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Abstract—In this paper, we present — ZenCam, which is an
always-on body camera that exploits readily available information
in the encoded video stream from the on-chip firmware to
classify the dynamics of the scene. This scene-context is further
combined with simple inertial measurement unit (IMU)-based
activity level-context of the wearer to optimally control the camera
configuration at run-time to keep the device under the desired
energy budget. We describe the design and implementation of
ZenCam and thoroughly evaluate its performance in real-world
scenarios. Qur evaluation shows a 29.8-35% reduction in energy
consumption and 48.1-49.5% reduction in storage usage when
compared to a standard baseline setting of 1920x1080 at 30fps
while maintaining a competitive or better video quality at the
minimal computational overhead.

Index Terms—Model Predictive Control, Encoded Video Anal-
ysis, Body Camera, System Optimization

1. INTRODUCTION

In recent years, the use of body-worn cameras has increased
exponentially—from law enforcement officers, to first respon-
ders, to the military. The need for having a body camera to
carry out day-to-day jobs with a higher level of competency
has brought many commercial products into the consumer
market. Typically, body cameras are used as a recording device
which stores multimedia content inside the device. These video
feeds are later downloaded and analyzed off-line. Besides
satisfying application-specific video-quality requirements, the
two most desirable properties of body cameras are extended
battery life and efficient storage. However, most body cameras
of today have a short battery life which limits our ability
to capture hours-long events. Storage space is also limited
in these portable systems. Although the cost of storage has
become cheap nowadays, efficiency is always desirable, and in
some cases, it is necessary as there is monetary cost associated
with archiving a large amount of data, and for this reason,
often security videos are archived for a limited period.

Unfortunately, today’s body cameras are developed some-
what in an ad hoc manner by gluing together different sens-
ing, computational, and communication modules with limited
or guarantee-less optimization in their designs. When such
systems are deployed in the real world, they fail to provide
a promised quality of service and an extended battery life.
We argue that in order to develop an efficient body camera
that provides an extended battery-life, efficient storage, and
satisfactory video quality, instead of an ad hoc combination of
independently developed modules, we need to apply context-
aware control-theoretic principles and engineer a body-worn
camera that is dependable, efficient, and robust.

Existing implementations of body cameras typically consist
of an on/off switch that is controlled by its wearer. While
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this design suits the purpose in an ideal scenario, in many
situations, the wearer (e.g., a law-enforcement officer) may
not be able to predict the right moment to turn the camera on
or may completely forget to do so in the midst of an action.
There are some cameras which automatically turns on at an
event (e.g., when a gun is pulled), but they miss the “back-
story,” i.e., how the situation had developed.

We advocate that body cameras should be always on so that
they are able to continuously capture the scene for an extended
period. However, cameras being one of the most power-hungry
sensors, the lifetime of a continuous vision camera is limited
to tens of minutes to few hours depending on the size of the
battery. A commonsense approach to extend the battery-life
of a continuous vision camera is to analyze the scene and
record it at high resolution and/or at high frame rate only
when the scene dynamics is high and vice versa. However,
on-device scene dynamics analysis is extremely costly and the
cost generally outweighs the benefit. Recent works [16, 22]
therefore employ secondary low-power cameras (e.g., a ther-
mal imaging sensor) and FPGA-based scene analysis to wake-
up the primary camera when an interesting event is detected at
a lower energy cost. These systems, however, have the same
limitation of missing the back-story, and in general, they are
bulkier than a single camera-based system due to the additional
camera Sensor.

In this paper, we present ZenCam, which is an always
on and continuously recording body camera that ensures the
desired battery-life and a near-optimal' video quality. The
camera analyzes the dynamics of the scene as well as the
activity level of the wearer in real-time, and controls the
parameters of the body camera (e.g., frame rate and resolution)
in order to satisfy the battery-life and the video quality
requirements. The novel technical aspects of ZenCam are two-
fold:

« First, we develop a light-weight video analytics algorithm
that operates entirely on the encoded video stream ob-
tained directly from the camera firmware for fast and
low-power scene dynamics classification. This is different
from existing algorithms that decompress and analyze
video frames in the pixel domain.

e Second, a novel control-theoretic approach where we
employ a model predictive controller [28] to dynamically
control the frame rate and resolution of the camera sensor
to achieve the desired battery life and a near-optimal
video quality.

! Around 2% decrease in video quality compared to baseline model.
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We develop a prototype of ZenCam using low-cost, off-the-
shelf sensors, and lightweight, open source software modules.
We identify the system parameters that affect the output power
and the video quality, and empirically model their relationship.
We implement a scene dynamics analysis algorithm which
uses natively available motion vectors from the camera and
implement a light-weight activity-level classifier that uses an
on-board accelerometer to determine the activity-level of the
wearer. The control algorithm uses both types of contextual
information to dynamically adapt the camera parameters.

We deploy ZenCam in multiple real-world environments,
such as an office building, a street, and inside a car, and eval-
uate its performance. We demonstrate that ZenCam achieves a
29.8-35% reduction in energy consumption and a 48.1-49.5%
reduction in storage when compared to a fixed-configuration
body camera, without losing the video quality. Compared to an
Oracle system, ZenCam’s computational overhead is 10-17%
with unoptimized hardware and software implementation. To
the best of our knowledge, ZenCam is the first of its kind
to achieve such energy and storage savings via an on-device,
single camera-based, light-weight, low-power scene dynamics
analysis algorithm, and a minimal hardware addition (i.e., an
IMU), without sacrificing the video quality as the scene and
user dynamics change at run-time.

II. ZENCAM SYSTEM DESIGN

ZenCam is an autonomous, always-on, continuous-vision
body camera that dynamically adjusts its configurations based
on both the degree of body movement of the wearer and
the dynamics of the scene. As a result, ZenCam achieves a
desired battery life and ensures an optimal video quality of
the recorded scenes. The system architecture of ZenCam is
depicted in Figure 1.

A. ZenCam Hardware Components

ZenCam’s hardware consists primarily of a camera sensor,
an onboard video processing unit (VPU), and an inertial
measurement unit (IMU). Each of these components is inde-
pendently adjustable to suit application-specific requirements.
The video processing unit (VPU) is a chip that provides
hardware-processed video frames along with the meta-data
such as the motion vectors. ZenCam exploits these readily
available meta-data to classify the scene dynamics efficiently
at run-time. The inertial measurement unit (IMU) is a low-
cost and low-power sensor that provides raw accelerometer
data, which is used by ZenCam to estimate the activity level
of the user in real-time.

B. ZenCam Software Components

ZenCam’s software architecture consists of three major
components: Encoded Analysis, Activity Classifier,
and Model Predictive Controller. The Activity
Classifier detects and classifies the user’s body activity
level into low, medium, and high levels. If the detected activity
level is high or medium, which implies that the user is in
motion, the result is directly used by the Context Manager
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Fig. 1: ZenCam system architecture.

of the Model Predictive Controller to determine the
corresponding camera settings. In this case, the Encoded
Analysis component remains dormant, which minimizes the
energy and computational overhead of the system.

On the other hand, when the Activity Classifier
determines that the user’s activity level is low, it notifies
the Encoded Analysis component to analyze the encoded
video data along with the IMU data to determine the scene
dynamics. The rationale behind this is that even if a user is
inactive, the scene may have a different level of dynamics
(e.g., a mostly static environment vs. an ongoing riot), which
would require a different camera settings to capture the scene.
With direct access to the motion vectors and residual values,
ZenCam does not have to decode the video. The Encoded
Analysis component works directly on the encoded video
stream to determine the scene dynamics and passes the result
to the Context Manager. Based on the context of the user
as well as the scene, the Model Predictive Controller
determines and sets the optimal values of the camera param-
eters.

C. The Novelty of ZenCam Design

We highlight novel aspects of ZenCam that differentiates it
from existing continuous vision camera systems.

1) Uses Readily Available Information: Understanding the
scene dynamics is important to control the camera parameters
optimally. However, processing video frames in real-time
is not practical in CPU and energy-constrained embedded
systems. Hence, ZenCam relies on readily available informa-
tion in the video meta-data, such as the motion vectors and
residual data, to infer the scene dynamics. This information
is available in every camera chip and comes at no extra cost
of computation. As a result, unlike existing smart cameras,
ZenCam does not have to decode, then process, and then again
encode the video.

2) No Pixel-Domain Analysis: ZenCam does not analyze
videos in the pixel domain, which is an extremely CPU and
energy demanding task. Instead, it performs simple operations
to filter unwanted motion vectors and to compute the entropy
of a frame using these vectors — which accurately determines
the dynamics of the scene at several order of magnitude less
cost than pixel domain analysis of video frames.

3) Based on Control Theoretic Principles: In ZenCam,
a model predictive controller is employed that dynamically
adjusts the camera settings in order to achieve both reduced
energy consumption and storage requirement while maintain-
ing the desired video quality for a given user and scene
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Fig. 2: Motion vectors overlaid on video frames. The top frames are recorded at 10 fps while the bottom frames are at 30 fps. Black
and white pictures are the magnitudes of the residual values. (a) also shows enlarged motion vectors near the subject’s shoulder.

context. Unlike existing continuous vision cameras that rely on
heuristics to balance battery life and image quality, ZenCam
provides a provable near-optimal performance.

4) Lightweight Algorithms: ZenCam employs lightweight
algorithms in all of its software components. For instance, the
scene analysis algorithm uses simple arithmetic operations to
obtain the scene dynamics in linear time. The activity classifier
computes lightweight features from IMU data in O(1) and
uses a pre-trained classifier. The controller’s computational
complexity at runtime is also optimized to simple table look-
ups and constant time operations. Hence, the overhead of the
system is negligible and its benefit outweighs the cost.

1II. ENCODED VIDEO ANALYTICS

When a video is recorded, the encoder calculates motion
vectors and residual values [27]. Motion vectors represent
the translation of pair-wise most similar macro-blocks (e.g.,
8x8 pixels) across frames. Residual value is calculated as
the difference between the macro-block in the current frame
and the previous frame’s matching one. In the final video,
the current frame is reconstructed from macro-blocks of the
previous frame and the differences. ZenCam exploits these two
freely available information as the foundation of its lightweight
scene dynamics classification algorithm.

A. Preprocessing Motion Vectors

Motion vectors are computed by video coding algorithms
which matches similar macro-blocks across different frames in
order to minimize the residual value. Motion vectors produced
in this manner sometimes do not represent the true motion
of the objects in the scene as these greedy algorithms often
match similar macro-blocks that minimize residuals. While
such motion vectors, combined with residuals, are perfectly
okay for video coding, they are problematic when determining
the true movements of objects in a scene.

ZenCam filters out these erroneous vectors in a preprocess-
ing step. From the latest frame in a time period T, we calculate
the angle, d; = arctan = of a motion vector ¥ = (9, Uy). To
identify erroneous cases, we create a histogram of {d;} and
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discard the motion vectors whose angles fall into bins that has
a very small number of elements.

There are two intuitions behind this step. First, the number
of erroneous motion vectors tends to be small within a certain
angular range. Second, even if the discarded motion vectors
correspond to correct motion of an object in the scene, we
still should discard those as the object occupies a minimal
area where a large macro-block is 16x16 pixels. This means
that the object is either far away or tiny. In this situation, the
motion of the object typically does not generate a fast motion
across the frame. Thus, such scenes are not to be recorded at
high frame rate.

After discarding erroneous motion vectors, we normalize
the vectors to compensate for the effect of frame rates.

current frame rate

()]

Scaled v; = v; X

reference frame rate

The scaling is necessary as different frame rates produce
motion vectors of different magnitudes even when an object
is moving at the same speed. This is shown in Figure 2(a). The
motion of the human subject is identical in both frames as they
are recorded simultaneously. The top one has a rate of 10 fps,
and the bottom one is 30 fps. The zoomed-in view shows that
the magnitude of the motion vector is larger at the lower frame
rate. By scaling the motion vectors, we normalize the motion
of an object across different frame rates. After scaling, we
filter out motion vectors whose magnitude, m; = /22 + §2
is below a small threshold to eliminate random noise or
movements corresponding to low scene dynamics.

Finally, we compensate the effect of camera movements
on motion vectors. We calculate ZenCam’s orientation using
the gyroscope data and estimate the direction of the frame’s
movement by projecting the orientation on a plane parallel
to the camera. We discard the motion vectors that are in the
opposite direction of the camera’s movement. This is because,
when the camera moves, the frame tends to move in the
opposite direction. As a result, we discard the motion vectors
that are in the opposite direction of the camera’s movement.



B. Scene Dynamics Estimation

A high residual value indicates that the macro-block does
not match well across frames. In such cases, we consider
that the probability of movement is high. Within a frame,
we convert the residual values into a distribution, p; by
normalizing against the sum of residuals of a macro-block. We
apply a softplus function to convert motion vectors to intensity:

I(0;) = In(1 + ™) 2)
We calculate the entropy of a frame as follows:
N
E =Y pl(1) 3)
i=0

where, IV is the total number of motion vectors after the
preprocessing step. We divide E by N to get a score S for
the current frame, which classifies the scene dynamics. We
accumulate consecutive 7 classification results to perform a
majority voting. The rationale behind this algorithm is that
when there are no moving objects in a scene, motion vectors
caused by small camera movements will be removed and the
score will be low. The score of a scene having moving objects
in it depends on the speed of motion and the percentage of
the area occupied by the object in the frame. The larger the
score, the more dynamic a scene is.

The proposed encoded-domain scene analysis technique
uses readily available features and requires neither decoding
nor re-encoding the frames. The algorithm is lightweight and
parallelizable. The implication is that it can be implemented
in hardware (e.g., an FPGA or even ASIC) to gain substantial
energy savings and speedup.

IV. CONTROLLER DESIGN
A. Camera Controller

We design the body camera control system as shown in
Figure 3. The controller takes input from the sensor which
measures the system’s battery level b(t). The context look-
up table provides the weights (wy,ws, ...) and the reference
values of resolution r" and frame rate f" for the current
context. The controller computes the control input (7, f) based
on these parameters and the reference value of the desired
battery level b"(t).

Context
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Fig. 3: Controller design for the body camera

We define the objective function for the controller to match
the actual power consumption to a reference value (e.g., set
by the application-specific policy) while maintaining a certain
video quality. For instance, assuming a fixed camera setting
and linear battery drain, if the target battery life is 8 hours, the
system should have 50% battery remaining after 4 hours. In
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this case, the linearly dropping battery level is the reference
at any point in time. The cost function is defined as:

N
J=0b-b")+) wS(x; — ) @)
i=0
1
where, S(T) = W —0.5 (5)

In (4), b is the future battery level after applying the camera
setting for the time step, 0" is the reference battery level, x;
is the control input to the system (i.e., (r, f) in Figure 3),
and z is the reference values (i.e., (7", f”) in Figure 3), w;
are the weights of these variables, S is the sigmoid function
where a determines the range of configurations that we want
to focus and apply aggressive control. Each context has its
own reference values for control variables and weights, and
the sigmoid terms reward or penalize certain behavior in each
context. We use sigmoid functions because of their decreased
rate of change when the actual value moves away from the
reference and vice versa — which enables the system to take
more aggressive action when necessary.

The model predictive controller optimizes its objective over
a finite time horizon. Given the current context, we optimize
(4) over the next time step considering the most likely se-
quence of contexts and their average duration. The sequence
of contexts and their duration are statistically estimated over
time. The power consumption for each camera configuration
is updated to minimize the impact of inaccuracies in system
modeling and changes in hardware performance such as bat-
tery degradation.

B. Determining Reference Values

There are studies that model user perception of video quality
at varying frame rates and resolution [25, 30]. Although these
data can not be directly used in ZenCam due to the differences
in the system architecture and goals, we use the technique
from [30] to calculate the quality scores for different camera
settings. We use two metrics: Structural Similarity Index Met-
ric (SSIM) [29] and Video Quality Metric (VOM) [26]. These
two objective metrics correlates with human perceptions.

We record five types of videos at different indoor and
outdoor scenarios at 1920x1080 resolution and 30 fps. Frame
rates of these videos are altered by dropping frames to
simulate different camera settings. Finally, all videos are
converted to the same frame rate using the same encoder
for comparison. We increase the frame rate of low-frame-rate
videos by duplicating frames. We use MSU Video Quality
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Fig. 5: ZenCam Prototype: (a) Internal components are labeled.
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Measurement Tool [15] to measure the SSIM and VQM scores
for each video. The SSIM scores (higher is better) are shown
in Figure 4(a) and the VQM scores (lower is better) are in
Figure 4(b).

From these measurements, we observe the tendency of
decreasing quality with decreasing frame rate. The decrease
in quality is less noticeable when the scene is less dynamic.
In ZenCam, for each camera state, we set the reference
video quality to 2% lower than the highest SSIM score. This
reference value is a configurable parameter in ZenCam, and
if needed, it can be set to a different value which is more
suitable for specific applications.

V. SYSTEM IMPLEMENTATION
A. Hardware Development

We implement a prototype of ZenCam which is shown
in Figure 5. We use a Raspberry Pi Zero W and a Pi
Camera Module V2 as the main components. We connect an
LSM9DS0 IMU to the Raspberry Pi via I2C. A Raspberry
Pi Zero is used to demonstrate that our system works with
off-the-shelf parts and runs on resource-constrained platforms.
Pi Camera also provides us with an easy access to motion
vectors and residual values without decoding the frames.
This information is available in nearly every camera chip
but requires a slight software modifications to expose it. For
example, [20] made changes to the OS to expose the motion
vectors on an Android device.

B. Software Development

We use the picamera Python library to control the camera
configuration and to retrieve the encoded domain data. The
scikit-learn Python library is used for SVM classification.
We collect IMU data at 10Hz which is sufficient for user
activity detection at a minimal CPU utilization. The battery
voltage is queried every second and the percentage is calcu-
lated from the average voltage over 30s. Video scene analysis
is performed every 250ms when the camera activity is low,
which results in a high accuracy at a minimal overhead.

To classify the activity level of a user, we implement
a lightweight algorithm similar to [12, 23]. From the raw
accelerometer data, we calculate the magnitude of the accel-
a2 + a2 + a2. The standard deviation of {a; }

over 500ms is used to train a support vector machine (SVM)
with a radial basis function (RBF) kernel. With a trained SVM

eration: o =
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classifier, we extract the data and perform classification on data
points from past 500ms every 100ms (i.e., 10 Hz). We collect
a series of classification results over 5s and apply majority
voting to determine the most likely activity level of the user.

VI. ENERGY OVERHEAD MEASUREMENT

We use Pi Camera sensor’s mode 4 and select the reso-
lution settings from a pool of three choices: {1920x1080,
1600x900, and 1280x720}, which are commonly used in
real-world applications.

To understand the overhead of ZenCam algorithms, we
measure its power consumption for the same camera setting
with and without the algorithms running. The results are shown
in Table I. The baseline refers to the same camera settings
as ZenCam but without the algorithms running. We see that
the overhead is between 3.7%—17.6%, and it’s the smallest
when the system uses the highest frame rate. The overhead
of ZenCam when the camera is steady decreases as the scene
dynamics decreases because there are fewer motion vectors to
process when the camera records at a lower resolution.

MU Scene Level | Resolution R;?r(?gs) PE;S;IIR;) Pg:vréfia)
High N/A 1600x900 40 1.88 1.95
Medium | N/A 1920x1080 26 1.53 1.62
High 1920x1080 25 1.47 1.73
Low Medium 1600x900 15 1.14 1.33
Low 1280x720 4 0.86 0.99

TABLE I: Power consumption at different contexts and settings.

When ZenCam is in high or medium activity level, the
energy overhead to drive the IMU sensor and its processing
algorithm is about 80mW. This overhead can be reduced
further to as little as SmW by using an ultra-low-power
microcontroller instead of a Raspberry Pi [22]. The energy
overhead of scene dynamics analysis can be reduced to 5S0mW
with an FPGA-based implementation [22].

VII. REAL-WORLD DEPLOYMENT
A. Deployment Setup

Two body cameras having identical hardware are deployed
in multiple real-world scenarios (indoors and outdoors) in two
sessions for a total of 271 minutes. In each session, both
cameras start and finish recording at the same time. The first
camera runs ZenCam algorithms and the other one uses a fixed
settings of 1600x900 resolution and 40fps to record high-
quality ground-truth video of the scene. This second video
footage is later used in our lab to produce two different
solutions to compare with the ZenCam. We call these two:
Baseline and Oracle, respectively.

The Baseline is obtain by re-recording the high-quality
ground-truth video footage (1600x900 @40fps) obtained from
the field experiments at a fixed settings of 1920x1080 @30fps
— which is a common settings used in most video recorders.
Re-recording is performed by playing the footage on a com-
puter screen and then capturing the scene with the same cam-
era used as ZenCam. We use this Baseline solution to compare



MU Low Mid High Remaining Battery (%) File Size (GB)
Scene Level Low Mid High NA NA Baseline ZenCam Oracle Baseline ZenCam
Time (min) #1 30 33 34 22 11 29.9 50.8 55.3 5.4 2.8
Time (min) #2 48 43 19 20 14 36.6 58.8 64.8 9.1 4.6

TABLE II: Time duration for each classified activity in minutes, battery remaining as end of system, and size of video files generated.

ZenCam’s performance against a typical fixed-configuration
camera.

Likewise, the Oracle is also obtained by re-recording the
high-quality footage as in Baseline, but this time the camera
dynamically adapts to different camera settings based on its
prior knowledge of the user’s context and the scene dynamics
obtained from ZenCam’s classification results. We use this
Oracle solution to quantify ZenCam’s computational overhead
as these two are identical in their hardware and software,
except that the context detection algorithms do not run in the
Oracle.

The duration of different activity levels and scene dynamics
for both sessions are shown in Table II. The first session lasts
for 130 minutes. It includes user’s activity such as sitting in
front of a desk, walking on corridors, and running outside. The
second session lasts for 141 minutes which includes activities
such as running and walking outdoors, driving, and sitting in
front of a desk. These activity sequences, although may not
be overly extensive, are chosen to mimic daily activities of a
law-enforcement or a patrol officer, and captures all possible
activity and scene types of ZenCam.

(b) Medium

(a) Low (c) High

Fig. 6: Classification of scene dynamics.

We manually inspect the encoded video scene analysis
results of ZenCam to verify that they match our expectation.
Three sample frames are shown in Figure 6. Figure 6(a) is
classified as low dynamics as the street is almost empty.
Figure 6(b) is classified as medium dynamics where there is
only one car. Figure 6(c) has multiple cars on the street which
the system classifies as a scene with high dynamics.

B. Extended Battery Life

In Figure 7, we plot the remaining battery life of the
three camera systems: ZenCam, Baseline (1920x1080 at 30
fps.), and the Oracle. At the end of the two sessions, energy
savings with ZenCam is 29.8% and 35%, respectively, when
compared to the baseline. ZenCam’s energy overhead is 10%
and 17%, respectively, when compared to the Oracle. The
performance difference in the two sessions is expected as the
first session contains more high and medium level activities
that consume more energy but incurs less overhead due to
lower amount of scene dynamics analyses. The second session
contains more low level activities which results in a lower
energy consumption but results in a higher overhead due to
more frequent scene dynamics computation.
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C. Storage Efficiency

To compare the storage efficiency, we examine the sizes
of the generated video files. All recordings use the same
quantization parameter to prevent the system from auto-
matically changing compression ratio which affects the file
size. During the first session, the baseline model produces
a total of 5.4 GB video files while ZenCam produces 2.8
GB (48.1% reduction). The baseline model generates 9.1 GB
file in the second session while ZenCam generates 4.6 GB
(49.5% reduction). The difference is due to the second session
having more outdoor activities where the spatial complexity
is more than the first session. Further discussion on this is in
Section VIII. This result demonstrates that our system reduces
the storage requirement significantly, and thus reduces the cost
of archiving data.

D. Video Quality Analysis

In this experiment, we investigate how well ZenCam pre-
serves the video quality by using the method metrics used
in Section IV. Figure 8(a) and Figure 8(b) compares video
quality from ZenCam and the Baseline (1080p @30fps) in
terms of SSIM and VQM, respectively. Recall that lower VQM
scores implies better video quality. We observe that for low
and medium scene dynamics, there is no significant difference
in the video quality since the frame rate does not affect the
quality of the video significantly in a mostly static scene. For
high dynamic scenes and medium activity levels, ZenCam
produces slightly lower quality videos than the baseline but
the difference is small. During high activity level, ZenCam
produces better quality videos as the frame rate goes higher
than 30 fps. This is expected as high frame rates improve the
video quality in a highly dynamic environment.

E. Summary

Through a series of empirical evaluation, we demonstrate
that ZenCam significantly reduces energy consumption and
storage space requirement while maintaining a competitive
video quality and outperforms typical fixed configuration
cameras. ZenCam reduces energy consumption by trading
in minimal video quality. Our evaluation also shows that
ZenCam has a lower overhead when the system is at the
highest demand — which is a property that no state-of-the-art
system has achieved till date. With a more efficient hardware
implementation, ZenCam can achieve even higher efficiency
and resource savings.

VIII. DISCUSSION

Why the video features are free? The video features we use
(i.e., motion vectors and residuals) are generated by the video
codec during the video encoding process. Since these two are
already computed inside the camera firmware, all we require
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is to expose them to the application layer and use them at
run-time in the proposed scene dynamics analyzer. Since there
is no overhead of frame decoding, feature computation, and
frame re-encoding, we are relieved from an expensive step of
feature computation at zero cost.

Why not use machine vision techniques? We consider two
aspects of machine learning and computer vision: energy con-
sumption and accuracy. Modern computer vision techniques
that are based on Deep Neural Networks (DNNs) require cloud
and/or GPU machines as opposed to low-power embedded
processors [17, 22]. Even specialized vision processing units
consume more power than a Raspberry Pi (around 1W) [3].
In contrast, our unoptimized ZenCam implementation having
no special hardware adds less than 400mW overhead. Fur-
thermore, current commercial products with machine learning
techniques for video capturing such as Google Clips [1] are
not on par with average user’s expectation [2].

Can existing image processing algorithms be used on video
recorded by ZenCam? Since ZenCam generates standard video
files, which we didn’t modify the standard video compression
algorithm been used, existing computer vision and image
processing techniques are directly applicable to its output.
Unlike [22], ZenCam preserves all information throughout its
lifetime.

Does reducing frame rate help saving storage space? We
record multiple 3-minute videos varying the frame rate for
three different contents displayed on a computer monitor. The
result is shown in Figure 9. Static White is a purely white
picture, Static Street is a picture of a street, Dynamic
Backyard is a short video clip of playing in the backyard. The
file size of the Static Street is larger than the Dynamic
Backyard as the street scene has higher spatial complexity?.

2Video encoding happens in both spatial and temporal domain. Our system
uses information from the temporal encoding only.
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Fig. 9: File Size vs. Frame Rate

Overall, we see a decrease in the file size as the frame rate
decreases. ZenCam saves a significant amount of storage space
by reducing the frame rate significantly when the user is static
facing a high complexity static scene.

IX. RELATED WORK
A. Continuous Mobile Vision

Prior works [12] have leveraged low-power IMU sensors to
control the camera parameters. However, for lack of scene
dynamics analysis, these systems fails to record videos at
a suitable frame rate when the scene is dynamic. [16, 22]
utilize low-power secondary camera sensors such as a thermal
imaging sensor and hardware implementation of algorithms
using FPGAs to reduce power consumption. But these ad-
ditional circuitry significantly increases the complexity of the
system and lose important information due to misclassification
of scene dynamics that is based on a thermal sensor. [22]
employs an early discard algorithm to record about 10%
frames during the operation. While this approach reduces
a significant amount of energy and space, it is not truly a
continuous vision system.

B. Video Processing

Video analysis in the compressed domain has been explored
in different contexts such as moving object segmentation [21],
human action recognition [8], and video classification [7].
These techniques are mostly used in fixed surveillance cameras
and are not suitable for mobile continuous vision or body
cameras. We refer our readers to [4] for a more detailed review.

The use of scene dynamics analysis is relatable to [14],
however, it uses a large number of frames, does not consider
the effect of different frame rates, and there is no IMUs
involved to infer user context. Our algorithm takes advantage
of the IMU sensors and does not rely on many frames — which
enables real-time performance.



While it is possible to use Visual inertial odome-
try (VIO) [24] or simultaneous localization and mapping
(SLAM) [13] techniques to construct the 3D environment and
then perform scene analysis, this process is too computation-
ally expensive to be implemented on a constrained embedded
system and does not provide additional benefit over our
framework. Furthermore, utilizing anomaly detectors [6, 19] or
motion-triggered recording do not reduce energy consumption
as the camera remains always on.

C. Context Recognition

Human Activity Recognition (HAR) has been studied exten-
sively by many. intra-class variability, inter-class similarity,
and null-class problem [10] are a few of many open problems
in this domain. The methodology for data segmentation, which
is required for activity recognition at a certain instant such as a
sliding window, energy-based, and additional sensors [5, 10],
is crucial to the classification accuracy. After data are pro-
cessed to extract features, a classifier, e.g., Dynamic Time
Warping (DTM) [9], Hidden Markov Models(HMMs) [11]
or kNN [18], is used for training and classification. A more
detailed review of HAR can be found in [10].

X. CONCLUSION

In this paper, we design, implement and evaluate ZenCam,
an always on body camera that saves system resources via
scene dynamics analysis in the encoded video domain and hu-
man activity classification using IMU-based sensing. ZenCam
uses this information to control camera parameters for energy
and storage consumption reduction. Our evaluation shows that
ZenCam achieves 29.8-35% energy savings and 48.1-49.5%
storage space reduction, while maintaining a competitive or
better video quality, when compared to a baseline system
having a fixed configuration of 1920x1080 at 30fps.
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