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Multi-View Saliency-Guided Clustering
for Image Cosegmentation
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Abstract— Image cosegmentation aims at extracting the
common objects from multiple images simultaneously. Exist-
ing methods mainly solve cosegmentation via the pre-defined
graph, which lacks flexibility and robustness to handle vari-
ous visual patterns. Besides, similar backgrounds also confuse
the identification of the common foreground. To address these
issues, we propose a novel multi-view saliency-guided clustering
algorithm (MvSGC) for the image cosegmentation task. In our
model, the unsupervised saliency prior is used as partition-level
side information to guide the foreground clustering process.
To achieve robustness to noises and missing observations, similar-
ities on an instance-level and the partition-level are both consid-
ered. Specifically, a unified clustering model with cosine similarity
is proposed to capture the intrinsic structure of data and keep the
partition result consistent with the side information. Moreover,
we leverage multi-view weight learning to integrate multiple
feature representations to further improve the robustness of our
approach. A K -means-like optimization algorithm is developed to
proceed the constrained clustering in a highly efficient way with
theoretical support. The experimental results on three benchmark
datasets (i.e., the iCoseg, MSRC, and Internet image dataset)
and one RGB-D image dataset demonstrate the superiority of
applying our clustering method for image cosegmentation.

Index Terms— Image cosegmentation, constrained clustering,
saliency prior, cosine similarity, multi-view learning.

I. INTRODUCTION

IMAGE cosegmentation has drawn a great deal of research
efforts in the computer vision community, which could be

used in a wide range of applications such as interaction image
editing [1], content-based image retrieval [2], and automatic
image annotation [3]. Different from traditional single image
segmentation, cosegmentation leverages the co-occurrence
prior of similar foreground objects and aims to segment these
common objects from multiple images simultaneously [4]–[6].
Recently, as the amount of photo sharing and multi-modality
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data (e.g., RGB-D) grow rapidly, image data containing com-
mon semantics have become ubiquitous and diverse. Hence,
a robust and efficient cosegmentation method, which is also
flexible to handle various visual cues, is highly desired.

Existing cosegmentation methods could be roughly divided
into two categories. The graph-based methods [4], [7], [8]
formulate image elements (e.g., superpixels or object pro-
posals) as graph nodes, and transfer cosegmentation task
into an instance selection problem. The performance of these
methods heavily depends on the graph construction, which
is usually sensitive to the edge definition, and thus, lack
of robustness to the appearance variation. Moreover, since
various priors and feature similarities are incorporated into the
graph construction process, the graph-based method generally
has a low flexibility to handle different visual data. On the
other hand, the clustering-based method [5], [9], [10] solves
cosegmentation by partitioning the common objects apart from
background. Nevertheless, these previous works still perform
clustering algorithms on a pre-defined graph, which may suffer
from the high time complexity and also lack robustness and
flexibility like the graph-based ones. These drawbacks obvi-
ously limit their applications. Different from existing methods,
we target to develop a robust, flexible and highly efficient
clustering algorithm for the image cosegmentation task.

However, it is not an easy task to cluster similar image
elements into the same group, due to different illumination,
viewpoint change, arbitrary poses and object deformation
existing in natural images. It is difficult to identify the
common foreground objects from co-occurring backgrounds
among multiple images without giving any prior knowledge
of foregrounds. In light of this, we come up with idea
of using constrained clustering to improve cosegmentation
performance with priori knowledge. Recently, Liu and Fu [11],
Liu et al. [12] proposed an interesting clustering method that
formulates given labels as a partition-level side information to
facilitate the clustering process, which has shown promising
performance for the constrained clustering. However, it is not
straightforward to apply this method in image cosegmentation
for two reasons: 1) Ref [11] is not applicable for unsupervised
task as its side information is derived from ground-truth
annotation; 2) its objective function is induced by the squared
Euclidean distance with the categorical utility function [13],
which does not perform well for high-dimensional and sparse
image features (e.g., bag-of-words).

To address the above issues, we propose a novel
Multi-view Saliency-Guided Clustering algorithm (MvSGC)
with cosine similarity for the image cosegmentation task.
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The unsupervised saliency prior is formulated as a
partition-level side information to give the prior knowledge
of foreground and also suppress the common backgrounds.
To enhance the robustness of our model, we alleviate noises
in the given prior by jointly considering instance-level and
partition-level similarity. Specifically, we calculate cosine
similarity between data point and its cluster center; and
measure the similarity between clustering result and side
information with a cosine utility function. These two level
similarities are involved by a unified clustering model upon
an auxiliary matrix, where a K-means-like optimization is
developed with a roughly linear time complexity. Moreover,
we leverage a multi-view weight learning approach to further
improve the robustness of MvSGC. The clustering process
and weight learning are proceeded in an alternative optimiza-
tion way. We summarize the contributions of this paper as
follows.

1) We introduce a novel method of leveraging partition-
level side information to guide the clustering process for
image cosegmentation task (Section III-C). By jointly
considering feature and partition similarities, our method
exhibits a high robustness to the noises and missing
observations in the side information, which makes it
available for unsupervised prior.

2) The proposed MvSGC is built upon cosine similar-
ity (Section III-D1), which could better handle non-
spherical cluster structure than the Euclidean distance.
Nontrivially, we provide theoretical supports to give a
new insight for the cosine utility function, leading to a
K-means-like optimization solution of high efficiency.

3) We give an adaptive multi-view weighting approach
(Section III-D2) to utilize the complementary informa-
tion among multiple views, including low-level appear-
ance features and higher-level deep representations,
which can further improve the robustness of our algo-
rithm to capture various appearances in natural images.

4) Besides the experiments for image cosegmentation,
we also test our cosegmentation method with RGB-D
images by adding depth prior into the side information,
which showcases the flexibility of MvSGC to handle
different modality data (Section IV-D).

A preliminary version of this work has been reported in [14].
Compared with [14], some major differences in this paper
are as following: (1) Multi-view weight learning process is
incorporated into our constrained clustering model with an
alternative optimization solution. (2) Higher-level information
encoded by deep CNN features is utilized by our approach to
further improve the performance. (3) More model discussions,
theoretical analyses and experimental evaluations are provided.
(4) RGB-D image cosegmentation is conducted to show the
flexibility of our algorithm.

The remainder of this paper is organized as follows.
Section II gives a brief introduction to the existing
cosegmentation literature. In Section III, we elaborate
the proposed MvSGC clustering algorithm and give its
solution. Experiments conducted on three benchmark datasets
and one RGB-D image dataset, along with extensive model

discussions, are presented in Section IV. Finally, we give a
conclusion in Section V.

II. RELATED WORK

A. Graph-Based Cosegmentation
Graph-based cosegmentation utilizes a graph model to orga-

nize the instances from images, and selects common objects
by optimizing the objective function defined with the graph.
It can effectively use the corresponding information shared
with images, but the edge of graph is difficult to define.
Rother et al. [4] first introduced cosegmentation as to jointly
segment common objects from an image pair, and proposed
to solve it by histogram matching with a Markov Random
Filed (MRF) framework. Inspired by this work, lots of research
efforts have been made to solve cosegmentation via a MRF
model, which generally design unary potential to capture
object boundary and pairwise potential to force the consistency
between foreground objects. These methods mainly achieve
cosegmentation by solving an energy minimization problem
(i.e., MAP estimation on a MRF), such as half-integrality
algorithms [15], max-flow min-cut optimization [7], and the
scale-invariant model via rank constraint [16].

Besides the MRF model, some other interesting graph-based
methods include object proposal selection [2], submodular
optimization [17], graph/region matching [18], [19], and con-
sistent functional maps [20]. Recently, Fu et al. [21] proposed
an object-based cosegmentation method for both regular color
images and RGB-D images, where they defined the unary term
with saliency and depth information and solved the problem
by integer quadratic program. Quan et al. [8] formulated
cosegmentation as a graph-based manifold ranking problem.
They utilized pseudo background prior to initialize seeds,
developed a two-stage framework to refine the probability
map, and obtained the final result by Grab-Cut [22].

Moreover, several important extensions upon image coseg-
mentation have been widely studied such as interactive
cosegmentation [1], [23], [24], multiple foreground coseg-
mentation (MFC) [25], [26] and video object cosegmen-
tation [27]–[29]. The interactive cosegmentation methods
usually utilize user scribbles to enhance the appearance
model of foreground/background objects, which is in essence
a semi-supervised method. For example, Dong et al. [23]
employed the user interaction information to compute a global
energy for the foreground and background regions in their
graph model. More recently, Yuan and Lu [30] provided an
end-to-end deep network for image cosegmentation, which
trains the network on an auxiliary dataset. MFC methods
generalize traditional cosegmentation into the multi-class case,
which tries to segment multiple common objects among
images. To solve this problem, Ma et al. [26] proposed a
�1-manifold hyper-graph graph to fully explore the coherence
across difference images. Different from extracting objects,
Meng et al. [31] targeted to achieve part-level object segmen-
tation, which is analogous to a fine-grained MFC problem.
Video cosegmentation has a tight link to image cosegmenta-
tion, where it aims to simultaneously extract common objects
from multiple videos. Similar to image cosegmentation, video
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cosegmentation methods mainly adopt energy minimization
on a pre-defined graph, e.g., the multi-state selection graph
model [27] and the spatial-temporal auto-context model [29].
In this paper, we focus on the unsupervised image cosegmen-
tation task.

B. Clustering-Based Cosegmentation

Clustering-based cosegmentation usually imposes a global
constraint on the clustering process to utilize the corre-
spondence information of common foregrounds across mul-
tiple images. Joulin et al. [5] introduced a discriminative
clustering framework for image cosegmentation, and they
further extended it to tackle with multi-class cosegmenta-
tion by combining spectral and discriminative clustering [9].
Kim et al. [32] solved cosegmentation via spectral graph parti-
tioning, where images are described by hierarchical superpixel
layers, and an affinity matrix is computed with intra-image and
inter-image edges. Some clustering-based methods also solve
image cosegmentation by adopting Random walk algorithm.
For example, Collins et al. [33] performed image cosegmenta-
tion by developing the constraint to match feature histograms
of foreground objects in the random walk process. Recently,
Lee et al. [10] proposed a multiple random walkers (MRW)
algorithm and devised a restart rule for the clustering task.
They obtained the cosegmentation result via a two-step frame-
work, consisting of inter-image concurrence computation and
intra-image MRW clustering. Some other recent clustering
based cosegmentation methods could be found as the affinity
propagation clustering model based on shape conformabil-
ity [34], the constrained graph clustering model for solving
MFC [35], and the discriminative clustering model with object
part detector [36]. Compared with these clustering-based meth-
ods, we provide a K-means-like clustering solution, which
does not depend on a pre-defined graph model of images and
enjoys a roughly linear time complexity.

Similar to us, previous works in [6], [21], [37] also
employed saliency prior to guide cosegmentation, where they
mainly formulated cosegmentation as a graph-based model
and utilized saliency prior to define the unary potential. More
recently, Jerripothula et al. [38] provided a saliency co-fusion
framework to highlight the correspondence among images,
and finally achieved cosegmentation by using Grab-Cut [22]
with the fused saliency maps. Ren et al. [39] proposed a
unified optimization model to alternatively proceed saliency
prior learning and tree graph matching. They employed the
learned saliency to iteratively boost the cosegmentation result.
Different from all the above methods, our approach coseg-
ments images via a constrained clustering framework, which
leverages saliency prior as a partition-level side information
to guide the clustering process, and thus provides a novel way
of using saliency priors for image cosegmentation.

III. THE PROPOSED METHOD

A. Overall Framework

The framework of using our MvSGC clustering algorithm
for image cosegmentation is shown in Fig. 1. Given a group
of images (a), we first conduct saliency detection algorithm to

Fig. 1. Overview of the proposed MvSGC for image cosegmentation.
(a) Image set. (b) Saliency priors. (c) Superpixels. (d) Partition-level side
information. (e) Multi-view features. (f) Cosegmentation.

obtain a set of saliency maps (b), and over-segment each image
as a set of superpixels (c) with the SLIC method [40] (some
other superpixel methods, e.g., [41], are also applicable). After
that, based on the results in (b) and (c), all the superpixels
are divided into three groups (i.e., background, foreground
and missing) to obtain the partition-level side information (d).
As shown in (e), multi-view feature descriptors are extracted
from superpixels, containing both low-level appearance fea-
tures and high-level semantic representation. Finally, the side
information (d) and multi-view features (e) are fed into
the proposed MvSGC algorithm to achieve cosegmentation
results (f) via a one-step clustering process, which partitions
all the superpixels in (c) into two classes as foreground and
background.

B. Saliency-Guided Partition-Level Side Information

Generally, using saliency prior for image cosegmentation
has two main benefits: (1) saliency detection could identify
the clues for foreground regions in an unsupervised and rapid
way; (2) it effectively suppresses the misleading from common
backgrounds by highlighting the salient object regions [42],
[43]. However, the foreground prior given by saliency detec-
tion might be noisy and lead to incorrect results. Hence,
a partial observation strategy is employed to formulate saliency
prior as the partition-level side information.

Let X be a set of superpixels from all the images. Without
loss of generality, we denote M as a saliency map of the
image containing x for ∀x ∈ X , and represent the saliency
score of superpixel x as M(x) ∈ [0, 1], which is calculated
by averaging all the saliency values within x . Then, the side
information S could be defined as

S(x) =

⎧
⎪⎨

⎪⎩

2: foreground, M(x) ≥ T f

1: background, M(x) ≤ Tb

0: missing, otherwise,

(1)

where T f is a threshold for foreground and Tb for background
(Tb < T f ). As following [44], T f is set by the adaptive
threshold as T f = μ + δ, where μ and δ are corresponding
to the mean value and standard deviation of M , respectively.
Rather than directly assigning background to the remainder,
we introduce Tb = μ as a pseudo background threshold,
which regards the superpixels below the average saliency value
as background regions. By using Eq. (1), the uncertainty of
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Fig. 2. Illustration of the saliency-guided partition-level side information.
(a) Image group. (b) Superpixels. (c) Saliency prior. (d) Visualization of the
side information, where the labels of background, foreground and missing are
colored by black, blue and green, respectively. (e) Our cosegmentation results.

saliency prior is remained as missing observations to avoid
incorrectly labeling.

Fig. 2 gives an example of deriving partition-side infor-
mation from saliency priors. For this case, only a part
of foreground regions are correctly labeled as foreground
(i.e., the blue colored superpixels in Fig. 2(d)) by using the
adaptive threshold. Thus, compared with simply regarding
the remainder regions as background, our partial observation
strategy can “save” a great deal of foreground regions into
the missing group (i.e., the green colored superpixels). It is
worth noting that, most of these regions are finally segmented
as foreground object in Fig. 2(e), which shows our cluster-
ing algorithm can alleviate the deficiency of saliency prior
effectively.

C. The Proposed MvSGC Algorithm

Given a set of superpixels X from multiple images, we solve
cosegmentation as a constrained clustering problem that targets
to partition all the superpixels in X into K = 2 classes.
We refer to n as |X |. Let X = [X (1), · · · , X (r)] be the
multi-view feature matrix for X , where r is the number of mul-
tiple views and X (i) ∈ R

n×d(i)
corresponds to the i th view’s

feature of d(i) dimensionality, 1 ≤ i ≤ r , and S ∈ R
n×1 be the

side information that partitions X into three groups. The objec-
tive function of our MvSGC clustering algorithm is given by

min
π,wi

K∑

k=1

∑

x∈Ck

r∑

i=1

w
γ
i f (x (i), m(i)

k ) − λUcos(π ⊗ S, S)

s.t. π ∈ {1, . . . , K }n×1,

r∑

i=1

wi = 1, ∀i, wi ≥ 0, (2)

where π is the partition result assigning each superpixel a
label in {1, · · · , K }, wi is the weight of the i th view, x
represents the superpixel described by [x (1), . . . , x (r)], and Ck

is the superpixel set of the kth cluster in π . Two parameters
γ, λ > 0 are used in our model, where γ controls the weight
distribution among all the views as suggested by [45], and
λ balances multi-view features and the side information. x (i)

and m(i)
k represent one row in X (i) and the centroid of Ck in

X (i), respectively. We denote f (·, ·) as the cosine distance,
which is defined by

f (a, b) = ‖a‖(1 − 〈a, b〉
‖a‖‖b‖ ) = ‖a‖(1 − cos(a, b)), (3)

where a, b are two vectors of the same size, ‖ · ‖ refers to
the �2 norm, 〈a, b〉 denotes the inner product and cos(a, b)
represents the cosine similarity.

In Eq. (2), π ⊗ S indicates the instances correspond to the
non-missing part in side information S, and Ucos is defined as
the cosine utility function [46] by

Ucos(π
′, S) =

K∑

k=1

pk+‖〈 p(S)
k1

pk+
,

p(S)
k2

pk+
, · · · ,

p(S)
kK

pk+
〉‖, (4)

where π ′ = π⊗S, 〈 p(S)
k1

pk+ ,
p(S)

k2
pk+ , · · · ,

p(S)
kK

pk+ 〉 indicates a row vector,

p(S)
kj = n(S)

kj /nτ and pk+ = nk+/nτ , 1 ≤ j, k ≤ K , and τ is
the proportion of non-missing labels in S (i.e., S(x) = 1 or 2
in Eq. (1)). Here, p(S)

kj and pk+ are defined based on the
normalized contingency matrix to compute the co-occurrence
of two discrete variables, where nk+ = ∑K

j=1 n(S)
kj , and n(S)

kj
represents the number of data instances (i.e., superpixels) that
simultaneously belongs to the cluster C(S)

j in S and cluster Ck

in π ′. In Eq. (4), we use �2 norm to measure the distribution of
the projection S to the kth cluster in π ′, and linearly combine
K distributions by utilizing their cluster size in π ′ as weights
to obtain Ucos . We leverage Ucos to measure the similarity
of two partitions, rather than two instances, with larger Ucos

value indicating more similar partitions.
Taking a close look at Eq. (2), the benefits of the proposed

MvSGC lie in several points. (1) We provide a unified clus-
tering model that jointly considers feature similarity and side
formation. By this means, we employ side information to guide
the clustering process by feature similarity, which in turn,
helps to recover the missing observations in the side informa-
tion and thus improves the robustness of using unsupervised
prior. (2) We compute the point-to-centroid feature distance
with cosine similarity, which could capture non-spherical
cluster structures and perform more efficiently than the squared
Euclidean distance when dealing with high-dimensional and
sparse features (e.g., BoW features). (3) We introduce the
cosine utility function Ucos to measure the similarity between
the partition result π and the side information S. Owing
to Ucos , our model finds the clustering solution that reveals
the intrinsic structure from data itself and also agrees with
the partition-level side information as much as possible.
(4) We leverage multi-view weight learning to integrate mul-
tiple features, where the weight of each view is adaptively
learned during the clustering process. By this adaptive fusion
strategy, we employ a simple yet effective way to integrate
the complementary information across multiple views, which
improves robustness of MvSGC to handle the complex natural
images.

D. Optimization Solution

The proposed objective function in Eq. (2) can be divided
into two subproblems as constrained clustering and weight
learning. Thus, we solve them in an alternative way, where
we update one by keeping the other fixed and repeat the
process iteratively until convergence. However, it is non-trivial
to optimize Eq. (2) due to its element-wise formulation, where
the augmented Lagrangian method cannot be directly used to
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take the derivative of each variables. To address this challenge,
we first focus on the second term in Eq. (2) and provide a new
insight of the objective function.

1) Update π With Fixed wi : Ucos in Eq. (2) measures the
similarity at a partition-level. To unify it into a K-means-
like form, the following lemma is introduced to measure the
dissimilarity of two partitions with a distance function.

Lemma 1: Given two partitions H and S to separate a set
of data instances X into K clusters, we have

K∑

k=1

∑

s∈Ck

f (s, m(S)
k ) ∝ −Ucos(H, S), (5)

where s represents the one-hot vector of one row in S, and
C1, C2, · · · , CK are K clusters in H , m(S)

k is the kth centroid
vector of S according to Ck in H and f is the cosine distance.

Proof: Based on the point-to-centroid distance [47],
we could rewrite the cosine distance as

f (a, b) = φ(a) − φ(b) − (a − b)�∇φ(b), (6)

where a, b are the non-zero vectors of the same size and
φ(a) = ‖a‖. Then, we have

K∑

k=1

∑

s∈Ck

f (s, m(S)
k )

=
K∑

k=1

∑

s∈Ck

(φ(s) − φ(m(S)
k ) − (s − m(S)

k )�∇φ(m(S)
k ))

= α −
K∑

k=1

|Ck|φ(m(S)
k ) − β,

where α ≡ ∑K
k=1

∑
s∈Ck

φ(s) and β ≡ ∑K
k=1

∑
s∈Ck

(s − m(S)
k )�∇φ(m(S)

k ). As S is given in advance, α part is
a constant and β part equals zeros due to the definition of
centroid. Upon the variables in Eq. (4), it is straightforward
to calculate the centroids as

m(S)
k = 〈 p(S)

k1

pk+
,

p(S)
k2

pk+
, · · · ,

p(S)
kK

pk+
〉. (7)

According to Eq. (4) and the deduction above, Eq. (5) holds
and we finish the proof. �

Remark 1: In addition to employ utility function to calcu-
late the similarity of two partitions, Lemma 1 gives a way
to calculate the dissimilarity by a distance function. By this
means, we have a new insight of the objective function in
Eq. (2), which can be rewritten as the following:

min
π

K∑

k=1

∑

x∈Ck

r∑

i=1

w
γ
i f (x (i), m(i)

k ) + λ

K∑

k=1

∑

s∈Ck∩S

f (s, m(S)
k ),

(8)

where Ck ∩ S indicates the instances in Ck with non-missing
side information.

In Eq. (8), each part has a K-means-like form. To achieve
an efficient K-means solution, an auxiliary matrix B is first
introduced. Specifically, we separate the data in each descrip-
tor X (i) into two parts X (i)

1 and X (i)
2 , where the instances

in X (i)
1 have non-missing side information in S and those in

X (i)
2 do not have. Then the auxiliary matrix B is organized as

B =
[

X (1)
1 X (2)

1 · · · X (r)
1 S′

X (1)
2 X (2)

2 · · · X (r)
2 0

]

.

where S′ is the non-missing part of S. B = {b} consists of
r + 1 parts by concatenating multi-view features and side
information, i.e., b = 〈b(1), · · · , b(r), b(S)〉; while for those
instances without side information, zeros are used to fill up.
Based on the auxiliary matrix B , we provide the following
theorem to solve Eq. (8) in a neat mathematical way.

Theorem 1: Given multi-view data X = [X (1), · · · , X (r)],
side information S and an auxiliary matrix B, we have

min
π

K∑

k=1

∑

x∈Ck

r∑

i=1

w
γ
i f (x (i), m(i)

k ) − λUcos(π ⊗ S, S)

⇔ min
π

K∑

k=1

∑

b∈Ck

f ′(b, mk), (9)

where b denotes one instance (or row) in B and mk =
〈m(1)

k , m(2)
k , · · · , m(r)

k , m(S)
k 〉 is calculated as

m(i)
k =

∑
b∈Ck

b(i)

|Ck| , m(S)
k =

∑
b∈Ck∩S b(S)

|Ck ∩ S| , (10)

1 ≤ i ≤ r , and the distance function f ′ is computed by

f ′(b, mk) =
r∑

i=1

w
γ
i f (b(i), m(i)

k )

︸ ︷︷ ︸
multi-view features

+ λI (b ∈ S) f (b(S), m(S)
k )

︸ ︷︷ ︸
partition-level side information

,

(11)

where I (b ∈ S) = 1 means that S contains the side
information for the instance b; and 0 otherwise.

Proof: It is easy to proof that

K∑

k=1

∑

b∈Ck

f ′(b, mk)

=
K∑

k=1

∑

b∈Ck

(

r∑

i=1

w
γ
i f (b(i), m(i)

k ) + λI (b ∈ S) f (b(S), m(S)
k ))

=
K∑

k=1

∑

x∈Ck

r∑

i=1

w
γ
i f (x (i), m(i)

k ) + λ

K∑

k=1

∑

s∈Ck∩S

f (s, m(S)
k ).

According to Lemma 1, Theorem 1 holds and we complete
the proof. �

Based on Theorem 1 and the auxiliary matrix B , we finally
transform Eq. (2) as a K-means-like problem in Eq. (9), which
could be solved by the centroid update rules and distance
function from Eq. (10) and Eq. (11).

2) Update wi With Fixed π: By omitting the unrelated
terms to wi , Eq. (2) can be equivalently converted as

min
wi ≥0

r∑

i=1

w
γ
i Di s.t.

r∑

i=1

wi = 1, (12)
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Algorithm 1 MvSGC Clustering Algorithm

where Di ≡ ∑K
k=1

∑
x∈Ck

f (x (i), m(i)
k ). To make Eq. (12)

unconstrained, we write its Lagrange function as

L =
r∑

i=1

w
γ
i Di − δ(

r∑

i=1

wi − 1), (13)

where δ is the Lagrange multiplier. By setting the derivative
of L w.r.t wi to zero, for ∀i th view, we have

wi = (
δ

γ Di
)

1
γ−1 . (14)

To meet the KKT condition, we substitute Eq. (14) into the
constraint

∑r
i=1 wi = 1, and finally get the optimal weight

for each view as following:

wi = (γ Di )
1

1−γ

∑r
i=1(γ Di )

1
1−γ

. (15)

After π being given, Di is only calculated by the i th view’s
feature. Thus, our approach can learn the weight of each view
adaptively, making the feature with more clear cluster structure
has a larger weight. The parameter γ > 1 is employed to
control the weight distribution among different views, where
γ → 1 leads to a sharp distribution, and γ → ∞ makes equal
weights. Since different features always have different perfor-
mance and advantage on various cases, by using Eq. (15),
we naturally leverage the complementary information across
multiple views to cope with different image groups.

We alternatively update π and wi until Eq. (2) becomes
converged. The proposed MvSGC clustering algorithm is sum-
marized by Algorithm 1. After having the partition π for all the
superpixels, we may directly obtain the cosegmentation results
by using cluster labels. However, due to our clustering result
is on a superpixel-level, we further refine our cosegmentation
results to a pixel-level by using the dense CRF framework [48],
[49], as following many previous works [8], [10], [21].

E. Discussion

1) Convergence Analysis: An alternative optimization
solution is given by Algorithm 1, which involves two
steps:1) constrained clustering; and 2) multi-view weight
learning. Although Step 1 is not the standard K-means, it has
the convergence guarantee in both theoretical and practical
perspectives. On the other side, Step 2 is a convex problem
with respect to wi , which has a closed-form solution given

by Eq. (15). Therefore, by solving these two steps alternatively,
Algorithm 1 converges to a local solution.

2) Time Complexity: According to Theorem 1, Step 1 can
be solved by a K-means-like optimization with a modified
distance function in Eq. (11) and centroid update rules in
Eq. (7). Hence, it enjoys almost the same time complexity
with standard K-means, O(T1 K n(

∑r
i=1 d(i) + K )), where T1

is the iteration number, K is the cluster number, n and d(i) are
the instance number and feature number in X (i), respectively.
It is worth noting that, after Step 1 being proceeded, Di in
Eq. (15) is fixed. Thus, the time cost for Step 2 could be
omitted. Let T2 be the iteration number of the outer loop
in Algorithm 1, the final time complexity of our MvSGC
algorithm is O(T2(T1 K n(

∑r
i=1 d(i) + K ))). Usually, we have

K � n and d(i) � n, so the algorithm is roughly linear to
the instance number, which indicates MvSGC is suitable for
large-scale datasets.

IV. EXPERIMENT

A. Experimental Setting

1) Datasets and Criteria: We conduct the experiment for
image cosegmentation on three benchmark RGB datasets,
including iCoseg dataset1 [1], MSRC dataset2 and Internet
dataset3 [6]. Besides, one RGB-D image dataset4 [21] is
also used to test our approach. Two widely-used criteria are
employed for the quantitative evaluation, which are precision,
denoted as Pre (i.e., the ratio of correctly labeled pixels of
both foreground and background); and intersection over union,
denoted as IoU (i.e., the intersection over union of the result
and the ground-truth segmentation). Both these two metrics
are positive measures and ranged from 0 to 1.

2) Compared Methods: We compare our algorithm with
11 state-of-the-art methods, including (1) six graph-based
methods such as Kim11 [17], Rub13 [6], Fu15 [21], Jer16 [38],
Quan16 [8] and Ren18 [39]; (2) five clustering-based ones
such as Jou12 [9], Lee15 [10], Liu15 [11], Sun16 [36] and
Tao17 [14]. For Jou12, Lee15, Tao17 and Liu15, we run
the author’s code with recommended parameter setting. For
the other methods, we directly use the results provided by the
authors. Moreover, for a fair comparison, we run Liu15 [11]
for cosegmentation by using the same side information and
features to our method. Note that, since Liu15 can only work
with single view, we test it under each view individually and
post the best result.

3) Implementation Details: In this paper, we obtained
the saliency prior by using the deep hierarchical saliency
network (DHSNet) [50], which provides a fast and end-
to-end way to obtain saliency map from image. For the
multi-view features, we used three BoW histograms and one
deep CNN feature, computed by SIFT [51], Texton [52],
LAB colors [53], and the CNN model [54], respectively.
In details, for each BoW descriptor, we obtained 300 words
by performing K-means clustering on each image group with

1http://chenlab.ece.cornell.edu/projects/touch-coseg/
2http://research.microsoft.com/en-us/projects/objectclassrecognition/
3http://people.csail.mit.edu/mrub/ObjectDiscovery/
4http://hzfu.github.io/proj_rgbdseg.html
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TABLE I

COMPARISON RESULTS OF SEGMENTATION PERFORMANCE (%) BETWEEN MVSGC AND OTHER METHODS ON THE ICOSEG DATASET OF 31 IMAGE
GROUPS, THE ICOSEG DATASET OF 38 IMAGE GROUPS, THE MSRC DATASET, AND THE THREE IMAGE GROUPS OF THE INTERNET DATASET.

(RED BOLD FONT FOR THE BEST PERFORMANCE; BLUE ITALIC FOR THE SECOND)

Fig. 3. Visual comparison results between Lee15 [10], Quan16 [8] and our MvSGC on iCoseg (Best viewed in color).

the superpixel-level features. Thus, each BoW was represented
as a 300-D feature vector. For the CNN features, we used the
last convolutional layer of the CNN model [54] pre-trained on
ImageNet, to obtain 512 feature maps (17×17) for each image,
and then upsampled each feature map to the original size of
the image. We finally generated a 512-D feature vector by
performing max pooling operation among these maps on the
superpixel-level. In our experiments, we set λ = 1000 and γ =
100 as the default setting. All the experiments were conducted
by MATLAB on a 64-bit Windows platform with two Intel
Core i7 3.4GHz CPUs, one Titan-X GPU and 32GB RAM.

B. Image Cosegmentation

1) iCoseg Dataset: The iCoseg dataset is a widely-used
benchmark for image cosegmentation, consisting of 38 image
groups with 643 images in total. We fist test our approach
by following the same setting in [6], which selects 31 image
groups with 530 images. Table I shows the cosegmentation
performance of our proposed MvSGC and other methods
on the subset (31 image groups) of iCoseg dataset, where
we achieve comparable results to one of the state-of-the-art
graph-based models, i.e., Quan16 [8]. This fully validates the
effectiveness of our clustering model for the image cosegmen-
tation task. However, MvSGC performs slightly worse than

Quan16 [8] by IoU, which might be due to the reasons that
IoU has a bias towards small objects and our saliency prior
may overlook the small common objects. On the other hand,
we outperform all the clustering-based methods and the other
graph-based methods, with a clear improvement. One may
note that, we improve our previous work, Tao17 [14], with
2.7% Pre and 6.3% IoU, which demonstrates this paper is
a substantial extension to [14]. We also test MvSGC and the
other methods on the whole iCoseg dataset (38 image groups),
where the similar conclusion could be made.

Fig. 3 provides a visual comparison of selected 3 image
groups between Quan16, Lee15 and our approach, where
Quan16 and Lee15 are the top performers among graph-based
and clustering-based compared methods, respectively. As can
be seen, Quan16 and Lee15 suffer from the incomplete object
segmentation and background noises. For the example of
Ferrari image group, they both miss the tire of the car and
wrongly segment the black color background as foreground.
In contrast, benefiting from multi-view feature integration
and the guidance of our side information, we obtain more
accurate object segmentation within each image, and suppress
the common background regions among images.

2) MSRC Dataset: The MSRC dataset consists of 14 image
groups with totally 410 images, where each image group
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contains similar foreground objects. As shown in Table I,
the proposed MvSGC outperforms all the other methods
on this dataset. Compared with clustering-based methods,
the great improvements (e.g., round 6% Pre and 13% IoU
higher than Lee15) indicates our MvSGC model as a very
promising clustering method for image cosegmentation. More-
over, our approach improves nearly 9% Pre and 17% IoU
compared with Liu15 [11], which demonstrates the significant
superiority of using cosine similarity to the squared Euclidean
distance.

3) Internet Dataset: The Internet dataset is one of the most
challenging datasets for image cosegmentation task. It collects
thousands of images from the Internet according to three
categories of Airplane, Car and Horse, where each image
group has some noisy images. By following [6], we use a
subset of the Internet dataset as 100 images per class. Table I
summarizes the performance of our approach and other com-
pared methods on three image groups of this dataset, where we
achieve the best Pre and IoU on all the cases. For the Internet
dataset, objects in each image group usually share with the
same semantic information (i.e., image class), yet with quite
different appearances. Thus, the methods without considering
higher-level concepts may lose their effectiveness. In contrast,
by utilizing the deep CNN representation, Quan16 [8] and
our MvSGC outperform other methods significantly, which
demonstrates the effectiveness of using higher-level features
for image cosegmentation. In another hand, compared with
Quan16, we clearly improve the performance by round 6%,
11%, and 3% IoU on these three classes.

To sum up, the proposed MvSGC performs better than
several state-of-the-art cosegmentation methods in most cases
of Table I, indicating the robustness of our approach when
dealing with different image groups. This is mainly due to
the unified clustering model provided by our method, which
jointly considers the instance-level and partition-level similar-
ity, and the benefits from our multi-view weight learning.

C. Model Discussion

1) Time Efficiency: We compare our proposed MvSGC with
two clustering-based cosegmentation methods, Jou12 [9] and
Lee15 [10], in terms of the running time. It is worth noting
that, though Jou12 and Lee15 formulate cosegmentation as
a clustering problem, they both employ graph-based cluster-
ing algorithms, e.g., the spectral clustering term in [9] and
the random walk process in [10], which cost much on the
graph construction process and may suffer from a high time
complexity (e.g., the eigenvalue decomposition in spectral
clustering). In contrast, we solve our clustering problem with a
neat K-means-like optimization, and thus have a roughly linear
time complexity. As shown in Table II, our approach is over
4 times faster than Jou12 and 3 times faster than Lee15 on
the iCoseg dataset, while similar comparison result appears
on MSRC. Moreover, MvSGC is round 19 times faster than
Jou12 and 9 times faster than Lee15 on the Internet dataset.
This is mainly because the image group in Internet has more
images than the other datasets. We also show the execution
time of our clustering process. As can be seen, our clustering

TABLE II

COMPARISON OF COMPUTATIONAL TIME BETWEEN THE PROPOSED
MVSGC AND TWO CLUSTERING-BASED METHODS

Fig. 4. Parameter analysis for MvSGC on the MSRC dataset.

TABLE III

COMPARISON OF MULTI-VIEW FEATURES AND THE EUCLIDEAN

DISTANCE BASED CONSTRAINED CLUSTERING LIU15 [11] BY

IoU% (RED BOLD FONT FOR THE BEST PERFORMANCE;
BLUE ITALIC FOR THE SECOND)

algorithm costs quite little, which could be omitted compared
with the total running time. Actually, feature engineering is
the most time-consuming part in our model. To sum up,
the proposed MvSGC is a highly efficient clustering algorithm,
which exhibits huge potential to the large-scale problem.

2) Parameter Analysis: There are two parameters, i.e., γ
and λ, used in our model. We employ γ to control the weight
distribution among multiple views. Generally, we may achieve
better performance through tuning this parameter. However,
due to our unsupervised setting, we empirically set γ = 100
in all the experiments, as suggested by [45]. The parameter
λ in Eq. (2) is the key factor that balances two kinds of
similarities in our model, which are the instance-level simi-
larity computed by multi-view features with cosine similarity,
and the partition-level similarity given by side information
with cosine utility function. We expect to set λ a relatively
large value, to make the partition-level similarity comparable
to the magnitude of multi-view features. Here, to explore
the impact of λ to our model, we vary λ from the set
{0, 10, 20, 30, 40, 50, 100, 500, 1000, 2000}, and test MvSGC
on the MSRC dataset with different parameters. As shown
in Fig. 4, our performance generally goes up with the increase
of λ and keeps stable when λ > 100. This indicates our
approach is insensitive to the parameter λ by setting it in a
certain range.

3) Multi-View Features: Table III gives the performance
of different views in our model. In details, we run
our method on each single view without using saliency
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Fig. 5. Impact of feature combinations and noisy priors to our proposed MvSGC model on the MSRC image dataset. (a) Cosegmentation performance of
MvSGC with different feature combinations, where S, T, L, and C indicate SIFT [51], Texton [52], LAB [53] and CNN [54] features, respectively. (b) MvSGC
with noisy priors by setting different corruption ratios.

prior (i.e., λ = 0). As can be seen, the LAB feature
outperforms best on iCoseg, while CNN features performs
much better than the others on MSRC and Internet. This is
mainly due to various properties of different image datasets.
Specifically, most image groups in the iCoseg dataset share
with consistent appearance features with little illumination
change [9], leading to the superiority of LAB color feature
on this dataset. In another hand, images in the MSRC and
Internet dataset usually have semantically similar foreground
objects with large appearance variations. Hence, deep CNN
features containing higher-level information (i.e., image class)
achieve the best in these two datasets. Different advantages
of different features motivate us to improve the robustness
of our clustering process by integrating these features with
multi-view weight learning.

Table III also shows the cosegmentation performance of
Liu15 [11] on three datasets. Different from our method,
Liu15 computes feature similarity by the squared Euclidean
distance and can only work with individual feature descrip-
tor. In the experiment, we feed Liu15 with the same side
information to our MvSGC, and report its result of the best
single view. One may note that, even without the guidance of
side information, our best single-view result still outperforms
Liu15 on the iCoseg dataset, and achieves similar performance
to Liu15 on the MSRC. This fully demonstrates the benefit
of using cosine similarity to the squared Euclidean distance.
In summary, we employ multi-view features to handle various
datasets, and utilize cosine similarity to better capture the
cluster structure in feature space.

To further explore the impact of multi-view features to
our approach, we conduct the proposed MvSGC model with
different feature combinations, including four single-view fea-
tures (i.e., SIFT [51], Texton [52], LAB [53] and CNN [54]
denoted by S, T, L and C, respectively) and four combinations
of three-view features (i.e., S+T+L, T+L+C, S+T+C, and
S+L+C). As shown in Fig. 5(a), two observations could be
made: 1) cosegmentation results with multiple features out-
perform the ones using individual feature; 2) multi-view fea-
tures (T+L+C, S+T+C, and S+L+C) containing higher-level
information improve the performance of MvSGC with only
low-level features (S+T+L). This clearly shows the benefit of
using multiple visual cues for image cosegmentation, as well
as utilizing the abstract concepts in image classification given
by the deep CNN features.

4) Saliency Priors: Fig. 6 shows the performance of our
MvSGC under two different saliency priors, where AVG

Fig. 6. Exploration of saliency prior to the proposed MvSGC on three
datasets, where we test our algorithm by using the aggregated saliency prior
given by [14] (denoted as AVG), and the saliency prior obtained by [50]
(denoted as DHS). Ours-avg and Ours-dhs represent the results of performing
MvSGC with prior AVG and DHS, respectively.

represents the aggregated saliency prior provided by [14],
which is obtained from averaging the results of three saliency
detection methods [55]–[57]; and DHS denotes the default
saliency prior in our model given by DHSNet [50]. By feeding
the same multi-view features, we perform MvSGC with AVG
and DHS on three datasets, respectively. We also test these
two priors by thresholding them as binary segmentation with
the adaptive threshold [44]. As can be seen, our method con-
sistently boosts the performance of saliency prior on different
scenarios, which demonstrates that our method can effectively
utilize the information from multi-view features to recover the
missing observations in different saliency priors. Moreover,
by giving a more powerful prior (i.e., more credible “labels”),
we improve the cosegmentation performance significantly.
This indicates the effectiveness of MvSGC as a constrained
clustering method.

Saliency prior may suffer from incorrect detection results
and provide noisy labels to our clustering model. To alleviate
this problem, we adopt a partial observation strategy to obtain
the partition-level side information (see Section III-B), and
recover the missing observations by using the correspondence
of common objects across images. To explore the impact of
severely noisy saliency priors, we randomly set the partition
labels (induced by DHSNet [50]) as zeros according to a
corruption ratio p. Fig. 5(b) shows the cosegmentation per-
formance of MvSGC on the MSRC dataset by ranging p
from 0 to 50% with a step size of 10%. As can be seen, our
approach still achieves a good performance when p ≤ 30%,
which shows the robustness of MvSGC to noisy priors.

D. RGB-D Image Cosegmentation

With the increasing of affordable RGB-D sensors, depth
information gets more popular for image segmentation [58],
which is useful to distinguish foreground object from cluttered
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Fig. 7. Illustration of saliency prior incorporated with depth informa-
tion, where (a) Images, (b) raw depth maps, (c) saliency prior w/o depth,
(d) saliency prior + depth, (e) Our cosegmentation results and (f) Ground-truth
annotations.

TABLE IV

COMPARISON RESULTS BETWEEN MVSGC AND OTHER METHODS ON THE

RGB-D IMAGE DATASET (RED BOLD FONT FOR THE BEST

PERFORMANCE; BLUE ITALIC FOR THE SECOND)

background and preserve object boundaries. In light of this,
Fu et al. [21] first extended RGB-D image segmentation to the
multiple case, and employed the saliency priors incorporated
with depth cues to highlight common objects among image
group. Following this work, we apply our MvSGC clustering
method to the RGB-D image cosegmentation task.

We conduct experiments on the RGB-D image dataset
provided by [21], which contains 16 image groups (totally
193 images) with corresponding depth maps. Fig. 7 gives
some examples of the red hat image group in this dataset.
As shown in Fig. 7(c), the saliency prior given by [50],
which is without depth information (denoted as w/o depth),
may wrongly detect objects from the complex background. To
alleviate this problem, we employ a multiple fusion strategy
to incorporate depth cues into our side information, that
is, to multiple our original saliency prior with the RGB-D
based saliency maps provided by [21]. Fig. 7(d) shows the
fusion result. As can be seen, the depth information weakens
the saliency value of background regions effectively.

Table IV summarizes the performance of our MvSGC
and other methods on the RGB-D image dataset. Overall,
the methods containing depth information generally outper-
form the methods without using depth cues. As can be seen,
MvSGC (+ depth) improves round 2% Pre and 5% IoU over
MvSGC (w/o depth), which shows the effectiveness of adding
depth prior into our side information. Moreover, compared
with Fu15 [21], which is specifically designed for the RGB-D
image data, our method still exceeds by round 1% Pre and
3% IoU. This shows the proposed MvSGC as a flexible
clustering method to incorporate with different visual cues.

V. CONCLUSION

A novel Multi-view Saliency-Guided Clustering (MvSGC)
algorithm was proposed with cosine similarity in this paper,
which derives unsupervised saliency prior as a partition-level
side information to guide the clustering process. The robust-
ness of our method inherits from two aspects, i.e., a unified
clustering model that jointly considers the feature and partition
similarity, and a multi-view weight learning approach that
integrates various visual cues. By giving a new insight to
the cosine utility function, we finally provided a K-means-
like optimizing solution with theoretical guarantee, leading to
the roughly linear time complexity of MvSGC. Experiments
on three image datasets were conducted to demonstrate the
effectiveness of our approach compared with state-of-the-art
methods. Moreover, experiments on RGB-D images show-
cased the flexibility of our algorithm. In the future, we will
explore multi-modality features for image cosegmentation, and
apply our algorithm in the video object segmentation task.
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