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Abstract—Zero-shot learning (ZSL) typically explores a shared
semantic space in order to recognize novel categories in the
absence of any labeled training data. However, traditional ZSL
methods always suffer from serious domain shift problem in
human action recognition. This is because: (1) Existing ZSL
methods are specifically designed for object recognition from
static images, which don’t capture temporal dynamics of video
sequences. Poor performances are always generated if those
methods are directly applied to zero-shot action recognition. (2)
Those methods always blindly project target data into a shared
space using a semantic mapping obtained by source data without
any adaptation, in which underlying structures of target data are
ignored. (3) Severe inter-class variations exist in various action
categories. Traditional ZSL methods don’t take relationships
across different categories into consideration. In this paper, we
propose a novel aligned dynamic-preserving embedding model
(ADPE) for zero-shot action recognition in a transductive setting.
In our model, an adaptive embedding of target videos is learned
exploring the distributions of both source and target data. An
aligned regularization is further proposed to couple the centers
of target semantic representations with their corresponding label
prototypes in order to preserve the relationships across different
categories. Most significantly, during our embedding, temporal
dynamics of video sequences are simultaneously preserved via
exploiting temporal consistency of video sequences and capturing
temporal evolution of successive segments of actions. Our model
can effectively overcome the domain shift problem in zero-shot
action recognition. Experiments on Olympic sports, HMDB51
and UCF101 datasets demonstrate the effectiveness of our model.

Index Terms—Zero-shot learning, Action recognition, Aligned
dynamic-preserving embedding.

I. INTRODUCTION

Human action recognition is one of the most popular
research topics in computer vision field, which has been
widely applied in a number of applications [15][14], such
as human-computer interaction, video surveillance systems,
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Fig. 1. Illustration of domain shift problem. Both labels and videos are
embedded into a shared semantic space. The learned semantic representations
of target videos are far away from their corresponding prototypes in the shared
space due to the isolation between training and testing sets.

etc. Traditional video based action recognition methods fol-
low a standard framework of supervised pattern recognition
[44][27][38][45][49], which can be summarized as three pro-
cessing steps: feature extraction, video representation and
classification. Over the past few years, many effective methods
have been proposed to promote the development of human
action recognition. Most of them mainly focus on exploring
effective features [20][41][43] and discriminative representa-
tions [28][42] of action videos on the condition that sufficient
labeled training videos are provided. With a rapid development
of social networking sites (Facebook, Twitter, etc) and video
capture devices, the number of videos, categories of actions
and complexities of videos’ content are explosively increasing.
For the traditional supervised human action recognition, it’s
expensive to annotate the huge number of videos and manual
annotations would cause large confusions as well. Besides,
it’s difficult to make a clear definition for each action as the
categories grow more fine-grained and inter-related, such as
actions: ‘Kick’ and ‘Kick-ball’.

Zero-shot learning [4][19] offers an innovative solution to
those scenarios, which aims to recognize unseen categories
without any labeled training data. The essence of ZSL is to
explore an intermediate semantic space [18], in which the
shared knowledge across different categories can be trans-
ferred from seen categories to unseen ones. Novel categories
can be recognized on the basis of those knowledge learned
from seen categories. The semantic spaces can be predefined
by a human user, e.g. attribute space [21], or learned using
existing knowledge bases, e.g. word2vector space [24]. Take
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attribute space as an example, the attributes describe properties
of each category (action) and are predefined manually. Each
category is represented as a binary vector in terms of the
presence or absence of certain attributes. After that, classifier
of each attribute is learned using training samples. Each testing
sample that is disjoint from training samples is specified as a
novel category in terms of the scores measured by learned
attribute classifiers. For example, in training stage, the labeled
samples of categories ‘Horse’ and ‘Bee’ are provided. In
testing stage, we need to recognize the samples that contain
the unseen category ‘Zebra’. We can infer the unseen category
via utilizing the knowledge learned from ‘Horse’ and ‘Bee’,
eg. owing horsehair and covered with stripes, even if we don’t
have any training samples of ‘Zebra’. Obviously, ZSL takes
advantage of a small quantity of existing labeled data to guide
the recognition of disjoint unseen data, which greatly reduces
manual annotation cost and makes visual recognition scalable.
In recent years, it attracts lots of attentions and achieves
impressive performance in object recognition [2][19].

As training set and testing set are totally disjoint, traditional
ZSL methods always suffer from serious domain shift problem
[46][5]. It causes a great discrepancy between a specified
prototype position and representations of its class member
instances in semantic space (Fig. 1). And it proves more severe
in the task of zero-shot action recognition [46]. There are three
main reasons: Firstly, traditional ZSL methods are specifically
designed for object recognition from static images [12][50].
When they are extended to action recognition task, video
sequences are firstly encoded into orderless representations,
after which the same operations of ZSL in object recognition
are executed. Obviously, those methods don’t take temporal
information of video sequences into consideration during their
processing, which lead to poor performance of zero-shot action
recognition. Secondly, most of existing ZSL methods use a
semantic mapping for target domain1 that is independently
learned from source domain (by projecting source data onto
a shared semantic space) without any adaptation. The blind
using of training mapping only preserves underlying structures
of source data but ignores the structures of target. Thus, target
data are likely to be projected into irrelative regions, which are
far away from their prototypes. Thirdly, there exist large inter-
class variations in large-scale action datasets (e.g. HMDB51,
UCF101). Traditional ZSL methods don’t take those variations
across categories into consideration, in which the knowledge
transferred from source domain are insufficient to describe
novel categories.

In this paper, we propose a novel aligned dynamic-
preserving embedding model (ADPE) for zero-shot action
recognition, which overcomes the above limitations of existing
ZSL models. Our model can effectively alleviate the domain
shift problem in zero-shot action recognition. Specifically,
our model is implemented in a transductive setting [30] that
assumes accessing to a full set of target data. Our goal is to
explore an appropriate embedding that jointly projects source
and target videos into a shared semantic space, where each

1In this paper, source domain equals to training set, and target domain
equals to testing set.
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Fig. 2. Example of the division of a video sequence. The video is firstly
divided into M uniform fragments. The mth segment consists of the first
m fragments. Each segment is encoded into a visual representation and the
video is eventually represented as a set of M visual representations.

target video is close to its corresponding true action label.
Different and superior to existing methods that encode each

video sequence into an orderless representation [47][48][46],
we divide each video into a series of successive segments
[14], as shown in Fig. 2. In order to take advantages of
temporal information of video sequences, our embedding
model (ADPE) follows two mapping criterions. On the one
hand, our model projects all the sequential segments of a
specified video into the same semantic representation, which
ensures temporal consistency of the video. On the other hand,
our embedding ensures that the confidence of each segment
being mapped to its true label is non-decreasing as much
more frames are involved in the segment, which simulates
temporal evolutions of actions. Thus, ADPE captures temporal
dynamics of each video. In addition, we learn an adaptive
embedding of target domain instead of directly applying the
embedding learned from source data. With the consideration of
both source and target data, much more semantic knowledge
can be captured by our adaptive embedding. Furthermore,
in order to handle large variations across complex action
categories, an aligned regularization term is proposed. With
this term, centers of target semantic representations and their
corresponding label prototypes are aligned in the semantic
space, thereby relationships between different action categories
are preserved. In summary, our ADPE model can not only
make full use of appearance information of source and target
videos, but also capture temporal information of them. Thus,
domain shift problem can be effectively reduced.

The main contributions of this work are summarized as
follows:
• Our method is the early work to characterize temporal

dynamics of each video during embedding processing,
which describes action evolution and temporal consis-
tency of videos.

• An adaptive embedding of target videos is learned to
explore the underlying distributions of both source and
target data, which aims to transfer shared semantic infor-
mation from source domain to target one.

• An aligned regularization term is proposed to take varia-
tions across different action categories into consideration,
which aligns the centers of target semantic representa-
tions with their corresponding label prototypes.
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Overview of our method. The framework of our method
is shown in Fig. 3. At first, each video is divided into several
successive segments (Fig. 2), each of which is encoded into
a visual representation. The action labels are projected onto
a semantic space manually (attribute space) or learned via
existing knowledge (word2vector space).

At training stage, labels of videos are given. A naive visual-
to-semantic embedding As is obtained via ridge regression.
The embedding should project each segment of the video
onto a same semantic representation, which keeps temporal
consistency of the video. And the embedding also simulates
action evolution of segment-by-segment sequences, which re-
flects that the segment involves more frames is more confident
to being mapped to its true label.

At testing stage, instead of blindly using the mapping As

learned from source data, an adaptive mapping At is learned
for target domain under the guidance of As. In order to
further overcome domain shift problem, centers of semantic
representations of target data are enforced to align with their
true labels in semantic space. During the learning of As,
temporal consistency and action evolution of videos are also
considered. Finally, each target video is classified to its nearest
label prototype in the semantic space.

II. RELATED WORK

A. Action recognition
Over the past few years, many methods [44][27][38] have

been proposed to promote the development of human action
recognition in videos. Most of those methods mainly focus
on exploring efficient features [20][41][43] and discriminative
representations [28][42] of video sequences. Local space-time
feature based approaches [27] have gained popularity and
shown impressive results. Recently, deep learning methods
have been introduced in this filed and got promising perfor-
mance, such as LSTM model [8], C3D model [39], etc.

Those traditional methods have one property in common
that sufficient labeled training videos are required to train
their models. With a rapid development of social networking
sites (Facebook, Twitter, etc) and video capture devices, the
number of video data, categories of actions and complexi-
ties of videos’ content are explosively increasing. The video
datasets for action recognition that are mostly collected from
Internet videos are constantly developing. The early datasets
are the indoor and constrained ones, which focus on simple
and isolated human actions performed by a single person,
e.g. KTH (2004) [31] and Weizmann (2005) datasets [7].
Nowadays, the datasets are outdoor and wild datasets, which
include complex backgrounds and diversified environment,
e.g. OlympicSports (2010) [26], HMDB51 (2011) [17] and
UCF101 (2012) datasets [32]. On the one hand, it’s expensive
to annotate the huge number of videos manually and manual
annotations would cause large confusions as well. Besides,
it’s also difficult for humans to make a clear definition for
each action as their categories grow more fine-grained and
inter-related. On the other hand, it’s incapable for traditional
models to recognize the actions accurately without sufficient
labeled training videos. Therefore, it’s essential and meaning-
ful to explore some methods that can handle the recognition

problems of complex action categories with less labeled data
or even without any labeled videos.

B. Zero-shot learning

The emerging zero-shot learning (ZSL) [4][19] appropri-
ately meets the situation that mentioned above, which aims to
recognize novel categories in the absence of any labeled train-
ing data. The key of ZSL is to learn a classifier f : X → Y
that predicts novel values of Y that are omitted from training
set. To achieve this, a shared semantic space is always defined
in ZSL, which transfers shared characteristics from source
domain to target domain. The most common semantic spaces
used in ZSL are attribute space [19] and word2vector space
[3]. In semantic space, the representations of action categories
are also called ‘prototypes’.

Attribute space: In attribute space, a series of attributes
are predefined manually to describe shared properties across
different categories [21][19], such as visual appearance (e.g.
is-sharp), body parts (e.g. torso), and motion patterns (e.g.
walking). Each category is denoted as a binary vector in term
of the presence (1) or absence (0) of each attribute. Attributes
are capable to describe novel action. However, they need to
be predefined manually and attribute-categories associations
should be annotated in advance. When a novel category is
joined, the variety of attributes and annotations of all the
categories should be modified. Such limitations make attribute-
based methods improper to large-scale recognition problems.

Word2vector space: An alternative semantic embedding
space named word2vector space exactly overcomes above
limitations. In word2vector-based methods [3][6][47], descrip-
tions of labels are firstly learned using Wikipedia articles
or WordNet [24]. Regressors [47] are then learned to map
source data onto the word2vector space. A zero-shot strategy is
realized by adopting those regressors to unseen data and eval-
uating similarity between embedded representations and label
prototypes. Superior to attribute-based methods, word2vector-
based methods only require the name of each category, but
have no use for additional manual definitions of attributes
and attribute-categories associations. However, as attributes
describe fine-grained properties of each action, they are always
more informational than word2vectors.

To evaluate the generality of our model, we implement it
on both attribute and word2vector spaces in this paper.

Domain shift problem: Domain shift problem of ZSL was
firstly discussed in [5], which seriously decreases models’
recognition performance. As source domain and target domain
are totally disjoint, It causes a great discrepancy between a
specified prototype position and representations of its class
member instances in semantic space (Fig. 1). To solve the
problem, lots of ZSL models have been proposed. Fu et
al. [5] proposed a self-training strategy to modify classes
prototypes and align multi-view semantic spaces using canon-
ical correlation analysis. Recently, transductive ZSL becomes
an emerging topic, which is good at solving domain shift
problem. Transductive ZSL extends traditional ZSL into a
semi-supervised setting [30], in which full of target data are
given. Kodirov et al. [13] proposed an unsupervised domain
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Fig. 3. Framework of our ADPE model. (a) In ZSL, source domain (Xs, Cs) and target domain (Xt, Ct) are disjoint, thereby causing domain shift
problem. In our model, a target semantic mapping At is adaptively learned to solve the problem under the guidance of the mapping As learned from source
domain. The alignment between target semantic representations and corresponding labels contributes to this learning as well. (b) In addition, our ADPE model
takes temporal consistency and action evolution of videos into consideration. For each video, all its sequential segments are projected onto a same semantic
representation. Meanwhile, the confidence of each segment being mapped to its true label is non-decreasing as much more frames are involved in the segment.

adaptation method, which uses target labels’ projections to
regularize the learned target domain projection with the aids
of some auxiliary ZSL methods.

C. ZSL for action recognition

Despite promising progresses have been achieved in ZSL,
it is relatively slow-growing for zero-shot action recognition.
Liu et al. [21] firstly proposed human-specified attributes for
actions, where classifier of each attribute was learned using
source data, then novel categories were specified in terms of
their scores of learned attribute classifiers. This work kicked
off the research of zero-shot action recognition. Jain et al.
[10] proposed a semantic embedding to classify actions in
videos without using any video data or action annotations
as prior knowledge, which is named as objects2action. It
provided inspirations for the word2vector based methods for
zero-shot action recognition. Xu et al. [47] firstly imported
word2vector to describe action categories and embed videos
and category labels to a common word2vector space via linear
regression method. Gan et al. [6] aimed at exploiting inter-
class relationships to facilitate zero-shot action recognition
task. They directly leveraged semantic inter-class relations
between seen and unseen actions followed by label transfer
learning. In order to alleviate domain shift problem, Xu et al.
[48] introduced a multi-task visual-semantic mapping, which
could improve the generalization by constraining the semantic
mapping parameters to lie on a low-dimensional manifold. Xu
et al. [46] proposed a manifold regularized embedding for
zero-shot action recognition in a transductive setting, which
aims at preserving manifold structures of videos and further
tackling domain shift problem. More recently, Qin et al. [29]

adopted Error-Correcting Output Codes as label embedding
for zero-shot action recognition, which implicitly captures
semantic correlations among categories and intrinsic local
structure of visual videos.

Especially, there always exist severer domain shift problem
in video-based action recognition task [47] than traditional
ZSL tasks. This is because that videos contains complex struc-
ture information, inter-class variations, especially abundant
temporal information. However, most of the existing zero-
shot action recognition methods could not take full advantage
of videos’ structures and relationships across categories. Fur-
thermore, existing methods are always derived from objects
recognition models, which don’t take temporal information of
video sequences into consideration.

D. Temporal models

Video sequences contain abundant temporal information,
which is crucial to identity different action categories. To take
advantage of those information, researchers proposed lots of
temporal models in various applications. Hoai et al. [9] and
Kong et al. [16][14] adopted Max-Margin structural SVM
framework to capture temporal dynamics of video sequences to
detect early event or predict actions. Niebles et al. [25] repre-
sented activities as temporal compositions of motion segments.
Su et al. [36] proposed a hierarchical dynamic parsing model
to parses the multi-layer dynamics of an action on different
scales. Furthermore, temporal information is found important
in sequences dimensionality reduction [33][34][35]. A max-
min inter-sequence distance analysis method was proposed in
[33], who aligns the sequences of the same class to temporal
states and separates classes based on statistics of those ordered
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TABLE I
PRIMARY SYMBOLS.

Symbols Description
Xs

m ∈ RDv×Ns
Ns visual representations of the mth segments
of source videos.

Xt
m ∈ RDv×Nt

Nt visual representations of the mth segments
of target videos.

Y s ∈ RDw×Ns
Semantic representations of Ns source data;

Y t ∈ RDw×Nt
Semantic representations of Nt target data;

P s ∈ RDw×Ks
Ks source action prototypes;

P t ∈ RDw×Kt
Kt target action prototypes;

As ∈ RDw×Dv Source visual-to-semantic embedding;
At ∈ RDw×Dv Target visual-to-semantic embedding;
Dv Dimension of the visual representations;
Dw Dimension of the semantic representations;
U ∈ RNt×Kt

Proposed alignment matrix;
M The number of temporal segments;
I The number of iterations in Algorithm 1.

states. [34] learned linear sequence discriminant analysis mod-
els to project sequences to lower-dimensional subspace, which
also address temporal dependency of sequences via extracting
statistics of sequence classes. [35] proposed a latent temporal
linear discriminant analysis method, which learns an abstract
template for each class to discover the temporal structures via
employing a modified DTW barycenter.

Motivated by references [16][14], we proposed a dynamic-
preserving embedding model for zero-shot action recognition,
in which temporal consistency and evolution of actions are
captured. To the best of our knowledge, our model is the
first one to characterize appearance information and temporal
information of video sequences simultaneously in zero-shot
action recognition task.

III. METHODOLOGY

Problem formulation and notations. A variable with a
superscript s or t denotes that it is used in source (training)
or target (testing) domain. Source domain is denoted as
Gs = {Xs, Y s, Cs, P s}, Xs = {xs1, ..., xsNs} is the set
of Ns training videos. All the training data belong to Ks

action categories in the source domain Cs = {cs1, ..., csKs},
such as ‘Walk’, ‘Drink’, etc. Target domain is denoted as
Gt = {Xt, Y t, Ct, P t}, Xt = {xt1, ..., xtNt} denote N t

target videos. The Kt novel categories Ct = {ct1, ..., ctKt} are
disjoint from Cs: Ct∩Cs = ∅. P s = {ps1..., psKs} ∈ RDw×Ks

and P t = {pt1..., ptKt} ∈ RDw×Kt

are the Dw-dimensional
semantic embeddings of seen and unseen labels, respectively,
which are also called prototypes. Y s = {ys1, ..., ysNs} ∈
RDw×Ns

and Y t = {yt1, ..., ytNt} ∈ RDw×Nt

are the semantic
representations of source and target data. In source domain,
Y s is known as the label of each source data is given. Y s

consist of P s: Y s ⊃ P s. Our goal is to estimate the semantic
embedding yti of each target data xti and infer its label cti. For
a better understanding, a list of primary symbols used in our
model are summarized in Table I.

Visual representations of videos. Instead of encoding
each video sequence into an orderless representation, which
ignores temporal information of videos, we treat each video

as several sequential segments in this work. As illustrated in
Fig. 2, each video xsi (source and target domain) is uniformly
divided into M fragments. The length of each fragment is
T/M . Note that for different videos, their length T may be
different. Thus, the length of fragments of diverse videos
may be different. Then, a set of successive segments are
made up of those fragments. The mth segment consists of
the first m fragments, which is denoted as xsi [1,m]. In a
similar fashion, the Mth segment is actual the whole video
sequence, which contains all the M fragments. Eventually,
the video xsi is denoted as a set of sequential segments:
xsi = {xsi [1, 1], ..., xsi [1,m], ..., xsi [1,M ]}. Each of the seg-
ment is then encoded into a Dv-dimensional visual vector
via traditional video encoding methods. For a convenience,
the visual representation of mth segment xsi [1,m] is briefly
denoted as xsim in the followings.

Shared semantic embedding spaces. In our framework, all
the action labels (Cs, Ct) are firstly embedded into a semantic
space. These semantic projections of labels are also called
label prototypes (P s, P t). In order to demonstrate the general-
ization of our model, both attribute and word2vector semantic
spaces are selected in this paper. Performances of the two
spaces will be discussed in experiments. For attribute space,
P s and P t are sets of binary vectors. Each element of the
attribute vector corresponds to a manual attribute, e.g. ‘torso’.
Its value (1/0) denotes presence/absence of the attribute in
a specified action. For word2vector space, following [47], we
use a word2vector neural network [23] trained on a 100 billion
word corpus to map each word to a Dw-dimensional vector.
For multi-words action labels, average vector [11] of multi
embedded words is taken as a final description.

A. Aligned dynamic-preserving embedding

Once we get the semantic projections of labels, two kinds
of visual-to-semantic mappings (As, At) for both source and
target domain are then learned, respectively. For most of ex-
isting methods [47][48][46], the visual-to-semantic embedding
As of source domain is learned via a ridge regression:

min
As
‖AsXs − Y s‖2F + β‖As‖2F , (1)

where ‖.‖F is Frobenius norm of a matrix. ‖As‖2F is a smooth
constraint and β controls its strength. A closed-form solution
of As can be obtained:

As = Y s(Xs)
T
(Xs(Xs)

T
+ βI)−1. (2)

Target data Xt are then directly mapped onto the unified
semantic space via the learned visual-semantic mapping As:
Y t = AsXt.

As discussed in Section I, there are three main limitations of
the traditional framework, which leads to sever domain shift
problem. Firstly, it doesn’t capture temporal information of
video sequences during its processing. Secondly, it applies
the semantic mapping that is separately learned from source
domain for target domain without any adaptation. Thirdly, it
doesn’t take variations across action categories into considera-
tion, in which the knowledge transferred from source domain
are insufficient to describe novel categories.
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Fig. 4. Graphical illustration of the preserving of temporal consistency of each
segment and temporal action evolution over time of each video in our ADPE
model. On the one hand, each segment is projected onto the same semantic
prototype. On the other hand, the segments with more observed frames get
higher similarity with the ground-truth prototype.

In order to overcome those limitations and further alleviate
domain shift problem in zero-shot action recognition, we
propose an aligned dynamic-preserving embedding (ADPE)
model. In the followings, we introduce our framework in terms
of the learning of source and target domain, respectively.

1) Source domain: In our model, temporal information
of video sequences are taken into consideration. Instead of
encoding each video into an orderless vector and mapping
it into a fixed semantic representation, we deal with each
video segment by segment and propose a temporal dynamic-
preserving embedding. The projection of source domain is
formulated as follows:

min
As

M∑
m=1

wm‖AsXs
m − Y s‖2F + β‖As‖2F

s.t. wm = f(m),
M∑

m=1
f(m) = 1,

(3)

Xs
m constitutes of the mth segments of all source data.

The quadric error (‖AsXs
m − Y s‖2F ) measures compatibility

between the projected semantic embedding of mth segment
(AsXs

m) and the video’s true label prototype (Y s).
In order to take advantages of temporal information of

video sequences, our embedding model follows two temporal
mapping criterions.
• Firstly, we project all the sequential segments (xsim,∀m)

of a specified video onto the same semantic representation
(ysi ), as shown in Fig. 4. This criterion encourages
temporal label consistency between segments and the
corresponding full video. Context information of seg-
ments is also implicitly captured by enforcing the label
consistency.

• Secondly, we ensure that the confidence of each segment
being mapped to its true label is non-decreasing as much
more frames are involved in the segment. In other words,
the quadric error of mth segment should be smaller than
or equal to the error of (m− 1)th segment: ‖AsXs

m−1−
Y s‖2F ≥ ‖AsXs

m − Y s‖2F .
To realize this criterion, we apply a temporal factor wm

to assign different weights to the mapping of different

segments. wm is defined as a positive non-decreasing
function of m in this paper: wm = f(m), f(m1) ≥
f(m2),∀m1 ≥ m2. Recall our objective function (Eq.
3), which aims at minimizing a summation of all the
segments’ quadric errors. As wm is larger than or equal
to wm−1, the quadric error of ‖AsXs

m−Y s‖2F is expected
to contribute a larger proportion of all the segments’
quadric errors than ‖AsXs

m−1 − Y s‖2F . Accordingly,
larger penalty falls on the mth segment than the m− 1th
one, which promotes it being more tend to own smaller
quadric error (‖AsXs

m−1 − Y s‖2F ≥ ‖AsXs
m − Y s‖2F ).

Thus, the temporal factor wm helps the segment with
much more frames to be mapped into a more convinc-
ing semantic representation. Our embedding not only
captures action appearance changing with segment in-
creasing, but also elaborately characterizes the nature of
sequentially arriving action data. The learned embedding
therefore considers temporal action evolution of video
sequence over time.

In summary, our dynamic-preserving model makes full use
of temporal information of video sequence via considering
temporal consistency of each segment and capturing temporal
action evolution over time of video simultaneously.

We can derive a closed-form solution of As in Eq. 4. Let
its partial derivative with respect to As equal to zero. We can
easily get:

As =
M∑

m=1
wmY

s(Xs
m)T (

M∑
m=1

wmX
s
m(Xs

m)T + βI)
−1
,

(4)
where I is an unit matrix.

2) Target domain: Once As is obtained, most of existing
ZSL methods directly apply it to target domain, resulting in
so-called domain shift problem. Instead, we learn an adaptive
mapping At using both source and target data and pro-
pose a novel aligned dynamic-preserving embedding (ADPE)
method. ADPE not only exploits underlying structures of
source and target data, but also takes inter-class variations
into consideration. In target domain, we also divide each target
video into a series of successive segments and follow the two
temporal mapping criterions as used in source domain. The
objective function of target domain is formulated as Eq. 5:

min
At,Y t,U

M∑
m=1

wm‖AtXt
m − Y t‖2F + λ1T1 + λ2T2

s.t. ‖uj‖22 = 1, T1 = ‖As −At‖2F , T2 = ‖Y tU − P t‖2F ,
(5)

where Y t ∈ RDw×Nt

is the learned semantic embedding of
target data. T1 and T2 are our proposed adaptive regularization
term and aligned regularization term, respectively. U is an
alignment matrix to couple learned semantic representations
of target data with corresponding label prototypes. The detail
interpretations of each component of ADPE are discussed as
follows.

Adaptive regularization term, ‖At −As‖2F . Although
source and target domains are totally disjoint, the mapping
matrix As that is learned from source data carries latent
semantic information across seen and unseen categories. On
the one hand, we expect to preserve the shared information that
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Fig. 5. Illustration of components in our objective function. The red shades
denote the search space of At. (a) Adaptive term limits the learning of At in
the neighborhood of As; (b) Aligned term ensures the alignment between
semantic embedding of target data and label prototypes. It gives a more
discriminative and narrow direction to the learning of At.

is carried in As. On the other hand, the underlying structure
of target data also needs to be captured. Thus, the adaptive
regularization term is proposed to enforce target mapping At

to be close to source mapping As. As illustrated in Fig. 5(a),
the adaptive term guides the searching of At to be limited
in a neighborhood of As. In fact, the adaptive regularization
term avoids At be any arbitrary or unreasonable values. It
guarantees the reliability of our model.

Aligned regularization term, ‖Y tU − P t‖2F . To further
overcome domain shift problem and improve discriminabil-
ity of learned representations Y t, one may expect that the
distributions of learned semantic representations Y t of target
data and the true label prototypes P t should be similar to
each other in the semantic space. This idea can be naturally
implemented by reducing distributions difference between Y t

and P t or minimizing some predefined distance measures.
However, as the dimensions of Y t and P t are different, we
can not directly measure biunique similarity between them.
To solve the problem, Long et al. [22] adopted empirical
Maximum Mean Discrepancy (MMD) to compare the two
distributions, which computes distance between sample means
of the learned semantic representations of testing videos and
known action prototypes in the shared semantic space (Fig.
6(a)). Transplant to our task, the aligned regularization term
could be formulated as Eq. 6 [37].

T2(MMD) = ‖Ỹ t − P̃ t‖2F ,
Ỹ t = (

∑Nt

i=1 y
t
i)/N

t, P̃ t = (
∑Kt

j=1 p
t
j)/K

t,
(6)

where N t and Kt denote the number of testing samples and
prototypes, respectively. The regularization term that formu-
lated via MMD measurement actually aligns their average
vectors instead of the two distributions (Y t and P t). However,
for zero-shot action recognition, there exist large inter-class
variations among different categories. MMD term ignores the
inter-class variations and erases characters of each category.

In order to take the inter-class variations into account and
learn an effective mapping At, we propose a nonparametric
distance measurement ‖Y tU −P t‖2F , which is called aligned
regularization. In this term, an alignment matrix U is proposed
to align the center of each category of target semantic repre-
sentations with its estimated label prototype (Fig. 6(b)). U is
defined in Eq. 7. Each element uij in U is the probability that

Walk
Run

Jump

Dive

Prototypes

Average prototype

Average semantic representation

Semantic representation

Prototypes

Semantic representation

Walk
Run

Jump

Dive

(a) (b)

Fig. 6. Illustration of aligned term. (a) MMD term: Average vectors of
action prototypes and all the target semantic representations are calculated,
respectively. Distributions difference is shorten via prompting the two average
vectors to be similar. (b) Our aligned term: Estimated centers of target
semantic representations are aligned with corresponding action prototypes
class wisely, during which variations across categories are preserved.

each learned semantic embedding yti belongs to a specified
category ptj :

uij = p(yti |ptj) ⊂ U. (7)

The semantic representations of target data Y t multiplied by
the jth column of U can be derived in Eq. 8:

Y tUj =
∑
i

ytiuij =
∑
i

ytip(y
t
i |ptj). (8)

It can be observed that Y tUj is actually the mean value of
the semantic representations that are estimated to be the jth
category. In terms of our aligned regularization, the estimated
center Y tUj of the jth category is enforced to be close to its
corresponding label prototype ptj . Thus, centers of semantic
representations are aligned with label prototypes P t class
by class (Fig. 6(b)). As we deal with the alignment class-
wisely, character of each category and inter-class variations
among different categories are preserved. Compared to adap-
tive regularization term, aligned regularization term offers
a discriminative direction to the optimization of At in the
neighborhood of As, which guarantees the practicability of
our model (Fig. 5(b)).

In summary, our ADPE model not only captures the com-
monality underlying both source and target data, but also pre-
serves inter-classes variations across categories. Thus, domain
shift problem can be significantly reduced via our model.

B. Optimization

Our objective function of target domain is not convex for
Y t, At and U simultaneously, but it is convex for each of them
while the others are fixed. Thus, Alternating Direction Method
(ADM) [1] is applied to solve the optimization problem.

Fixing At and U , update Y t. Our objective function turns
to be Eq. 9,

min
Y t

M∑
m=1

wm‖AtXt
m − Y t‖2F + λ2‖Y tU − P t‖2F (9)

This is a least square problem and we can easily get a
closed-form solution. At is initialized via As. U is initialized
randomly. To obtain Y t, the partial derivative of function Eq.
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9 with respect to Y t should be zero and could be expressed
as Eq. 10.

M∑
m=1

wmA
tXt

m −
M∑

m=1
wmY

t − λ2Y tUUT + λ2P
tUT = 0.

(10)
Then, we can get a closed-form solution of Y t,

Y t = (λ2P
tUT +

M∑
m=1

wmA
tXt

m)(λ2UU
T +

M∑
m=1

wmI)
−1,

(11)
where I is an unit matrix.

Fixing Y t and U , update At. Our objective function (Eq.
5) turns to be Eq. 12,

min
At

M∑
m=1

wm‖AtXt
m − Y t‖2F + λ1‖As −At‖2F . (12)

We can also calculate the derivative of it with regard to At as
Eq. 13 and get a closed-form solution as Eq. 14,

M∑
m=1

wmA
tXt

m(Xt
m)T −

M∑
m=1

wmY
t(Xt

m)T + λ1A
t

−λ1As = 0.
(13)

At =

(λ1A
s +

M∑
m=1

wmY
t(Xt

m)T )(
M∑

m=1
wmX

t
m(Xt

m)T + λ1I)
−1.

(14)
Fixing Y t and At, update U . According to the definition of

U , each element uij can be calculated on the basis of Bayes’
theorem as Eq. 15.

uij = p(yti |ptj) =
p(pt

j |y
t
i)·p(y

t
i)∑

k

p(pt
j |yt

k)·p(y
t
k)
, (15)

where p(ptj |yti) is the probability of a specified semantic
representation yti belonging category ptj ,∀j. We assume xi
conforming to an uniform distribution. And p(ptj |yti) can be
calculated as Eq. 16.

p(ptj |yti) =

{
1, if j = argmin

j
‖yti − ptj‖2F

0, otherwise
. (16)

It can be observed from Eq. 16 that if ptj is the nearest
prototype of yti , the probability of it belonging to category
ptj is 1. We can also adopt some soft methods to estimate
p(ptj |yti) according to the similarity between yti and each
prototype. But the hard estimation is sufficient to demonstrate
the effectiveness of our method. The whole optimization
algorithm of our method is summarized in Algorithm 1.

Zero-shot classification. Once the semantic representations
Y t of target data are obtained, classification is performed in
the learned semantic space. The most common classifier is
nearest prototype classifier. Given an obtained embedding yti ,
its label is the nearest prototype as Eq. 17.

c(yti) = argmin
k
‖yti − ptk‖. (17)

Computational complexity. We analyze computational
complexities of our method in source and target do-
mains, respectively. We assume the simplest and worst
matrix multiplication algorithm is applied. 1) Source do-
main: The complexity of calculating As (Eq. 4) is

Algorithm 1 Aligned semantic embedding
Input:
Source data Xs

m,m ∈ {1, ...,M}; Source semantic represen-
tations Y s .
Target data Xt,m ∈ {1, ...,M}; Target labels prototypes P t.
Output: Semantic embedding Y t and target embedding At

Source domain:
1. Calculate As by Eq. 4
Target domain:
1. Initialize: At by As; U randomly
2. repeat
3. Update Y t by Eq. 11;
4. Update At by Eq. 14;
5. Update U by Eq. 15 and Eq. 16;
6. until converge.

O(MDwN
sDv +MNsD2

v +DwD
2
v +D3

v). As M is a low-
dimensional fixed constant, we can omit its influence. The
complexity can thus be simplified as O(C2Ns+C3), where C
represents the dimension of visual or semantic representations
(Dv or Dw).

2) Target domain. We also omit the influence of M and Kt

as they are low-dimensional fixed constants. The complexity of
updating Y t (Eq. 11) is O(DwK

tN t+MDwDvN
t+KtN t2+

DwN
t2 + N t3), whose simplified form is O(N t3 + N t2 +

CN t2 + C2N t); The complexity of updating At (Eq. 14) is
O(MDwN

tDv +MN tD2
v +DwD

2
v +D3

v), whose simplified
form is O(C2N t+C3); The complexity of updating U (Eq. 16)
is O(N tKt), whose simplified form is O(N t). In general, the
worst case of total computational complexity in target domain
is I times of the summation of three-step updating, whose
simplified form is O(I(N t3 +N t2 + CN t2 + C2N t +N t +
C3)). Therefore, the computation of our model is a three-order
computation.

IV. EXPERIMENTS

A. Datasets and settings

We apply our novel zero-shot action recognition method
(ADPE) on three challenging action datasets, Olympic sports
[26], HMDB51 [17] and UCF101 [32], which have been
popularly used in human action recognition task.

Olympic sports dataset consists of 783 videos, which are
divided into 16 sports actions. HMDB51 dataset is a large
collection of realistic videos from various sources, mostly from
movies, and a small proportion from public databases such as
the Prelinger archive, YouTube and Google videos. It contains
6766 realistic videos distributed in 51 actions. UCF101 is also
a set of realistic action videos, collected from YouTube. With
13320 videos from 101 action categories, UCF101 gives the
largest diversity in terms of actions and with the presence of
large variations in camera motion, object appearance and pose,
object scale, viewpoint, etc.

Because there is no existing zero-shot learning evaluation
protocol for action recognition. We follow the rule of split in
[47], in which 50% categories of videos are used for training
and the other 50% for testing. We randomly generate 10
independent splits for each dataset. And the mean accuracy
(%) and standard deviation are reported for performance.

Visual representations. In this work, we uniformly divide
a full video into 5 fragments. Then 5 successive segments
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TABLE II
COMPARISON BETWEEN OUR METHOD AND STATE-OF-THE-ART METHODS ON OLYMPIC, HMDB51 AND UCF101 DATASETS. LABEL EMBEDDING:

ATTRIBUTE (A) OR WORD2VECTOR (W). TRANS: ACCESSIBLE TO UNSEEN VIDEOS. SPLITS: THE NUMBER OF SPLITS; ‘S’: THE APPLIED SPLITS ARE
THE SAME WITH OURS; ‘D’: THE APPLIED SPLITS ARE DIFFERENT WITH OURS. ‘∗’: THE RESULTS REPORTED IN THEIR ORIGINAL PAPERS. ACCURACY

(%) AND STANDARD DEVIATION ARE REPORTED FOR PERFORMANCE.

Methods Reference Embed Splits Trans Olympic HMDB51 UCF101

Random guess —- —- —- —- 12.5 4.0 2.0
HAA [21] CVPR 2011 A 10 / S No 52.74 ± 8.16 N/A 9.76 ± 1.58
IAP [19] TPAMI 2014 A 10 / S No 50.87 ± 7.11 N/A 9.95 ± 1.26
DAP [19] TPAMI 2014 A 10 / S No 52.48 ± 9.76 N/A 10.39 ± 1.56
RR [47] ICIP 2015 A 10 / S No 55.18 ± 8.87 N/A 15.61 ± 1.12
SIR [6] AAAI 2015 A 10 / S No 46.45 ± 11.58 N/A 7.57 ± 1.77
UDA∗ [13] ICCV 2015 A 10 / D Yes N/A N/A 13.20 ± 1.90
MTE∗ [48] ECCV 2016 A 5 / D No 55.60 ± 11.30 N/A 18.30 ± 1.70
MTE [48] ECCV 2016 A 10 / S No 55.23 ± 8.93 N/A 11.80 ± 1.00
MR∗ [46] IJCV 2017 A 30 / D Yes 53.50 ± 11.90 N/A 20.20 ± 2.20
MR [46] IJCV 2017 A 10 / S Yes 55.15 ± 9.17 N/A 15.10 ± 1.07

RR∗ [47] ICIP 2015 W 30 / D No N/A 13.00 ± 2.70 10.90 ± 1.50
RR [47] ICIP 2015 W 10 / S No 30.93 ± 5.76 13.40 ± 1.11 11.68 ± 0.99
MTE∗ [48] ECCV 2016 W 5 / D No 44.30 ± 8.10 19.70 ± 1.60 15.80 ± 1.30
MTE [48] ECCV 2016 W 10 / S No 31.21 ± 5.80 13.22 ± 2.30 11.80 ± 1.00
MR∗ [46] IJCV 2017 W 30 / D Yes 38.60 ± 10.60 19.10 ± 3.80 18.00 ± 2.70
MR [46] IJCV 2017 W 10 / S Yes 30.77 ± 5.45 15.90 ± 2.15 11.66 ± 0.98

UDA∗ [13] ICCV 2015 A+W 10 / D Yes N/A N/A 14.00 ± 1.80
ZSECOC∗ [29] CVPR 2017 ECOC 10 / D No 59.80 ± 5.60 22.60 ± 1.20 15.10 ± 1.70

ADPE Ours A 10 Yes 60.13 ± 6.01 N/A 20.56 ± 1.09
ADPE Ours W 10 Yes 38.55 ± 5.11 17.72 ± 1.26 14.03 ± 0.66

are made up of those fragments as introduced in Section III.
For example, the 2th segment consists of the 1th and 2th
fragments, the 3th segment consists of the 1th, 2th and 3th
fragments, and so on. For each segment, we extract the C3D
features [39]. After that, each segment is denoted as a 4096-
dimensional mean vector of a set of extracted C3D features.

Label semantic embedding. We apply both word2vector
and attribute spaces in our experiments. For attribute space,
each label is represented as a binary attribute vector. Since the
attributes’ annotations are not available for HMDB51 dataset,
we conduct those experiments on Olympic and UCF101
datasets. 40 and 115 hand-annotated attributes and attribute-
categories associations are provided for the two datasets,
respectively. For word2vector space, the skip-gram neural
network [23] trained on Google News dataset is adopted to
encode each action label to a 300-dimensional vector. For
multi-words label, we obtain a fused vector by averaging them.

B. Comparison with the state-of-the-arts

To demonstrate the capabilities and generalization of the
proposed method, we firstly compare it with several con-
temporary and related zero-shot learning methods using both
word2vector and attribute spaces: (1) Human Actions by
Attributes (HAA) method [21]; (2) Direct/Indirect Attribute
Prediction (DAP/IAP) methods [19]; (3) Original Ridge Re-
gression (RR) method [47]; (4) Semantic Inter-Class Relation-
ships (SIR) method [6]; (5) Unsupervised Domain Adapta-
tion (UDA) method [13]; (6) Multi-Task Embedding (MTE)

method [48]. (7) Manifold Regression (MR) method [46]; (8)
Error-Correcting Output Codes (ZSECOC) method [29].

We notice that some compared methods (e.g. RR, MR and
MTE) developed some self-training and data augmentation
techniques to improve their final performance. As our goal
focuses on learning effective visual-to-semantic embedding,
we therefore compare with their results without adopting those
self-training and data augmentation settings. We mark their
native results copied from corresponding papers with ‘∗’ in
Table II. Besides, for fair comparisons, we re-implement all
the compared methods using the same settings with ours (eg.
10 splits and C3D features) and fine tune their parameters to
obtain the best performance.

1) Attribute space: Firstly, we compare our model with
several state-of-the-art methods using attribute space. Average
accuracies (%) and standard deviation of those methods are
reported in Table II. It shows that our method achieves the
best performance on Olympic and UCF101 datasets. HAA
[21] learns a classifier for each attribute, after which unseen
categories are determined in terms of scores of learned at-
tribute classifiers. This method treats all the attributes inde-
pendently and completely ignores relationships across videos.
Additionally, its complexity is in direct proportion to the
number of attributes, which is inapplicable for large datasets.
IAP and DAP [19] methods also apply the attribute classifiers
to recognize unseen categories. Those methods directly use
the attribute classifiers learned from source data on target
domain without any adaptation, and thus perform poorly on
complex action datasets. Ridge regression (RR) [47] is the
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(i) Original ridge regression (ii) Our ADPE model

A. Set 1

(i) Original ridge regression (ii) Our ADPE model

B. Set 2

Fig. 7. Visualization of semantic representations in an attribute-based space via (i)traditional ridge regression and (ii) our aligned dynamic-preserving
embedding (ADPE) model. Two random sets of target classes are presented for diversity: A. Set 1 and B Set 2. Dots denote semantic representations of
samples and different colours indicate different action categories (Better in colour).

traditional ZSL method that directly adopts the regressor
learned by source data on target domain. It always suffers
from severe domain shift problem. Different from it, our
method adaptively learns a semantic mapping via exploring
structures of both source and target data. This allows us
to efficiently solve the domain shift problem and achieve
significant improvements. SIR [6] exploits semantic inter-
class relationships between actions to transfers knowledge
from unseen categories to seen ones. However, the inter-class
relationships couldn’t describe the diversity of unseen actions.
In contrast, the aligned regularization term in our ADPE model
is typically designed to collect inter-class information across
various unseen categories, which achieves better performance
than SIR on both Olympic and UCF101 datasets. Kodirov
[13] exploits an unsupervised domain adaptation (UDA) to
overcome domain shift problem, which is similar with our
method. Their model is actually a two-step framework, in
which some auxiliary ZSL methods need to be adopted to pre-
compute the probability of each target data being labeled as
each novel category. Thus, its performance is easily affected by
the selections of different auxiliary ZSL methods. In contrast,
our ADPE model is an unified optimization framework, which
not only self-adaptively learns a visual-semantic mapping of
target data without any auxiliary methods, but also takes inter-
class variations into consideration. MTE model [48] uses a
multi-task semantic mapping to improve generalization power
of visual-to-semantic mapping by constraining its parameters
to lie on a low-dimensional manifold. Compared to MTE, our
method gains significant improvements on the two datasets,
respectively. Manifold regression (MR) method [46] uses a
manifold regularization to capture structures of target data.
However, it does’t establish the connections between semantic
representations of target data and label prototypes. Besides,
inter-class variations are always ignored during their process-
ing. Superior to MR, our method ensures that the distributions
of learned representations of target data Y t are similar to
their corresponding label prototypes’. Moreover, we preserve
relationships across different categories. ZSECOC [29] is a
recent method, which adopts Error-Correcting Output Codes as
label embedding for zero-shot action recognition. It implicitly
captures semantic correlations among categories and intrinsic
local structure of visual videos. ZSECOC achieves competitive

results with ours on Olympic and HMDB51 datasets.
However, all the mentioned methods in Table II are orig-

inally desired for objects recognition in images, which ig-
nore the long-term temporal information underlying video
sequences. Expressly, superior to them, our model character-
izes temporal information of video sequences via preserving
temporal consistency and temporal evolutions of actions.

2) Word2vector space: Our embedding method is also effi-
cient in recognizing unseen actions using word2vector space.
We further compare it with several popular word2vector-based
methods on the three datasets. Results are shown in Table II.
Our model also achieves better performance than the base-
line RR method using word2vector space. The performances
of MR and MTE methods reported in their papers using
word2vector space are better than ours on the three datasets.
Nevertheless, when we re-conduct their experiments using the
same settings (eg. same splits and visual representations), we
can obtain improvements over them on the three datasets.

In summary, our embedding model is applicable for both
word2vector and attribute semantic spaces.

TABLE III
COMPARISONS BETWEEN THE EMBEDDINGS LEARNED FROM SOURCE
(As) AND TARGET (At) DOMAIN ON OLYMPIC SPORT, HMDB51 AND

UCF101 DATASETS. LABEL EMBEDDING: ATTRIBUTE (A) OR
WORD2VECTOR (W). ACCURACY (%) AND STANDARD DEVIATION ARE

REPORTED FOR PERFORMANCE.

Methods Olympic (A) HMDB51 (W) UCF101 (A)
RR-As 55.18 ± 8.87 13.40 ± 1.11 15.61 ± 1.12

Ours-As 55.22 ± 9.00 15.56 ± 3.44 15.79 ± 1.26
Ours-At 60.13 ± 6.01 17.72 ± 1.26 20.56 ± 1.09

3) Comparisons between As and At: To better demon-
strate that our model can better tackle domain shift problem,
we directly apply the projection As learned in the source
domain to the target domain. The results on Olympic sport,
HMDB51 and UCF101 datasets are reported in Table III.

To avoid confusion, ‘RR-As’ denotes the visual-to-semantic
embedding learned in source domain via Original Ridge
Regression (RR) method. Compared to ‘RR-As’, ‘Ours-As’
is the source embedding obtained via our ADPE method (Eq.
3, Eq. 4), which takes the temporal information of source
videos into consideration. ‘Ours-At’ is the target embedding
learned via ADPE method (Eq. 5, Eq. 14), which not only
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captures temporal information of videos, but also incorporates
the proposed adaptive and aligned constraints. All the three
embeddings are adopted to target domain, respectively, whose
performance is reported in Table III. From the experiments
we can find that, ‘Ours-As’ gets higher accuracies than ‘RR-
As’ on the three datasets, which demonstrates the importance
of temporal information. Superior to ‘Ours-As’, ‘Ours-At’
achieves significant rises of accuracies on the three datasets.
The source embedding At learned via our ADPE model
takes full advantage of underlying structures of both source
and target videos and takes the relationships across different
categories into account, which effectively alleviates the domain
shift problem and improves the performance of zero-shot
action recognition. In the followings, we will discuss the
properties of our method in detail.

4) Qualitative Visualization: In this section, we further
analyze the effectiveness of our APDE model via qualitative
visualizations. For the visualizations, we randomly sample 8
target classes from UCF101 dataset and project all samples
from these classes into an attribute semantic space by (i)
traditional ridge regression (RR) model and (ii) our ADPE
model. The semantic representations are visualized in 2D using
t-SNE toolbox [40]. Two random sets of target classes are
presented for diversity, as shown in Fig. 7. Data instances
are shown as dots. Different colours indicate different action
categories. We can observe from Fig. 7 that our ADPE model
yields better visual semantic projections than the baseline
method (RR). ADPE not only obtains much tighter clusters
in the semantic space, but also yields more separable clusters.
In other words, ADPE can reduce intra-classes distances and
increase inter-classes distances, which alleviates domain shift
problem effectively.

TABLE IV
COMPARISON BETWEEN THE MODELS THAT CAPTURES TEMPORAL
INFORMATION (RR-WITHTIME AND ADPE) AND THOSE WITHOUT

TEMPORAL PROPERTY (RR AND ADPE-NOTIME). ACCURACY (%) AND
STANDARD DEVIATION ARE REPORTED FOR PERFORMANCE.

Methods Label embedding UCF101

RR Attribute 15.61 ± 1.12
RR-WithTime Attribute 16.00 ± 1.13

RR Word2vector 11.68 ± 0.99
RR-WithTime Word2vector 11.94 ± 1.13

ADPE-NoTime Attribute 18.18 ±1.42
ADPE (Ours) Attribute 20.56 ± 1.09
ADPE-NoTime Word2vector 12.90 ± 0.72
ADPE (Ours) Word2vector 14.03 ± 0.66

C. Temporal dynamic-preserving property

Superior to existing methods, our ADPE model captures
temporal information of video sequences via preserving tem-
poral dynamics of video sequences. In order to demonstrate
the superiority of dynamic-preserving property of our ADPE
model, we evaluate it in two aspects.

1) Evaluation of dynamic-preserving property: Firstly, we
compare our model with several variants that don’t take tem-
poral information of videos into consideration. By removing

Split1 Split2 Split3 Split4 Split5 Split6 Split7 Split8 Split9 Split10

M
ea

n 
A

cc
ur

ac
y

15

16

17

18

19

20

21

22

ADPE-noTime ADPE-Log ADPE-Linear ADPE-Exp

Fig. 8. Evaluation of different dynamic-preserving functions of each split on
UCF101 dataset using attribute space.

the dynamic-preserving property, the objective function of our
ADPE model degenerates into Eq. 18.

Source domain:
min
As
‖AsXs − Y s‖2F + β‖As‖2F ,

Target domain:
min

At,Y t,U
‖AtXt − Y t‖2F + λ1‖As −At‖2F + λ2‖Y tU − P t‖2F

s.t. ‖uj‖22 = 1,
(18)

where each video sequence is presented as a Dv-dimensional
vector. Compared to our ADPE model, the degenerated model
(denoted as ADPE-NoTime in the followings) ignores tempo-
ral dynamics of actions during their visual-to-semantic em-
bedding. The results of ADPE-NoTime and ADPE (ours) are
reported in Table IV. Besides, to better explain the superiority
of dynamic-preserving property, we apply our time model on
the baseline RR method [47] (RR-WithTime), and compare
it with original RR in Table IV. Obviously, no matter what
semantic space we use (attribute or word2vector), the models
that consider temporal dynamics of videos achieve better
performance than those models that ignore these information.
It demonstrates that temporal information of video sequences
is helpful to alleviate domain shift problem and important
to improve the performance of zero-shot action recognition.
Our embedding model can exactly capture these information
via preserving temporal consistency of videos and temporal
evolutions of actions

2) Evaluations of dynamic-preserving functions: As ex-
plained in Section III, we apply a temporal factor wm to
control the quality of visual-to-semantic projection of each
segment, which is defined as an positive non-decreasing func-
tion of m in this paper (wm = f(m)). In the experiment, we
evaluate the performance of our model using different non-
decreasing functions, namely linear function (ADPE-Linear),
logarithmic function (ADPE-Log) and exponential function
(ADPE-Exp). For those functions, wm can be expressed as

wm = m/(
M∑

m=1
m), wm = logm /(

M∑
m=1

logm) and wm =

em/(
M∑

m=1
em), respectively. We record the result of each split

on UCF101 dataset using those functions in Fig 8. As shown in
the figure, the logarithmic function outperforms the linear and
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Fig. 9. Evaluations of the number of segments on UCF101 dataset using
attribute space.

exponential functions. Nevertheless, no matter which function
we use, our ADPE model with dynamic-preserving property
performs better than the one that doesn’t take temporal infor-
mation into consideration (ADPE-noTime). It further proves
that the temporal dynamic information benefits ZSL action
recognition task.

3) Evaluation of segmentation: In order to further evaluate
the temporal property of our model, we divide each video
into different number of segments (M = 1, 2, ..., 9, 10). We
randomly select several splits of UCF101 dataset and record
their accuracy in the case of different number of temporal
segments (Fig. 9 ). From the figure we can conclude that,
when we treat the whole video as one segment, the accuracy of
each split drops off. It further proves that each video contains
abundant temporal information, which plays important roles
in recognizing human actions. If we treat a video as one
segment, its internal temporal information will be disregarded.
When we divide each video into several segments and capture
temporal dynamics and consistency of them, the performance
is significantly improved. It can be also concluded from the
figures that with more temporal segments that a video has
been divided, the higher recognition accuracy we can obtain.
A possible reason is that we can preserve detailed temporal
information when we divide videos into refined segments. In
order to get a tradeoff between accuracy and efficiency, we
divide each video (Olympic sports, HMDB51 and UCF101
dataset ) into 5 temporal segments in our experiments.

4) Analysis of intermediate results and visualization: In
this section, we analyze the middle results of our model on
Olympic sports and HMDB51 datasets. We apply the learned
embedding At on temporal segments of testing videos, each
of which is projected to a corresponding segmental semantic
representation.

Firstly, we category each segmental semantic representation
via nearest prototype classifier (Eq. 17) and calculate the av-
erage accuracy. Results are recorded in Table V. Results show
that the latter segments containing more frames achieve higher
accuracies than their former ones. This echoes our temporal
mapping criterion that the confidence of each segment being
mapped to its true label is non-decreasing as much more
frames are involved in it.

Secondly, we randomly select a testing video of Olympic

TABLE V
ACCURACY (%) OF EACH TEMPORAL SEGMENT OF OLYMPIC SPORT AND

HMDB51 DATASETS. LABEL EMBEDDING: ATTRIBUTE (A).

Segments m = 1 m = 2 m = 3 m = 4 m = 5
Olympic (A) 53.63 56.14 57.93 59.24 60.13

HMDB51 (W) 7.96 15.46 16.95 17.23 17.72

dataset, whose first frame of each temporal segment and cor-
responding segmental semantic representations are shown in
Fig. 10. The bottom row visualizes the intermediate frames of
action ‘Snatch’, which displays the whole dynamic evolution
of the action. The upper row visualizes the segmental semantic
representations of the video, whose horizontal axis denotes the
indexes of attributes and vertical axis denotes the values of
attributes. To get a better visualization, we adjust the values
of attributes to the range[−1, 1]. It shows that the envelopes
of segmental semantic representations are fitting gradually
with corresponding prototype along with increasing fragments.
It couples with the non-decreasing accuracies of temporal
segments.

D. Evaluation of regularization terms

To further analyze each component in our model, the
comparisons between our full model (ADPE) and sub-models
are implemented on UCF101 dataset using attribute space. We
remove adaptive regularization term (ADPE-noAD) or aligned
regularization term (ADPE-noAL) from the full model. The
average accuracy of each split of those models is reported
in Fig. 11. Results clearly show that our full model achieves
superior performance compared to its sub-models. Thus, both
of the two regularization terms play important roles in our
framework.

1) Adaptive term: If we remove the adaptive term from
our model (ADPE-noAD), the average accuracy of each split
is reduced. It demonstrates that the source mapping matrix
As, which carries some shared semantic information between
source and target data, provides a beneficial guidance to the
adaptation of target mapping At.

TABLE VI
COMPARISON BETWEEN THE MODELS USING ALIGNED TERM OR MMD

TERM ON UCF101 DATASET. ACCURACY (%) AND STANDARD DEVIATION
ARE REPORTED FOR PERFORMANCE.

Methods RR MMD ADPE-noT ADPE
UCF101 15.61±1.12 15.76±1.24 18.18±1.42 20.56±1.09

2) Aligned term: Without our aligned term (ADPE-noAL),
the accuracy of each split significantly decreases, which
strongly proves the effectiveness of the novel aligned term.
With the aligned regularization term, distributions of learned
semantic representations Y t and label prototypes P t are
enforced to be close to each other in the semantic space.
Meanwhile, relationships between different categories are cap-
tured via matching the center of each group of semantic
representations with each label prototype. Thus, domain shift
problem can be alleviated via this term. In order to further
demonstrate the effectiveness of aligned term, we compare
it with MMD constraint. We replace our aligned term with
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Fig. 10. The visualizations of the first frame of each temporal segment and corresponding semantic representations of a random video in Olympic dataset.
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Fig. 11. Evaluations of regularization terms on UCF101 dataset using attribute
space.

MMD measurement (T2(MMD) in Eq. 6) and record the re-
sults on UCF101 dataset using attribute space in Table VI.
Explicitly, the aligned term that takes the inter-class variations
into account helps learn an more effective visual-to-semantic
embedding.

In summary, adaptive term restricts the learning of At in a
neighborhood of As, while aligned term gives a discriminative
direction to its learning. These two components complement
each other, and contribute to the superior performance of our
model.

E. More discussions

1) Generalized ZSL: In generalized ZSL setting, the search
space of target videos contains both training and testing classes
(P s

⋃
P t). In other words, the testing video could belong to ei-

ther seen classes or unseen ones. To further show the potential
of our method in generalized ZSL setting, we randomly sample
50% of the original source videos for testing. Therefore, the
generalized target set contains original target videos and 50%
selected source videos. The generalized source set consists of
the remaining original source videos. We learn the visual-to-
semantic mappings (GAs, GAt) for both generalized source
and target domains via our ADPE model (Eq. 3, Eq. 5), and
record the performance on the unseen and seen videos in Table
VII, respectively.

We can find that the source mapping GAs could only
recognize the seen actions containing in testing set. Most of
unseen videos are mis-judged as seen ones, whose accuracy

is even inferior to random guess. That’s mainly because the
source mapping GAs only considers the structures of seen
videos, which results in severe domain shift problem for
unseen videos in generalized ZSL setting.

By contrast, our target mapping GAt has the potential to
help us recognize both seen and unseen videos. On the one
hand, we can get considerable performance of unseen videos
via GAt (58.94±6.97, 15.72±4.63 and 13.70±2.02). On the
other hand, the recognition of seen videos doesn’t shift to
unseen categories entirely. Our proposed ADPE embedding
GAt not only transfers shared semantic information from
seen categories to unseen ones, but also characterizes inter-
class variations of unseen videos, which is effective to solve
domain shift problem. However, the accuracies on the three
datasets in generalized ZSL setting are lower than those in
standard setting, which indicates the strictness and difficulties
of generalized ZSL. We will further study this problem in our
future work.

2) Convergence: We apply Alternating Direction Method
(ADM)[1] to solve our optimization problem and a local
minima can be reached. To better illustrate the convergence of
our model, we record value variations of our objective function
of a random split on UCF101 dataset, as shown in Fig. 12.
Results show that the objective value reduces quickly in the
first 5 iterations and the model takes about 10 iterations to
converge to a local minima. Accordingly, the accuracy boosts
in the first 5 iterations and increases slowly in the following
iterations.
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Fig. 12. Evaluations of convergence of our model. (a) The value variations
of objective function along iterations. (b) The recognition accuracy along
iterations.

3) Evaluation of parameters: There are two impor-
tant parameters in our model: factors of adaptive regu-
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TABLE VII
EVALUATIONS OF OUR ADPE MODEL IN GENERALIZED SETTING. LABEL EMBEDDING: ATTRIBUTE (A) OR WORD2VECTOR (W). ACCURACY (%) AND

STANDARD DEVIATION ARE REPORTED FOR PERFORMANCE.

Methods Olympic (A) HMDB51 (W) UCF101 (A)
Unseen Seen Unseen Seen Unseen Seen

Random guess 12.50 12.50 4.0 3.85 2.0 2.0
Ours-GAs 0.61 ± 1.30 91.07 ± 2.78 0.04 ± 0.09 73.83 ± 3.43 0.87 ± 0.65 94.63 ± 1.18
Ours-GAt 58.94 ± 6.97 41.19 ± 11.85 15.72 ± 4.63 35.12 ± 5.19 13.70 ± 2.02 62.90 ± 3.91
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Fig. 13. Evaluations of parameters on UCF101 datasets. (a) Fix λ2, vary λ1;
(b) Fix λ1, vary λ2.

larization term λ1 and aligned regularization term λ2. In
the above experiments, they are empirically set to 0.1
and 0.0001 on Olympic dataset, 0.1 and 100 on UCF101
dataset and 0.1 and 0.1 on HMDB51 dataset, respectively.
In this section, we analyze the impacts of these param-
eters on UCF101 dataset. Firstly, we fix λ2 to 100 and
vary λ1 in the range of {0.0001, 0.001, 0.01, 0.1, 1, 10, 100}.
Then we fix λ1 to 0.1 and vary λ2 in the range of
{0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000}. The variations of
average accuracies of 10 splits are shown in Fig. 13. From
Fig 13 (a) we can observe that our model is insensitive to
the adaptive parameter on UCF101 dataset. Fig 13 (b) shows
that our model achieves a slightly better performance when
the aligned parameter gets larger. In general, our model is not
very sensitive to all the parameters.

V. CONCLUSION

This paper studies the zero-shot action recognition problem.
The challenge of this task is to overcome the serious domain
shift problem and preserve temporal dynamic information of
videos simultaneously. A novel aligned dynamic-preserving
embedding model (ADPE) was proposed in this work, which
not only captures dynamic evolution of actions and ensures
temporal consistency of videos, but also takes the variations
across different action categories into consideration. Experi-
ments on three challenging action datasets have demonstrated
the effectiveness of our model.
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