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Abstract—With only coarse labels, weakly supervised learning typically uses top-down attention maps generated by back-propagating
gradients as priors for tasks such as object localization and semantic segmentation. While these attention maps are intuitive and
informative explanations of deep neural network, there is no effective mechanism to manipulate the network attention during learning
process. In this paper, we address three shortcomings of previous approaches in modeling such attention maps in one common
framework. First, we make attention maps a natural and explicit component in the training pipeline such that they are end-to-end
trainable. Moreover, we provide self-guidance directly on these maps by exploring supervision from the network itself to improve them
towards specific target tasks. Lastly, we proposed a design to seamlessly bridge the gap between using weak and extra supervision if
available. Despite its simplicity, experiments on the semantic segmentation task demonstrate the effectiveness of our methods.
Besides, the proposed framework provides a way not only explaining the focus of the learner but also feeding back with direct guidance

towards specific tasks. Under mild assumptions our method can also be understood as a plug-in to existing convolutional neural

networks to improve their generalization performance.

Index Terms—convolutional neural network, semantic segmentation, network attention, weakly supervised learning, biased data.

1 INTRODUCTION

EAKLY supervised learning [2], [6], [12], [19], [23],

[32], [41], [49], [50], [51], [52], [53], [54], [59] has
recently become a popular research direction since it directly
addresses the labeled data scarcity issue in computer vision.
For instance, using only image-level labels, one can obtain
the attention maps for a given input image with back-
propagation on a Convolutional Neural Network (CNN).
These maps are highly related to the network’s response
given specific patterns and tasks it was trained for. The
intensity of each pixel on the attention maps indicates the
degree that the corresponding pixel in the input image
supporting the network’s final output. From such attention
maps without the need of pixel-level labels, it is already
known that one can obtain the information of segmentation
and localization [12], [59].

Although the attention maps are supervised by only
classification loss without pixel-level labels, the attention
maps generated by the trained network usually cover only
the small and discriminative areas of the object of interest
[22], [43], [59]. These attention maps can still provide useful
localization cues as the priors for tasks like segmentation
[23]. However, we believe that encouraging the attention
maps to cover the target foreground objects as complete as
possible can further improve the performance. Aligned with
our belief, existing works either depend on consolidating
attention maps from multiple networks [22] or aggregating
multiple attention maps from a network via iterative erasing
approaches [47]. Instead of post-processing the attention of
the trained network passively, we propose an end-to-end
framework where the attention of the network is trained
jointly with the task-specific supervision towards improving
the performance of the objective of the target task.
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Fig. 1. The proposed Guided Attention Inference Network (GAIN) makes
the network’s attention on-line trainable and can plug in different kinds of
supervision directly on attention maps in an end-to-end way. We explore
the self-guided supervision from the network itself and propose GAIN?

ext

when extra supervision are available. These guidance can optimize
attention maps towards the task of interest.

Moreover, as an effective tool to explain the network’s
decisions, attention maps can also help to find the biases
of the trained network. For example, in the classification
task where only image-level labels are available, it is likely
that we encounter a pathological bias in the training data
when the foreground object incidentally always correlates
with the same background object (also mentioned in [39]).
Fig. 1 shows an example image belonging to the class “boat”
where it is highly likely that water and boats coexist. In
this scenario there is no incentive in training to focus the
network’s attention on only the boat because focusing on
water can also result in reasonably good performance. How-
ever, the generalization performance may suffer when the
testing data does not maintain the coexistence relationship
of foreground and background objects (e.g. boats out of
water). Although such bias can be manually alleviated by
re-balancing the training data, we propose to make the
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attention map trainable in our framework. As one benefit
of this we are able to control the attention explicitly and
can put manual effort in providing minimal supervision
of attention rather than manually re-balancing the dataset.
While it may not always be clear how to manually bal-
ance datasets to avoid bias, it is usually straightforward to
guide attention to the regions of interest, e.g. using a small
amount of pixel-level annotations like segmentation masks
or bounding boxes. We also observe that our explicit self-
guided attention model already improves the generalization
performance even without extra supervision.

This paper is an extended version of our previous work
[27]. In particular, (a) we propose an extended framework
for Guided Attention Inference Network (GAIN) so that it
can be integrated with available bounding box annotations.
(b) We use a new weakly-supervised semantic segmenta-
tion framework which takes the improved attention maps
generated by our GAIN frameworks as input and achieves
better performance on PASCAL VOC 2012 benchmark com-
pared to our previous methods and other state-of-the-art
algorithms. (c) We include more real-world experiments to
demonstrate the effectiveness of GAIN in improving model
generalization. (d) We include additional detailed analysis,
more quantitative and qualitative results to help compre-
hensively analyze the performance of the proposed GAIN
frameworks and better understand how it can be applied
and extended to other applications.

According to our experimental results in the semantic
segmentation task, our method achieves mloU 59.4% and
59.6%, respectively on the PASCAL VOC 2012 segmentation
test and wval sets. Our method also outperforms the compa-
rable state-of-the-art when limited pixel-level supervision
(mIoU of 64.1% and 64.4% respectively) or bounding box
supervision (mloU of 62.6% and 62.8% respectively) is avail-
able during training.

The rest of our paper is organized as follows. Section 2
introduces related work in network attention modeling and
weakly supervised learning. Section 3 describes the design
of our Guided Attention Inference Network (GAIN) and its
extensions to seamlessly integrate weak labels with stronger
supervisions such as bounding boxes or pixel-level segmen-
tation masks. Section 4 presents the experimental results of
semantic segmentation task on VOC 2012 dataset. Section
5 describes the experiments we conducted to demonstrate
how the propose GAIN pipeline can improve model gener-
alization.

2 RELATED WORK

Deep convolutional neural networks (DCNNs) have
achieved great success in many areas recently [25], [26],
[55], [56], [57]. Instead of just treating them as black boxes,
various methods have been proposed to explain and analyze
how DNN works from different views [6], [41], [51]. Visual
attention is one of the efficient way which can explain the
network’s decision by highlighting the regions of images
that are responsible for it. In this section, we discuss the
most relevant work on network attention analysis, usage
of attention maps in weakly-supervised methods especially
for weakly-supervised semantic segmentation and how net-
work attention can help to deal with dataset bias.

2

Network Attention. Visualization of model attention in
Convolutional Neural Networks (CNNs) has been explored
for network reasoning of visual recognition. Gradient back
propagation based methods [41], [44], [51] interprets the
gradient of the prediction score of a particular class respect-
ing to the original input image. They visualize the network
attention by locate regions that are helpful for predicting a
class in such a way. [6] further proposes a feedback method
to capture the top-down neural attention. According to the
high-level semantic labels of the input image, [6] uses a
feedback loop in the form of binary nodes between layers is
introduced to infer the activation status of hidden layer neu-
rons. CAM [59] adds an average pooling layer (GAP) after
the last convolution layer of a CNN and applies a weighted
sum of the last convolutional feature maps to obtain the
attention maps. Excitation Backprop [52] is proposed based
on a top-down visual attention model for human. As a novel
back propagation method, it can pass along signals from
top to down in the network hierarchy to locate the network
attention for any CNN architecture using nonlinearities
producing non-negative activations. The Excitation Back-
prop method is also extended to explain Recurrent Neural
Network (RNN)-based models [4] to handle more complex
recurrent, spatio-temporal dependencies. More recently, in
order to deal with the drawback of CAM [52] that needs
to change the structure of a CNN, Grad-CAM [39] extends
it to many different available CNN architectures for tasks
like image captioning and VQA. Grad-CAM++ is then pro-
posed to further improve Grad-CAM in terms of explaining
occurrences of multiple objects in one single image as well
as better object localization. Different from all these existing
works that are trying to find a reasonable way to explain
the network decision, we propose an end-to-end model to
provide supervision on the network learning through these
explanations, specifically attention mechanism. We validate
that our method can guide the network to focus on the
regions we expect without changing the network structure
or learning extra parameters. The proposed guided attention
learning will then benefit the corresponding visual task.

Network Attention for Weakly-supervised Methods.
Manually producing segmentation masks or bounding box
annotations is a time-consuming task [5], [23]. To solve this
issue, a lot of previous research studies how to train segmen-
tation or detection models from weaker forms of annotation
such as image-level labels, as this form of weak supervision
can be collected very efficiently [23]. Recent works show that
learning from only image-level labels, attention maps of a
trained classification network can provide localization infor-
mation for weakly-supervised object localization [32], [53],
[54], [59], object detection [12], [49], semantic segmentation
[2], [19], [23], [50], instance segmentation [60] etc. However,
only trained with classification loss, the attention map only
covers small and most discriminative regions of the object of
interest, which deviates from the requirement of these tasks
that needs to localize interior, dense and complete regions.
To mitigate this gap, [43] proposes a data augment method
by randomly hiding regions in the training image. Then the
network will be forced to seek other relevant parts when the
most discriminative part is hidden. However, it relies on a
strong assumption about the size of foreground objects (i.e.,
the size of the whole object should be bigger than that of
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Fig. 2. GAIN has two streams of networks, S.; and S, sharing parameters. S, encourages the attention map to include regions contributing to
the classification decision as complete as possible. The attention map is on-line generated and optimized by the two loss functions jointly.

patches). [47] proposes an adversarial erasing (AE) method
to repetitive erasing the most discriminative regions of the
input image and discover the rest part of object. Dense
object regions are finally obtained by combining attention
maps of AE step. Similarly, [22] trains two networks that
focus on different parts of the object by using a two-phase
learning strategy. First, a fully convolutional network (FCN)
[31] is trained to locate the most discriminative regions of
the object in an image. These most discriminative regions
are then used to hide parts of feature maps of the second
FCN, which forces it to focus on the rest important regions
of the object. However, these methods require combination
of attention maps from multiple classification networks. At-
tention maps of a single network still only focus on the most
discriminative region. More recently, [50] revises a standard
classification network by adding multiple dilated convo-
lutional blocks of different dilation rates. Varying dilation
rates can effectively transfer the surrounding discrimina-
tive information to non-discriminative object regions, which
helps to achieve dense object localization using only one
classification network. Fundamentally different from these
approaches, the proposed method GAIN can provide super-
vision directly on network’s attention in an end-to-end way.
According to different levels of available supervision, we
design corresponding loss functions to guide the network to
focus on complete regions of interest. Therefore, using our
methods, the attention maps of a single network are already
more complete and improved without needs to change the
network structure.

Attention Mechanism for Biased Data. Analyzing net-
work attention can also help to identify bias in datasets. [46]
[39] propose a way to find out the dataset bias by analyzing
the location of attention maps of a trained model, which
helps them to remove these bias by adding new samples
to the dataset. However, in practical applications, it is time-
consuming to build a new dataset and sometimes it is even
hard to obtain samples that can remove all bias. How to
guarantee the generalization ability of the learned network
is still challenging. Our model can provide supervision
directly on network’s attention and guiding the network to
focus on the areas critical to the task of interest. Therefore,
our trained model is more robust to the dataset bias.

3 PROPOSED METHOD — GAIN

Since attention maps reflect the areas on input image which
support the network’s prediction, we propose the guided

attention inference networks (GAIN), which aims at super-
vising attention maps when we train the network for the
task of interest. In this way, the network’s prediction is
based on the areas which we expect the network to focus on.
We achieve this by making the network’s attention trainable
in an end-to-end fashion, which hasn’t been considered by
any other existing works [22], [39], [43], [47], [52], [59].
In this section, we describe the design of GAIN and its
extensions tailored towards tasks of interest.

3.1

As mentioned in Section 1, attention maps of a trained
classification network can be used as priors for weakly-
supervised semantic segmentation methods. However,
purely supervised by the classification loss, attention maps
usually only cover small and most discriminative regions of
object of interest. These attention maps can serve as reliable
priors for segmentation but a more complete attention map
can certainly help improving the overall performance.

To solve this issue, our GAIN builds constraints directly
on the attention map in a regularized bootstrapping fashion.
As shown in Fig. 2, GAIN has two streams of networks,
classification stream S, and attention mining S,,,, which
share parameters with each other. The constrain from stream
S¢; aims to find out regions that help to recognize classes.
The stream S;,, is making sure that all regions which
contribute to the classification decision will be included in
the network’s attention. In this way, attention maps become
more complete, accurate and tailored for the segmentation
task. The key here is that we make the attention map on-line
generated and trainable by the two loss functions jointly.

Based on the fundamental framework of Grad-CAM
[39], we streamlined the generation of attention map. An
attention map corresponding to the input sample can be
obtained within each inference so it becomes trainable in
training stage. In stream Sy, for a given image I, let f;  be
the activation of unit k in the /-th layer. For each class ¢ from
the ground-truth label, we compute the gradient of score s¢
corresponding to class ¢, with respect to activation maps of
f1.x- These gradients flowing back will pass through a global
average pooling layer [28] to obtain the neuron importance
weights wy ;. as defined in Eq. 1.

Self-guidance on the network attention

e 0s°
Wy = GAP (afl,k> ,

where GAP (-) means global average pooling operation.
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framework to provide direct supervision on attention maps optimizing towards the task of semantic segmentation.

Here, we do not update parameters of the network
after obtaining the wy, by back-propagation. Since wy,
represents the importance of activation map f;  supporting
the prediction of class ¢, we then use weights matrix w® as
the kernel and apply 2D convolution over activation maps
matrix f; in order to integrate all activation maps, followed
by a ReLU operation to get the attention map A¢ with Eq.
2. The attention map is now on-line trainable and constrains
on A° will influence the network’s learning:

A¢ = ReLU (conv (f,w%)), )
where [ is the representation from the last convolutional
layer whose features have a good balance between detailed
spatial information and high-level semantics [41].

We then use the trainable attention map A° to generate
a soft mask to be applied on the original input image,
obtaining I*¢ using Eq. 3. I*“ represents the regions beyond
the network’s current attention for class c.

I“=I1—(TA%oel), ©)]
where © denotes element-wise multiplication. T (A€) is a
masking function based on a thresholding operation. In
order to make it derivable, we use Sigmoid function as an
approximation defined in Eq. 4.

T (A% = L

~ 1+exp(—w(A4° —0a)) @)

where o is the threshold matrix whose elements all equal
to 0. w is the scale parameter ensuring T (A°); ; approx-
imately equals to 1 when A€ ; is larger than o, or to 0
otherwise.

I*¢is then used as input of stream .S, to obtain the class
prediction score. Since our goal is to guide the network to
focus on all parts of the class of interest, we are enforcing
I1*¢ to contain as little feature belonging to the target class
as possible, i.e. regions beyond the high-responding area on
attention map area should include ideally not a single pixel
that can trigger the network to recognize the object of class
c. From the loss function perspective it is trying to minimize
the prediction score of I*¢ for class c. To achieve this, we
design the loss function called Attention Mining Loss as in
Eq. 5.

1 *C
Lo = ﬁ ZSC(I )7 )
where s¢(I*¢) denotes the prediction score of I*° for class c.
n is the number of ground-truth class labels for this image
I

As defined in Eq. 6, our final self-guidance loss L s is
the summation of the classification loss L. and L.

Lself = Lo + aLgm, 6)

where L. is for multi-label and multi-class classification
and we use a multi-label soft margin loss here. Alternative
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loss functions can be use for specific tasks. « is the weighting
parameter. We use o = 1 in all of our experiments.

With the guidance of L s, the network learn to extend
the focus area on input image contributing to the recognition
of target class as much as possible, such that attention
maps are tailored towards the task of interest, i.e. semantic
segmentation. The joint optimization also prevents to erase
all pixels. We verify the efficacy of GAIN with self guidance
in Sec. 4.

3.2 GAINZ_,: integrating extra pixel-level supervision

In addition to letting networks explore the guidance of the
attention map by itself, we can also tell networks which
part in the image they should focus on by using a small
amount of extra supervision to control the attention map
learning process. Based on this idea of imposing additional
supervision on attention maps, we introduce the extension
of GAIN: GAIN? ,, which can seamlessly integrate extra
supervision in our weakly supervised learning framework.

Following Sec. 3.1, we still use the weakly supervised
semantic segmentation task as an example application to
explain the GAIN? ,. The way to generate trainable atten-

ext®
tion maps in GAIN? , during training stage is the same as

ext
that in the self-guided GAIN. In addition to L. and Ly,
we design Attention Loss L, based on the given external

supervision. We define L, as:

1
L,=—> (A°—H, @)

n
c

where H¢ denotes the extra supervision, e.g. pixel-level
segmentation masks in our example case.

Since generating pixel-level segmentation maps is ex-
tremely time consuming, we are more interested in finding
out the benefits of using only a very small amount of
data with external supervision, which fits perfectly with
the GAIN? , framework shown in Fig. 3, where we add
an external stream S?, and these three streams share all
parameters. Input images of stream S? include both image-
level labels and pixel-level segmentation masks. One can
use only a very small amount of pixel-level labels through
stream S? to already gain performance improvement with
GAIN?_, (in our experiments with GAINY . only 1~10% of
the total labels used in training are pixel-level labels). The
input of the stream S includes all images in the training
set with only image-level labels.

The final loss function, Le,¢—,, of GAINE , is defined as
follows:

Leact—p = L¢ + aLgm + wva (8)

where L., and L,,, are defined in Sec. 3.1, and w is the
weighting parameter depending on how much emphasis we
want to place on the extra supervision (we use w = 10 in
our experiments).

GAIN? , can also be easily modified to fit other tasks.
Once we get activation maps f; corresponding to the
network’s final output, we can use L,, to guide the network
to focus on areas critical to the task of interest. In Sec. 5,
we show an example of such modification to guide the
network to learn features robust to dataset bias and improve
its generalizability.

3.3 GAIN?_,: integrating bounding box supervision

Compared with pixel-level segmentation masks, object
bounding box annotations are far less expensive, taking only
around 1/15 time [29]. Cheaper and easier to define, box
annotations could also be integrated as extra supervision to
guide the learning process of the network attention maps.
They convey useful information to tell network which part
of the box content is background and which is foreground
object that they should focus on.

Following Sec. 3.2, we treat the bounding box as a kind
of extra supervision. Considering the difference between the
bounding box and the pixel-level segmentation mask, we
need to modify Stream S? and replace Attention Loss L,
with a new loss function Ly, to provide guidance directly
on attention maps. The input of this new stream S° are
images with their corresponding bounding box annotations
and foreground priors. Ly, encourages the network to pay
less attention on the regions out of bounding boxes for class
¢ when recognizing this class, meanwhile, pay more atten-
tion on the foreground objects within these bounding boxes.
Saliency map can be used here to represent foreground
priors. To achieve this, we define Ly, in Eq. 9.

Linoe = -3 [0~ B 0 A° — 7P +[B° 0 (4°— S)1),
’ ©

where B¢ is a matrix generated based on the bounding
box annotation for class c. Elements of B¢ equal to 1 if they
are within any bounding box belongs to class ¢ and equal
to 0 otherwise. B¢ is then resized to be of the same size as
that of the attention map A.. O is a matrix with all elements
equal to 1 and Z is a matrix with all elements equal to 0.
S is the resized saliency map for current image. O, Z and
S all have the same size as that of the attention map A¢. ®
denotes element-wise multiplication.

Again, we are interested in finding out the benefits of
using only a very small amount of data with bounding
box supervision, which fits perfectly with the GAIN?,,
framework. GAINY_, is obtained by replacing stream SP
with stream S°. The three streams still share all parameters.
A very small amount of bounding box annotations through
stream S? can already help to improve the performance with
GAINY_, (in our experiments with GAIN?_,, only 1~10% of
the total labels used in training are bounding box labels).

The final loss function Leg;—ppos Of GAINf;m is defined
as follows:

Lert—bboz = Lcl + aLam + WLbboa?a (10)

where L. and L,,, are defined in Sec. 3.1, and w is the
weighting parameter depending on how much emphasis we
want to place on the bounding box supervision (we use w =
10 in our experiments which is the same as Eq. 8).

4 SEMANTIC SEGMENTATION EXPERIMENTS

To verify the efficacy of GAIN, following Sec. 3.1, 3.2 and 3.3,
we use the weakly supervised semantic segmentation task
as the example application. The goal of this task is to classify
each pixel into different categories. In the weakly supervised
setting, most of recent methods [22], [23], [47] mainly rely
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on localization cues generated by models trained with only
image-level labels and consider other constraints such as ob-
ject boundaries to train a segmentation network. Therefore,
the quality of localization cues is the key of these methods’
performance.

Compared with attention maps generated by state-of-
the-art methods [31], [39], [59] which only locate the most
discriminative areas, GAIN guides the network to focus on
entire areas representing the class of interest, which can
improve the performance of weakly supervised segmen-
tation. To verify this, we first adopt our attention maps
to SEC [23], which is one of the state-of-the-art weakly
supervised semantic segmentation methods. SEC defines
three key constraints: seed, expand and constrain, where seed
is a module to provide localization cues C' to the main
segmentation network IV such that the segmentation result
of N is supervised to match C. Following SEC [23], our
localization cue ¢ € {0,1} for each class ¢ at location z is
obtained by applying a thresholding operation to attention
maps generated by GAIN: for each per-class attention map,
all pixels with a score larger than 20% of the maximum score
are selected. We apply [30] several times to get background
cues and then train the SEC model to generate segmenta-
tion results using the same inference procedure, as well as
parameters of CRF [24]. According to cues generated by our
different GAIN models with different kinds of supervision,
we denote the segmentation results as GAIN-SEC, GAIN? -
SEC and GAIN?_,-SEC accordingly.

ext

In addition to using the existing weakly-supervised se-
mantic segmentation framework for evaluation, we also use
a framework similar to [33], [47], [50] to further investigate
the benefit of our improved attention maps. As shown in
Fig. 4, the framework is built upon Deeplab backbone seg-
mentation network [8] and supervised by two loss functions
jointly. One the one hand, due to the improved quality of
attention maps of GAIN, they could act as pseudo ground
truth to provide guidance on the training of this weakly-
supervised semantic segmentation framework. In particular,
we obtain localization cue ¢S € {0,1} for each class ¢ at
location x based on attention maps of GAIN following the
same way as SEC [23]. Then we define the segmentation loss

Localization
Cue

!

Segmentation
Loss

e

Input Image Attention map

Deeplab
(Resnetl0) |2

”Cat"

Image level label

Fig. 4. Structure of the weakly-supervised semantic segmentation
framework using fully convolutional network (Deeplab [8] here) as the
backbone network. Image-level labels and localization cues obtained
based on attention maps of GAIN provide guidance on the training of
this segmentation network, which is achieved by optimizing two loss
functions jointly. No ground-truth pixel-level annotations are used during
the training process of this semantic segmentation network.

Leq as follows:

Loeg = Y J(s5(1),5), (11)

where s () is the prediction of the segmentation network
of class c at localization = for a input image I. ¢, is the
corresponding localization cue obtained by GAIN. J(-) is
the pixel-wise cross entropy loss.

On the other hand, we add a Global Average Pooling
layer (GAP) at the last layer of the segmentation network
to get the class prediction score for a input image. Based on
the understanding that a segmentation network should also
have the ability to classify the image well, we use a multi-
label classification loss L,; to constrain the learning of the
network. The final loss function L,,_; is defined as follows:

Lw—s = Lcl + Lseg~ (12)

The trained network then generates segmentation results for
evaluation.

41

Datasets and evaluation metrics. We evaluate our results
on PASCAL VOC 2012 image segmentation benchmark [13],
which has 21 semantic classes, including the background.
The whole dataset is split into three sets: training, valida-
tion, and testing (denoted as train, val, and test) with 1464,
1449, and 1456 images, respectively. Following the common
setting [7], [23], we also use the augmented training set pro-
vided by [15]. The resulting training set has 10582 weakly
annotated images which we use to train our models. We
compare our approach with other methods on both the
val. and test sets. For the evaluation metric, we use the
standard one for the PASCAL VOC 2012 segmentation —
mean intersection-over-union (mloU).

Implementation details. We use VGG [42] pretrained
from the ImageNet [10] as the basic network for GAIN
to generate attention maps. We use PyTorch [1] to imple-
ment our models. We set the batch size to 1 and learn-
ing rate to 107°. We use the stochastic gradient descent
(SGD) to train the networks and terminate after 35 epochs.
For the concern about max-min optimization problem, we
have not observed any issue with convergence in our
experiments with various datasets and projects. Our to-
tal loss decreases around 90% and 98% after 1 and 15
epochs respectively. For the weakly-supervised segmenta-
tion framework, following the setting of SEC [23], we use
the DeepLab-CRFLargeFOV [7], which is a slightly modi-
fied version of the VGG network [42]. Implemented using
Caffe [20], DeepLab-CRFLargeFOV [7] defines the input size
as 321x321 and produces segmentation masks with size of
41x41. Our training procedure is the same as [23] at this
stage. We run the SGD for 8000 iterations with the batch
size of 15. The initial learning rate is 1073 and it decreases
by a factor of 10 for every 2000 iterations. For the details
about our own weakly-supervised semantic segmentation
network described in Section 4, we still use the input size of
321 x321. The parameters of back-bone network DeepLab [8]
are initialized by ResNet-101 [16] pre-trained on ImageNet
[10]. We set the starting learning rate as 0.0005, multiplying

Dataset and experimental settings
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Fig. 5. Qualitative results of attention maps generated by Grad-CAM [39], the proposed GAIN, GAIN® , and GAIN? ,. Here, GAIN?_, uses 200
randomly selected (2%) bounding box annotations and GAINE_, uses 200 randomly selected (2%) pixel-level labels as extra supervision to guide
the attention learning process. The proposed methods can obtain much better attention maps that cover more complete regions of interest by

guided attention learning with different levels of guidance.

it by 0.1 every 2000 iterations. We use a mini-batch of 10,
momentum of 0.3 and weight decay of 0.0005 to train the
network with 20000 iterations.

4.2 Comparison with state-of-the-art

We compare our methods with other state-of-the-art weakly
supervised semantic segmentation methods with image-
level labels. Following [47], we separate them into two
categories. For methods that purely use image-level labels,
we compare our GAIN-based SEC (denoted as GAIN-SEC
in the Table 1) and GAIN with SEC [23] AE-PSL [47],
TPL [22], STC [48], MEFF [14], PRM [60] etc. For another
group of methods, implicitly using pixel-level supervision
means that though these methods train the segmentation
networks only with image-level labels, they use some extra
technologies that are trained using pixel-level supervision.
Our GAIN?_,-based SEC (denoted as GAIN?_,-SEC in the

ext ext
table) and GAIN? , lie in this setting because it uses a very
small amount of pixel-level labels to further improve the
network’s attention maps and doesn’t rely on any pixel-
level labels when training the SEC segmentation network.
Other methods in this setting like AF-MCG [59], TransferNet
[17] and MIL-seg [35] are included for comparison. For

methods that use both image-level labels and some amount

of bounding box annotations, BoxSupg [9], WSSLE, [33] and
WSSLg [33] are included for comparison. The supervision
of our method is a kind of implicitly using bounding box
supervision. Different from directly using a large amount
(10K) bounding box annotations to train the semantic seg-
mentation network, our GAINY_,-SEC and GAINY_, only
use a small amount of bounding box labels to train the
localization cues. None of these annotations are used to train
the semantic segmentation network in the next step. Table
1 shows results on PASCAL VOC 2012 segmentation val. set
and segmentation test. set.

Among the methods purely using image-level labels,
our GAIN-based SEC achieves the performance with 55.3%
and 56.8% in mloU on these two sets, outperforming the
SEC [23] baseline by 4.6% and 5.1%. Furthermore, GAIN
outperforms AE-PSL [47] by 0.3% and 1.1%, and outper-
forms TPL [22] by 2.2% and 3.0%. These two methods are
also proposed to improve attention maps to cover more
areas of the class of interest. Compared with them, our
GAIN makes the attention map trainable without the need
to do iterative erasing or combining attention maps from
different networks, as proposed in [22], [47]. In addition to
using the existing weakly-supervised semantic segmenta-
tion framework SEC to evaluate the quality of our improved
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Methods val. test
(mIoU) (mloU)

Training Set

Supervision: Purely Image-level Labels

CCNN [34] 10KW 35.3 35.6
MIL-sppxl [35] 700K W 35.8 36.6
EM-Adapt [33] 10K W 38.2 39.6
DCSM [40] 10KW 44.1 45.1
BFBP [38] 10K W 46.6  48.0
STC [48] 50K W 49.8 51.2
AF-SS [36] 10KW 52.6 52.7
CBTS-cues [37] 10K W 52.8 53.7
TPL [22] 10K W 53.1 53.8
WebS-i2 [21] 10KW 534 553
PRM [60] 10K W 53.4 -
MEFF [14] 10K W - 55.6
AE-PSL [47] 10KW 55.0 55.7
SEC [23] (baseline) 10KW 50.7 51.7
GAIN-SEC (ours) 10K W 55.3 56.8
GAIN (ours) 10K W 59.4 59.6
Supervision: Bounding box annotations

(# Implicitly use bounding box annotations)

BoxSupr [9] 10K W + 10K B 52.3 -
WSSLR [33] 10K W + 10K B 52.5 54.2
WSSLg [33] 10K W + 10K B 60.6 62.2
GAIN?,,-SEC# (ours) 10K W + 200 B 56.8  57.6
GAIN?,,-SEC# (ours) 10KW + 14K B 58.0 59.2
GAIN?,.# (ours) 10K W + 200 B 611  61.6
GAIN?, # (ours) 10K W + 1.4K B 62.6 628

Supervision: Image-level Labels
(@ Implicitly use bounding box and pixel-level annotations)

GAIN’?-SEC@ 10KW +100B+100P 57.8 593
GAINg;ﬁ-SEC@ 10KW +732B+732P 59.0 60.2
GAIN'” @ 10KW +100B+100P 617 628
GAIN’”,@ 10KW +732B+732P 632  63.6
Supervision: Image-level Labels

(* Implicitly use pixel-level annotations)

MIL-seg* [35] 700K W + 14K P 40.6 42.0
TransferNet* [17] 27KW + 17K P 51.2 52.1
AF-MCG* [36] 10KW + 14K P 54.3 55.5
GAIN?,,-SEC* (ours) 10K W + 200 P 583  59.6
GAIN?_,-SEC* (ours) 10K W + 14K P 60.5  62.1
GAIN? ,* (ours) 10K W + 200 P 622 619
GAIN”_,* (ours) 10K W + 14K P 641 644

TABLE 1

Comparison of weakly supervised semantic segmentation methods on
PASCAL VOC 2012 segmentation val. set and segmentation test set.
“W” denotes image-level labels, “B” denotes bounding box annotations
and “P” denotes pixel-level labels. Implicitly use pixel-level supervision
is a protocol we followed as defined in [47], that pixel-level labels are
only used in training priors, and only weak labels are used in the
training of segmentation framework, e.g. SEC [23] in our case.
Implicitly use bounding box supervision is a similar protocol.

attention maps, we also show the performance of our pro-
posed framework using attention maps as input cues. GAIN
achieves 59.4% and 59.6% in mlIoU, which further validates
the benefit of our improved attention maps.

Our framework also supports to plug in different lev-
els of extra supervision to provide guidance on attention
learning of a network. When using bounding box as extra
supervision, our GAIN?_, based SEC further improves per-
formance upon SEC as well as GAIN based SEC because
of better attention maps. Based on attention maps using

200 randomly selected bounding box annotations as well as

Ground Truth Image SEC (baseline)  GAIN+SEC

GAIND,+SEC  GAIN?  +SEC

Fig. 6. Qualitative results on PASCAL VOC 2012 segmentation val. set.
They are generated by SEC (our baseline framework), GAIN-based
SEC, GAIN?_,-based SEC and GAIN? .-based SEC. Here, GAIN?

ext ext ext”

based SEC is based on attention maps generated by GAIN?__ that uses

ext

200 randomly selected (2%) bounding box annotations during training.
GAIN?_,-based SEC is based on attention maps of GAIN? , that uses

ext

200 randomly selected pixel-level labels as extra supervision to guide
the attention learning process. No extra supervision is used during the
training of semantic segmentation network, SEC here.

10K image level weak labels, GAIN?_,-SEC performs 56.8%
and 57.6% on the val. and test sets of VOC 2012. When the
number of available bounding box annotations increases to
1.4K, GAIN?,,-SEC can achieve 58.0% and 59.2% in mloU
on the two sets. When using our semantic segmentation
framework with improved attention maps, GAIN?,, per-
forms 61.1% and 61.6% with 200 bounding box annotations
on VOC val. and test sets, and the performance improves to
62.6% and 62.8% when the number of bounding box annota-
tions increases to 1.4K. All these bounding box annotations
are only used during the attention learning process, none
of them are used to train the semantic segmentation model
in the next step. This setting helps to validate that the extra
supervision can help to further improve the attention maps
and guide the attention learning of the network. Besides,
for the segmentation task, compared with other methods
that use 10K image-level labels and 10K bounding box
annotations, our methods achieve better performance, but
rely on less bounding box annotations (only 200 or 1.4K
bounding box annotations).

By implicitly using pixel-level supervision, our
GAIN? ,-based SEC achieves 58.3% and 59.6% in mloU
when we use 200 randomly selected images with pixel-
level labels (2% data of the whole dataset) as the extra
supervision. It already performs 4% and 4.1% better than
AF-MCG [59], which relies on the MCG generator [3] trained
in a fully-supervised way on the PASCAL VOC. After
the pixel-level supervision increases to 1464 images for
our GAIN? ,-based SEC, the performance jumps to 60.5%
and 62.1%. When we use the improved attention maps as
localization cues to train our own semantic segmentation
model, GAIN? , performs 62.2% and 61.9% on the VOC
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Methods [b.g. plane bike bird boat bott. bus car cat chair cow table dog hors. moto. pers. plant sheep sofa train tv [mloU
Supervision: Purely Image-level Labels
CCNN [34] 685 255 18.0 25.4 202 36.3 46.8 47.1 48.0 158 379 21.0 445 345 462 407 304 363 222 388 36.9| 353
MIL-sppxl [35] |77.2 37.3 18.4 254 282 319 41.6 48.1 50.7 12.7 457 14.6 509 441 392 379 283 440 19.6 37.6 35.0| 36.6
DCSM [40] 76.7 451 24.6 40.8 23.0 34.8 61.0 51.9 52.4 155 459 32.7 549 486 574 518 382 554 322 42.6 39.6| 44.1
BFBP [38] 792 60.1 204 50.7 412 46.3 62.6 49.2 62.3 13.3 49.7 38.1 584 490 57.0 482 278 551 29.6 54.6 26.6| 46.6
STC [48] 845 68.0 195 60.5 425 44.8 68.4 64.0 64.8 145 52.0 22.8 580 553 57.8 60.5 40.6 56.7 23.0 57.1 31.2| 49.8
AF-SS [36] - 618 268 47.7 279 50.2 67.6 59.6 77.5 24.8 519 305 67.3 52.8 629 557 379 614 32.0 509 54.1| 51.6
CBTS-cues [37] [85.8 652 29.4 63.8 31.2 37.2 69.6 64.3 76.2 21.4 56.3 29.8 682 60.6 662 558 30.8 66.1 349 48.8 47.1| 52.8
AE-PSL [47] 834 711 30.5 729 41.6 559 63.1 60.2 740 18.0 66.5 324 717 56.3 648 524 374 69.1 314 589 43.9| 55.0
TPL [22] 828 622 23.1 658 21.1 43.1 71.1 66.2 76.1 21.3 59.6 35.1 702 588 623 66.1 358 699 334 459 45.6| 53.1
SEC [23] (b.l) 824 629 264 61.6 27.6 38.1 66.6 62.7 752 22.1 53.5 283 65.8 57.8 62.5 525 325 62.6 321 454 45.3| 50.7
GAIN-SEC 869 69.3 29.7 64.0 49.1 514 65.8 67.8 73.4 22.0 574 20.0 68.7 604 639 681 342 63.1 30.0 63.6 52.4| 55.3
GAIN 87.6 76.7 33.9 745 585 61.7 759 729 78.6 188 70.8 14.1 68.7 69.6 69.5 713 415 66.5 164 70.2 48.7| 59.4
Supervision: Bounding box annotations
(# Implicitly use bounding box annotations)
GAINY_,-SEC-1# |86.8 71.5 30.1 64.5 43.0 51.9 72.6 69.7 752 23.7 61.3 344 694 615 654 682 36.1 655 325 63.7 46.2| 56.8
GAINY ,-SEC-2# |87.8 71.8 30.3 66.4 51.3 529 74.1 72.1 764 23.6 613 31.8 71.8 63.1 652 69.7 343 628 322 68.0 51.1| 58.0
GAIN? ,-1# |885 774 353 727 57.0 624 745 719 779 194 725 172 739 718 719 729 446 722 228 69.3 56.5| 61.1
GAIN® ,-2# [89.1 78.1 344 71.0 64.3 72.3 83.2 753 834 144 73.1 162 763 708 694 725 438 760 232 709 57.2| 62.6
Supervision: Image-level Labels
(@ Implicitly use bounding box and pixel-level annotations)
GAIN®P.SEC-1@ [86.8 71.5 30.1 64.5 43.0 51.9 72.6 69.7 752 23.7 61.3 344 69.4 615 654 682 36.1 655 325 637 462 57.8
GAIN’”.SEC-2@ (88.1 725 29.1 66.6 52.4 542 76.1 71.6 763 23.7 63.3 39.0 72.1 643 656 703 347 647 344 682 522| 59.0
GAINZ;Ept-l@ 88.2 76.8 35.7 732 585 63.1 729 732 782 205 71.8 194 743 725 704 732 451 734 232 689 56.8| 61.7
GAINZ’ft-Z@ 89.3 778 362 73.1 65.6 71.5 82.7 76.4 85.6 163 754 174 748 723 71.6 702 453 781 24.0 72.3 57.9| 63.2
Supervision: Image-level Labels
(* Implicitly use pixel-level annotations)
MIL-seg* [35] |79.6 50.2 21.6 40.9 349 40.5 459 515 60.6 12.6 51.2 11.6 56.8 529 448 427 312 554 21.5 388 36.9| 42.0
TransferNet* [17] [85.3 68.5 26.4 69.8 36.7 49.1 68.4 55.8 77.3 6.2 752 143 69.8 715 61.1 319 255 746 33.8 49.6 43.7| 52.1
AF-MCG* [36] - 553 27.0 62.0 30.6 56.7 72.8 64.9 79.5 26.7 59.3 314 73.0 57.7 639 674 361 680 34.6 517 38.1| 543
GAIN? ,-SEC-1* (87.8 72.8 30.4 669 443 49.7 715 69.5 77.1 227 63.3 453 713 649 657 69.8 345 657 33.0 659 51.3| 58.3
GAINE ,-SEC-2* (889 73.7 322 69.1 542 52.7 755 74.0 79.8 243 647 46.1 735 648 665 723 353 675 335 683 545| 60.5
GAIN® ,-1*  |88.9 786 36.5 76.0 60.2 67.0 76.8 743 81.1 25.0 725 162 753 72.7 714 744 40.0 727 205 70.1 55.9| 62.2
GAIN? .-2*  |89.7 826 36.0 759 639 659 809 749 83.0 235 76.1 179 775 754 72.6 760 40.1 757 259 734 589| 64.1
TABLE 2
Comparison of weakly supervised semantic segmentation methods on Pascal VOC 2012 segmentation val. set. GAIN?_,-SEC-1 and
GAIN?_,-SEC-2 represent GAINY , based SEC that implicitly using 200 and 1464 bounding box annotations respectively. GAINE_,-SEC-1 and

GAIN?_,-SEC-2 represent GAIN?_, based SEC implicitly using 200 and 1464 pixel-level labels respectively. GAIN®'F,-SEC-1 and GAIN®?,-SEC-2

ext ext ext ext

represent implicitly using 200 and 1464 combinations of bounding box and pixel-level annotations with a half-and-half ratio respectively. “-1” and
“.2” after GAIN®_,. GAIN?_ ., GAIN®?, also represent for amount of annotation, which is the same as corresponding SEC-based version.

ext? ext? ext

Method | Training Set val. (mIoU) Method ] Training Set val. (mIoU)
GAIN?_,-SEC*[ 10K weak + 200 pixel 56.8 GAIN? ,-SEC*| 10K weak + 200 pixel 58.3
10K weak + 400 pixel 57.1 10K weak + 400 pixel 59.4
10K weak + 900 pixel 57.3 10K weak + 900 pixel 60.2
10K weak + 1464 pixel 58.0 10K weak + 1464 pixel 60.5
GAIN? , | 10K weak + 200 pixel 61.1 GAINE , [ 10K weak + 200 pixel 62.2
10K weak + 400 pixel 61.4 10K weak + 400 pixel 62.6
10K weak + 900 pixel 62.2 10K weak + 900 pixel 63.3
10K weak + 1464 pixel 62.6 10K weak + 1464 pixel 64.1

TABLE 3 TABLE 4

Results on PASCAL VOC 2012 segmentation val. set with the proposed
GAIN?_,-based SEC and GAIN?,, implicitly using different amount of
bounding box supervision for the attention map learning process.

2012 val. and test sets using 200 randomly selected pixel-
level labels during the guided attention learning. The perfor-
mance improves to 64.1% and 64.4% more extra annotations.
Similar to the previous experiment that uses bounding box
annotations, none of the pixel-level annotations are used to
train the semantic segmentation model in order to validate
the improvements are from better attention maps.

We show qualitative results of attention maps generated
by GAIN-base methods in Fig. 5, where GAIN covers more
areas belonging to the class of interest compared with the

Results on PASCAL VOC 2012 segmentation val. set with our
GAIN?_,-based SEC and GAINE_, implicitly using different amount of

ext

pixel-level supervision for the attention map learning process.

Grad-CAM [39]. With only 2% of the pixel-level labels, the
GAIN? , covers more complete and accurate areas of the
class of interest as well as less background areas around the
class of interest (for example, the sea around the ships and
the road under the car in the second row of Fig. 5).

Fig. 6 shows some qualitative results of semantic seg-
mentation, indicating that GAIN-based methods help to
discover more complete and accurate areas of classes of
interest.

More discussion of the GAIN?

ozt We are interested in
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Methods [b.g. plane bike bird boat bott. bus car cat chair cow table dog hors. moto. pers. plant sheep sofa train tv [mloU

Supervision: Purely Image-level Labels
CCNN [34] 70.1 242 199 263 18.6 38.1 51.7 42.9 48.2 15.6 37.2 183 43.0 382 522 40.0 338 36.0 21.6 33.4 38.3| 35.6
MIL-sppxl [35] |74.7 38.8 19.8 27.5 21.7 32.8 40.0 50.1 47.1 7.2 448 158 494 473 366 364 243 445 21.0 315 41.3| 358
EM-Adapt [33] |76.3 37.1 21.9 41.6 26.1 385 50.8 44.9 489 16.7 40.8 29.4 47.1 458 548 282 30.0 44.0 29.2 343 46.0| 39.6
DCSM [40] 78.1 438 263 49.8 195 40.3 61.6 53.9 52.7 13.7 47.3 348 50.3 489 69.0 49.7 384 571 34.0 38.0 40.0| 45.1

BFBP [38] 80.3 57.5 24.1 66.9 31.7 43.0 67.5 48.6 56.7 12.6 509 42.6 594 529 650 44.8 413 51.1 33.7 444 33.2| 48.0
STC [48] 852 62.7 21.1 58.0 31.4 55.0 68.8 63.9 63.7 142 57.6 283 63.0 59.8 67.6 61.7 429 61.0 232 524 33.1| 51.2
AF-SS [36] 58.0 28.0 474 25.0 57.5 67.8 55.8 77.1 209 54.8 355 682 573 731 58.6 402 582 39.5 44.1 55.1| 52.7

CBTS-cues [37] |85.7 58.8 30.5 67.6 24.7 44.7 748 61.8 73.7 229 574 275 713 648 724 573 370 604 428 422 50.6| 53.7
TPL [22] 834 622 264 71.8 182 49.5 66.5 63.8 73.4 19.0 56.6 35.7 69.3 613 717 692 39.1 663 44.8 359 455| 53.8
AE-PSL [47] 85.3 669 322 77.8 39.1 59.2 63.5 61.4 73.1 17.3 609 364 702 56.8 759 528 387 685 34.6 51.2 48.5| 55.7
SEC [23] (b.l) [835 56.4 285 64.1 23.6 46.5 70.6 58.5 71.3 232 54.0 28.0 68.1 62.1 70.0 55.0 384 580 399 384 483| 51.7
GAIN-SEC 88.0 67.0 30.0 663 414 60.4 66.8 65.1 71.7 255 58.7 224 723 65.8 68.0 720 399 641 334 622 52.7| 56.8
GAIN 882 793 33.7 679 505 62.5 76.0 722 77.6 203 65.8 195 726 730 752 714 424 728 214 61.5 48.6] 59.6
Supervision: Image-level Labels
(# Implicitly use bounding box annotations)
GAIN?, ,-SEC-1# |87.5 66.3 31.5 63.6 35.7 55.8 73.7 64.8 72.7 275 615 36.0 72.1 66.0 715 709 435 646 40.0 58.6 47.3| 57.6
GAINY_,-SEC-2# |88.3 67.5 31.8 67.0 44.1 58.6 74.0 67.0 74.6 27.0 622 345 729 67.7 717 708 429 67.1 386 63.5 51.8| 59.2
GAINY ,-1# |89.0 804 343 69.5 48.8 604 75.2 73.6 765 20.2 750 27.0 774 738 755 744 476 740 283 63.0 495 61.6
GAINY ,-2# 894 822 332 745 51.2 70.0 81.7 76.6 814 16.0 729 20.7 753 753 766 73.1 462 751 259 70.5 51.7| 62.8
Supervision: Image-level Labels
(@ Implicitly use bounding box and pixel-level annotations)

GAIN?? -SEC-1@ [88.1 67.4 314 66.1 365 57.8 72.6 662 75.7 269 632 43.1 734 668 70.6 711 447 671 39.7 622 540| 59.3

ext

GAIN>? _SEC-2@ (885 715 303 67.7 422 583 742 66.3 748 282 648 395 732 700 71.8 713 451 69.0 414 63.6 52.7| 60.2

ext

GAIN®?.1@ 89.5 829 36.2 747 50.6 65.4 759 77.1 79.2 18.1 709 285 77.6 733 756 739 455 762 26.6 658 54.4| 62.8

ext
GAIN’P-2@  |90.0 834 358 727 52.6 653 81.1 76.2 80.0 21.5 70.7 27.1 78.0 76.6 789 744 436 773 260 72.6 51.9| 63.6
Supervision: Image-level Labels
(* Implicitly use pixel-level annotations)
MIL-seg* [35] |78.7 48.0 21.2 31.1 28.4 35.1 51.4 55.5 52.8 7.8 562 199 53.8 50.3 40.0 38.6 27.8 b51.8 24.7 33.3 46.3| 40.6
TransferNet* [17] [85.7 70.1 27.8 73.7 37.3 44.8 71.4 53.8 73.0 6.7 629 124 684 737 659 279 235 723 389 459 39.2| 51.2
AF-MCG* [36] - 579 294 604 29.0 58.1 70.2 62.3 79.6 235 57.1 375 751 60.7 764 678 402 71.0 40.3 44.0 39.6| 55.5
GAIN?_,-SEC-1* |88.4 69.2 31.4 643 37.2 572 72.2 66.4 74.6 267 63.0 451 744 68.1 713 719 460 67.1 412 619 53.0| 59.6
GAIN? ,-SEC-2* [89.7 72.0 33.1 72.3 45.6 59.9 744 67.7 79.1 275 633 469 745 69.6 727 741 457 704 433 67.0 55.6| 62.1
GAIN? .-1* 1892 789 352 73.1 521 641 763 747 785 225 723 198 775 765 751 744 442 739 275 639 50.5| 61.9
GAINE ,-2*  [89.9 845 352 69.6 54.3 62.7 81.8 76.9 80.5 249 735 32.8 775 754 771 754 48.0 765 33.8 729 49.5| 644

ext
TABLE 5
Comparison of weakly supervised semantic segmentation methods on Pascal VOC 2012 segmentation test set. GAIN®_.-SEC-1 and

ext
GAIN?_,-SEC-2 represent GAIN? , based SEC that implicitly using 200 and 1464 bounding box annotations respectively. GAIN?_,-SEC-1 and

ext ext
GAIN?_,-SEC-2 represent GAIN?_, based SEC implicitly using 200 and 1464 pixel-level labels respectively. GAIN”%,-SEC-1 and GAIN’'%,-SEC-2
represent implicitly using 200 and 1464 combinations of bounding box and pixel-level annotations with a half-and-half ratio respectively. “-1” and

“-2” after GAINS, ., GAINZ_, GAINZ’ , also represent for amount of annotation, which is the same as corresponding SEC-based version.

x

finding out the influence of different amount of bounding Methods Iraining Set val._test

. p SEC [23] w/0. CRF 10K weak 44.8 454
box annotations or pixel-level labels on the performance. GAIN-SEC w/o. CRE 10K weak 50.8 518
Following the same setting in Sec. 4.1, we add more ran- GAIN?_,-SEC w/0. CRF 10K weak +1464 bbox 52.1 52.8

domly selected bounding box annotations or pixel-level GAIN? ,-SEC w/o. CRF 10K weak + 1464 pixel 54.8 55.7
labels to further improve attention maps and adopt them TABLE 6

in the SEC [23] as well as our weakly-supervised semantic =~ Semantic segmentation results without CRF on PASCAL VOC 2012
segmentation framework. From the results in Table 3 and segmentation val. and test sets. Numbers shown are mloU.

Table 4, we find that the performance of the semantic
segmentation model improves when more extra annotations
are provided to train the network that generates attention ] ] ) o .
maps. Again, there are no pixel-level labels used to train the ~robust to dataset bias and improve its generalization ability
weakly-supervised semantic segmentation framework. by providing guidance on its attention.
Detailed quantitative results for weakly supervised se-

mantic segmentation experiments including IoU scores for 5.1 Experiment on boat recognition

each class of Pascal VOC 2012 segmentation val., test set are
shown in Table 2 and Table 5. We also evaluate performance
on VOC 2012 seg. val. and seg. test datasets without CRF as
shown in Table 6.

The attention map can be used to identify bias in datasets
[46], we take an example from our observations to explain
it. We find that the classification network (like Grad-CAM
[39]) trained on Pascal VOC dataset always focuses on the
sea and water regions instead of boats when predicting there
5 GUIDED LEARNING WITH BIASED DATA are boats in an image. It means that there exists bias in the

Pascal VOC dataset that ships always appear together with
In this section, we design two experiments to verify that our the water in most cases. Therefore, the model learns to detect
methods have potentials to make the classification network  water rather than the pattern or characteristics to recognize
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VGG:

GAIN
(ours):

GAIN.
-#9
(ours):

GAIN,
-#23
(ours):

GAIN,,;

-#78

(ours): P
Boat Boat
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No Boat No Boat

No Boat

No Boat

Boat Boat No Boat No Boat

Fig. 7. Qualitative results generated by Grad-CAM [39], our GAIN and GAIN? , on the Biased Boat dataset. -# denotes the number of pixel-level
labels of boat used in the training which were randomly chosen from VOC 2012. Attention map corresponding to boat shown only when there are

boats recognized.

the boats themselves, which limits the generalization ability
of the learned model. Though we can build a more balanced
dataset based on the observations, our GAIN and GAIN? ,
provide another way to make the model learn to be robust
to the bias without the need to rebuild the dataset.

Experiments setting details. To verify this, we construct
a test dataset, namely “Biased Boat” dataset, containing two
categories of images: boat images without sea or water; and
sea or water images without boats. We collected 50 images
from Internet for each scenario, resulting in 100 images in
total. For models, we use the VGG [42] pretrained from the
ImageNet [10] as the basic network for Grad-CAM (basic
classification network), our GAIN and GAIN? ,. We use
the stochastic gradient descent (SGD) to train the networks
and terminate after 35 epochs on the training set of Pascal
VOC provided by [15] which includes 10582 images. For our
GAIN?_,, a small amount of data in the training set have
both image-level and pixel-level labels. Following the set-
tings in Section 4.1, we provide 200, 400 and 1464 randomly
chosen pixel-level labels to train our GAINY , separately. In
these randomly chosen images, there are 9, 23 and 78 images
including the boat class, which is used to represent different
GAIN?,, models. The quantitative results are reported in
Table 7 including the accuracy on the whole bias dataset as
well as for each scenario. We also show qualitative results in
Fig. 7. Attention maps are shown when there is boat being
recognized.

Discussion and analysis. From the results it can be seen
that with VGG training on VOC 2012, the network is having
trouble predicting whether a boat is in the image in both of
the two scenarios with 36% overall accuracy. In particular
it generates positive prediction incorrectly on images with
only water 70% of the time, indicating that “water” is con-

GAIN? . (# of PL)

L Vept \T ¥ 2
Test set VGG GAIN 555 73
VOC val. 83% 90% 93% 93% 94%
Boat without water 42% 48% 64% 74% 84%
Water without boat 30% 62% 68% 76% 84%
Overall 36% 55% 66% 75%  84%

TABLE 7

Results comparison of VGG with our GAIN and GAIN? . tested on the
Biased Boat dataset for classification accuracy. PL labels denotes
pixel-level labels of boat used in the training which are randomly
chosen.

sidered as one of the most prominent feature characterizing
“boat” by the network. Using GAIN with only image-level
supervision, the overall accuracy on our Biased Boat dataset
has been improved to 55%, with significant improvement
(32% higher in accuracy, almost half the error rate) on the
scenario of “water without boat”. This could be attributed to
that GAIN is able to teach the learner to capture all relevant
parts of the target object, in this case, both the boat itself
and the water surrounding it in the image. Hence when
there is no boat but water in the image, the network is more
likely to generate a negative prediction. However with the
help of self-guidance, GAIN still is unable to decouple boat
from water due to the biased training data, i.e. the learner
is unable to move its attention away from water. That is the
reason why only 6% improvement on accuracy is observed
in the scenario of “boat without water”. On the other hand
with GAIN?,, training a with small amount of pixel-level
labels, similar levels of improvements are observed in both
of the two scenarios. From Table 7 it can be seen that with
only 9 pixel-level labels for “boat”, GAINY , obtained an
overall accuracy of 66% on our Biased Boat dataset, a 11%
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improvement compared to GAIN with only self-guidance.
In particular significant improvement is observed in the
scenario of boats without water (16% increase on accuracy
compared to GAIN, about 30% reduction of error). With 78
pixel-level labels for “boat” used in training, GAIN?, is able
to obtain 84% of accuracy on our Biased Boat dataset and
performance on both of the two scenarios converged. The
reasons behind these results could be that pixel-level labels
are able to precisely tell the learner what are the relevant
features, components or parts of the target objects hence
the actual boats in the image can be decoupled from the
water. This again supports that by directly providing extra
guidance on attention maps, the negative impact from the
bias in training data can be greatly alleviated.

5.2 Experiment about recognizing the orientation of an
industrial camera

The second experiment is designed for a challenging case
to further verify the model’s generalization ability. This
industrial application aims to recognize the orientation of
the camera. We define two orientation categories for the
industrial camera which is highly symmetric in shape. As
shown in Fig. 8, only the texture such as the location of
the gap and small markers on the surface of the camera are
critical to distinguish their orientations.

Experimental setting details. We collect two datasets
that have different viewpoints and backgrounds. One is
divided into two sets: Training Set and Testing Set 1. There
are 350 images for each orientation category in the Training
Set resulting in 700 images in total for training. Testing Set
1 includes 100 images sharing same distribution with the
training set. For Testing Set 2, there are still 50 images per
orientation, but the background and viewpoint are different
from Testing Set 1 and Training Set. We train VGG-based
classification networks [42] without attention guidance
(like Grad-CAM [39]) and our GAIN? , on the Training
Set. GAIN? , has two streams classification stream S,; and
external stream S°. The input images of stream S? include
both the image-level labels and bbox labels. Here manually
drawn bounding boxes (20 for each classes taking up only
5% of the whole training data) on the critical areas are
used as external supervision. These bounding boxes are then
converted to pixel-level masks to guide the network focus
on the critical areas.

Training Testing

(a) Testing Set 1 Grad-CAM:

I
I

1 =
'ﬁ
|

h

-

GT: Class 2
Class 2 Predict: Class 2

Fraining Set GAIN xr{ours)

GT: Class 2
Predict: Class 2

GAINx (ours)

GT: Class 2
Predict: Class 1

Class 2 GT: Class 2

Predict; Class 2

Fig. 8. Datasets and qualitative results of our toy experiments. The
critical areas are marked with red bounding boxes in each image. GT
means ground truth orientation class label.

12

Discussion and analysis. At testing stage, though the
Grad-CAM can correctly classify (close to 100% accuracy)
the images in the Testing Set 1 where the camera viewpoint
and background are very similar to the Training Set, it only
gets random guess results (close to 50% accuracy) on Testing
Set 2 where images are taken from a different viewpoint
with different background. This is due to the fact that there
is severe bias in Training Set and the learner fails to capture
the right features (critical area as noted in Fig. 8) to separate
the two classes. On the contrary, using GAIN® , with a small
amount of images with bounding-box labels, the network is
able to focus its attention on the area specified by the bound-
ing box labels hence better generalization is observed when
testing with Testing Set 2. Although the camera viewpoint
and scene background are quite different, the learner can
still correctly identify the critical area on the camera in the
image as shown in the last column second row in 8. Hence it
correctly classifies all images in both Testing Set 1 and Testing
Set 2.

5.3 Experiment on coarse orientation detection of an
industrial workpiece

We use this experiment as an example to demonstrate
that GAINY,, can improve the generalization ability of the
trained model. In this experiment, our task is to classify
the input image of a particular industrial workpiece into
one of the four coarse orientations (i.e., 0, 90, 180, and 270
degrees). We are given 6118 training images acquired in an
office environment. However, the trained model needs to
be deployed in the factory and tested on 2059 in-machine
testing images. Fig. 9 displays some example images in
the training and testing datasets, showing clear difference
between these two datasets in terms of scale, viewpoint,
background, etc.

In our implementation, we change the base network
architecture of the GAIN?_, from VGG to the DenseNet [18]
and compare the classification accuracy of the adapted
GAINY,, with that of a DenseNet [18] trained with image-
level labels. The result is summarized in Table 8, where

GT: 0 deg GT: 90 deg GT: 180 deg

GT: 270 deg

Training
(office)

Testing
(machine) §

Fig. 9. Example images of the data used in the coarse orientation
classification of an industrial workpiece.

Method training set classification accuracy (%)
DenseNet [18] 6118 weak 42.30

GAIN? , 6118 weak + 60 bbox 58.96

GAINY , 6118 weak + 120 bbox 73.00

TABLE 8
Performance comparison between the DenseNet [18] and
DenseNet-based GAIN®_, . All the methods are trained with office data
but evaluated on 2059 in-machine testing data.
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GT: 0deg GT: 90 deg GT: 180 deg GT: 270 deg

DenseNet

L k/
predict: 270 deg

predict: 90 deg

Hirgew) v &
predict: 270 deg

predict: O deg

GAINZ,,
120 bbox

predict: 0 deg

predict: 90 deg

Fig. 10. Some example attention maps corresponding to the three meth-
ods in Table 8. These attention maps show that using extra and more
bounding box annotations encourages the network to predict based on
the workpiece instead of the background.

GAIN?,, shows better accuracy and generalization ability
compared with the DenseNet by using about 1~2% of extra
bounding box annotations. Table 8 also shows that using
more bounding box annotations with GAINY,, achieves
better performance, which is consistent with Table 1. Fig. 10
displays some example attention maps corresponding to the
three methods in Table 8, showing that using extra and
more bounding box annotations can guide the attention of
the network to focus more on the workpiece, regardless of
the correctness of prediction. Table 1 and Table 8 together
support that GAINY,, outperforms the comparable methods
regardless of the tasks (classification and segmentation) and
the base network architecture (VGG and DenseNet).

6 CONCLUSIONS

In this paper, we propose a framework that can provide
guidance directly on the attention maps of a deep convo-
lutional neural network. The network is guided to focus
on the regions we expect without changing the network
structure or learning extra parameters. This is achieved by
making the attention maps not an afterthought, but a first-
class citizen during end-to-end training. We validate the
effectiveness of the proposed method considering two main
roles of these maps. First, when serving as localization pri-
ors for tasks like weakly-supervised semantic segmentation,
our attention maps can be guided by self supervision or
available extra supervision during training, which leads to
improvement by covering more complete regions of class
of interest. Extensive experiments on the PASCAL VOC
2012 benchmark demonstrate that the proposed method
confidently outperforms the state of the art without the need
for recursive processing during run time.

Since attention maps are related to the network’s re-
sponse given specific patterns and tasks it was trained for,
providing guidance on attention maps can be understand as
a regularization for the network learning. As one benefit of
this we are able to control the network attention explicitly
and can put manual effort in providing minimal supervision
of attention rather than re-balancing the dataset when the
network suffers from dataset bias. While it may not always
be clear how to manually balance datasets to avoid bias, it
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is usually straightforward to guide attention to the regions
of interest. We design several experiments using data from
standard benchmark as well as real industrial application
to validate this idea. We observe that our explicit guided
attention model can help to improve the generalization
performance.

In the future it may be illuminating to deploy our
method on other tasks related to localization, such as
weakly-supervised object detection, object localization,
sound-to-visual localization, action localization etc. Besides,
constraints based on the principle that learning concepts by
focusing on right regions are implemented in this work,
which are helpful to improve the generalization ability of
the network. Based on our exploration for the relationship
between network decision and its attention, we expect more
future work can attempt to formulate different constraints
on this relationship according to the requirements of specific
tasks. Our insight and framework have already inspire sev-
eral further explorations in other applications. [58] extends
our GAIN framework to Siamese network and adopts our
Attention Mining Loss L, to the person re-identification
module, helping the network generate complete attentive
regions in person images. Experiments show a complete
attention map can help to improve the performance of per-
son re-identification. [45] validates that a complete attention
map can help to improve the model’s robustness to adver-
sarial attacks. [11] demonstrates that penalizing the changes
in classifier’s attention maps helps to retain information of
the base classes, as new classes are added, which can help
to boost the performance of incremental learning.
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