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Abstract—With only coarse labels, weakly supervised learning typically uses top-down attention maps generated by back-propagating
gradients as priors for tasks such as object localization and semantic segmentation. While these attention maps are intuitive and
informative explanations of deep neural network, there is no effective mechanism to manipulate the network attention during learning
process. In this paper, we address three shortcomings of previous approaches in modeling such attention maps in one common
framework. First, we make attention maps a natural and explicit component in the training pipeline such that they are end-to-end
trainable. Moreover, we provide self-guidance directly on these maps by exploring supervision from the network itself to improve them
towards specific target tasks. Lastly, we proposed a design to seamlessly bridge the gap between using weak and extra supervision if
available. Despite its simplicity, experiments on the semantic segmentation task demonstrate the effectiveness of our methods.
Besides, the proposed framework provides a way not only explaining the focus of the learner but also feeding back with direct guidance
towards specific tasks. Under mild assumptions our method can also be understood as a plug-in to existing convolutional neural
networks to improve their generalization performance.

Index Terms—convolutional neural network, semantic segmentation, network attention, weakly supervised learning, biased data.
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1 INTRODUCTION

W EAKLY supervised learning [2], [6], [12], [19], [23],
[32], [41], [49], [50], [51], [52], [53], [54], [59] has

recently become a popular research direction since it directly
addresses the labeled data scarcity issue in computer vision.
For instance, using only image-level labels, one can obtain
the attention maps for a given input image with back-
propagation on a Convolutional Neural Network (CNN).
These maps are highly related to the network’s response
given specific patterns and tasks it was trained for. The
intensity of each pixel on the attention maps indicates the
degree that the corresponding pixel in the input image
supporting the network’s final output. From such attention
maps without the need of pixel-level labels, it is already
known that one can obtain the information of segmentation
and localization [12], [59].

Although the attention maps are supervised by only
classification loss without pixel-level labels, the attention
maps generated by the trained network usually cover only
the small and discriminative areas of the object of interest
[22], [43], [59]. These attention maps can still provide useful
localization cues as the priors for tasks like segmentation
[23]. However, we believe that encouraging the attention
maps to cover the target foreground objects as complete as
possible can further improve the performance. Aligned with
our belief, existing works either depend on consolidating
attention maps from multiple networks [22] or aggregating
multiple attention maps from a network via iterative erasing
approaches [47]. Instead of post-processing the attention of
the trained network passively, we propose an end-to-end
framework where the attention of the network is trained
jointly with the task-specific supervision towards improving
the performance of the objective of the target task.
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Fig. 1. The proposed Guided Attention Inference Network (GAIN) makes
the network’s attention on-line trainable and can plug in different kinds of
supervision directly on attention maps in an end-to-end way. We explore
the self-guided supervision from the network itself and propose GAINp

ext
when extra supervision are available. These guidance can optimize
attention maps towards the task of interest.

Moreover, as an effective tool to explain the network’s
decisions, attention maps can also help to find the biases
of the trained network. For example, in the classification
task where only image-level labels are available, it is likely
that we encounter a pathological bias in the training data
when the foreground object incidentally always correlates
with the same background object (also mentioned in [39]).
Fig. 1 shows an example image belonging to the class “boat”
where it is highly likely that water and boats coexist. In
this scenario there is no incentive in training to focus the
network’s attention on only the boat because focusing on
water can also result in reasonably good performance. How-
ever, the generalization performance may suffer when the
testing data does not maintain the coexistence relationship
of foreground and background objects (e.g. boats out of
water). Although such bias can be manually alleviated by
re-balancing the training data, we propose to make the
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attention map trainable in our framework. As one benefit
of this we are able to control the attention explicitly and
can put manual effort in providing minimal supervision
of attention rather than manually re-balancing the dataset.
While it may not always be clear how to manually bal-
ance datasets to avoid bias, it is usually straightforward to
guide attention to the regions of interest, e.g. using a small
amount of pixel-level annotations like segmentation masks
or bounding boxes. We also observe that our explicit self-
guided attention model already improves the generalization
performance even without extra supervision.

This paper is an extended version of our previous work
[27]. In particular, (a) we propose an extended framework
for Guided Attention Inference Network (GAIN) so that it
can be integrated with available bounding box annotations.
(b) We use a new weakly-supervised semantic segmenta-
tion framework which takes the improved attention maps
generated by our GAIN frameworks as input and achieves
better performance on PASCAL VOC 2012 benchmark com-
pared to our previous methods and other state-of-the-art
algorithms. (c) We include more real-world experiments to
demonstrate the effectiveness of GAIN in improving model
generalization. (d) We include additional detailed analysis,
more quantitative and qualitative results to help compre-
hensively analyze the performance of the proposed GAIN
frameworks and better understand how it can be applied
and extended to other applications.

According to our experimental results in the semantic
segmentation task, our method achieves mIoU 59.4% and
59.6%, respectively on the PASCAL VOC 2012 segmentation
test and val sets. Our method also outperforms the compa-
rable state-of-the-art when limited pixel-level supervision
(mIoU of 64.1% and 64.4% respectively) or bounding box
supervision (mIoU of 62.6% and 62.8% respectively) is avail-
able during training.

The rest of our paper is organized as follows. Section 2
introduces related work in network attention modeling and
weakly supervised learning. Section 3 describes the design
of our Guided Attention Inference Network (GAIN) and its
extensions to seamlessly integrate weak labels with stronger
supervisions such as bounding boxes or pixel-level segmen-
tation masks. Section 4 presents the experimental results of
semantic segmentation task on VOC 2012 dataset. Section
5 describes the experiments we conducted to demonstrate
how the propose GAIN pipeline can improve model gener-
alization.

2 RELATED WORK

Deep convolutional neural networks (DCNNs) have
achieved great success in many areas recently [25], [26],
[55], [56], [57]. Instead of just treating them as black boxes,
various methods have been proposed to explain and analyze
how DNN works from different views [6], [41], [51]. Visual
attention is one of the efficient way which can explain the
network’s decision by highlighting the regions of images
that are responsible for it. In this section, we discuss the
most relevant work on network attention analysis, usage
of attention maps in weakly-supervised methods especially
for weakly-supervised semantic segmentation and how net-
work attention can help to deal with dataset bias.

Network Attention. Visualization of model attention in
Convolutional Neural Networks (CNNs) has been explored
for network reasoning of visual recognition. Gradient back
propagation based methods [41], [44], [51] interprets the
gradient of the prediction score of a particular class respect-
ing to the original input image. They visualize the network
attention by locate regions that are helpful for predicting a
class in such a way. [6] further proposes a feedback method
to capture the top-down neural attention. According to the
high-level semantic labels of the input image, [6] uses a
feedback loop in the form of binary nodes between layers is
introduced to infer the activation status of hidden layer neu-
rons. CAM [59] adds an average pooling layer (GAP) after
the last convolution layer of a CNN and applies a weighted
sum of the last convolutional feature maps to obtain the
attention maps. Excitation Backprop [52] is proposed based
on a top-down visual attention model for human. As a novel
back propagation method, it can pass along signals from
top to down in the network hierarchy to locate the network
attention for any CNN architecture using nonlinearities
producing non-negative activations. The Excitation Back-
prop method is also extended to explain Recurrent Neural
Network (RNN)-based models [4] to handle more complex
recurrent, spatio-temporal dependencies. More recently, in
order to deal with the drawback of CAM [52] that needs
to change the structure of a CNN, Grad-CAM [39] extends
it to many different available CNN architectures for tasks
like image captioning and VQA. Grad-CAM++ is then pro-
posed to further improve Grad-CAM in terms of explaining
occurrences of multiple objects in one single image as well
as better object localization. Different from all these existing
works that are trying to find a reasonable way to explain
the network decision, we propose an end-to-end model to
provide supervision on the network learning through these
explanations, specifically attention mechanism. We validate
that our method can guide the network to focus on the
regions we expect without changing the network structure
or learning extra parameters. The proposed guided attention
learning will then benefit the corresponding visual task.

Network Attention for Weakly-supervised Methods.
Manually producing segmentation masks or bounding box
annotations is a time-consuming task [5], [23]. To solve this
issue, a lot of previous research studies how to train segmen-
tation or detection models from weaker forms of annotation
such as image-level labels, as this form of weak supervision
can be collected very efficiently [23]. Recent works show that
learning from only image-level labels, attention maps of a
trained classification network can provide localization infor-
mation for weakly-supervised object localization [32], [53],
[54], [59], object detection [12], [49], semantic segmentation
[2], [19], [23], [50], instance segmentation [60] etc. However,
only trained with classification loss, the attention map only
covers small and most discriminative regions of the object of
interest, which deviates from the requirement of these tasks
that needs to localize interior, dense and complete regions.
To mitigate this gap, [43] proposes a data augment method
by randomly hiding regions in the training image. Then the
network will be forced to seek other relevant parts when the
most discriminative part is hidden. However, it relies on a
strong assumption about the size of foreground objects (i.e.,
the size of the whole object should be bigger than that of
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Fig. 2. GAIN has two streams of networks, Scl and Sam, sharing parameters. Sam encourages the attention map to include regions contributing to
the classification decision as complete as possible. The attention map is on-line generated and optimized by the two loss functions jointly.

patches). [47] proposes an adversarial erasing (AE) method
to repetitive erasing the most discriminative regions of the
input image and discover the rest part of object. Dense
object regions are finally obtained by combining attention
maps of AE step. Similarly, [22] trains two networks that
focus on different parts of the object by using a two-phase
learning strategy. First, a fully convolutional network (FCN)
[31] is trained to locate the most discriminative regions of
the object in an image. These most discriminative regions
are then used to hide parts of feature maps of the second
FCN, which forces it to focus on the rest important regions
of the object. However, these methods require combination
of attention maps from multiple classification networks. At-
tention maps of a single network still only focus on the most
discriminative region. More recently, [50] revises a standard
classification network by adding multiple dilated convo-
lutional blocks of different dilation rates. Varying dilation
rates can effectively transfer the surrounding discrimina-
tive information to non-discriminative object regions, which
helps to achieve dense object localization using only one
classification network. Fundamentally different from these
approaches, the proposed method GAIN can provide super-
vision directly on network’s attention in an end-to-end way.
According to different levels of available supervision, we
design corresponding loss functions to guide the network to
focus on complete regions of interest. Therefore, using our
methods, the attention maps of a single network are already
more complete and improved without needs to change the
network structure.

Attention Mechanism for Biased Data. Analyzing net-
work attention can also help to identify bias in datasets. [46]
[39] propose a way to find out the dataset bias by analyzing
the location of attention maps of a trained model, which
helps them to remove these bias by adding new samples
to the dataset. However, in practical applications, it is time-
consuming to build a new dataset and sometimes it is even
hard to obtain samples that can remove all bias. How to
guarantee the generalization ability of the learned network
is still challenging. Our model can provide supervision
directly on network’s attention and guiding the network to
focus on the areas critical to the task of interest. Therefore,
our trained model is more robust to the dataset bias.

3 PROPOSED METHOD — GAIN
Since attention maps reflect the areas on input image which
support the network’s prediction, we propose the guided

attention inference networks (GAIN), which aims at super-
vising attention maps when we train the network for the
task of interest. In this way, the network’s prediction is
based on the areas which we expect the network to focus on.
We achieve this by making the network’s attention trainable
in an end-to-end fashion, which hasn’t been considered by
any other existing works [22], [39], [43], [47], [52], [59].
In this section, we describe the design of GAIN and its
extensions tailored towards tasks of interest.

3.1 Self-guidance on the network attention

As mentioned in Section 1, attention maps of a trained
classification network can be used as priors for weakly-
supervised semantic segmentation methods. However,
purely supervised by the classification loss, attention maps
usually only cover small and most discriminative regions of
object of interest. These attention maps can serve as reliable
priors for segmentation but a more complete attention map
can certainly help improving the overall performance.

To solve this issue, our GAIN builds constraints directly
on the attention map in a regularized bootstrapping fashion.
As shown in Fig. 2, GAIN has two streams of networks,
classification stream Scl and attention mining Sam, which
share parameters with each other. The constrain from stream
Scl aims to find out regions that help to recognize classes.
The stream Sam is making sure that all regions which
contribute to the classification decision will be included in
the network’s attention. In this way, attention maps become
more complete, accurate and tailored for the segmentation
task. The key here is that we make the attention map on-line
generated and trainable by the two loss functions jointly.

Based on the fundamental framework of Grad-CAM
[39], we streamlined the generation of attention map. An
attention map corresponding to the input sample can be
obtained within each inference so it becomes trainable in
training stage. In stream Scl, for a given image I , let fl,k be
the activation of unit k in the l-th layer. For each class c from
the ground-truth label, we compute the gradient of score sc

corresponding to class c, with respect to activation maps of
fl,k. These gradients flowing back will pass through a global
average pooling layer [28] to obtain the neuron importance
weights wc

l,k as defined in Eq. 1.

wc
l,k = GAP

(
∂sc

∂fl,k

)
, (1)

where GAP (·) means global average pooling operation.
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Fig. 3. Framework of the GAINext. Pixel-level (GAINp
ext) and bounding-box (GAINb

ext) annotations are seamlessly integrated into the GAIN
framework to provide direct supervision on attention maps optimizing towards the task of semantic segmentation.

Here, we do not update parameters of the network
after obtaining the wc

l,k by back-propagation. Since wc
l,k

represents the importance of activation map fl,k supporting
the prediction of class c, we then use weights matrix wc as
the kernel and apply 2D convolution over activation maps
matrix fl in order to integrate all activation maps, followed
by a ReLU operation to get the attention map Ac with Eq.
2. The attention map is now on-line trainable and constrains
on Ac will influence the network’s learning:

Ac = ReLU (conv (fl, w
c)) , (2)

where l is the representation from the last convolutional
layer whose features have a good balance between detailed
spatial information and high-level semantics [41].

We then use the trainable attention map Ac to generate
a soft mask to be applied on the original input image,
obtaining I∗c using Eq. 3. I∗c represents the regions beyond
the network’s current attention for class c.

I∗c = I − (T (Ac)� I) , (3)

where � denotes element-wise multiplication. T (Ac) is a
masking function based on a thresholding operation. In
order to make it derivable, we use Sigmoid function as an
approximation defined in Eq. 4.

T (Ac) =
1

1 + exp (−ω (Ac − σ))
(4)

where σ is the threshold matrix whose elements all equal
to σ. ω is the scale parameter ensuring T (Ac) i,j approx-
imately equals to 1 when Ac

i,j is larger than σ, or to 0
otherwise.

I∗c is then used as input of stream Sam to obtain the class
prediction score. Since our goal is to guide the network to
focus on all parts of the class of interest, we are enforcing
I∗c to contain as little feature belonging to the target class
as possible, i.e. regions beyond the high-responding area on
attention map area should include ideally not a single pixel
that can trigger the network to recognize the object of class
c. From the loss function perspective it is trying to minimize
the prediction score of I∗c for class c. To achieve this, we
design the loss function called Attention Mining Loss as in
Eq. 5.

Lam =
1

n

∑
c

sc(I∗c), (5)

where sc(I∗c) denotes the prediction score of I∗c for class c.
n is the number of ground-truth class labels for this image
I .

As defined in Eq. 6, our final self-guidance loss Lself is
the summation of the classification loss Lcl and Lam.

Lself = Lcl + αLam, (6)

where Lcl is for multi-label and multi-class classification
and we use a multi-label soft margin loss here. Alternative
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loss functions can be use for specific tasks. α is the weighting
parameter. We use α = 1 in all of our experiments.

With the guidance of Lself , the network learn to extend
the focus area on input image contributing to the recognition
of target class as much as possible, such that attention
maps are tailored towards the task of interest, i.e. semantic
segmentation. The joint optimization also prevents to erase
all pixels. We verify the efficacy of GAIN with self guidance
in Sec. 4.

3.2 GAINp
ext: integrating extra pixel-level supervision

In addition to letting networks explore the guidance of the
attention map by itself, we can also tell networks which
part in the image they should focus on by using a small
amount of extra supervision to control the attention map
learning process. Based on this idea of imposing additional
supervision on attention maps, we introduce the extension
of GAIN: GAINp

ext, which can seamlessly integrate extra
supervision in our weakly supervised learning framework.

Following Sec. 3.1, we still use the weakly supervised
semantic segmentation task as an example application to
explain the GAINp

ext. The way to generate trainable atten-
tion maps in GAINp

ext during training stage is the same as
that in the self-guided GAIN. In addition to Lcl and Lam,
we design Attention Loss Lp based on the given external
supervision. We define Lp as:

Lp =
1

n

∑
c

(Ac −Hc)
2
, (7)

where Hc denotes the extra supervision, e.g. pixel-level
segmentation masks in our example case.

Since generating pixel-level segmentation maps is ex-
tremely time consuming, we are more interested in finding
out the benefits of using only a very small amount of
data with external supervision, which fits perfectly with
the GAINp

ext framework shown in Fig. 3, where we add
an external stream Sp

e , and these three streams share all
parameters. Input images of stream Sp

e include both image-
level labels and pixel-level segmentation masks. One can
use only a very small amount of pixel-level labels through
stream Sp

e to already gain performance improvement with
GAINp

ext (in our experiments with GAINp
ext, only 1∼10% of

the total labels used in training are pixel-level labels). The
input of the stream Scl includes all images in the training
set with only image-level labels.

The final loss function, Lext−p, of GAINp
ext is defined as

follows:
Lext−p = Lcl + αLam + ωLp, (8)

where Lcl and Lam are defined in Sec. 3.1, and ω is the
weighting parameter depending on how much emphasis we
want to place on the extra supervision (we use ω = 10 in
our experiments).

GAINp
ext can also be easily modified to fit other tasks.

Once we get activation maps fl,k corresponding to the
network’s final output, we can use Lp to guide the network
to focus on areas critical to the task of interest. In Sec. 5,
we show an example of such modification to guide the
network to learn features robust to dataset bias and improve
its generalizability.

3.3 GAINb
ext: integrating bounding box supervision

Compared with pixel-level segmentation masks, object
bounding box annotations are far less expensive, taking only
around 1/15 time [29]. Cheaper and easier to define, box
annotations could also be integrated as extra supervision to
guide the learning process of the network attention maps.
They convey useful information to tell network which part
of the box content is background and which is foreground
object that they should focus on.

Following Sec. 3.2, we treat the bounding box as a kind
of extra supervision. Considering the difference between the
bounding box and the pixel-level segmentation mask, we
need to modify Stream Sp

e and replace Attention Loss Lp

with a new loss function Lbbox to provide guidance directly
on attention maps. The input of this new stream Sb

e are
images with their corresponding bounding box annotations
and foreground priors. Lbbox encourages the network to pay
less attention on the regions out of bounding boxes for class
c when recognizing this class, meanwhile, pay more atten-
tion on the foreground objects within these bounding boxes.
Saliency map can be used here to represent foreground
priors. To achieve this, we define Lbbox in Eq. 9.

Lbbox =
1

n

∑
c

{[(O −Bc)�Ac − Z]2 + [Bc � (Ac − S)]2},

(9)
where Bc is a matrix generated based on the bounding

box annotation for class c. Elements of Bc equal to 1 if they
are within any bounding box belongs to class c and equal
to 0 otherwise. Bc is then resized to be of the same size as
that of the attention map Ac. O is a matrix with all elements
equal to 1 and Z is a matrix with all elements equal to 0.
S is the resized saliency map for current image. O, Z and
S all have the same size as that of the attention map Ac. �
denotes element-wise multiplication.

Again, we are interested in finding out the benefits of
using only a very small amount of data with bounding
box supervision, which fits perfectly with the GAINb

ext

framework. GAINb
ext is obtained by replacing stream Sp

e

with stream Sb
e . The three streams still share all parameters.

A very small amount of bounding box annotations through
stream Sb

e can already help to improve the performance with
GAINb

ext (in our experiments with GAINb
ext, only 1∼10% of

the total labels used in training are bounding box labels).
The final loss function Lext−bbox of GAINb

ext is defined
as follows:

Lext−bbox = Lcl + αLam + ωLbbox, (10)

where Lcl and Lam are defined in Sec. 3.1, and ω is the
weighting parameter depending on how much emphasis we
want to place on the bounding box supervision (we use ω =
10 in our experiments which is the same as Eq. 8).

4 SEMANTIC SEGMENTATION EXPERIMENTS

To verify the efficacy of GAIN, following Sec. 3.1, 3.2 and 3.3,
we use the weakly supervised semantic segmentation task
as the example application. The goal of this task is to classify
each pixel into different categories. In the weakly supervised
setting, most of recent methods [22], [23], [47] mainly rely
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on localization cues generated by models trained with only
image-level labels and consider other constraints such as ob-
ject boundaries to train a segmentation network. Therefore,
the quality of localization cues is the key of these methods’
performance.

Compared with attention maps generated by state-of-
the-art methods [31], [39], [59] which only locate the most
discriminative areas, GAIN guides the network to focus on
entire areas representing the class of interest, which can
improve the performance of weakly supervised segmen-
tation. To verify this, we first adopt our attention maps
to SEC [23], which is one of the state-of-the-art weakly
supervised semantic segmentation methods. SEC defines
three key constraints: seed, expand and constrain, where seed
is a module to provide localization cues C to the main
segmentation network N such that the segmentation result
of N is supervised to match C. Following SEC [23], our
localization cue `cx ∈ {0, 1} for each class c at location x is
obtained by applying a thresholding operation to attention
maps generated by GAIN: for each per-class attention map,
all pixels with a score larger than 20% of the maximum score
are selected. We apply [30] several times to get background
cues and then train the SEC model to generate segmenta-
tion results using the same inference procedure, as well as
parameters of CRF [24]. According to cues generated by our
different GAIN models with different kinds of supervision,
we denote the segmentation results as GAIN-SEC, GAINb

ext-
SEC and GAINp

ext-SEC accordingly.
In addition to using the existing weakly-supervised se-

mantic segmentation framework for evaluation, we also use
a framework similar to [33], [47], [50] to further investigate
the benefit of our improved attention maps. As shown in
Fig. 4, the framework is built upon Deeplab backbone seg-
mentation network [8] and supervised by two loss functions
jointly. One the one hand, due to the improved quality of
attention maps of GAIN, they could act as pseudo ground
truth to provide guidance on the training of this weakly-
supervised semantic segmentation framework. In particular,
we obtain localization cue `cx ∈ {0, 1} for each class c at
location x based on attention maps of GAIN following the
same way as SEC [23]. Then we define the segmentation loss

GAIN
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Cue

GAP Classification 
Loss

Classification 
Loss

Attention map
Segmentation 
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Segmentation 
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…
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Fig. 4. Structure of the weakly-supervised semantic segmentation
framework using fully convolutional network (Deeplab [8] here) as the
backbone network. Image-level labels and localization cues obtained
based on attention maps of GAIN provide guidance on the training of
this segmentation network, which is achieved by optimizing two loss
functions jointly. No ground-truth pixel-level annotations are used during
the training process of this semantic segmentation network.

Lseg as follows:

Lseg =
∑
c

J(scx(I), `
c
x), (11)

where scx(I) is the prediction of the segmentation network
of class c at localization x for a input image I . `cx is the
corresponding localization cue obtained by GAIN. J(·) is
the pixel-wise cross entropy loss.

On the other hand, we add a Global Average Pooling
layer (GAP) at the last layer of the segmentation network
to get the class prediction score for a input image. Based on
the understanding that a segmentation network should also
have the ability to classify the image well, we use a multi-
label classification loss Lcl to constrain the learning of the
network. The final loss function Lw−s is defined as follows:

Lw−s = Lcl + Lseg. (12)

The trained network then generates segmentation results for
evaluation.

4.1 Dataset and experimental settings

Datasets and evaluation metrics. We evaluate our results
on PASCAL VOC 2012 image segmentation benchmark [13],
which has 21 semantic classes, including the background.
The whole dataset is split into three sets: training, valida-
tion, and testing (denoted as train, val, and test) with 1464,
1449, and 1456 images, respectively. Following the common
setting [7], [23], we also use the augmented training set pro-
vided by [15]. The resulting training set has 10582 weakly
annotated images which we use to train our models. We
compare our approach with other methods on both the
val. and test sets. For the evaluation metric, we use the
standard one for the PASCAL VOC 2012 segmentation —
mean intersection-over-union (mIoU).

Implementation details. We use VGG [42] pretrained
from the ImageNet [10] as the basic network for GAIN
to generate attention maps. We use PyTorch [1] to imple-
ment our models. We set the batch size to 1 and learn-
ing rate to 10−5. We use the stochastic gradient descent
(SGD) to train the networks and terminate after 35 epochs.
For the concern about max-min optimization problem, we
have not observed any issue with convergence in our
experiments with various datasets and projects. Our to-
tal loss decreases around 90% and 98% after 1 and 15
epochs respectively. For the weakly-supervised segmenta-
tion framework, following the setting of SEC [23], we use
the DeepLab-CRFLargeFOV [7], which is a slightly modi-
fied version of the VGG network [42]. Implemented using
Caffe [20], DeepLab-CRFLargeFOV [7] defines the input size
as 321×321 and produces segmentation masks with size of
41×41. Our training procedure is the same as [23] at this
stage. We run the SGD for 8000 iterations with the batch
size of 15. The initial learning rate is 10−3 and it decreases
by a factor of 10 for every 2000 iterations. For the details
about our own weakly-supervised semantic segmentation
network described in Section 4, we still use the input size of
321×321. The parameters of back-bone network DeepLab [8]
are initialized by ResNet-101 [16] pre-trained on ImageNet
[10]. We set the starting learning rate as 0.0005, multiplying
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௣

Fig. 5. Qualitative results of attention maps generated by Grad-CAM [39], the proposed GAIN, GAINb
ext and GAINp

ext. Here, GAINb
ext uses 200

randomly selected (2%) bounding box annotations and GAINp
ext uses 200 randomly selected (2%) pixel-level labels as extra supervision to guide

the attention learning process. The proposed methods can obtain much better attention maps that cover more complete regions of interest by
guided attention learning with different levels of guidance.

it by 0.1 every 2000 iterations. We use a mini-batch of 10,
momentum of 0.3 and weight decay of 0.0005 to train the
network with 20000 iterations.

4.2 Comparison with state-of-the-art
We compare our methods with other state-of-the-art weakly
supervised semantic segmentation methods with image-
level labels. Following [47], we separate them into two
categories. For methods that purely use image-level labels,
we compare our GAIN-based SEC (denoted as GAIN-SEC
in the Table 1) and GAIN with SEC [23] AE-PSL [47],
TPL [22], STC [48], MEFF [14], PRM [60] etc. For another
group of methods, implicitly using pixel-level supervision
means that though these methods train the segmentation
networks only with image-level labels, they use some extra
technologies that are trained using pixel-level supervision.
Our GAINp

ext-based SEC (denoted as GAINp
ext-SEC in the

table) and GAINp
ext lie in this setting because it uses a very

small amount of pixel-level labels to further improve the
network’s attention maps and doesn’t rely on any pixel-
level labels when training the SEC segmentation network.
Other methods in this setting like AF-MCG [59], TransferNet
[17] and MIL-seg [35] are included for comparison. For
methods that use both image-level labels and some amount

of bounding box annotations, BoxSupR [9], WSSLR [33] and
WSSLS [33] are included for comparison. The supervision
of our method is a kind of implicitly using bounding box
supervision. Different from directly using a large amount
(10K) bounding box annotations to train the semantic seg-
mentation network, our GAINb

ext-SEC and GAINb
ext only

use a small amount of bounding box labels to train the
localization cues. None of these annotations are used to train
the semantic segmentation network in the next step. Table
1 shows results on PASCAL VOC 2012 segmentation val. set
and segmentation test. set.

Among the methods purely using image-level labels,
our GAIN-based SEC achieves the performance with 55.3%
and 56.8% in mIoU on these two sets, outperforming the
SEC [23] baseline by 4.6% and 5.1%. Furthermore, GAIN
outperforms AE-PSL [47] by 0.3% and 1.1%, and outper-
forms TPL [22] by 2.2% and 3.0%. These two methods are
also proposed to improve attention maps to cover more
areas of the class of interest. Compared with them, our
GAIN makes the attention map trainable without the need
to do iterative erasing or combining attention maps from
different networks, as proposed in [22], [47]. In addition to
using the existing weakly-supervised semantic segmenta-
tion framework SEC to evaluate the quality of our improved
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Methods Training Set val. test
(mIoU) (mIoU)

Supervision: Purely Image-level Labels
CCNN [34] 10K W 35.3 35.6
MIL-sppxl [35] 700K W 35.8 36.6
EM-Adapt [33] 10K W 38.2 39.6
DCSM [40] 10K W 44.1 45.1
BFBP [38] 10K W 46.6 48.0
STC [48] 50K W 49.8 51.2
AF-SS [36] 10K W 52.6 52.7
CBTS-cues [37] 10K W 52.8 53.7
TPL [22] 10K W 53.1 53.8
WebS-i2 [21] 10K W 53.4 55.3
PRM [60] 10K W 53.4 -
MEFF [14] 10K W - 55.6
AE-PSL [47] 10K W 55.0 55.7
SEC [23] (baseline) 10K W 50.7 51.7
GAIN-SEC (ours) 10K W 55.3 56.8
GAIN (ours) 10K W 59.4 59.6
Supervision: Bounding box annotations
(# Implicitly use bounding box annotations)
BoxSupR [9] 10K W + 10K B 52.3 -
WSSLR [33] 10K W + 10K B 52.5 54.2
WSSLS [33] 10K W + 10K B 60.6 62.2
GAINb

ext-SEC# (ours) 10K W + 200 B 56.8 57.6
GAINb

ext-SEC# (ours) 10K W + 1.4K B 58.0 59.2
GAINb

ext# (ours) 10K W + 200 B 61.1 61.6
GAINb

ext# (ours) 10K W + 1.4K B 62.6 62.8
Supervision: Image-level Labels
(@ Implicitly use bounding box and pixel-level annotations)
GAINb,p

ext-SEC@ 10K W + 100 B + 100 P 57.8 59.3
GAINb,p

ext-SEC@ 10K W + 732 B + 732 P 59.0 60.2
GAINb,p

ext@ 10K W + 100 B + 100 P 61.7 62.8
GAINb,p

ext@ 10K W + 732 B + 732 P 63.2 63.6
Supervision: Image-level Labels
(* Implicitly use pixel-level annotations)
MIL-seg* [35] 700K W + 1.4K P 40.6 42.0
TransferNet* [17] 27K W + 17K P 51.2 52.1
AF-MCG* [36] 10K W + 1.4K P 54.3 55.5
GAINp

ext-SEC* (ours) 10K W + 200 P 58.3 59.6
GAINp

ext-SEC* (ours) 10K W + 1.4K P 60.5 62.1
GAINp

ext* (ours) 10K W + 200 P 62.2 61.9
GAINp

ext* (ours) 10K W + 1.4K P 64.1 64.4

TABLE 1
Comparison of weakly supervised semantic segmentation methods on
PASCAL VOC 2012 segmentation val. set and segmentation test set.
“W” denotes image-level labels, “B” denotes bounding box annotations
and “P” denotes pixel-level labels. Implicitly use pixel-level supervision
is a protocol we followed as defined in [47], that pixel-level labels are

only used in training priors, and only weak labels are used in the
training of segmentation framework, e.g. SEC [23] in our case.
Implicitly use bounding box supervision is a similar protocol.

attention maps, we also show the performance of our pro-
posed framework using attention maps as input cues. GAIN
achieves 59.4% and 59.6% in mIoU, which further validates
the benefit of our improved attention maps.

Our framework also supports to plug in different lev-
els of extra supervision to provide guidance on attention
learning of a network. When using bounding box as extra
supervision, our GAINb

ext based SEC further improves per-
formance upon SEC as well as GAIN based SEC because
of better attention maps. Based on attention maps using
200 randomly selected bounding box annotations as well as

Ground Truth Image SEC (baseline) GAIN+SEC GAINୣ୶୲ୠ +SEC GAIN௘௫௧
௣ +SEC

Fig. 6. Qualitative results on PASCAL VOC 2012 segmentation val. set.
They are generated by SEC (our baseline framework), GAIN-based
SEC, GAINb

ext-based SEC and GAINp
ext-based SEC. Here, GAINb

ext-
based SEC is based on attention maps generated by GAINb

ext that uses
200 randomly selected (2%) bounding box annotations during training.
GAINp

ext-based SEC is based on attention maps of GAINp
ext that uses

200 randomly selected pixel-level labels as extra supervision to guide
the attention learning process. No extra supervision is used during the
training of semantic segmentation network, SEC here.

10K image level weak labels, GAINb
ext-SEC performs 56.8%

and 57.6% on the val. and test sets of VOC 2012. When the
number of available bounding box annotations increases to
1.4K, GAINb

ext-SEC can achieve 58.0% and 59.2% in mIoU
on the two sets. When using our semantic segmentation
framework with improved attention maps, GAINb

ext per-
forms 61.1% and 61.6% with 200 bounding box annotations
on VOC val. and test sets, and the performance improves to
62.6% and 62.8% when the number of bounding box annota-
tions increases to 1.4K. All these bounding box annotations
are only used during the attention learning process, none
of them are used to train the semantic segmentation model
in the next step. This setting helps to validate that the extra
supervision can help to further improve the attention maps
and guide the attention learning of the network. Besides,
for the segmentation task, compared with other methods
that use 10K image-level labels and 10K bounding box
annotations, our methods achieve better performance, but
rely on less bounding box annotations (only 200 or 1.4K
bounding box annotations).

By implicitly using pixel-level supervision, our
GAINp

ext-based SEC achieves 58.3% and 59.6% in mIoU
when we use 200 randomly selected images with pixel-
level labels (2% data of the whole dataset) as the extra
supervision. It already performs 4% and 4.1% better than
AF-MCG [59], which relies on the MCG generator [3] trained
in a fully-supervised way on the PASCAL VOC. After
the pixel-level supervision increases to 1464 images for
our GAINp

ext-based SEC, the performance jumps to 60.5%
and 62.1%. When we use the improved attention maps as
localization cues to train our own semantic segmentation
model, GAINp

ext performs 62.2% and 61.9% on the VOC
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Methods b.g. plane bike bird boat bott. bus car cat chair cow table dog hors. moto. pers. plant sheep sofa train tv mIoU
Supervision: Purely Image-level Labels

CCNN [34] 68.5 25.5 18.0 25.4 20.2 36.3 46.8 47.1 48.0 15.8 37.9 21.0 44.5 34.5 46.2 40.7 30.4 36.3 22.2 38.8 36.9 35.3
MIL-sppxl [35] 77.2 37.3 18.4 25.4 28.2 31.9 41.6 48.1 50.7 12.7 45.7 14.6 50.9 44.1 39.2 37.9 28.3 44.0 19.6 37.6 35.0 36.6

DCSM [40] 76.7 45.1 24.6 40.8 23.0 34.8 61.0 51.9 52.4 15.5 45.9 32.7 54.9 48.6 57.4 51.8 38.2 55.4 32.2 42.6 39.6 44.1
BFBP [38] 79.2 60.1 20.4 50.7 41.2 46.3 62.6 49.2 62.3 13.3 49.7 38.1 58.4 49.0 57.0 48.2 27.8 55.1 29.6 54.6 26.6 46.6
STC [48] 84.5 68.0 19.5 60.5 42.5 44.8 68.4 64.0 64.8 14.5 52.0 22.8 58.0 55.3 57.8 60.5 40.6 56.7 23.0 57.1 31.2 49.8

AF-SS [36] - 61.8 26.8 47.7 27.9 50.2 67.6 59.6 77.5 24.8 51.9 30.5 67.3 52.8 62.9 55.7 37.9 61.4 32.0 50.9 54.1 51.6
CBTS-cues [37] 85.8 65.2 29.4 63.8 31.2 37.2 69.6 64.3 76.2 21.4 56.3 29.8 68.2 60.6 66.2 55.8 30.8 66.1 34.9 48.8 47.1 52.8

AE-PSL [47] 83.4 71.1 30.5 72.9 41.6 55.9 63.1 60.2 74.0 18.0 66.5 32.4 71.7 56.3 64.8 52.4 37.4 69.1 31.4 58.9 43.9 55.0
TPL [22] 82.8 62.2 23.1 65.8 21.1 43.1 71.1 66.2 76.1 21.3 59.6 35.1 70.2 58.8 62.3 66.1 35.8 69.9 33.4 45.9 45.6 53.1

SEC [23] (b.l.) 82.4 62.9 26.4 61.6 27.6 38.1 66.6 62.7 75.2 22.1 53.5 28.3 65.8 57.8 62.5 52.5 32.5 62.6 32.1 45.4 45.3 50.7
GAIN-SEC 86.9 69.3 29.7 64.0 49.1 51.4 65.8 67.8 73.4 22.0 57.4 20.0 68.7 60.4 63.9 68.1 34.2 63.1 30.0 63.6 52.4 55.3

GAIN 87.6 76.7 33.9 74.5 58.5 61.7 75.9 72.9 78.6 18.8 70.8 14.1 68.7 69.6 69.5 71.3 41.5 66.5 16.4 70.2 48.7 59.4
Supervision: Bounding box annotations
(# Implicitly use bounding box annotations)
GAINb

ext-SEC-1# 86.8 71.5 30.1 64.5 43.0 51.9 72.6 69.7 75.2 23.7 61.3 34.4 69.4 61.5 65.4 68.2 36.1 65.5 32.5 63.7 46.2 56.8
GAINb

ext-SEC-2# 87.8 71.8 30.3 66.4 51.3 52.9 74.1 72.1 76.4 23.6 61.3 31.8 71.8 63.1 65.2 69.7 34.3 62.8 32.2 68.0 51.1 58.0
GAINb

ext-1# 88.5 77.4 35.3 72.7 57.0 62.4 74.5 71.9 77.9 19.4 72.5 17.2 73.9 71.8 71.9 72.9 44.6 72.2 22.8 69.3 56.5 61.1
GAINb

ext-2# 89.1 78.1 34.4 71.0 64.3 72.3 83.2 75.3 83.4 14.4 73.1 16.2 76.3 70.8 69.4 72.5 43.8 76.0 23.2 70.9 57.2 62.6
Supervision: Image-level Labels
(@ Implicitly use bounding box and pixel-level annotations)
GAINb,p

ext-SEC-1@ 86.8 71.5 30.1 64.5 43.0 51.9 72.6 69.7 75.2 23.7 61.3 34.4 69.4 61.5 65.4 68.2 36.1 65.5 32.5 63.7 46.2 57.8
GAINb,p

ext-SEC-2@ 88.1 72.5 29.1 66.6 52.4 54.2 76.1 71.6 76.3 23.7 63.3 39.0 72.1 64.3 65.6 70.3 34.7 64.7 34.4 68.2 52.2 59.0
GAINb,p

ext-1@ 88.2 76.8 35.7 73.2 58.5 63.1 72.9 73.2 78.2 20.5 71.8 19.4 74.3 72.5 70.4 73.2 45.1 73.4 23.2 68.9 56.8 61.7
GAINb,p

ext-2@ 89.3 77.8 36.2 73.1 65.6 71.5 82.7 76.4 85.6 16.3 75.4 17.4 74.8 72.3 71.6 70.2 45.3 78.1 24.0 72.3 57.9 63.2
Supervision: Image-level Labels
(* Implicitly use pixel-level annotations)

MIL-seg* [35] 79.6 50.2 21.6 40.9 34.9 40.5 45.9 51.5 60.6 12.6 51.2 11.6 56.8 52.9 44.8 42.7 31.2 55.4 21.5 38.8 36.9 42.0
TransferNet* [17] 85.3 68.5 26.4 69.8 36.7 49.1 68.4 55.8 77.3 6.2 75.2 14.3 69.8 71.5 61.1 31.9 25.5 74.6 33.8 49.6 43.7 52.1

AF-MCG* [36] - 55.3 27.0 62.0 30.6 56.7 72.8 64.9 79.5 26.7 59.3 31.4 73.0 57.7 63.9 67.4 36.1 68.0 34.6 51.7 38.1 54.3
GAINp

ext-SEC-1* 87.8 72.8 30.4 66.9 44.3 49.7 71.5 69.5 77.1 22.7 63.3 45.3 71.3 64.9 65.7 69.8 34.5 65.7 33.0 65.9 51.3 58.3
GAINp

ext-SEC-2* 88.9 73.7 32.2 69.1 54.2 52.7 75.5 74.0 79.8 24.3 64.7 46.1 73.5 64.8 66.5 72.3 35.3 67.5 33.5 68.3 54.5 60.5
GAINp

ext-1* 88.9 78.6 36.5 76.0 60.2 67.0 76.8 74.3 81.1 25.0 72.5 16.2 75.3 72.7 71.4 74.4 40.0 72.7 20.5 70.1 55.9 62.2
GAINp

ext-2* 89.7 82.6 36.0 75.9 63.9 65.9 80.9 74.9 83.0 23.5 76.1 17.9 77.5 75.4 72.6 76.0 40.1 75.7 25.9 73.4 58.9 64.1

TABLE 2
Comparison of weakly supervised semantic segmentation methods on Pascal VOC 2012 segmentation val. set. GAINb

ext-SEC-1 and
GAINb

ext-SEC-2 represent GAINb
ext based SEC that implicitly using 200 and 1464 bounding box annotations respectively. GAINp

ext-SEC-1 and
GAINp

ext-SEC-2 represent GAINp
ext based SEC implicitly using 200 and 1464 pixel-level labels respectively. GAINb,p

ext-SEC-1 and GAINb,p
ext-SEC-2

represent implicitly using 200 and 1464 combinations of bounding box and pixel-level annotations with a half-and-half ratio respectively. “-1” and
“-2” after GAINb

ext, GAINp
ext, GAINb,p

ext also represent for amount of annotation, which is the same as corresponding SEC-based version.

Method Training Set val. (mIoU)
GAINb

ext-SEC* 10K weak + 200 pixel 56.8
10K weak + 400 pixel 57.1
10K weak + 900 pixel 57.3
10K weak + 1464 pixel 58.0

GAINb
ext 10K weak + 200 pixel 61.1

10K weak + 400 pixel 61.4
10K weak + 900 pixel 62.2
10K weak + 1464 pixel 62.6

TABLE 3
Results on PASCAL VOC 2012 segmentation val. set with the proposed
GAINb

ext-based SEC and GAINb
ext implicitly using different amount of

bounding box supervision for the attention map learning process.

2012 val. and test sets using 200 randomly selected pixel-
level labels during the guided attention learning. The perfor-
mance improves to 64.1% and 64.4% more extra annotations.
Similar to the previous experiment that uses bounding box
annotations, none of the pixel-level annotations are used to
train the semantic segmentation model in order to validate
the improvements are from better attention maps.

We show qualitative results of attention maps generated
by GAIN-base methods in Fig. 5, where GAIN covers more
areas belonging to the class of interest compared with the

Method Training Set val. (mIoU)
GAINp

ext-SEC* 10K weak + 200 pixel 58.3
10K weak + 400 pixel 59.4
10K weak + 900 pixel 60.2
10K weak + 1464 pixel 60.5

GAINp
ext 10K weak + 200 pixel 62.2

10K weak + 400 pixel 62.6
10K weak + 900 pixel 63.3
10K weak + 1464 pixel 64.1

TABLE 4
Results on PASCAL VOC 2012 segmentation val. set with our

GAINp
ext-based SEC and GAINp

ext implicitly using different amount of
pixel-level supervision for the attention map learning process.

Grad-CAM [39]. With only 2% of the pixel-level labels, the
GAINp

ext covers more complete and accurate areas of the
class of interest as well as less background areas around the
class of interest (for example, the sea around the ships and
the road under the car in the second row of Fig. 5).

Fig. 6 shows some qualitative results of semantic seg-
mentation, indicating that GAIN-based methods help to
discover more complete and accurate areas of classes of
interest.

More discussion of the GAINp
ext We are interested in
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Methods b.g. plane bike bird boat bott. bus car cat chair cow table dog hors. moto. pers. plant sheep sofa train tv mIoU
Supervision: Purely Image-level Labels

CCNN [34] 70.1 24.2 19.9 26.3 18.6 38.1 51.7 42.9 48.2 15.6 37.2 18.3 43.0 38.2 52.2 40.0 33.8 36.0 21.6 33.4 38.3 35.6
MIL-sppxl [35] 74.7 38.8 19.8 27.5 21.7 32.8 40.0 50.1 47.1 7.2 44.8 15.8 49.4 47.3 36.6 36.4 24.3 44.5 21.0 31.5 41.3 35.8
EM-Adapt [33] 76.3 37.1 21.9 41.6 26.1 38.5 50.8 44.9 48.9 16.7 40.8 29.4 47.1 45.8 54.8 28.2 30.0 44.0 29.2 34.3 46.0 39.6

DCSM [40] 78.1 43.8 26.3 49.8 19.5 40.3 61.6 53.9 52.7 13.7 47.3 34.8 50.3 48.9 69.0 49.7 38.4 57.1 34.0 38.0 40.0 45.1
BFBP [38] 80.3 57.5 24.1 66.9 31.7 43.0 67.5 48.6 56.7 12.6 50.9 42.6 59.4 52.9 65.0 44.8 41.3 51.1 33.7 44.4 33.2 48.0
STC [48] 85.2 62.7 21.1 58.0 31.4 55.0 68.8 63.9 63.7 14.2 57.6 28.3 63.0 59.8 67.6 61.7 42.9 61.0 23.2 52.4 33.1 51.2

AF-SS [36] - 58.0 28.0 47.4 25.0 57.5 67.8 55.8 77.1 20.9 54.8 35.5 68.2 57.3 73.1 58.6 40.2 58.2 39.5 44.1 55.1 52.7
CBTS-cues [37] 85.7 58.8 30.5 67.6 24.7 44.7 74.8 61.8 73.7 22.9 57.4 27.5 71.3 64.8 72.4 57.3 37.0 60.4 42.8 42.2 50.6 53.7

TPL [22] 83.4 62.2 26.4 71.8 18.2 49.5 66.5 63.8 73.4 19.0 56.6 35.7 69.3 61.3 71.7 69.2 39.1 66.3 44.8 35.9 45.5 53.8
AE-PSL [47] 85.3 66.9 32.2 77.8 39.1 59.2 63.5 61.4 73.1 17.3 60.9 36.4 70.2 56.8 75.9 52.8 38.7 68.5 34.6 51.2 48.5 55.7

SEC [23] (b.l.) 83.5 56.4 28.5 64.1 23.6 46.5 70.6 58.5 71.3 23.2 54.0 28.0 68.1 62.1 70.0 55.0 38.4 58.0 39.9 38.4 48.3 51.7
GAIN-SEC 88.0 67.0 30.0 66.3 41.4 60.4 66.8 65.1 71.7 25.5 58.7 22.4 72.3 65.8 68.0 72.0 39.9 64.1 33.4 62.2 52.7 56.8

GAIN 88.2 79.3 33.7 67.9 50.5 62.5 76.0 72.2 77.6 20.3 65.8 19.5 72.6 73.0 75.2 71.4 42.4 72.8 21.4 61.5 48.6 59.6
Supervision: Image-level Labels
(# Implicitly use bounding box annotations)
GAINb

ext-SEC-1# 87.5 66.3 31.5 63.6 35.7 55.8 73.7 64.8 72.7 27.5 61.5 36.0 72.1 66.0 71.5 70.9 43.5 64.6 40.0 58.6 47.3 57.6
GAINb

ext-SEC-2# 88.3 67.5 31.8 67.0 44.1 58.6 74.0 67.0 74.6 27.0 62.2 34.5 72.9 67.7 71.7 70.8 42.9 67.1 38.6 63.5 51.8 59.2
GAINb

ext-1# 89.0 80.4 34.3 69.5 48.8 60.4 75.2 73.6 76.5 20.2 75.0 27.0 77.4 73.8 75.5 74.4 47.6 74.0 28.3 63.0 49.5 61.6
GAINb

ext-2# 89.4 82.2 33.2 74.5 51.2 70.0 81.7 76.6 81.4 16.0 72.9 20.7 75.3 75.3 76.6 73.1 46.2 75.1 25.9 70.5 51.7 62.8
Supervision: Image-level Labels
(@ Implicitly use bounding box and pixel-level annotations)
GAINb,p

ext-SEC-1@ 88.1 67.4 31.4 66.1 36.5 57.8 72.6 66.2 75.7 26.9 63.2 43.1 73.4 66.8 70.6 71.1 44.7 67.1 39.7 62.2 54.0 59.3
GAINb,p

ext-SEC-2@ 88.5 71.5 30.3 67.7 42.2 58.3 74.2 66.3 74.8 28.2 64.8 39.5 73.2 70.0 71.8 71.3 45.1 69.0 41.4 63.6 52.7 60.2
GAINb,p

ext-1@ 89.5 82.9 36.2 74.7 50.6 65.4 75.9 77.1 79.2 18.1 70.9 28.5 77.6 73.3 75.6 73.9 45.5 76.2 26.6 65.8 54.4 62.8
GAINb,p

ext-2@ 90.0 83.4 35.8 72.7 52.6 65.3 81.1 76.2 80.0 21.5 70.7 27.1 78.0 76.6 78.9 74.4 43.6 77.3 26.0 72.6 51.9 63.6
Supervision: Image-level Labels
(* Implicitly use pixel-level annotations)

MIL-seg* [35] 78.7 48.0 21.2 31.1 28.4 35.1 51.4 55.5 52.8 7.8 56.2 19.9 53.8 50.3 40.0 38.6 27.8 51.8 24.7 33.3 46.3 40.6
TransferNet* [17] 85.7 70.1 27.8 73.7 37.3 44.8 71.4 53.8 73.0 6.7 62.9 12.4 68.4 73.7 65.9 27.9 23.5 72.3 38.9 45.9 39.2 51.2

AF-MCG* [36] - 57.9 29.4 60.4 29.0 58.1 70.2 62.3 79.6 23.5 57.1 37.5 75.1 60.7 76.4 67.8 40.2 71.0 40.3 44.0 39.6 55.5
GAINp

ext-SEC-1* 88.4 69.2 31.4 64.3 37.2 57.2 72.2 66.4 74.6 26.7 63.0 45.1 74.4 68.1 71.3 71.9 46.0 67.1 41.2 61.9 53.0 59.6
GAINp

ext-SEC-2* 89.7 72.0 33.1 72.3 45.6 59.9 74.4 67.7 79.1 27.5 63.3 46.9 74.5 69.6 72.7 74.1 45.7 70.4 43.3 67.0 55.6 62.1
GAINp

ext-1* 89.2 78.9 35.2 73.1 52.1 64.1 76.3 74.7 78.5 22.5 72.3 19.8 77.5 76.5 75.1 74.4 44.2 73.9 27.5 63.9 50.5 61.9
GAINp

ext-2* 89.9 84.5 35.2 69.6 54.3 62.7 81.8 76.9 80.5 24.9 73.5 32.8 77.5 75.4 77.1 75.4 48.0 76.5 33.8 72.9 49.5 64.4

TABLE 5
Comparison of weakly supervised semantic segmentation methods on Pascal VOC 2012 segmentation test set. GAINb

ext-SEC-1 and
GAINb

ext-SEC-2 represent GAINb
ext based SEC that implicitly using 200 and 1464 bounding box annotations respectively. GAINp

ext-SEC-1 and
GAINp

ext-SEC-2 represent GAINp
ext based SEC implicitly using 200 and 1464 pixel-level labels respectively. GAINb,p

ext-SEC-1 and GAINb,p
ext-SEC-2

represent implicitly using 200 and 1464 combinations of bounding box and pixel-level annotations with a half-and-half ratio respectively. “-1” and
“-2” after GAINb

ext, GAINp
ext, GAINb,p

ext also represent for amount of annotation, which is the same as corresponding SEC-based version.

finding out the influence of different amount of bounding
box annotations or pixel-level labels on the performance.
Following the same setting in Sec. 4.1, we add more ran-
domly selected bounding box annotations or pixel-level
labels to further improve attention maps and adopt them
in the SEC [23] as well as our weakly-supervised semantic
segmentation framework. From the results in Table 3 and
Table 4, we find that the performance of the semantic
segmentation model improves when more extra annotations
are provided to train the network that generates attention
maps. Again, there are no pixel-level labels used to train the
weakly-supervised semantic segmentation framework.

Detailed quantitative results for weakly supervised se-
mantic segmentation experiments including IoU scores for
each class of Pascal VOC 2012 segmentation val., test set are
shown in Table 2 and Table 5. We also evaluate performance
on VOC 2012 seg. val. and seg. test datasets without CRF as
shown in Table 6.

5 GUIDED LEARNING WITH BIASED DATA

In this section, we design two experiments to verify that our
methods have potentials to make the classification network

Methods Training Set val. test
SEC [23] w/o. CRF 10K weak 44.8 45.4
GAIN-SEC w/o. CRF 10K weak 50.8 51.8
GAINb

ext-SEC w/o. CRF 10K weak +1464 bbox 52.1 52.8
GAINp

ext-SEC w/o. CRF 10K weak + 1464 pixel 54.8 55.7

TABLE 6
Semantic segmentation results without CRF on PASCAL VOC 2012

segmentation val. and test sets. Numbers shown are mIoU.

robust to dataset bias and improve its generalization ability
by providing guidance on its attention.

5.1 Experiment on boat recognition

The attention map can be used to identify bias in datasets
[46], we take an example from our observations to explain
it. We find that the classification network (like Grad-CAM
[39]) trained on Pascal VOC dataset always focuses on the
sea and water regions instead of boats when predicting there
are boats in an image. It means that there exists bias in the
Pascal VOC dataset that ships always appear together with
the water in most cases. Therefore, the model learns to detect
water rather than the pattern or characteristics to recognize
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Fig. 7. Qualitative results generated by Grad-CAM [39], our GAIN and GAINp
ext on the Biased Boat dataset. -# denotes the number of pixel-level

labels of boat used in the training which were randomly chosen from VOC 2012. Attention map corresponding to boat shown only when there are
boats recognized.

the boats themselves, which limits the generalization ability
of the learned model. Though we can build a more balanced
dataset based on the observations, our GAIN and GAINp

ext

provide another way to make the model learn to be robust
to the bias without the need to rebuild the dataset.

Experiments setting details. To verify this, we construct
a test dataset, namely “Biased Boat” dataset, containing two
categories of images: boat images without sea or water; and
sea or water images without boats. We collected 50 images
from Internet for each scenario, resulting in 100 images in
total. For models, we use the VGG [42] pretrained from the
ImageNet [10] as the basic network for Grad-CAM (basic
classification network), our GAIN and GAINp

ext. We use
the stochastic gradient descent (SGD) to train the networks
and terminate after 35 epochs on the training set of Pascal
VOC provided by [15] which includes 10582 images. For our
GAINp

ext, a small amount of data in the training set have
both image-level and pixel-level labels. Following the set-
tings in Section 4.1, we provide 200, 400 and 1464 randomly
chosen pixel-level labels to train our GAINp

ext separately. In
these randomly chosen images, there are 9, 23 and 78 images
including the boat class, which is used to represent different
GAINp

ext models. The quantitative results are reported in
Table 7 including the accuracy on the whole bias dataset as
well as for each scenario. We also show qualitative results in
Fig. 7. Attention maps are shown when there is boat being
recognized.

Discussion and analysis. From the results it can be seen
that with VGG training on VOC 2012, the network is having
trouble predicting whether a boat is in the image in both of
the two scenarios with 36% overall accuracy. In particular
it generates positive prediction incorrectly on images with
only water 70% of the time, indicating that “water” is con-

Test set VGG GAIN GAINp
ext (# of PL)

9 23 78
VOC val. 83% 90% 93% 93% 94%

Boat without water 42% 48% 64% 74% 84%
Water without boat 30% 62% 68% 76% 84%

Overall 36% 55% 66% 75% 84%

TABLE 7
Results comparison of VGG with our GAIN and GAINp

ext tested on the
Biased Boat dataset for classification accuracy. PL labels denotes
pixel-level labels of boat used in the training which are randomly

chosen.

sidered as one of the most prominent feature characterizing
“boat” by the network. Using GAIN with only image-level
supervision, the overall accuracy on our Biased Boat dataset
has been improved to 55%, with significant improvement
(32% higher in accuracy, almost half the error rate) on the
scenario of “water without boat”. This could be attributed to
that GAIN is able to teach the learner to capture all relevant
parts of the target object, in this case, both the boat itself
and the water surrounding it in the image. Hence when
there is no boat but water in the image, the network is more
likely to generate a negative prediction. However with the
help of self-guidance, GAIN still is unable to decouple boat
from water due to the biased training data, i.e. the learner
is unable to move its attention away from water. That is the
reason why only 6% improvement on accuracy is observed
in the scenario of “boat without water”. On the other hand
with GAINp

ext training a with small amount of pixel-level
labels, similar levels of improvements are observed in both
of the two scenarios. From Table 7 it can be seen that with
only 9 pixel-level labels for “boat”, GAINp

ext obtained an
overall accuracy of 66% on our Biased Boat dataset, a 11%
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improvement compared to GAIN with only self-guidance.
In particular significant improvement is observed in the
scenario of boats without water (16% increase on accuracy
compared to GAIN, about 30% reduction of error). With 78
pixel-level labels for “boat” used in training, GAINp

ext is able
to obtain 84% of accuracy on our Biased Boat dataset and
performance on both of the two scenarios converged. The
reasons behind these results could be that pixel-level labels
are able to precisely tell the learner what are the relevant
features, components or parts of the target objects hence
the actual boats in the image can be decoupled from the
water. This again supports that by directly providing extra
guidance on attention maps, the negative impact from the
bias in training data can be greatly alleviated.

5.2 Experiment about recognizing the orientation of an
industrial camera

The second experiment is designed for a challenging case
to further verify the model’s generalization ability. This
industrial application aims to recognize the orientation of
the camera. We define two orientation categories for the
industrial camera which is highly symmetric in shape. As
shown in Fig. 8, only the texture such as the location of
the gap and small markers on the surface of the camera are
critical to distinguish their orientations.

Experimental setting details. We collect two datasets
that have different viewpoints and backgrounds. One is
divided into two sets: Training Set and Testing Set 1. There
are 350 images for each orientation category in the Training
Set resulting in 700 images in total for training. Testing Set
1 includes 100 images sharing same distribution with the
training set. For Testing Set 2, there are still 50 images per
orientation, but the background and viewpoint are different
from Testing Set 1 and Training Set. We train VGG-based
classification networks [42] without attention guidance
(like Grad-CAM [39]) and our GAINp

ext on the Training
Set. GAINp

ext has two streams classification stream Scl and
external stream Sb

e . The input images of stream Sb
e include

both the image-level labels and bbox labels. Here manually
drawn bounding boxes (20 for each classes taking up only
5% of the whole training data) on the critical areas are
used as external supervision. These bounding boxes are then
converted to pixel-level masks to guide the network focus
on the critical areas.

Fig. 8. Datasets and qualitative results of our toy experiments. The
critical areas are marked with red bounding boxes in each image. GT
means ground truth orientation class label.

Discussion and analysis. At testing stage, though the
Grad-CAM can correctly classify (close to 100% accuracy)
the images in the Testing Set 1 where the camera viewpoint
and background are very similar to the Training Set, it only
gets random guess results (close to 50% accuracy) on Testing
Set 2 where images are taken from a different viewpoint
with different background. This is due to the fact that there
is severe bias in Training Set and the learner fails to capture
the right features (critical area as noted in Fig. 8) to separate
the two classes. On the contrary, using GAINp

ext with a small
amount of images with bounding-box labels, the network is
able to focus its attention on the area specified by the bound-
ing box labels hence better generalization is observed when
testing with Testing Set 2. Although the camera viewpoint
and scene background are quite different, the learner can
still correctly identify the critical area on the camera in the
image as shown in the last column second row in 8. Hence it
correctly classifies all images in both Testing Set 1 and Testing
Set 2.

5.3 Experiment on coarse orientation detection of an
industrial workpiece

We use this experiment as an example to demonstrate
that GAINb

ext can improve the generalization ability of the
trained model. In this experiment, our task is to classify
the input image of a particular industrial workpiece into
one of the four coarse orientations (i.e., 0, 90, 180, and 270
degrees). We are given 6118 training images acquired in an
office environment. However, the trained model needs to
be deployed in the factory and tested on 2059 in-machine
testing images. Fig. 9 displays some example images in
the training and testing datasets, showing clear difference
between these two datasets in terms of scale, viewpoint,
background, etc.

In our implementation, we change the base network
architecture of the GAINb

ext from VGG to the DenseNet [18]
and compare the classification accuracy of the adapted
GAINb

ext with that of a DenseNet [18] trained with image-
level labels. The result is summarized in Table 8, where

GT: 0 deg GT: 90 deg GT: 180 deg GT: 270 deg

Training
(office)

Testing
(machine)

Fig. 9. Example images of the data used in the coarse orientation
classification of an industrial workpiece.

Method training set classification accuracy (%)
DenseNet [18] 6118 weak 42.30

GAINp
ext 6118 weak + 60 bbox 58.96

GAINp
ext 6118 weak + 120 bbox 73.00

TABLE 8
Performance comparison between the DenseNet [18] and

DenseNet-based GAINp
ext. All the methods are trained with office data

but evaluated on 2059 in-machine testing data.
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GT: 0 deg 
degree

GT: 90 deg 
degree

GT: 180 deg 
degree

GT: 270 deg 
degree

DenseNet

GAIN%&'(

60 bbox

predict: 270 deg predict: 270 deg predict: 270 deg predict: 270 deg

predict: 0 deg predict: 90 deg predict: 90 deg predict: 90 deg

GAIN%&'( 	
120 bbox

predict: 0 deg predict: 90 deg predict: 180 deg predict: 270 deg

Fig. 10. Some example attention maps corresponding to the three meth-
ods in Table 8. These attention maps show that using extra and more
bounding box annotations encourages the network to predict based on
the workpiece instead of the background.

GAINb
ext shows better accuracy and generalization ability

compared with the DenseNet by using about 1∼2% of extra
bounding box annotations. Table 8 also shows that using
more bounding box annotations with GAINb

ext achieves
better performance, which is consistent with Table 1. Fig. 10
displays some example attention maps corresponding to the
three methods in Table 8, showing that using extra and
more bounding box annotations can guide the attention of
the network to focus more on the workpiece, regardless of
the correctness of prediction. Table 1 and Table 8 together
support that GAINb

ext outperforms the comparable methods
regardless of the tasks (classification and segmentation) and
the base network architecture (VGG and DenseNet).

6 CONCLUSIONS

In this paper, we propose a framework that can provide
guidance directly on the attention maps of a deep convo-
lutional neural network. The network is guided to focus
on the regions we expect without changing the network
structure or learning extra parameters. This is achieved by
making the attention maps not an afterthought, but a first-
class citizen during end-to-end training. We validate the
effectiveness of the proposed method considering two main
roles of these maps. First, when serving as localization pri-
ors for tasks like weakly-supervised semantic segmentation,
our attention maps can be guided by self supervision or
available extra supervision during training, which leads to
improvement by covering more complete regions of class
of interest. Extensive experiments on the PASCAL VOC
2012 benchmark demonstrate that the proposed method
confidently outperforms the state of the art without the need
for recursive processing during run time.

Since attention maps are related to the network’s re-
sponse given specific patterns and tasks it was trained for,
providing guidance on attention maps can be understand as
a regularization for the network learning. As one benefit of
this we are able to control the network attention explicitly
and can put manual effort in providing minimal supervision
of attention rather than re-balancing the dataset when the
network suffers from dataset bias. While it may not always
be clear how to manually balance datasets to avoid bias, it

is usually straightforward to guide attention to the regions
of interest. We design several experiments using data from
standard benchmark as well as real industrial application
to validate this idea. We observe that our explicit guided
attention model can help to improve the generalization
performance.

In the future it may be illuminating to deploy our
method on other tasks related to localization, such as
weakly-supervised object detection, object localization,
sound-to-visual localization, action localization etc. Besides,
constraints based on the principle that learning concepts by
focusing on right regions are implemented in this work,
which are helpful to improve the generalization ability of
the network. Based on our exploration for the relationship
between network decision and its attention, we expect more
future work can attempt to formulate different constraints
on this relationship according to the requirements of specific
tasks. Our insight and framework have already inspire sev-
eral further explorations in other applications. [58] extends
our GAIN framework to Siamese network and adopts our
Attention Mining Loss Lam to the person re-identification
module, helping the network generate complete attentive
regions in person images. Experiments show a complete
attention map can help to improve the performance of per-
son re-identification. [45] validates that a complete attention
map can help to improve the model’s robustness to adver-
sarial attacks. [11] demonstrates that penalizing the changes
in classifier’s attention maps helps to retain information of
the base classes, as new classes are added, which can help
to boost the performance of incremental learning.
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