fi /∈ uv, which contradictorily violates the Fi-asynchronous
diagnosability condition in Definition 3 for the plant G.
Proof of Sufficiency: To have the system G Fi-asynchronously
diagnosable, it is sufficient to have no Fi-indeterminate cycle
in Gd (Theorem 1). To check this indirectly from Gsd, since
Gsd contains all projected strings and their associated states,
any Fi-certain cycle in Gsd with an associated cycle of non-
Fi-faulty states can create an Fi-indeterminate cycle in Gd.



0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2019.2912712, IEEE
Transactions on Automatic Control

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. X, NO. X 8

Fig. 5: (a) The DES plant G2, (b) the synchronous diagnoser Gsd2 for the plant G2, (c) the asynchronous diagnoser Gd2 for the plant G2.

Since Gsd is Fi-synchronously diagnosable, there is no Fi-
indeterminate cycle in Gsd. Therefore, the only remaining
sufficient condition is to have no Fi-certain cycle in Gsd with
an associated cycle of non-Fi-faulty states. Otherwise, the Fi-
certain cycle in Gsd with an associated non-Fi-faulty cycle,
form an Fi-indeterminate cycle in Gd, whose Fi-certain states
are rooted in an Fi-certain cycle in Gsd and whose non-Fi-
certain states are rooted in a non-Fi-certain cycle in Gsd. �

Example 5: In Figure 5.b, the cycle of s2, s3 in Gsd2 is F1-
certain and cycle of s5, s4 in Gsd2 is Normal (so is non-F1-
faulty). This creates an F1-indeterminate cycle in Gd2 (Figure
5c), thus G2 is not asynchronously diagnosable, conforming
Theorem 3.

VI. CONCLUSION

Through this paper, we introduced the new concept of
asynchronous diagnosability and developed a systematic and
analytical approach to construct a diagnoser that is able to
detect and isolate faults in a DES plant without having access
to the history of the past behaviors of the system. This allows
the diagnoser to be asynchronously activated anytime, even
after the occurrence of the faults. Moreover, we provided the
necessary and sufficient conditions to check the asynchronous
diagnosability of a given DES plant based on the structure of
the constructed diagnoser. Lastly, the necessary and sufficient
conditions were derived for asynchronous diagnosability based
upon the structure of the synchronous diagnoser.
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